

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

MICRO-LEARNING FOR LEARNING-HARD PROBLEMS

Anonymous authors

Paper under double-blind review

ABSTRACT

ML increasingly faces high complexity nonlinear data whose noise, imbalance, or small sample size thwart conventional models. We formalize this difficulty through the notion of Learning Hard Problems (LH-Ps), tasks that (i) defeat the vast majority of models, yet (ii) admit at least one high-quality solution if the relevant label-aware structural knowledge is appropriately incorporated during training. To address this, we introduce Micro-Learning (MiL), a principled framework that constructs traininglets: small, knowledge-fused subsets of the training data with demonstrably low complexity and infers a deterministic local model for each that collectively form a global predictor. We prove that the decision version of optimal traininglet selection is NP-complete, establishing a strong theoretical foundation for MiL. MiL dramatically reduces overfitting risk by eliminating irrelevant or noisy samples, while retaining interpretability and reproducibility through deterministic optimization in a RKHS space. Experiments in benchmark domains, from music information retrieval to medical proteomics, show that MiL solves LH-Ps and outperforms deep learning and classical baselines, especially on imbalanced or small-sample datasets, with negligible overfitting. Moreover, our work provides (i) the 1st definition of LH-Ps, (ii) a Learning-Hard Index to quantify task difficulty pre-training, and (iii) theoretical guarantees on traininglet optimality and complexity, enriching learning theory and ethical AI.

1 INTRODUCTION

Modern AI increasingly confronts highly complex nonlinear data with noise, imbalance, or small-sample size challenge existing models. We argue that many such tasks belong to an under-studied class we call *Learning-Hard Problems* (LH-Ps). An LH-P is characterized by two conditions:

1. *Near-universal failure*: almost all models in a broad hypothesis space perform poorly;
2. *Latent solvability*: there exists at least one model that can achieve satisfactory results once appropriate knowledge is fused into training, i.e., a good performance certificate exists.

Definition 1 (Learning-Hard Problem (LH-P)). Let $\mathcal{X}, \mathcal{Y}, \mathcal{P}, \mathbb{H}$ be the spaces of input data, label, and (unknown) data distribution respectively. For each $h \in \mathbb{H}$, let $L : \mathcal{Y} \times \mathcal{Y} \rightarrow \mathbb{R}_{\geq 0}$ be a loss, and define the generalization risk $R(h) = \mathbb{E}_{(x,y) \sim \mathcal{P}} [L(h(x), y)]$. Assume a family of knowledge-injection operators $\mathcal{K} = \{\varphi_\kappa : \mathcal{X} \rightarrow \mathcal{X}\}_\kappa$. A supervised task is an LH-P with respect to $(\mathbb{H}, \mathcal{K})$ if there exist constants $0 < \tau \ll \tau^*$ satisfying:

(C1) *Near-universal failure*: $\min_{h \in \mathbb{H}} R(h) \geq \tau^*$, (C2) *Latent solvability*: $\exists \kappa \in \mathcal{K}, h^* \in \mathbb{H}$ s.t. $R(h^* \circ \varphi_\kappa) \leq \tau$.

Here $(h^* \circ \varphi_\kappa)(x) = h^*(\varphi_\kappa(x))$; the operator φ_κ is a fixed, and knowledge-fusion preprocessing map that can be a label-aware projection or a re-sampling operator that corrects distribution shift for training and test data.

LH-P Interpretation. C1 states that *all* vanilla models in \mathbb{H} incur a high failure risk, whereas C2 guarantees the *existence of a verifiable certificate of solvability*: some pair (h^*, κ) achieves a low risk once appropriate knowledge is fused. Importantly, Def. 1 is existential; it does *not* assert that standard training procedures can efficiently discover (h^*, κ) , i.e., how to do knowledge fusion. In this study, we propose a Micro-Learning (MiL) approach to achieve this by conducting label-aware structural knowledge fusion through *traininglet* construction.

Deep Learning Falters on LH-Ps. LH-Ps are pervasive, appearing in domains from polyphonic music tagging and speech emotion recognition (SER) to imbalanced omics classification and COVID-19 diagnosis, etc. (Fuhrmann & Herrera, 2010), where deep learning (DL) models consistently stall at mediocre or even poor performance. For example, consider the IRMAS music-tagging

benchmark visualized in Fig.1.(b,c). Even SOTA architectures struggle: the carefully engineered convolutional network of Han et al. (2017) reaches only 60.2% F1, while the more sophisticated multitask CNN with onset-group auxiliary classification proposed by Yu et al. (2020) climbs to 68.5 %, still far from acceptable in practice.

The DL failure also is rooted in its built-in black-box nature (Li et al., 2019), vulnerability to overfitting, and poor reproducibility. Given an L-layer network with layer transformation function g_i , DL yields a highly nested decision function:

$$G(x) = f_{\text{softmax}}((g_L \circ \dots \circ g_1)(x)) \quad (1)$$

This structure, analogous to an extremely high-order polynomial, is highly sensitive, meaning small input perturbations can cause large output swings, not to mention the non-determinism from model itself, parallel GPU speedup, and data preprocessing.

This architectural failure also lies in DL’s lack of a knowledge-fusion mechanism to probe for latent label and structural information during training. This flaw is apparent with datasets that have hard-to-extract features, small-sample sizes, imbalanced distributions, or a significant distribution shift between training and test data. Although techniques such as sharpness-aware minimization (Foret et al., 2020) help, they neither expand the hypothesis space nor fuse knowledge in training.

Inspire MiL. We argue the key to solve LH-Ps is fuse knowledge during training. Figure 1 illustrates the core challenge of LH-Ps using the IRMAS dataset, a polyphonic music-tagging benchmark with 11 instrument classes (Yu et al., 2020). While a solution path may exist conceptually (a), the raw data of an LH-P can appear as a tangled swirl in t-SNE visualization (b), making this path hard to find. Feature selection offers little improvement (c), demonstrating that simple dimensionality reduction is insufficient. However, when label information is fused into the embedding process (d), the classes become clearly distinct. This reveals the key: the problem is not a lack of signal, but the failure of standard methods to leverage label-aware or structural knowledge, motivating our MiL.

Micro-Learning (MiL). We introduce *Micro-Learning* (MiL) for LH-Ps. For each query point, MiL extracts an instance-specific *traininglet*: a tailored, micro-sized training subset to classify that query with minimal learning cost. Traininglet construction is a *label-aware structural knowledge fusion* process. It selects the most discriminative samples while preserving their geometric proximity to the query’s neighborhood. On this *traininglet*, we fit a deterministic, interpretable *learninglet* (e.g., a regularized SVM or a variant) in a Reproducing Kernel Hilbert Space (RKHS) to get a prediction function customized to that query.

MiL learns locally. Rather than training a single global model and relying on it to generalize to every query, MiL learns locally and adaptively for each query. This approach is inherently more resistant to overfitting and, through the use of an SVM-based *learninglet*, yields interpretable and reproducible predictions. By fusing label-aware structural knowledge before model induction and operating online per-query, MiL differs fundamentally from local-SVM ensembles, meta-learning kernels, and curriculum learning (Aha, 1997; Tappen et al., 2001; Snell et al., 2017; Bengio, 2009).

Contributions. (1) Formalize LH-Ps, introduce the Learning-Hard Index (LHI), and present MiL, an overfitting-resistant, explainable, and reproducible model for LH-P solving. (2) MiL successfully

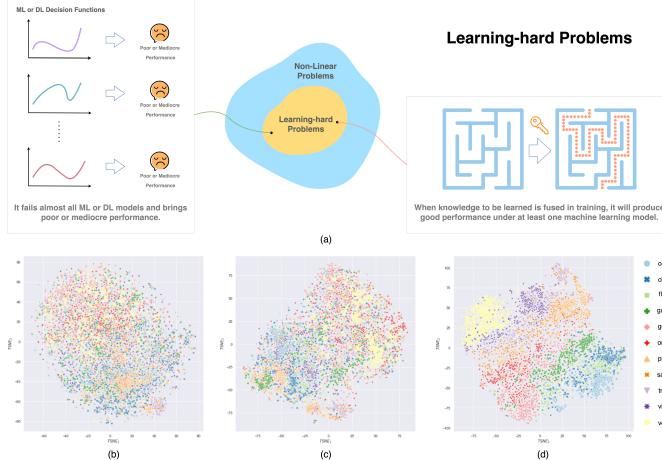


Figure 1: (a) Conceptual diagram of an LH-P where a viable solution path (gold) exists but is hard for standard learners to find. (b-d) t-SNE visualizations of IRMAS: (b) raw data lacks clear class structure; (c) feature selection yields only slight separation; (d) label-aware t-SNE reveals clear class clusters, demonstrating latent solvability

108 solves LH-Ps that defeat various baselines on benchmarks. (3) Prove that the decision problem for
 109 optimal traininglet selection is NP-complete, and provide theoretical guarantees that MiL contracts
 110 train–test total-variation distance while reducing local Rademacher complexity. (Koltchinskii, 2006).

112 2 RELATED WORKS

114 *Kernel methods* fail on LHPs due to poor scalability ($\mathcal{O}(n^2)$ storage) and their tendency to amplify
 115 noise in high-variance data (Yu et al., 2020). *Deep networks* excel at automatic feature extraction but
 116 their nested nonlinearities are sensitive to perturbations, causing over-fitting, weak reproducibility
 117 and limited interpretability. Techniques such as sharpness-aware minimization (SAM) (Foret et al., 2020)
 118 and refined capacity measures (Zhang et al., 2021) reduce, and long-tail vision strategies like GLMC (Du et al.,
 119 2023) and PaCo (Cui et al., 2021) reduce, but do not eliminate these issues, leaving LH-Ps unsolved.

120 *Local and test-time learners.* Gradient-based meta-learning such as MAML (Finn, 2017), and local
 121 model-builders like LIME (Marco, 2016), MAPLE (Gregory, 2018), and T3A (Iwasawa et al., 2021)
 122 rely only on observed features, leaving them vulnerable to LH-P failure modes. Similarly, test-time
 123 adaptation methods (e.g., Tent (Wang et al., 2021)) fine-tune on target batches but cannot escape the
 124 original hypothesis space or fuse the knowledge required to solve LH-Ps.

126 3 DIAGNOSING LEARNING-HARDNESS WITH LEARNING-HARD INDEX

128 **Learning-Hard Index (LHI).** To efficiently diagnose LH-Ps without relying on their formal definition,
 129 we introduce the Learning-Hard Index (LHI). The LHI, a scalar in $[0,1]$, is a practical metric to
 130 quantify a dataset’s intrinsic complexity, providing a straightforward way to determine if a classifi-
 131 cation task is an LH-P. In general, a higher LHI indicates greater learning difficulty and, therefore, a
 132 higher likelihood that the task is learning-hard. Assuming nominally clean labels, we classify a task
 133 as an LH-P when its $LHI \geq 0.80$.

134 In contrast to model-centric measures (e.g., Rademacher complexity), LHI is data-centric. Because
 135 it can be computed before any training begins, LHI serves as a lightweight, model-agnostic score
 136 for comparing datasets and for deciding when specialized frameworks, such as MiL, are warranted.

138 *Quasi-LH-Ps.* For those datasets whose LHI falls in the $[0.75, 0.80]$ range, we term their classifi-
 139 cation task as quasi-LH-Ps. Quasi-LH-Ps still suffer from the *Near-Universal Failure condition, but to*
 140 *a lesser degree.* Consequently, while many standard models may still underperform, the probability
 141 that a more powerful, well-tuned ‘vanilla’ model might find a satisfactory solution is considerably
 142 higher than for a true LH-P.

143 **LHI computing.** Let $X = \{(x_i, y_i)\}_{i=1}^m$ be a labeled dataset. We first obtain a locality-preserving
 144 embedding $X_r = f_{dm}(X)$ via a local nonlinear dimension reduction map f_{dm} (e.g., t-SNE McInnes et al.
 145 (2018).) We then group X_r using a clustering algorithm Θ (e.g., k -means) to generate pseudolabels y_{pi} ,
 146 forming the pseudolabeled reference set $X_p = \{(x_i, y_{pi})\}_{i=1}^m$.

147 The LHI is defined as $LHI(X) = 1 - AMI(X_r, X_p)$, where the Adjusted Mutual Information (AMI) is:

$$148 AMI(X_r, X_p) = \frac{MI(X_r, X_p) - \mathbb{E}[MI(X_r, X_p)]}{\frac{1}{2}(H(X_r) + H(X_p)) - \mathbb{E}[MI(X_r, X_p)]}. \quad (2)$$

150 Here, MI denotes mutual information and $H(\cdot)$ is Shannon entropy. Because AMI rewards embeddings that
 151 preserve local neighborhoods, it serves as a *robust* basis for the LHI.

152 Unlike global linear projections (e.g. PCA) blurring minority manifolds, the embedding map t-SNE maintains
 153 data locality better Han et al. (2022), and produces an LHI that faithfully reflects intrinsic task difficulty. Cru-
 154 cially, this facilitates clustering without biasing the metric: *Suppl. N* verifies no statistical difference between
 155 t-SNE and raw-feature LHI, confirming the metric captures intrinsic complexity of LH-Ps rather than artifacts.

156 **Cutoff:** Thresholding $LHI(X) \geq 0.80$, i.e., when the clustering retains $\leq 20\%$ of neighborhood mutual in-
 157 formation, reliably flags learning-hard tasks that demand specialized training (e.g., MiL) to achieve acceptable
 158 accuracy. A significant negative correlation ($r = -0.67, p = 0.035$) between LHI and performance validates
 159 LHI ≥ 0.80 as the critical threshold where standard model efficacy collapses (*Suppl. O*).

160 **Evaluate LH-P Data with LHI:** We evaluate LHI on 5 benchmarks spanning music, speech, health, and
 161 medicine: IRMAS Yu et al. (2020), CASIA (Li et al., 2016), SAVEE (Haq et al., 2008), Ovarian (Han et al., 2023),
 and a curated COVID-19 triage dataset. Table 1 summarizes key statistics; Although COVID19 falls slightly

162 below the 0.80 threshold, we include this to test MiL’s sensitivity to solving a quasi-LH-P. More data details
 163 can be found in *suppl. G*.

165 Table 1: Datasets of learning-hard problems

166 Dataset	(n, p)	167 Imbalance / sample rate	168 Classes	169 LHI
170 IRMAS	(6705, 518)	N	11	90.7%
171 CASIA	(1200, 54)	N	6	87.3%
172 SAVEE	(480, 54)	N	7	81.4%
173 COVID-19	(128, 48)	Y (57.03%: 37.5%: 5.47%)	3	78.5%
174 Ovarian	(266, 20531)	Y (98.50%: 1.5%)	2	97.6%

175 The LHI identifies *when* conventional training fails, but not *how* to succeed. Our core insight is that an LH-P
 176 can often be solved on a judiciously chosen customized small *subset* of the training set called a *traininglet* by
 177 fusing *label-aware structural knowledge for a query point for a minimal overfitting risk*. We formalize this idea
 178 using local Rademacher complexity (Bartlett & Mendelson, 2002). in Prop. 1

179 **Local Rademacher complexity.** For a sample $S = \{z_1, \dots, z_n\}$ and a function class \mathcal{F} , define the radius- r
 180 neighborhood $\mathcal{F}_r(f) = \{g \in \mathcal{F} : \|g - f\|_2 \leq r\}$. Its local Rademacher complexity is $\mathcal{R}_n(\mathcal{F}_r(f)) =$
 181 $\mathbb{E}_{S, \sigma} \left[\sup_{g \in \mathcal{F}_r(f)} \frac{1}{n} \sum_{i=1}^n \sigma_i g(z_i) \right]$, where each σ_i is an independent Rademacher variable. Smaller \mathcal{R}_n im-
 182 plies tighter generalization bounds in the neighborhood of f .

183 Prop.1 (*proof in Suppl. A*) provides the theoretical grounding for our approach, stating that every LH-P contains
 184 a ‘sweet-spot’ model within a region of minimal overfitting risk (i.e., minimal local Rademacher complexity).
 185 Our MiL is designed to systematically find this low-capacity region.

186 **Prop.1 (Low-capacity witness).** For any LH-P with hypothesis class \mathbb{H} and any radius $r > 0$, there exists a
 187 model $f^* \in \mathbb{H}$ such that $\mathcal{R}_n(\mathcal{F}_r(f^*)) = \inf_{f \in \mathbb{H}} \mathcal{R}_n(\mathcal{F}_r(f))$, meaning f^* minimizes the local Rademacher
 188 complexity over \mathbb{H} . Consequently, f^* and every model within its r -ball neighborhood enjoy the tightest gener-
 189 alization bound available in the entire hypothesis space.

190 *Why Prop. 1 matters.* Even though \mathbb{H} is inflated by noise and nonlinearity, Prop. 1 guarantees at least one
 191 “sweet-spot” region where overfitting risk is minimal. The practical challenge is to reach that region without
 192 exhaustively searching \mathbb{H} .

193 Standing on Prop. 1, Prop. 2 (*proof in suppl. B*) shows that for any given test point, a model trained on a
 194 suitably crafted traininglet is more likely to match the ideal Bayes prediction than any model trained on the
 195 full dataset. This strategy provides a practical path to realizing the low-capacity “sweet spot” guaranteed by
 196 Proposition 1.

197 **Prop.2 (Traininglet sufficiency).** For any test point p , there exist a traininglet $S_p \subsetneq S$ and $\Theta_p \in \mathbb{H}$ such
 198 that the classifier trained only on this traininglet $h_{\Theta_p, S_p} \in \mathbb{H}$ satisfies $\Pr[h_{\Theta_p, S_p}(p) = f_{\text{Bayes}}(p)] >$
 199 $\sup_{\Theta \in \mathbb{H}} \Pr[h_{\Theta, S}(p) = f_{\text{Bayes}}(p)]$. Here $h_{\Theta, S}$ is the model obtained by fitting hypothesis Θ on dataset S , and
 200 f_{Bayes} denotes the Bayes-optimal classifier. Hence, isolating the low-capacity traininglet S_p and training locally
 201 yields a predictor whose Bayes-matching probability strictly exceeds that of every full-data model, exactly the
 202 strategy embodied in our MiL.

203 *Prop. 2 guarantees an ideal, low-capacity traininglet exists for any test point. The central challenge, which MiL*
 204 *solves, is to practically construct this Bayes-optimal subset via label-aware structural knowledge fusion.*

205 4 MIL: OVERTFITTING-RESISTANT, EXPLAINABLE, AND REPRODUCIBLE

206 **MiL core: knowledge fusion for each query:** The key idea of MiL is to perform label-aware structural
 207 knowledge fusion by constructing a tailored traininglet for each query. Since finding the lexicographically
 208 optimal traininglet is NP-hard (Theorem 1), we introduce two practical heuristics to implement this fusion
 209 process: 1) Naïve Traininglet Construction (NTC): A straightforward approach effective for relatively large
 210 and clean datasets where local geometry is a reliable guide. 2) Precision Traininglet Construction (PTC): A
 211 robust, multi-stage framework designed to handle the complexity of true LH-Ps, including small, noisy, or
 212 imbalanced data.

213 Both heuristics achieve this *label-aware structural knowledge fusion* by actively leveraging label information
 214 to refine local neighborhoods: whether through multi-metric intersection (in NTC) or discriminative probing,
 215 training sanitization, meta-fusion, and precision pruning (in PTC). This ensures the resulting traininglet isolates
 216 the specific manifold structure relevant to the query, landing in the low-capacity “sweet-spot” guaranteed by
 217 our theory.

218 **MiL learns locally via a learninglet.** MiL then fits a deterministic RKHS model (e.g., SVM or variants), a
 219 *learninglet* on each traininglet. This local approach is inherently *overfitting-resistant*; instead of demanding a

single complex model to generalize globally, MiL fits many simple models to low-complexity, query-specific data. The use of an SVM or its variant, which avoid the high-order nested structure of deep networks and relies on deterministic convex optimization, ensures that each prediction is both *reproducible* and *interpretable*. This pipeline provides a constructive method for realizing the existential guarantee of Proposition 2, as shown in Fig.2 that compares MiL with traditional ML.

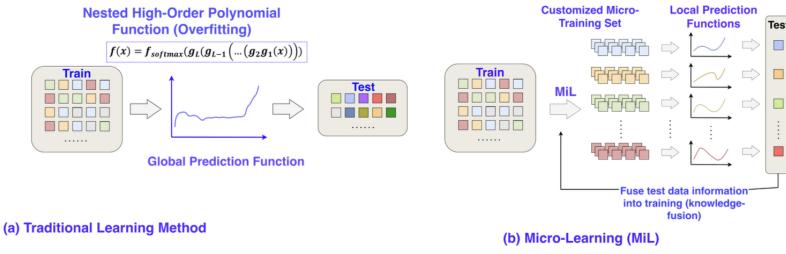


Figure 2: MiL learns a local predictor for each test point or batch, unlike traditional ML, which learns a single global function. This locality makes MiL inherently resistant to overfitting.

Traininglet: Definition and Theory

Definition 2 (Traininglet). Let $X = \{(x_i, y_i)\}_{i=1}^n$ be the labeled training set and $\mathcal{Y} = \{1, \dots, k\}$ its label set. Denote by $\text{LHI}(\cdot) \in [0, 1]$ the Learning-Hard Index. For a query point x' , the traininglet

$$\mathcal{T}_{x'} = \arg \min_{T \subseteq X} (\text{LHI}(T), |T|) \quad \text{s.t.} \quad \mathcal{Y} \subseteq \{y_i : x_i \in T\}, \quad (3)$$

minimizes the pair $(\text{LHI}(T), |T|)$ lexicographically, first the lowest LHI, then the smallest size.

Theorems 1 and 2, stated next, establish (i) traininglet decision problem (TRAININGLET-DEC) is NP-complete, implying the NP-hardness of finding the optimal traininglets, and (ii) the guaranteed existence of a low-capacity “sweet-spot” solution for every LH-P; detailed proofs are provided in *supplemental*.

Theorem 1 (TRAININGLET-DEC is NP-complete). Given a labeled set $X = \{(x_i, y_i)\}_{i=1}^n$, a set of required labels \mathcal{Y} , a budget $b \leq n$, and an LHI bound $\ell \in [0, 1]$, the problem of deciding

$$\exists T \subseteq X : |T| \leq b, \text{LHI}(T) \leq \ell, \mathcal{Y} \subseteq \{y_i : x_i \in T\} \quad (\text{TRAININGLET-DEC})$$

is NP-complete, assuming $\text{LHI}(\cdot)$ is computable in polynomial time.

Before we move to Theorem 2 we need one technical fact. A sample is called σ -noisy if replacing its label by a fresh dummy label increases AMI by at least $\sigma > 0$. Removing such a point always lowers the overall LHI of a dataset X . Lemma 1 formalizes this monotonicity and is the key step used to build the low-complexity traininglets of Theorem 2.

Lemma 1 (Removable-Noise Monotonicity; proof in *supplemental D*). Let $Z \subseteq X$ be labeled data and $z = (x_z, y_z) \in Z$. If substituting a fresh dummy label \perp for y_z increases AMI by at least $\sigma > 0$, then $\text{LHI}(Z \setminus \{z\}) \leq \text{LHI}(Z) - \sigma$.

For any LH-P and any batch of test queries we can always pick traininglets whose intrinsic complexity is strictly reduced, guaranteeing a move into the low-capacity regime promised by learning theory.

Theorem 2 (Existence of Low-Complexity Traininglets). Let X be the training set of any learning-hard problem (LH-P) and let x'_1, \dots, x'_s be an arbitrary query batch. Then there exist traininglets $\mathcal{T}_{x'_1}, \dots, \mathcal{T}_{x'_s} \subseteq X$ with $\min_j \text{LHI}(\mathcal{T}_{x'_j}) < \text{LHI}(X)$. Moreover, if X contains a σ -noisy point in the sense of Lemma 1 (so $\sigma > 0$), the inequality sharpens to $\min_j \text{LHI}(\mathcal{T}_{x'_j}) \leq \text{LHI}(X) - \sigma$. proof in *supplemental E*.

NTC and PTC for knowledge fusion. MiL employs two practical heuristics: naive traininglet construction (NTC) and precision traininglet construction (PTC) for knowledge fusion. NTC, the basis for our “Naive MiL” variant, creates a traininglet by intersecting small metric balls (e.g., Euclidean and correlation) and is effective primarily on relatively large, clean training data. PTC is a more robust heuristic for creating high-quality, low-LHI traininglets, especially for challenging data such as highly noisy, imbalanced, and small-sample data.

Naïve traininglet construction (NTC). NTC builds a traininglet for query x'_i by intersecting several small metric balls so that retained points are simultaneously close to x'_i in multiple geometric views of the data. Formally,

$$\mathcal{T}_{x'_i} = \bigcap_{j=1}^m \{x \in X : d_j(x, x'_i) < \varepsilon_j\}, \quad m \geq 2. \quad (4)$$

270 where d_1 and d_2 are typically Euclidean distance and Pearson correlation; a third view such as Wasserstein
 271 (images/audio) or cosine distance (sparse text) can be added when beneficial.

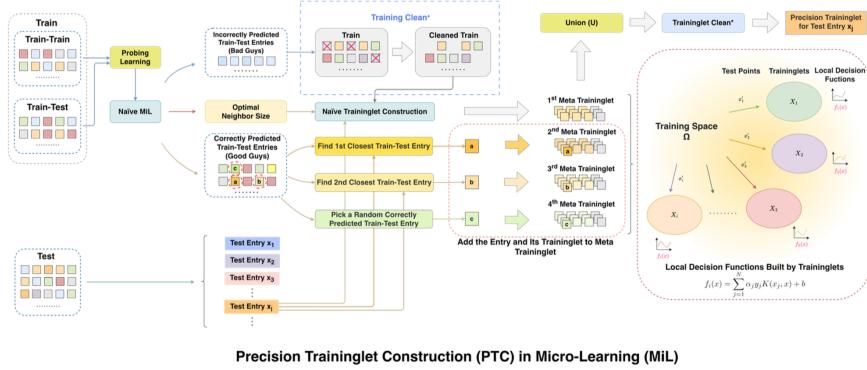
272 *Label rebalancing.* If the neighborhood $\mathcal{N}_\varepsilon(x'_i)$ lacks any label o , we append the nearest sample of that label:

273

$$274 \quad \mathcal{N}'_\varepsilon(x'_i) = \mathcal{N}_\varepsilon(x'_i) \cup \left\{ \arg \min_{x \in \mathcal{S}_o} d_j(x, x'_i) \right\}. \quad (5)$$

275

276 *Limitations.* NTC presumes a large, clean dataset; the fixed radii ε_j in equation 4 are rarely optimal, and noise
 277 within a ball can raise LHI even after rebalancing via equation 5. It either remains unknown how to select ε_j
 278 for a batch of query points. These issues motivate the more robust Precision Traininglet Construction (PTC)
 279 introduced next (Fig. 3).



291 Figure 3: Precision Traininglet Construction (PTC) in MiL consists of 4 steps: probing learning, training
 292 sanitization, meta-fusion, and precision pruning.

293 **Precision Traininglet Construction (PTC).** PTC operationalizes the guarantee of *Thm. 2*, identifying the
 294 low-capacity *sweet-spot* for a query via knowledge fusion. We denote the final traininglet produced by this
 295 algorithm as $\mathcal{T}_{x'}^{\text{PTC}}$. It is constructed by forming the union $\mathcal{U}_{x'} = \bigcup_{j=1}^4 \mathcal{T}_{x'}^{(j)}$ of four meta-traininglets ($\mathcal{T}_{x'}^{(j)}$), and
 296 then pruning noisy samples in a 4-stage procedure: *Probing learning*, *Training sanitization*, *Meta-traininglet*
 297 *fusion*, and *precision pruning* (algorithm in *Suppl. G+.*)

301 *1. Probing learning.* We estimate the optimal neighborhood radius k and batch size z (queries processed
 302 jointly) by a Monte-Carlo (MC) search: over $M=5-30$ random 80/20 splits of training data X . We evaluate
 303 every (k, z) on Naive-MiL to maximize a target *D-index* Han et al. (2023) and retain only non-dominated pairs.
 304 Specifically, we random-split X into an 80% *train-train* subset X_{tr} and a 20% *train-test* subset X_{te} . Across a
 305 bounded grid of (k, z) pairs, Naive-MiL predicts the labels of X_{va} from X_{tr} .

306 We select the pair (k^*, z^*) that maximizes D (D-index) in each search. $(k^*, z^*) = \arg \max_{k, z} D_{\text{Naive-MiL}}(X_{\text{tr}}, X_{\text{te}}, k, z)$. The D-index, an interpretable ML assessment score bounded by
 307 $(0, 2]$, is defined for a K -class problem as $D = \frac{1}{K} \sum_{i=1}^K \left[\log_2(1 + \alpha_i) + \log_2 \left(1 + \frac{s_i + p_i}{2} \right) \right]$, where α_i , s_i ,
 308 and p_i denote the accuracy, sensitivity, and specificity per class, respectively.

309 *2. Training sanitization.* Running Naive-MiL with (k^*, z^*) on training data X yields a deterministic prediction
 310 \hat{y}_i for every sample (x_i, y_i) . This partitions X into correctly and incorrectly predicted subsets (“good guys”
 311 and “bad guys”):

$$312 \quad \mathcal{G} = \{x_i \in X \mid \hat{y}_i = y_i\}, \quad \mathcal{B} = \{x_i \in X \mid \hat{y}_i \neq y_i\}. \quad (6)$$

313 *Noise pruning.* For each $x_b \in \mathcal{B}$ we remove both the error point and its ϵ -ball neighbors $\mathcal{N}_\epsilon(x_b)$: $X^{\text{clean}} = X \setminus \left(\mathcal{B} \cup \bigcup_{x_b \in \mathcal{B}} \mathcal{N}_\epsilon(x_b) \right)$. By Lemma 1, deleting each ϵ -ball lowers the LHI by at least $\sigma > 0$; hence
 314 $\text{LHI}(X^{\text{clean}}) \leq \text{LHI}(X) - \sigma$, moving the data toward the low-capacity “sweet-spot” required by Theorem 2.

315 The sanitization process prunes 18–41% of the training data across our five benchmarks, reducing the LHI
 316 by 6–20%. To prevent data loss for rare classes, a *minority-class safeguard* re-introduces the nearest ‘good’
 317 instance (\mathcal{G}) for any class that is fully eliminated. This yields a lean, noise-free, and label-complete dataset for
 318 the subsequent PTC steps.

319 *3. Meta-traininglet fusion.* For every query x'_i , we fuse four meta-traininglets $\{\mathcal{T}_{x'_i}^{(j)}\}_{j=1}^4$ into a single, label-
 320 complete union to capture complementary knowledge structural views. $\mathcal{U}_{x'_i} = \bigcup_{j=1}^4 \mathcal{T}_{x'_i}^{(j)}$. This union (i) contains
 321 every class, (ii) is at most $3k' + |\mathcal{G}|$ points, and (iii) lowers LHI, and provide a compact, well-balanced basis for

324 PTC. The 1st meta-traininglet $\mathcal{T}_{x'_i}^{(1)}$ is a *local ball* capturing geometric proximity. It is created using NTC with
 325 the optimal neighbor size k' in the cleaned training data: $\mathcal{T}_{x'_i}^{(1)} = \text{NTC}(x'_i, k', X^{\text{clean}})$.
 326

327 The 2nd and 3rd meta-traininglets, $\mathcal{T}_{x'_i}^{(2)}$ and $\mathcal{T}_{x'_i}^{(3)}$, are *1-hop* and *2-hop transfers*, injecting first-order semantic
 328 context and adding broader manifold structure, respectively. They are generated by performing nearest-
 329 neighbor search (NNS) on \mathcal{G} (the set of “good guys” from training sanitization) to obtain each point’s first- and
 330 second-closest neighbors, $\mathcal{N}_1(x'_i)$ and $\mathcal{N}_2(x'_i)$, and then merging their traininglets:

$$\mathcal{T}_{x'_i}^{(2)} = \bigcup_{x'_i \in \mathcal{G}} \mathcal{T}_{\mathcal{N}_1(x'_i)}, \quad \mathcal{T}_{x'_i}^{(3)} = \bigcup_{x'_i \in \mathcal{G}} \mathcal{T}_{\mathcal{N}_2(x'_i)} \quad (7)$$

331 The 4th meta-traininglet $\mathcal{T}_{x'_i}^{(4)}$ is a *random anchor* plugging residual topology gaps. It is formed by randomly
 332 selecting a “good guy” $x_g \in \mathcal{G}$ and combining it with its traininglet, $\mathcal{T}_{x'_i}^{(4)} = \mathcal{T}_{x_g}$.
 333

334 *4. Precision pruning.* Remove any point within a neighbor radius of B (‘bad guys’) to obtain the *final traininglet*
 335 $\mathcal{T}_{x'_i}^{\text{PTC}} = \mathcal{U}_{x'_i} \setminus \bigcup_{b \in B} \mathcal{N}(b)$. This shrinks LHI by removing additional noise or outliers.
 336

337 **Why PTC works.** PTC knowledge fusion has theoretical guarantees. *Stage 1* aligns neighborhoods with labels;
 338 by *Prop. 1*, it lands in an r-ball of minimal local Rademacher radius, and *Prop. 2* guarantees that the resulting
 339 traininglet outperforms any fulldata model, tightening the generalization bound; *Stage 2* excises high-entropy
 340 samples and their neighbors, lowering the empirical VC dimension; *Stage 3* re-establishes full label coverage,
 341 guaranteeing an *informed traininglet* (Thm. 2); *Stage 4* removes outliers, tightening the generalization bound
 342 to $\mathcal{O}(1/\sqrt{|T|})$ (T : final traininglet size.)
 343

344 *Prop.3 (suppl. F)* resolves *distribution shift* by strictly contracting the training–test total-variation distance,
 345 creating a query-aligned local distribution that ensures reliable generalization on LH-Ps.
 346

347 **Prop. 3 (PTC contracts the training–test gap).** Let P_{tr} and P_{te} denote the training and test distributions of
 348 an LH-P. After applying PTC within the MiL pipeline, the resulting distribution P_{PTC} satisfies the strict total
 349 variation contraction, i.e., $P_{\text{tr}} \xrightarrow{\text{PTC}} P_{\text{te}}$. $\|P_{\text{PTC}} - P_{\text{te}}\|_{\text{TV}} < \|P_{\text{tr}} - P_{\text{te}}\|_{\text{TV}}$.

350 **Explainability and reproducibility of MiL’s learninglet.** MiL’s local learner (learninglet) is a multiclass
 351 SVM, a choice that ensures both reproducibility and interpretability. Reproducibility is guaranteed via deter-
 352 ministic convex optimization. Interpretability stems from the SVM’s decision function for any pair of classes
 353 ‘ i ’ and ‘ k ’: $f_{ik}(x) = \sum_j \alpha_j^{ik} y_j^{ik} K(x_j^{ik}, x) + b_{ik}$. This formulation provides a transparent, instance-based expla-
 354 nation, as the prediction is a direct function of the query’s kernelized similarity to a few support vectors from
 355 the tailored traininglet.
 356

357 **SVM-micro-CNN-let (SC-let).** To endow MiL with representation learning while retaining the determinism
 358 of large-margin theory, we replace each SVM with an SVM-micro-CNN-let (SC-let). This *learninglet* uses
 359 a compact CNN module (e.g., a 3x3 CNN-let, ResNet-let or even a ResNet) to learn a feature map, which
 360 is then fed to a linear SVM head. This hybrid design retains the reproducibility and RKHS explainability of
 361 classical SVMs while gaining the expressive power of CNNs to disentangle complex local patterns from small
 362 traininglets. Crucially, for image data, all nearest neighbor searches for traininglet construction are performed
 363 in a pretrained CNN-mapped feature space, ensuring comparisons are based on semantic similarity rather than
 364 misleading pixel-by-pixel calculations. Note NTC is recommended for high-dimensional image data for cost.
 365

366 **MiL Complexity.** MiL complexity model represents a deliberate trade-off, making it a practical for high-
 367 stakes, small/mid-sized LH-Ps. Its primary limitation is the significant, one-time offline preprocessing cost of
 368 $\mathcal{O}(Mn^2p)$ in the PTC phase (M : Number of Monte-Carlo (MC) draws) While this can be expensive for very
 369 large datasets, this upfront investment enables highly efficient and embarrassingly parallel online inference
 370 for each query. Furthermore, MiL’s memory complexity is only $\mathcal{O}(np)$, a significant advantage over methods
 371 requiring prohibitive $\mathcal{O}(n^2)$ storage like kernel SVMs. This two-phase design: a high but justifiable one-time
 372 cost for fast, scalable, and memory-efficient *learninglet inference* makes MiL feasible for challenging problems
 373 where other powerful methods are often computationally intractable.
 374

375 5 RESULTS: MASTERING LH-PS WITH MiL

376 **Baselines.** We evaluate MiL’s performance across the five benchmarks in Table 1. MiL is compared with 15
 377 baselines chosen to cover the three dominant paradigms for small or noisy data: (i) *Classical non-parametrics*:
 378 SVM, Random Forest, Extra-Trees, Naïve Bayes, DNN; (ii) *Mainstream static DL*: CNN, LSTM, GRU, Bi-
 379 LSTM, Bi-GRU; (iii) *Hybrid/capsule refinements*: Conv-LSTM, Conv-GRU, Conv-BiLSTM, Conv-BiGRU,
 380 CapsNet (LeCun et al., 2015; Sabour et al., 2017; Cho et al., 2014). These paradigms isolate the efficacy of
 381 local knowledge fusion. MiL (84.3% F1) surpasses domain-specific IRMAS SOTA (68.5% (Yu et al., 2020));
 382 for the novel medical tasks, standard DL represents the effective state-of-the-art.
 383

378 Online TTA methods (e.g., Tent, T3A) are omitted: they assume large, stationary target batches and fixed
 379 feature extractors, assumptions that fail in LH-Ps where queries are single and highly shifted. Hyper-parameters
 380 are tuned in study by nested grid search (*Suppl. L*).

381 **MiL wins statistically.** We report mean over five repeated 5-fold CV runs (IRMAS, CASIA, COVID-19,
 382 Ovarian) and a single 10-fold CV (SAVEE), following established practice on small-sample speech corpora.
 383

384 Table 2: Performance of MiL on five benchmarks
 385

Dataset	D-index	Acc	Sen	Prec	F1
IRMAS	1.8162	0.8431	0.8387	0.8449	0.8431
CASIA	1.7949	0.8283	0.8314	0.8297	0.8283
SAVEE	1.7015	0.7625	0.7365	0.7458	0.7625
COVID19	1.9424	0.9544	0.9644	0.9632	0.9544
Ovarian	1.7939	0.9815	1.0000	0.9811	0.9815

392 Table 2 reports MiL’s performance across five
 393 benchmarks, showing it surpasses both classi-
 394 cal ML and DL baselines on every dataset. A
 395 one-tailed Mann-Whitney U -test on the
 396 composite *Metric-integrated Lift* score confirms
 397 this superiority: MiL’s median of 0.97 (95%
 398 CI: 0.95-1.00) significantly exceeds the 0.77
 399 (95% CI: 0.76-0.84) of the best DL baseline
 400 ($U = 23, p = 1.6 \times 10^{-2}, \delta_{\text{Cliff}} = 0.84$).
 401 A more granular test on all 35 raw metric val-
 402 ues yields an even more dominant result ($U =$
 403 $1082, p < 2 \times 10^{-8}, \delta_{\text{Cliff}} \approx 0.77$), indicat-
 404 ing an 89% probability that MiL outperforms
 405 the DL model on any given metric ($P(\text{ours} >$
 406 $\text{DL}) \approx 0.89$). MiL therefore statistically out-
 407 performs every convolutional, recurrent, and
 408 capsule DL model, providing concise, effect-
 409 size-centered evidence of its architectural super-
 410 iority. Similarly, A battery of 25 Bonferroni-
 411 adjusted Mann-Whitney tests confirms MiL’s
 412 complete stochastic dominance over classical
 413 ML baselines, with its knowledge-fused train-
 414 inglets maintaining a solid decision boundary even
 415 under extreme imbalance where rivals falter (see
 416 *Suppl. J*).

417 **MiL vs DL.** Fig 4 contrasts MiL with 11 DL baselines across our 3 benchmarks (results of 5 benchmarks in
 418 *Suppl. H*). The results demonstrate MiL’s superiority: even in its naïve form on the larger IRMAS dataset, MiL
 419 tops every DL model. This performance gap widens dramatically on small-sample tasks like COVID-19 and
 420 Ovarian, where DL struggle to generalize. Beyond raw accuracy, MiL provides advantages that DL cannot:
 421 deterministic training, transparent decision boundaries, and inherent resistance to overfitting.

422 **MiL vs meta-learning, SAM, pretraining, and LNN.** Across the five benchmarks, MiL consistently out-
 423 performs meta-learning baselines: *ProtoNet* and *MAML* (*Suppl. M*), raising average accuracy from 67.8% to
 424 87.4% (and F1 from 64.6% to 87.4%), with per-dataset accuracy gains ranging from about 7 to 33.7 percentage
 425 points and consistent increases in D-index, sensitivity, and precision. They both have poor performance on the
 426 small-sample data: *COVID-19* and *Ovarian*. A paired t -test across five benchmarks confirms MiL significantly
 427 outperforms the best baseline ($p \approx 0.01$) with a large effect size. MiL excels by building a clean, query-specific
 428 local model, avoiding the single, noise-sensitive global model used by meta-learners. Similarly, MiL statisti-
 429 cally outperforms SAM across the benchmarks, as SAM relies on a single, noise-sensitive global model and
 430 with poor reproducibility (*Suppl. P*). *Suppl. Q* and *U* also show MiL statistically outperforms pretraining and
 431 LNN (*liquid neural networks*) models on LH-P benchmarks.

432 **Traininglet visualization.** Fig. 5 contrasts the highly entangled global datasets (baselines shown in Fig. 1(b)
 433 and *Suppl. G*) with MiL’s tailored traininglets for IRMAS, COVID-19, and Ovarian queries. For both single-
 434 sample inference and optimized batches (batch size $z : 212, 32, 25$ respectively), the traininglets exhibit ex-
 435 ceptional class separability. Quantitatively, the LHI plummets from the intractable global baseline (≥ 0.79) to
 436 a solvable local regime (≤ 0.26). This drastic reduction empirically validates *Thm 2* (strict complexity reduction)
 437 and serves as the physical realization of *Prop. 1*’s theoretical *sweet-spot*. By isolating these simplified,
 438 query-aligned sub-distributions, MiL effectively contracts the training-test total variation distance (*Prop. 3*),
 439 converting a globally hard problem into a sequence of locally trivial ones.

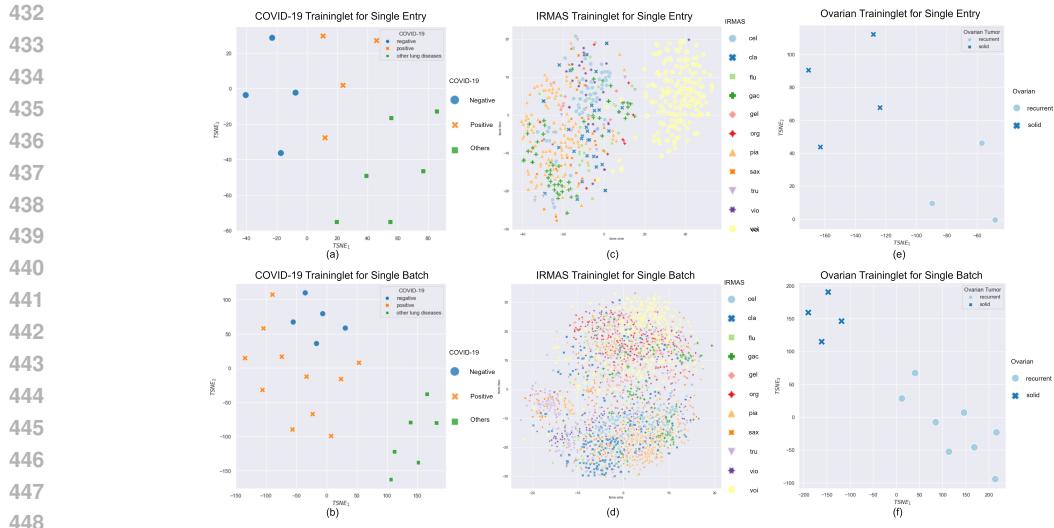


Figure 5: High-quality, separable traininglets constructed by MiL for the COVID-19 (a, b), IRMAS (c, d), and Ovarian (e, f) datasets. Examples for both single queries (a, c, e) and test batches (b, d, f) demonstrate exceptional class separability, validating the effectiveness of label-aware structural knowledge fusion.

Ablation studies. Our MiL ablation study strongly supports the key design choices of the four-stage PTC pipeline. For example, for the COVID-19 data ablation, a paired Wilcoxon signed-rank analysis across the eight evaluation metrics (*Suppl. I*) shows that removing any single PTC component leads to a statistically significant drop in performance compared to the full *MiL* pipeline (all $p = 0.003906 < 0.0125$ after Bonferroni correction over four tests), statistically validating that all four PTC stages are integral and complementary, with each contributing a significant and non-redundant performance gain. We omit ablation for IRMAS and Ovarian data as their NTC method lacks separable pipeline stages.

6 DISCUSSION AND CONCLUSION

We formalized LH-Ps that defeat most learners yet become solvable once latent knowledge fused, and introduced MiL for LH-Ps. MiL builds a well-tailored *traininglet* for each query by fusing relevant label-aware and structural knowledge upon which a deterministic learninglet infers a local decision function, to achieve overfitting-resistant, reproducible, and interpretable learning. MiL mitigates distribution shift and adversarial attacks via dynamic, query-aligned traininglets, statistically outperforming SOTA baselines across benchmarks.

Limitation: 1. *Scalability.* MiL’s primary limitation is the complexity of its PTC phase: $\mathcal{O}(Mn^2p)$, which restricts its application to small- and mid-sized LH-Ps. While potential solutions exist, they involve significant trade-offs: larger traininglets risk compromising MiL’s overfitting resistance, while intensive GPU acceleration may sacrifice the deterministic reproducibility that is a key feature of our *learninglet*. Future work could explore scalable approximation algorithms for the NP-hard *traininglet* selection for this and traininglet reuse techniques. 2. *MiL failure.* MiL’s effectiveness is also limited on *high-dimensional, noisy data* like vectorized text. A preliminary study on a large SEC 8K dataset (~ 18 k samples, ~ 1 k features, *Suppl. K*) showed only marginal improvement over existing models with more computing. We hypothesize that high vectorization noise degrades effective knowledge fusion in traininglets construction even if dimension-reduction-de-noising is employed. It implies more customized de-noising or context retrieval is needed for such data for MiL.

Extension and Future: We applied the proposed *SC-let* to CIFAR-100 data, where the *learninglet* is implemented as a ResNet and each *traininglet* is calculated with NTC for each test point. We achieved 80.24% accuracy (*Suppl. V*) where each traininglet with only 50 entries, suggesting that MiL can be an effective model for large image data, largely retaining its benefits of reproducibility and overfitting-resistance. A promising direction for future work is to design more compact or inherently interpretable *learning-lets* to ensure MiL’s explainability is not compromised when scaling to such complex vision tasks, as well as extending MiL, LHI, *traininglets* and *learning-lets* to Learning-Hard regression problems (*Suppl. T*)

We aim to scale MiL to large-scale LH-Ps by integrating approximate nearest-neighbor search (e.g., *Annoy*) and designing optimized *learning-lets* for big data. Crucially, we aim to quantify the inherent trade-offs between improved scalability and MiL’s core advantages: its overfitting-resistance, reproducibility, and explainability. Striking this balance is essential to establish trustworthy MiL for high-stakes AI. **code and data:** <https://anonymous.4open.science/r/iclr26-anon-code-9DB6/>.

486 REFERENCES
487

488 David W. Aha. Editorial: Special issue on lazy learning. *Artificial Intelligence Review*, 11(1–5):7–10, 1997.
489 doi: 10.1023/A:1006665904461.

490 P. Bartlett and S Mendelson. Rademacher and gaussian complexities: Risk bounds and structural results.
491 *Journal of Machine Learning Research*, 3:463–482, 2002. URL <http://www.jmlr.org/papers/v3/bartlett02a.html>.

492 et. al Bengio. Curriculum learning. In *Proceedings of the 26th International Conference on Machine
493 Learning (ICML)*, pp. 41–48. ACM, 2009. URL <https://dl.acm.org/doi/10.1145/1553374.1553380>.

494 Kyunghyun Cho, Bart van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger
495 Schwenk, and Yoshua Bengio. Learning phrase representations using RNN encoder-decoder for statisti-
496 cal machine translation, 2014. URL <http://arxiv.org/abs/1406.1078>.

497 Jiequan Cui, Zhisheng Zhong, Shu Liu, Bei Yu, and Jiaya Jia. Parametric contrastive learning. In *Proceedings
498 of the IEEE/CVF International Conference on Computer Vision (ICCV)*, pp. 715–724, 2021.

499 Fei Du, Peng Yang, Qi Jia, Fengtao Nan, Xiaoting Chen, and Yun Yang. Global and local mixture consistency
500 cumulative learning for long-tailed visual recognitions. In *Proceedings of the IEEE/CVF Conference on
501 Computer Vision and Pattern Recognition (CVPR)*, pp. 15814–15823, 2023.

502 et al. Finn. Model-agnostic meta-learning for fast adaptation of deep networks. In *Proceedings of the 34th
503 International Conference on Machine Learning*, volume 70 of *Proceedings of Machine Learning Research*,
504 pp. 1126–1135. PMLR, 2017. URL <https://proceedings.mlr.press/v70/finn17a.html>.

505 Pierre Foret, Ariel Kleiner, H. Mobahi, and Behnam Neyshabur. Sharpness-aware minimization for
506 efficiently improving generalization. 2020. URL <https://www.semanticscholar.org/paper/Sharpness-Aware-Minimization-for-Efficiently-Foret-Kleiner/a2cd073b57be744533152202989228cb4122270a>.

507 Ferdinand Fuhrmann and P. Herrera. Polyphonic instrument recognition for exploring semantic
508 similarities in music. 2010. URL <https://www.semanticscholar.org/paper/Polyphonic-Instrument-Recognition-for-exploring-in-Fuhrmann-Herrera/d38cb0117b04c5cc0fee686bf1acd21b9e5239f0>.

509 et al. Gregory. Model agnostic supervised local explanations. In *Proceedings of the 32nd International Con-
510 ference on Neural Information Processing Systems (NeurIPS)*, pp. 2520–2529, 2018.

511 Henry Han, Wentian Li, Jiacun Wang, Guoxiong Qin, and Xia Qin. Enhance explainability of manifold learn-
512 ing. *Neurocomputing*, 500:877–895, 2022. doi: 10.1016/j.neucom.2022.05.119.

513 Henry Han, Yi Wu, Jiacun Wang, and Ashley Han. Interpretable machine learning assessment. 561, 2023. ISSN
514 0925-2312. doi: 10.1016/j.neucom.2023.126891. URL <https://doi.org/10.1016/j.neucom.2023.126891>.

515 Yoonchang Han, Jaehun Kim, Kyogu Lee, Yoonchang Han, Jaehun Kim, and Kyogu Lee. Deep convolutional
516 neural networks for predominant instrument recognition in polyphonic music. 25(1):208–221, 2017. ISSN
517 2329-9290. doi: 10.1109/TASLP.2016.2632307. URL <https://doi.org/10.1109/TASLP.2016.2632307>.

518 Sana Haq, Philip Jackson, and J. Edge. Audio-visual feature selection and reduction for emotion classification.
519 pp. 185–190, 2008.

520 Yusuke Iwasawa, Daiki Kimura, Yuto Yamada, and Shinichi Nakajima. Test-time classifier adjustment mod-
521 ule for model-agnostic domain generalization. In *Advances in Neural Information Processing Systems
522 34 (NeurIPS)*, pp. 4499–4510, 2021. URL <https://proceedings.neurips.cc/paper/2021/file/b026390ae2f861b1599237b40af16b3a-Paper.pdf>.

523 Vladimir Koltchinskii. Local rademacher complexities and oracle inequalities in risk minimization. *Annals of
524 Statistics*, 34(6):2593–2656, 2006.

525 Yann LeCun, Y. Bengio, and Geoffrey Hinton. Deep learning. 521:436–44, 2015. doi: 10.1038/nature14539.

526 Haidong Li, Jiongcheng Li, Xiaoming Guan, Binghao Liang, Yuting Lai, and Xinglong Luo. Research on
527 overfitting of deep learning. In *2019 15th International Conference on Computational Intelligence and
528 Security (CIS)*, pp. 78–81, 2019. doi: 10.1109/CIS.2019.00025. URL <https://ieeexplore.ieee.org/abstract/document/9023664>.

540 Yong-Feng Li, Su-Yuan Zhao, Bo-Hao Wang, Guan-Ying Liu, and Shan Yu. Casia natural emotional audio-
 541 visual database. In *2016 7th International Conference on Affective Computing and Intelligent Interaction*
 542 (*ACII*), pp. 1–6. IEEE, 2016.

543 et al. Marco. “why should i trust you?” explaining the predictions of any classifier. In *Proceedings of the 22nd*
 544 *ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD)*, pp. 1135–1144. ACM, 2016.
 545

546 Leland McInnes, John Healy, and James Melville. Umap: Uniform manifold approximation and projection
 547 for dimension reduction. In *Proceedings of the ICML Workshop on Dimension Reduction*, pp. 1–9, 2018.
 548 arXiv:1802.03426.

549 Sara Sabour, Nicholas Frosst, and Geoffrey E. Hinton. Dynamic routing between capsules, 2017. URL <http://arxiv.org/abs/1710.09829>.
 550

551 Jake Snell, Kevin Swersky, and Richard S. Zemel. Prototypical networks for few-shot
 552 learning. In *Advances in Neural Information Processing Systems (NeurIPS)*, pp. 4077–
 553 4087, 2017. URL <https://proceedings.neurips.cc/paper/2017/file/cb8da6767469bfa3f30688b5e23dcae5-Paper.pdf>.
 554

555 Michael F. Tappen, Edward H. Adelson, and William T. Freeman. Estimating intrinsic component images using
 556 non-linear regression. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*
 557 (*CVPR*), pp. 1992–1999, 2001. doi: 10.1109/CVPR.2001.990594.

558 Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno Olshausen, and Trevor Darrell. Tent: Fully test-time
 559 adaptation by entropy minimization. In *International Conference on Learning Representations (ICLR)*,
 560 2021. URL <https://openreview.net/forum?id=uX13bK3IiI>.
 561

562 Dongyan Yu, Huiping Duan, Jun Fang, and Bing Zeng. Predominant instrument recognition based on deep
 563 neural network with auxiliary classification. 28:852–861, 2020. ISSN 2329-9290, 2329-9304. doi: 10.1109/
 564 TASLP.2020.2971419. URL <https://ieeexplore.ieee.org/document/8979336/>.
 565

566 Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding deep learning
 567 (still) requires rethinking generalization. 64(3):107–115, 2021. ISSN 0001-0782, 1557-7317. doi: 10.1145/
 568 3446776. URL <https://dl.acm.org/doi/10.1145/3446776>.
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593