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ABSTRACT

Machine learning systems increasingly face high complexity data whose non-
linear structure, noise, imbalance, or limited sample size thwart conventional mod-
els. We formalize this difficulty through the notion of Learning Hard Problems
(LH-Ps), tasks that (i) defeat the vast majority of models, yet (ii) admit at least
one high-quality solution if the relevant domain knowledge is appropriately incor-
porated during training. To address LH-Ps we introduce Micro-Learning (MiL), a
principled framework that constructs traininglets: small, knowledge-fused subsets
of the training data with demonstrably low complexity—and infers a determin-
istic local model for each that collectively form a global predictor. We prove
that the decision version of optimal traininglet selection is NP-complete, estab-
lishing a strong theoretical foundation for MiL. MiL dramatically reduces overfit-
ting risk by eliminating irrelevant or noisy samples, while retaining interpretabil-
ity and reproducibility through deterministic optimization in a Reproducing Ker-
nel Hilbert Space. Experiments in benchmark domains, from music information
retrieval to medical proteomics, show that MiL. solves LH-Ps successfully and
outperforms deep learning and classical baselines, especially on imbalanced or
small-sample datasets, with negligible overfitting. Beyond an effective algorithm,
our work provides (i) the first formal definition and characterization of LH-Ps,
(i1) a Learning-Hard Index (LHI) to quantify task difficulty pre-training, and (iii)
theoretical guarantees on traininglet optimality and complexity. Together, these
contributions enrich learning theory and offer a path to ethical AL

1 INTRODUCTION

Modern Al increasingly confronts high-complexity data whose non-linearity, noise, imbalance, or
scarcity overwhelm conventional models. We argue that many such tasks belong to a distinct,
under-studied class we call Learning-Hard Problems (LH-Ps). An LH-P is characterized by two
simultaneous properties:

1. Near-universal failure — almost every model in a broad hypothesis space delivers mediocre
or poor performance;

2. Latent solvability — there exists at least one model that can achieve high-quality results once
appropriate domain knowledge is fused into the training process, i.e., a good performance
certificate exists and is verifiable.

Definition 1 (Learning-Hard Problem (LH-P)). Let X', Y, P, H be as above. For each h € H, let
L:Y xY — Rxg be a loss, and define the generalization risk R(h) = By, ~p|[L(h(z),y)].
Assume a family of knowledge-injection operators K = {¢, : X — X'},. A supervised task is an
LH-P with respect to (H, K) if there exist constants 0 < 7 < 7* satisfying

(C1) Near-universal failure: ~ minpeg R(h) > 7%,
(C2) Latent solvability: 3 € K, h* €H s.t. R(h*op,;) < T.

Here (h*op,)(x) = h*(go,{(x)); the operator ¢, is a fixed, and knowledge-fusion preprocessing
map that can be a label-aware projection or a re-sampling operator that corrects distribution shift
for both training and test data.

Interpretation. C1 states that a// vanilla models drawn from H incur high risk, whereas C2 guaran-
tees the existence of a verifiable certificate of solvability: some pair (h*, k) achieves low risk once
appropriate knowledge is injected.
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Importantly, Definition 1 is existential; it does not assert that standard training procedures can ef-
ficiently discover (h*,x). In fact, as we prove in the supplemental, the corresponding decision
problem: determining if a satisfactory traininglet exists is NP-complete (Theorem 1 in Section 4).

LH-Ps are pervasive: polyphonic music tagging (Fuhrmann & Herrera, 2010), speech-emotion
recognition on tiny corpora (Haq et al.l |2008), protein-mass-spectrometry diagnosis (Han et al.,
2023)), and heavily imbalanced COVID-19 triage all score high on our Learning-Hard Index (LHI)
measure. (Section 3).

Figure[]illustrates the core chal-

lenge of LH-Ps using the IR-

MAS dataset. While a solu- ® Learning-hard Problems
tion path may exist conceptu- - o

ally (a), the raw data appears —

as an inseparable swirl when vi- I ®
sualized with t-SNE (b). Fea- e
ture selection offers little im- S
provement (c), demonstrating

that simple dimensionality re-

duction is insufficient. However,

when label information is fused

into the embedding process (d),

the classes become clearly dis- o “ “

tinct. This reveals the central

thesis: the problem is not a Figure 1: (a) A conceptual diagram of LH-Ps, where a viable solution
lack of signal, but the failure path (gold) exists but is difficult for standard learners to find. (b-d) t-
of standard methods to lever- SNE visualizations of the IRMAS dataset: (b) The raw data shows no
age domain knowledge, directly clear cl.ass structure. (c) Applying feature selection provides minimal
separation. (d) Label-aware t-SNE exposes clear class clusters, demon-
strating latent solvability.
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motivating our Micro-Learning
(MiL) approach.

Why Deep Learning Falters?

Deep networks excel at feature learning, yet their nested nonlinear decision function G(z) =
fsoftmax(9z. 0+ -0 g1(x)) acts like an extremely high-order polynomial. Small input perturbations
can thus cause large output swings, producing over-fitting, poor reproducibility, and limited ex-
plainability (Samek et al. 2017; [Li et al. 2019). Although techniques such as sharpness-aware
minimisation (Foret et al.,|2020) help, they neither expand the hypothesis space nor inject external
knowledge, so deep models remain case-specific fixes and cannot solve LH-Ps.

For concreteness, consider the IRMAS music-tagging benchmark visualized in Fig.1. Even SOTA
architectures struggle: the carefully engineered convolutional network of [Han et al.| (2017) reaches
only 60.2% micro-F1, while the more sophisticated multitask CNN with onset-group auxiliary clas-
sification proposed by Yu et al.|(2020) climbs to 68.5 %, still far from acceptable for a modern MIR
system. These results exemplify the central pathology of LH-Ps: deep models, however refined,
search within a fixed hypothesis space and cannot exploit latent domain structure.

Micro-Learning (MiL). We introduce Micro-Learning (MiL), a principled framework for LH-Ps.
For every query point or small query batch: MiL extracts an instance-specific traininglet: a
micro-sized, knowledge-fused subset of the training set D. This per-query data selection echoes
the spirit of curriculum learning (Bengio, 2009), but it is performed online and individually rather
than via a global easy-to-hard schedule.

On this traininglet we fit a deterministic, explainable learner—e.g., an SVM or variants in a Re-
producing Kernel Hilbert Space, yielding a custom prediction function unique to that query. By
bypassing the usual global-to-local generalization step, MiL supplies an over-fitting-resistant, inter-
pretable, and reproducible predictor; the ensemble of these locals forms the global decision function.
Unlike local-SVM ensembles (Aha, |1997; Tappen et al.,2001) or meta-learning kernels (Snell et al.}
2017), MiL fuses domain knowledge before model induction, a step we show is critical for LH-Ps.

Contributions. (1) Theory: We formalize LH-Ps, introduce the Learning-Hard Index (LHI), and
prove the decision problem of optimal traininglet selection is NP-complete (yet tractable via our
precision heuristic). (2) Algorithm: We present Micro-Learning (MiL), an overfitting-resistant, ex-
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plainable, reproducible framework. (3) Guarantees: MiL contracts the train—test total-variation
distance and reduces local Rademacher complexity (Koltchinskii, 2006). (4) Empirics: On mu-
sic, speech, health, omics, and COVID-19 benchmarks, MiL successfully solves LH-Ps that defeat
baselines, with negligible overfitting.

2 RELATED WORKS

Kernel methods fail on LHPs due to poor scalability (O(n?) storage) and their tendency to amplify
noise in high-variance data (Vapnikl 2000; Yu et al., 2020).

Deep networks excel at automatic feature extraction but their nested nonlinearities are sensitive to
perturbations, causing over-fitting, weak reproducibility and limited interpretability (Samek et al.,
2017;Li et al.,|2019). Techniques such as sharpness-aware minimization (SAM) (Foret et al., [2020)
and refined capacity measures (Galanti et al.| 2023 Jiang et al., 2019} [Zhang et al.| [2021; Ramas-
inghe et al.| [2023)) reduce—but do not eliminate—these issues, and they neither enlarge the hypoth-
esis space nor inject task-level knowledge, leaving many LH-Ps unsolved.

Local and test-time learners. Gradient-based meta-learning such as MAML (Finn} [2017)), and local
model-builders like LIME (Marco\ |2016)), MAPLE (Gregory} 2018)), and T3A (Iwasawa et al.,[2021])
rely only on observed features, leaving them vulnerable to LH-P failure modes. Similarly, test-time
adaptation methods (e.g., Tent (Wang et al.,|2021))) fine-tune on target batches but cannot escape the
original hypothesis space or fuse the external knowledge required to solve LH-Ps.

3 DIAGNOSING LEARNING-HARDNESS

To efficiently diagnose LH-Ps without relying on their expensive formal definition, we introduce the
Learning-Hard Index (LHI), a metric that quantifies a dataset’s inherent complexity. This section
also establishes the theoretical complexity of solving LH-Ps.

LEARNING-HARD INDEX (LHI)

LHI is a scalar in [0, 1] that quantifies the intrinsic complexity of a dataset. Assuming nominally
clean labels, we classify a task as an LH-P whenever its training-set LHI > 0.80). In general,
a higher LHI indicates greater learning difficulty and therefore a higher likelihood that the task is
learning-hard.

In contrast to measures such as Rademacher complexity, which assess the richness of a model class,
LHI is entirely data-centric. Because it can be computed before any training begins, LHI serves
as a lightweight, model-agnostic score for comparing datasets and for deciding whether specialized
methods, such as our Micro-Learning (MiL) framework introduced later, are warranted.

Learning-Hard Index (LHI). Let X = {(z;,y;)}/~, be alabeled dataset. We first obtain a locality-
preserving embedding X, = f4m(X) (e.g., tSNE or UMAP |van der Maaten|(2008); McInnes et al.
(2018)), then group X, with © (e.g., k-means), producing pseudolabels y,; and producing the set
Xp = {(24,ypi) }j2, . The LHI is

_ _ MI<XT3 Xp) B E[MI(XT, XP)]
LI = 4= AL X0 =1 = 107 0 (X, ) — BIMI(X,, X))

where MI denotes mutual information and H(-) is Shannon entropy. Because AMI rewards em-
beddings that preserve local neighborhoods, it serves as a strong basis for the LHI. Local nonlinear
dimension reduction maps such as t-SNE, known for maintaining data locality |Han et al.| (2022),
yield an LHI that faithfully reflects intrinsic task difficulty. In contrast, global linear projections
(e.g., PCA) blur minority manifolds and deflate the LHI, so we use locality-preserving fap, instead.

Thresholding LHI(X) > 0.80—i.e., when the embedding retains < 20% of neighborhood mu-
tual information—reliably flags learning-hard tasks that demand specialized training (e.g., Micro-
Learning) to achieve acceptable accuracy.

LH-P Datasets

)
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We evaluate LHI on five benchmarks spanning music, speech, health, and medicine: IRMAS
(Fuhrmann & Herrera, [2010), CASIA (L1 et al., 2016), SAVEE (Haq et al., |2008), Ovarian (Han
et al.,[2023), and a curated COVID-19 triage dataset. Table 1 summarizes key statistics; Although
COVID109 falls slightly below the 0.80 threshold, we include it as a quasi-hard control to test MiL’s
sensitivity to difficulty. More data details can be found in supplemental G.

Table 1: Datasets of learning-hard problems

Dataset (n,p) Imbalance/rate Classes LHI
IRMAS (6705,518) N 11 90.7%
CASIA (1200,54) N 6 87.3%
SAVEE (480,54) N 7 85.4%
COVID-19 (128,48) Y (57.03%) 3 78.5%
Ovarian (266,20531) Y (98.50%) 2 97.6%

3.1 THEORETICAL COMPLEXITY OF LH-Ps

The LHI identifies when conventional training fails, but not how to succeed. Our core insight is
that an LH-P can often be solved on a judiciously chosen customized small subset of the training
set—Ilater called a traininglet. We formalize this idea using local Rademacher complexity (Bartlett
& Mendelson, [2002).

Local Rademacher complexity. For a sample S = {z1, ..., 2,} and a function class F, define the
radius-r neighborhood F,.(f) = {g € F : |lg — f|| < r}. Its local Rademacher complexity is
1 n
Ru(Fr(1) = B sup — > aiglz)], @
geF (f) M i=1

where each o; is an independent Rademacher variable. Smaller R,, implies tighter generalization
bounds in the neighborhood of f.

Prop.1 (proof in supplemental A) provides the theoretical grounding for our approach, stating that
every LH-P contains a ’sweet-spot’ model within a region of minimal overfitting risk (i.e., minimal
local Rademacher complexity). Our Micro-Learning (MiL) framework is designed to systematically
find this low-capacity region.

Proposition 1 (Low-capacity witness). For any LH-P with hypothesis class H and any radius
r > 0, there exists a model f* € H such that R,(F,(f*)) = infseu Ru(F-(f)), meaning f*
minimizes the local Rademacher complexity over H. Consequently, f* and every model within its
r-ball neighborhood enjoy the tightest generalization bound available in the entire hypothesis space.

Why Prop. 1 matters. Even though H is inflated by noise and nonlinearity, Prop. 1 guarantees at
least one “sweet-spot” region where overfitting risk is minimal. The practical challenge is to reach
that region without exhaustively searching H.

Standing on Prop. 1, Prop. 2 (proof in supplemental B) shows that for any given test point, a model
trained on a suitably crafted traininglet is more likely to match the ideal Bayes prediction than any
model trained on the full dataset. This strategy provides a practical path to realizing the low-capacity
”sweet spot” guaranteed by Proposition 1.

Proposition 2 (Traininglet sufficiency). For any test point p, there exist a traininglet S, S and
©, € H such that the classifier trained only on this traininglet he,, s, € H satisfies

Prhe, s,(p) = fBayes(p)] > sup Prlhe s(p) = frayes(p)]. 3)
OcH

Here he g is the model obtained by fitting hypothesis © on dataset S’, and fgayes denotes the Bayes-
optimal classifier. Hence, isolating the low-capacity traininglet .S}, and training locally yields a
predictor whose Bayes-matching probability strictly exceeds that of every full-data model—exactly
the strategy embodied in our MiL framework.

4  OVERFITTING-RESISTANT MICRO-LEARNING (MIL)

From LHI Diagnosis to MiL. In LHPs, the training distribution is generally noisy or mismatched
with the query distribution, so global empirical risk minimization, including deep networks, tends
to underperform, and typically undergo severe overfitting.
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(a) Traditional Learning Method (b) Micro-Learning (MiL)

Figure 2: Comparisons of the principles of MiL and traditional ML. MiL produces a local prediction function
for each test point or batch, while traditional ML relies on a global prediction function that must generalize
across all queries.

Section 3 quantified this difficulty with the LHI and proved that every LH-P contains a provably
low-capacity “sweet-spot” region (Propositions 1-2). We now realize those guarantees by introduc-
ing Overfitting-Free Micro-Learning (MiL).

Key Idea of MiL. This MiL. model rejects the traditional ’one-size-fits-all’ paradigm, training a
single deeply nested decision function G(z) on all data and hoping it generalizes. For every query
point z’, MiL constructs on the fly a traininglet T,.: a compact, knowledge-fused subset of the
training data that sits inside the low-capacity “sweet-spot” guaranteed by Propositions 1-2. Knowl-
edge fusion is realized by intersecting multi-metric neighborhoods, enforcing full-label coverage,
merges complementary meta-traininglets, and pruning points tied to noisy “bad” samples to yield a
compact, high-quality traininglet for each query (Section 4.2 for details)

MiL then fits a deterministic RKHS model (e.g., SVM or variants) on 7/, called a learning-let,
producing a query-specific classifier f,/. This traininglet-selection + RKHS-fitting pipeline yields
an Oveffitting-resistant, reproducible, and interpretable predictor for each query, converting the
existential guarantee of Proposition 2 into an operational algorithm. Unlike traditional models,
MiL can generate a tailored decision function for each query point rather than generalizing a whole
function to various query points in the testing. Figure 2 compares MiL with traditional ML.

4.1 TRAININGLET: DEFINITION AND THEORY

Definition 2 (Traininglet). Let X = {(x;,y;)}"_, be the labeled training set and Y = {1,...,k}
its label set. Denote by LHI(-) € [0, 1] the Learning-Hard Index. For a query point ', the traininglet

T =argmin(LHI(T), |T]) st Y C{yi: a; €T},
TCX

minimizes the pair (LHI(T), |T|) lexicographically, first the lowest LHI, then the smallest size.

Theorems 1 and 2, stated next, establish (i) traininglet decision problem (TRAININGLET-DEC) is
NP-complete, implying the NP-hardness of finding the optimal traininglets, and (ii) the guaranteed
existence of a low-capacity “sweet-spot” solution for every LH-P; detailed proofs are provided in
supplemental.

Theorem 1 (TRAININGLET-DEC is NP-complete). Given a labeled set X = {(z;,y;)}",, a set
of required labels ), a budget b < n, and an LHI bound { € [0, 1], the problem of deciding

AT C X : |T|<b, LHI(T)<¢, Y C{y; :z; € T} (TRAININGLET-DEC)

is NP-complete, assuming LHI(-) is computable in polynomial time.

Before we move to Theorem 2 we need one technical fact. A sample is called o-noisy if replacing
its label by a fresh dummy label increases AMI by at least ¢ > 0. Removing such a point always
lowers the overall LHI of a dataset X. Lemma 1 formalizes this monotonicity and is the key step
used to build the low-complexity traininglets of Theorem 2.

Lemma 1 (Removable-Noise Monotonicity; proof in supplemental D). Let Z C X be labeled data
and z = (x,,y.) € Z. If substituting a fresh dummy label | for y. increases AMI by at least ¢ > 0,
then LHI(Z \ {z}) < LHI(Z) —o.

For any LH-P and any batch of test queries we can always pick traininglets whose intrinsic com-
plexity is strictly reduced, guaranteeing a move into the low-capacity regime promised by learning
theory.
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Theorem 2 (Existence of Low-Complexity Traininglets). Let X be the training set of any
learning-hard problem (LH-P) and let 2%, ...,z be an arbitrary query batch. Then there exist
traininglets Ty, ..., Ty © X with ming LHI(’];;_) < LHI(X). Moreover, if X contains a o-

noisy point in the sense of Lemma |l| (so o > 0), the inequality sharpens to min; LHI(7;./J_) <

LHI(X) — o. proof in supplemental E.

4.2 MIL TRAININGLET CONSTRUCTION

Since finding the lexicographically optimal traininglet is NP-hard, we introduce two practical heuris-
tics: naive traininglet construction (NTC) and precision traininglet construction (PTC). Both heuris-
tics serve the same purpose: to isolate a compact, label-complete subset whose LHI lands in the
low-capacity “sweet-spot” promised by Theorem 2.

NTC. NTC, the basis for our "Naive MiL” variant, creates a traininglet by intersecting small metric
balls (e.g., Euclidean and correlation) and is effective primarily on large, clean training datasets.

PTC. PTC is our robust heuristic for creating high-quality, low-LHI traininglets, especially for chal-
lenging data. The process unfolds in four stages: (1) Probing Learning to find optimal neighbor-
hood radii using a label-aware score; (2) Training Sanitization to prune noisy samples; (3) Meta-
Traininglet Fusion to merge four complementary subsets for broad coverage; and (4) Precision
Pruning to remove any final outliers. The resulting pipeline, which we call the full MiL frame-
work, consistently isolates distribution-matched traininglets that are effective on datasets ranging
from tiny and imbalanced to large-scale corpora.

Naive traininglet construction (NTC). NTC builds a traininglet for query z, by intersecting sev-
eral small metric balls so that retained points are simultaneously close to 2 in multiple geometric

views of the data. Formally, 7, = ﬂ;nzl{x € X : dj(z,z)) < sj}, m > 2, where d;

and ds are typically Euclidean distance and Pearson correlation; a third view such as Wasserstein
(images/audio) or cosine distance (sparse text) can be added when beneficial.

Label rebalancing. If the neighborhood N (2}) lacks any label o, we append the nearest sample of
that label: N/ (z}) = N (2) U{arg mingcs, d;(z, m;)}

2
Limitations. NTC presumes a large, clean dataset; the fixed radii ; in equation ?? are rarely optimal,
and noise within a ball can raise LHI even after rebalancing via equation ??. It either remains un-
known how to select € for a batch of query points. These issues motivate the more robust Precision
Traininglet Construction (PTC) introduced next.

4.2.1 PRECISION TRAININGLET CONSTRUCTION (PTC.)

PTC operationalizes the guarantee of Theorem 2, reliably identifying the low-capacity “sweet-
spot” for any query batch. Its four-stage pipeline—Probing Learning, Training Sanitization, Meta-
traininglet Fusion, and Precision Pruning—is detailed in Algorithm 1 (Supplemental).

1. Probing learning. We estimate the optimal neighborhood radius k& and batch size z (queries
processed jointly) by a Monte-Carlo search: over M =5 — 30 random 80/20 splits of training data
X. We evaluate every (k, z) on Naive-MiL to maximize a target D-index |Han et al.| (2023)), finally,
we average the resulting D-index, and retain only non-dominated pairs.

Specifically, we random-split X into an 80% train-train subset X, and a 20% train-test sub-
set Xte. Across a bounded grid of (k,z) pairs, Naive-MiL predicts the labels of X, from
Xir. We select the pair (k*,z*) that maximizes D (D-index) in each search. (k*,z*) =
arg max;, . Dyaive-MiL(Xtr, Xte, k, 2). The D-index, an interpretable ML assessment score bounded

by (0, 2]—is defined for a K-class problemas D = + Zfil [logQ(l +a;) + 10g2(1 + g’g—p?)] ,
where «;, s;, and p; denote the accuracy, sensitivity, and specificity per class, respectively.

By maximizing the D-index—a measure of class discrimination—this probing step replaces the
heuristic radii of Naive Traininglet Construction (NTC) with a data-driven calibration tuned for
maximum predictive utility.
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2. Training sanitisation. Running Naive-MiL with (k*, z*) on training data X yields a determinis-
tic prediction g; for every sample (z;, ;). This partitions X into correctly and incorrectly predicted
subsets (“‘good guys” and “bad guys”):

G={zi € X |y =vi}, B={z€ X |y #yi} “)
Noise pruning. For each z, € B we remove both the error point and its e-ball neighbors N, (zp):
Xclean — X\ (B U U:L’;,EBNE (xb)> By Lemma 1, deleting each e-ball lowers the LHI by at least

o > 0; hence LHI(X Clean) < LHI(X) — o, moving the data toward the low-capacity “sweet-spot”
required by Theorem 2. The sanitization process prunes 18—41% of the training data across our five
benchmarks, reducing the LHI by 6-20%. To prevent data loss for rare classes, a minority-class
safeguard re-introduces the nearest *good’ instance (G) for any class that is fully eliminated. This
yields a lean, noise-free, and label-complete dataset for the subsequent PTC steps.

3. Meta-traininglet fusion. For every query x} we fuse four meta-traininglets 7;(,] ), j=1,2,3,4
into a single, label-complete union: U, = U?Zl 7;(7 ). This union (i) contains every class, (ii) is at

most 3k + |G| points, and (iii) lowers LHI, and provide a compact, well-balanced basis for PTC.

The 1%¢ meta-traininglet 7;,({1) is a local ball capturing geometric proximity. It is created using NTC

with the optimal neighbor size £’ in the cleaned training data: 7;(,1) = NTC(a}, k', Xclean).

The 2" and 3™ meta-traininglets, 7;(,_2) and 7;(,?), are I-hop and 2-hop transfers, injecting first-
order semantic context and adding broader manifold structure, respectively. They are generated by
performing nearest-neighbor search (NNS) on G (the set of “good guys” from training sanitization)
to obtain each point’s first- and second-closest neighbors, N7 (x}) and Na(z}), and then merging
their traininglets:

zleg z,eG

The 4" meta-traininglet 7;(,4 ) is a random anchor plugging residual topology gaps. It is formed by
randomly selecting a "good guy” x, € G and combining it with its traininglet, 7, A(’,_4) =Tz,

4. Precision pruning. Remove any point within a neighbor radius of B to obtain the precision PTC
TETC = Uy \Upe g NV (b). This last cut shrinks LHI by removing additional noise or outliers.

Why PTC works. Stage I aligns neighborhoods with labels; by Prop. 1, it lands in an r-ball of min-
imal local Rademacher radius, and Prop. 2 guarantees that the resulting traininglet outperforms any
fulldata model, tightening the generalization bound; Stage 2 excises high-entropy samples and their
neighbors, lowering the empirical VC dimension; Stage 3 re-establishes full label coverage, guaran-
teeing a non-empty feasible ball (Thm. 2)); Stage 4 removes residual outlier anchors, tightening the
generalization bound to (9(1 / \/m ) , where T is the final traininglet size.

Complexity. Let n=|X|, p features, and ¥* < n. Probing learning requires O(Mn?) distance
evaluations for A Monte-Carlo draws (M < 30). After training-sanitization, each meta-traininglet
is at most £*+|G| points. Beyond being a mere heuristic, PTC is theoretically grounded: Proposition
3 (proof in suppl. F) proves that it strictly reduces the total-variation distance between the training
and test distributions. This provides the statistical alignment essential for reliable generalization on
LH-Ps.

Proposition 3 (PTC contracts the training—test gap). Let P, and P, denote the training and
test distributions of an LH-P. After applying PTC within the MiL pipeline, the resulting distribution

. . . .. PTC
Pprc satisfies the strict total variation contraction, i.e., Py, — Pje. HPPTC — P < HPtr —

PteHTV'

Explainability and reproducibility of MiLL MiL’s local learner (learning-let) is mainly a mul-
ticlass SVM trained on each traininglet (Vapnik} [2000). This choice ensures high reproducibil-
ity due to SVM’s deterministic convex optimization and is well-suited for the small sample size
of traininglets. For multiclassification, we use a One-vs-One (OvO) approach, which is robust

||TV
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Table 2: Performance of MiL on five benchmarks
Dataset [Dindex| Acc Sen | Prec F1
IRMAS 1.8162 [0.8431]0.8387]0.8449[0.8431
CASIA 1.7949 10.828310.8314]0.8297]0.8283
SAVEE 1.701510.7625[0.7365[0.745810.7625
COVIDI9][ 1.942410.954410.964410.963210.9544
Ovarian 1.7939 10.9815]1.0000]0.9811]0.9815

to class imbalance. The final decision is a majority vote over pairwise classifiers of the form:
fir(x) = Zj a;.ky;kK (x;k, x) + by This approach makes the influence of the traininglet’s support
vectors directly interpretable.

SVM-micro—-CNN-let. We endow MIL with translation-aware representation learning—yet keep
the determinism of large-margin theory—by replacing every SVM “node” with an SVM—-micro—
CNN-let: a compact stack of 33 convolutions, batch normalisation, and ReLU layers followed by
global average pooling that produces a learned feature map ¢g: R?<¢ — R™. A linear SVM head,
trained with the multiclass hinge objective, then yields the decision surface f.(z) = w/! ¢g(x) +
b.; the parameters (w.,b.) are updated jointly with @ via stochastic gradient descent. Because
the optimisation is convex in (w,b) for fixed 8, SVM-micro-CNN-lets retain the reproducibility
guarantees and RKHS interpretability of classical SVMs while gaining the expressive, translation-
equivariant power of CNNs—disentangling complex local patterns even from small traininglets and
advancing explainable, robust learning.

MiL Complexity. MiL’s complexity model offers a practical alternative to prohibitive O(n?) ker-
nel SVMs. It incurs a significant, one-time O(Mn?) preprocessing cost for PTC. At inference, a
shared SVM-micro—CNN-let extracts features, allowing a local linear SVM to be solved efficiently
(O(m?)) on a constant-size traininglet m. This amortizes to a total inference time of O(n) that
is embarrassingly parallel. Memory complexity is similarly reduced from O(n?) for a full Gram
matrix to O(np) for the features. This two-phase design trades a significant, one-time O(n?) pre-
processing cost for highly efficient O(n) inference, making MiL a practical framework for solving
large-scale LH-Ps where traditional O(n?) methods are infeasible.

5 RESULTS: MASTERING LH-Ps

Benchmarks and Baselines. We evaluate MiL’s performance across the five benchmark datasets
summarized in Table 1. These datasets, spanning domains from music to medical proteomics, were
specifically chosen as representative LH-Ps, a fact corroborated by their high LHI scores. The
COVID-19 dataset, with an LHI of 78.5%, falls just below our 80% threshold. However, we include
it as a crucial case study: its extremely small sample size (n=128) presents a different but equally
potent learning challenge that thwarts standard models. It therefore serves as an important test of
MiL’s robustness on sample-starved LH-Ps.

MiL is compared with 15 baselines chosen to cover the three dominant paradigms for small or noisy
data: (i) Classical non-parametrics — SVM, Random Forest, Extra-Trees, Naive Bayes, 2-layer
DNN; (ii) Mainstream static DL — CNN, LSTM, GRU, Bi-LSTM, Bi-GRU; (iii) Hybrid/capsule
refinements — Conv-LSTM, Conv-GRU, Conv-BiLSTM, Conv-BiGRU, CapsNet (Vapnik, |2000;
Geurts et al.,20006). (LeCun et al., 2015} |Sabour et al.,[2017;/Cho et al.,|2014} Hochreiter & Schmid-
huber,|{1997).. Online TTA methods such as Tent and T3A are omitted: they assume large, stationary
target batches and fixed feature extractors, assumptions that fail in LH-Ps where queries are single
and highly shifted.

Hyper-parameters are tuned by nested grid search. We report mean over five repeated 5-fold CV runs
(IRMAS, CASIA, COVID-19, Ovarian) and a single 10-fold CV (SAVEE), following established
practice on small-sample speech corpora.

Performance and statistical validation. Table 2 reports Mil’s D-index, accuracy, sensitiv-
ity, precision, and F1 across five benchmarks. MiL surpasses both classical ML and advanced
DL baselines on every dataset. A one-tailed U-test on the Metric-integrated Lift (MiL, the
mean of 7 classification measures) shows Med(MiLgys) = 0.97[0.95,1.00], Med(MiLpespL) =
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0.77[0.76,0.84], U = 23, p = 1.6 x 10~ 2, cyir = 0.84. Repeating the test over all 35 raw metric
values yields U = 1082, p < 2 x 1078, d¢jir ~ 0.77 (P(ours > DL) =~ 0.89). MiL therefore
outperforms every convolutional, recurrent, and capsule DL models, providing concise, effect-size-
centered evidence of its architectural superiority.

Similarly, a battery of 25 Bonferroni-adjusted Mann-Whitney tests [Dunn| (1961) (a=0.01) estab-
lishes complete stochastic dominance of MiL over every general ML baselines on all five datasets.
Even under extreme imbalance (Ovarian), where rivals lose specificity, MiLL maintains a solid deci-
sion boundary, confirming its knowledge-fused traininglets dominate LH-P landscapes and deliver
superior results statistically (see suppl. J).

PTC ablation studies also strongly support the key design choices of its four-stage
pipeline—probing-learning, sanitisation, meta-fusion, and precision pruning—showing that each
stage contributes a statistically significant, complementary slice of the overall performance gain
(see suppl. I).

Fig. 3 contrasts MiLL with 11 DL baselines
on three benchmarks (suppl. H). Even in
its naive form on IRMAS and Ovarian, MiL
tops every DL model—and the gap widens on
small-sample tasks like COVID-19 and Ovar-
ian, where deep nets falter. Beyond raw ac-
curacy, MiL adds what the DL stack can-
not: deterministic training, transparent decision
boundaries, and resistance to overfitting.

covip-19 IRMAS
De v

Traininglet visualization. Figure 4 illustrates
the traininglets of the COVID-19, IRMAS, and
Ovarian datasets for a single entry and batch.
It’s interesting to note that the high-quality,
© “ customized traininglets curated for each query

Figure 3: Comparison of MiL with eleven DL models qemonStrates E?Xceptional separability, also Yal'
using traditional metrics (a—¢) on COVID-19, IRMAS, idated by their small LHI values. A quick
and Ovarian datasets, and d-index values (d) across all k-means check confirms the drop in LHI from
five datasets. 0.79 to 0.26 (down to 0.05 for the Ovarian
case), illustrating how MiL engineers a far simpler sub-distribution around every query. The train-
inglets for the other data in the supplemental.

6 DISCUSSION AND CONCLUSION

We formalized LH-Ps - tasks that defeat most
learners yet become solvable once domain ey . | ot e
knowledge is fused, and addressed them with [ .
MiL. MiL builds tiny, label-complete train-
inglets guided by a data-centric LHI; opti-
mal selection is NP-complete, and our anal-
ysis supplies capacity and distribution-shift
guarantees that ground its instance-specific
SVM-micro—CNN architecture. Empirically,
MiL outperforms 15 classical and deep base-
lines on five demanding benchmarks, rescuing
specificity where rivals collapse while remain-

: : : v > Figure 4: Traininglet visualization of MiL on COVID-
ing fully reproducible and interpretable. MiL’s 19 (a. b). IRMAS (c. d), and Ovarian (e, ). (a). (¢, and

naive runtime is O(n3 + n2p)—costly for large :
! > sh single test entry; (b), (d), and (f) sh test
n, but FPGA/GPU acceleration can offset this l(az)tcbh.ow a single test entry; (b), (d), and (f) show a tes

and speed PTC without losing SVM determin-

ism. Severe noise or imbalance may call for

pre-denoising or resampling, yet MiL still provides a principled route to robust Al on scarce,
skewed data and enables hardware-efficient, noise-aware extensions. All code and data: https:
//anonymous.4open.science/r/iclr26—anon-code—9DB6/.
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