
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

GRAPHPCB: GRAPH-ENCODED PRINTED CIRCUIT
BOARD DATASETS FOR COMPONENT CLASSIFICATION
WITH GRAPH NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

We present a graph-based framework for Printed Circuit Board (PCB) image
analysis, targeting core hardware assurance tasks such as IC segmentation and
component identification. PCB images differ fundamentally from natural images
in texture simplicity, spatial sparsity, and lack of informative backgrounds, lim-
iting the effectiveness of traditional vision models. We propose GraphPCB, a
generic scheme that transforms PCB images into graph-structured data, where
nodes represent localized component regions and edges encode spatial proximity.
This representation enables the application of Graph Neural Networks (GNNs) to
PCB understanding, offering robustness to geometric variations and background
noise. We release two high-quality GraphPCB datasets and analyze their structural
properties, including graph heterophily and domain-specific challenges. Extensive
experiments with various GNN architectures provide benchmarks and insights,
establishing GraphPCB as a new testbed for node classification in structured visual
domains.

1 INTRODUCTION

Printed Circuit Boards (PCBs) constitute the structural and functional backbone of contemporary
electronic systems and are deployed extensively across diverse industrial domains. The operational
performance and long-term reliability of these systems are intrinsically linked to PCB quality,
necessitating rigorous inspection protocols to ensure hardware correctness and system robustness
(Kim et al., 2005; Akhyar et al., 2022; Cheng et al., 2023; Chen et al., 2024; Ou et al., 2024). A
PCB board usually contains many different (functional) types of electronic parts. Integrated Circuits
(ICs), which perform essential computational and signal processing tasks, are among the most critical
components on PCBs and demand precise identification during inspection. PCB image processing
tasks, such as IC segmentation and electronic component identification (Makwana et al., 2023;
Wang et al., 2025), are integral to Hardware Assurance (HA) frameworks. They play a pivotal
role in verifying design integrity, ensuring component authenticity, and maintaining overall system
trustworthiness throughout the hardware lifecycle.

PCB images have unique characteristics compared to natural images (see Figure 1 for an example).
The electronic components usually have much simpler visual features, such as more regular shapes
and simpler textures. Therefore, their image features are less informative. Moreover, position-wise,
each component is usually placed in isolation from other components. This is because they are
interconnected internally, and the connecting metal lines are usually hidden. Therefore, the relative
isolation of the components makes it more difficult to fathom the semantic meaning of the image
as a whole. Fundamentally, PCB images have a (design) logic for the layout of their foreground
objects that is distinct from natural images. In view of the above characteristics, we propose using
graph-based models (Shuman et al., 2013; M. Defferrard, 2016; Kipf & Welling, 2017; Veličković
et al., 2018), in addition to conventional image processing tools (He et al., 2016), for analyzing PCB
images.

The graph-based approach has several advantages. First of all, the analysis of PCB components
should be independent of the orientation and scaling of the image. Such properties of invariance
under geometric transformations are well-observed for graph-structured data. Moreover, unlike

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

natural images, the background of a PCB image usually does not provide much useful semantic
information. Differences in lighting, color, and background contrast on different boards may even
confuse a computer vision (CV) model during training. On the other hand, a graph-structured data
retains only visual information of the PCB components and their relative positional information. The
potentially harmful distribution shift of background visual information can thus be avoided.

It is observed in Wang et al. (2025) that the critical step in IC segmentation is to correctly distinguish
IC components from visually similar components such as discrete transistors. With the graph-based
setting, the analysis of PCB components can thus be interpreted as the node classification problem
for graph neural networks (GNNs). Novel high-quality datasets are needed to investigate whether
using graphs is beneficial for PCB image processing. Therefore, the main objective of our paper
is to propose a general scheme that converts PCB image datasets into graph datasets, generating
graph-encoded PCB datasets GraphPCB.

For a high-level overview, we partition an image into “cells” of PCB components, and each cell
is associated with a node. Nodes of adjacent cells are connected by an edge in the graph. The
construction preserves the relative positional information of the components. Encoded image features
of each cell are used as node features. Details shall be provided in Section 3.

Our main contribution can be summarized as follows:

• Conceptually, we give a new perspective for PCB image processing based on graph learning.
We release two new GraphPCB datasets based on the proposed approach.

• For the GNN community (M. Defferrard, 2016; Kipf & Welling, 2017; Veličković et al.,
2018), we thoroughly analyze the GraphPCB datasets, including properties such as graph
heterophily, which are of great interest to the community. We highlight their differences
with commonly used node classification datasets. In terms of both application domain and
dataset characterizations, GraphPCB datasets contribute in a new way to the GNN data
repository.

• We evaluate the performance of different GNN models on the datasets and discuss their pros
and cons. The results can be used as baselines for future research on these datasets.

• The generic scheme of converting an image into a graph proposed in the paper may find
applications outside the subfield of PCB image processing.

The datasets and source code are provided in the supplementary materials.

2 RELATED WORKS

PCB image processing has received considerable attention in recent years. For example, Li et al.
(2013) considers the segmentation of surface-mounted devices on PCBs for automated recycling.
Cheng et al. (2024) considers the automatic detection of such devices utilising YOLO object detection
models. Huang et al. (2022) uses a semantic segmentation method to extract high-level semantic
features of PCB assembly images for applications such as component detection. For IC segmentation,
in the recent work Wang et al. (2025), it is observed that a major challenge for IC segmentation
is to decide visually whether a given component is IC. This is a difficult task even for human
experts in the domain of HA. This inspires us to consider a graph-based approach, so that one may
leverage information of neighboring components and uncover the implicit design logic of PCB boards.
Therefore, to facilitate research in this direction, it is imperative to create and release high-quality
datasets.

On the other hand, node classification is a common task for GNN (Kipf & Welling, 2017). Most
early public datasets are on citation networks (Sen et al., 2008). These datasets exhibit strong
homophily (Zhu et al., 2021; Wang et al., 2022), i.e., edges are likely to connect nodes of the same
type. Heterophilic datasets without such a property are subsequently released (Pei et al., 2020;
Platonov et al., 2023), and they include networks for citation, co-purchasing, web link, and social
relations. New GNN models dedicated to such datasets have been proposed (Platonov et al., 2023;
Luan et al., 2022; Rusch et al., 2022; Kang et al., 2024; Lee et al., 2024), and this research area
remains active. There are also datasets that are more application-oriented. For example, Kearnes
et al. (2016); Xu et al. (2019) has introduced graph datasets for biochemistry; however, the major

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

task is graph classification or regression. In HA, there are (node classification) datasets and research
works for netlist analysis (Hong et al., 2024; Zhang et al., 2025). As far as we are aware, ours is the
first work that releases and thoroughly analyzes graph datasets for PCB images. We hope that it can
benefit both the HA and GNN communities.

3 THE GRAPHPCB DATASETS

In this section, we describe a general scheme that converts a PCB image dataset into a graph dataset,
which includes graph construction and the generation of node features and labels. We apply the
scheme to construct two graph datasets for node classification. We further analyze their properties,
focusing on those of interest to the GNN community.

3.1 GRAPH CONSTRUCTION

In this subsection, we describe how to convert a PCB image I into a graph G = (V,E). As an
overview, our graph construction strategy, which encodes local spatial connections, is inspired by
layout principles that are closely aligned with DFM rules. For example, Rothstein’s “20 Guidelines
for Efficient PCB Component Placement” emphasizes grouping functionally related components to
reduce trace lengths and enhance signal integrity—principles that often manifest as spatial proximity
in real-world PCB layouts. Other graph construction methods will be explored in Appendix D.

In essence, we want to faithfully represent the floorplan of the PCB design to classify key components,
and hence, the relative positions of the components should be preserved as much as possible. For
this, we propose the following construction based on Voronoi tessellation (Aurenhammer, 1991) (see
Figure 1 for an example):

• Each node v ∈ V corresponds to an electronic component on the image I, and we denote
its center by xv .

• We partition the image into regions called Voronoi cells Rv, each associated with a node
v ∈ V . Specifically, for each point x on the image, it belongs to the region Rv if the
following holds:

∥xv − x∥ ≤ ∥xv′ − x∥ ,
for any v ̸= v′ ∈ V . Intuitively, x is assigned to its closest component(s). As a result, the
image is partitioned into convex cells Rv, v ∈ V .

• We form an edge (v, v′) ∈ E between a pair of nodes v, v′ if their cells Rv and Rv′ are
adjacent to each other, i.e., Rv and Rv′ share a common boundary.

(a) Source PCB image (b) Voronoi tessellation (c) Output graph

Figure 1: This is an illustration of the graph generation procedure. A source PCB image (in (a)) is
converted into a tessellation of Voronoi cells (in (b)). Each cell corresponds to a PCB component and
hence a node in the output graph (in (c)). An edge connects a pair of nodes if their associated cells
share a common boundary line. For the color scheme, “cyan”, “purple”, “green” and “grey” are for
the classes “IC”, “DT”, “Diode” and “others” respectively.

The procedure converts the image I to a planar graph G. This means that G can be embedded in
the plane. Moreover, if two components are close to each other on the image, their corresponding

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

nodes in G tend to be connected by an edge as their cells are likely to share a common boundary.
Therefore, the construction preserves the relative locations of the components while discarding less
useful background information.

3.2 FEATURES AND LABELS

For node classification, nodewise labels and features/attributes are essential for training and inference.
We describe how they are curated in this subsection.

Recall that each node v ∈ V corresponds to an electronic component in the image I. Therefore, it is
natural to use the image features of the component as the node feature of v. Specifically, following
Wang et al. (2025), the features are extracted using a pre-trained ResNet50 encoder (Deng et al.,
2009; He et al., 2016). The model is sufficient for visual feature extraction due to the simplicity of
PCB components.

(a) IC (b) DT (c) Diode

Figure 2: Sample images of IC, Discrete transistor (DT), and Diode component, which can be visually
very similar. This is the main challenge for identifying IC components.

For each PCB dataset, there is a long list of types of electronic components (see Appendix A).
However, not all component types are of equal importance for hardware assurance. In particular,
identifying integrated circuit (IC) components is of paramount importance (cf. Section 1). This is
usually a challenging task, as there are other component types that are visually similar to ICs. Our
primary objective is to:

• Distinguish ICs from discrete transistors (DTs) and diodes, which can be visually similar (cf.
Figure 2).

Therefore, we propose to consider the label set C consisting of 4 classes: “IC”, “DT”, “Diode”,
and “others”. As the “others” class consists of many different types of components, it is very large in
size. Moreover, the features of nodes belonging to this class are highly diversified, which may pose
additional challenges.

The procedure described above is applied to two publicly available PCB image datasets: FPIC
(Jessurun et al., 2023) and WACV (Kuo et al., 2019). The resulting graph datasets are named Graph-F
and Graph-W respectively. Notice that, unlike most well-studied GNN datasets for node classification,
each dataset contains multiple graphs, each of which is constructed using one image from the image
dataset.

For data split, we follow approximately the same training/testing ratio 0.7/0.3 as in Jessurun et al.
(2023). Details are given in Appendix A.

3.3 DATASET PROPERTIES

In this subsection, we analyze structural properties of the Graph-F and Graph-W datasets. We focus
on two main aspects:

• Geometric properties of the graphs.

• The relations between the graph structure and node labels.

In Figure 3 and Figure 4, we show fundamental graph properties of the datasets, including average
degrees, clustering coefficients, and diameters. Recall that, unlike most well-known node classifica-

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

tion datasets, both Graph-F and Graph-W contain multiple graphs. Therefore, a subfigure contains
the distributions of an attribute across all graphs in a dataset.

We notice that both datasets have similar general trends for reported graph features, while Graph-F
has more outliers. For example, for both datasets, the average degree is concentrated near 6, while
Graph-F contains a few graphs with very low degrees. The observations suggest that the distributions
of the (reported) graph attributes for both datasets are generally aligned, which may be due to both
datasets following the same design logic for PCB layout.

For each dataset, the sizes of the graphs are diverse. As the classification task is inductive, i.e., training
and testing are performed on different graphs, the graph diversity may pose additional challenges.

(a) Graph-F: # nodes (b) Graph-F: # edges (c) Graph-F: ave. degree

(d) Graph-W: # nodes (e) Graph-W: # edges (f) Graph-W: ave. degree

Figure 3: Distribution of basic graph statistics for Graph-F and Graph-W datasets.

(a) Graph-F: diameter (b) Graph-F: loc. cluster. (c) Graph-F: glob. cluster.

(d) Graph-W: diameter (e) Graph-W: loc. cluster. (f) Graph-W: glob. cluster.

Figure 4: Distribution of graph diameters and local/global clustering coefficients for Graph-F and
Graph-W datasets.

For graph-label relations, we report edge homophily, adjusted edge homophily, and label informa-
tiveness (LI) (introduced in Platonov et al. (2023; 2024) in Figure 5). Edge homophily estimates
the percentage of edges connecting nodes with the same label. Intuitively, if a dataset has a low
homophily score, then there are many edges connecting pairs of nodes from different classes. One
refers to such a dataset being heterophilic. Message-passing neural networks, such as GCN, require
substantial modification for such a dataset (Platonov et al., 2023). Adjusted edge homophily is a

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

modification of edge homophily for class-imbalanced graph datasets. On the other hand, LI quantifies
how much information a node receives from the labels of its neighbors.

Due to class imbalance (the large “others” class), graphs in both datasets generally have high
edge homophily (cf. Figure 5). However, this is rectified by the adjusted homophily score, which
is generally small for both datasets. This suggests that intrinsically, the graphs are heterophilic.
This is reasonable as PCB components are usually not grouped according to their types. Label
informativeness (LI) is generally high for both datasets, which means that for a node, it is viable
to leverage information from its neighbors for its own classification. However, there are graphs
with very low LI, as there are graphs of small sizes (cf. Figure 3), making it harder to draw useful
information from neighbors.

(a) Graph-F: Homophily (b) Graph-F: Adj. Homophily (c) Graph-F: LI

(d) Graph-W: Homophily (e) Graph-W: Adj. Homophily (f) Graph-W: LI

Figure 5: Distribution of (edge) homophily, adjusted (edge) homophily, and LI for Graph-F and
Graph-W datasets.

We summarize the observations in Table 1, and compare with other commonly used datasets (a
representative is selected for each reference). We notice that compared with any existing dataset,
GraphPCB datasets always have some distinctive traits. The table can be used (a) to identify the
challenges of node classification on the GraphPCB datasets, and (b) to guide the search for suitable
models to tackle the task, which we will do in the next section.

Table 1: A comparison of dataset properties. The observations for GraphPCB are reported based on
the average of all graphs in the datasets. Compareing datasets: Cora (Sen et al., 2008), Cornell (Pei
et al., 2020), Roman-empire (Platonov et al., 2023), Proteins (Xu et al., 2019).

Datasets GraphPCB Cora Cornell Roman-empire Proteins

Node classif. ✓ ✓ ✓ ✓ ✗
Multi. graphs ✓ ✗ ✗ ✗ ✓
Inductive ✓ ✗ ✗ ✗ ✓
High diversity ✓ −− −− −− ✗
Heterophilic ✓ ✗ ✓ ✓ −−
High LI ✓ ✓ ✗ ✗ −−

4 EXPERIMENTAL RESULTS

In this section, we propose GNN baselines for node classification on the datasets: Graph-F and
Graph-W. The performance is analyzed, and the results can be used as benchmarks for future research
on these datasets. We show run-time and discuss other graph constructions in Appendix C, D

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

4.1 BASELINES

As we use an image encoder to generate node features, an MLP is equivalent to the CV baseline for
the task. In particular, it does not use the graph structure. For graph-based models, we first include
standard GNN node classification models, GCN, GAT (Kipf & Welling, 2017; Veličković et al., 2018)
as baselines. We also consider GraphSAGE (Hamilton et al., 2017), a popular model for inductive
learning. We implement three versions: Softmax (S-M), Standard deviation (Std), and Attentional
(Att), according to different aggregation mechanisms.1

From Section 3.3, we notice that the graphs are generally heterophilic. Therefore, we include GAT-sep
and GT-sep proposed in Platonov et al. (2023). Here, “-sep” refers to the idea of separating ego- and
neighbor-embeddings in the GNN aggregation step proposed in Zhu et al. (2020), and GT is the graph
transformer model (Dwivedi & Bresson, 2021). We include ACM-GCN (Luan et al., 2022), which is
verified to have superior performance for heterophilic datasets in both Lee et al. (2024) and Ji et al.
(2025). As explained in Sun et al. (2023), a node classification problem can also be cast as a graph
classification problem by viewing a neighborhood of each node as a (sub)graph. This point of view
agrees with the insight to leverage neighboring node types for the classification. Therefore, we also
include the graph classification baseline GIN (Xu et al., 2019).

To overcome label imbalance, we use the weighted binary cross entropy (BCE) loss for training,
where IC, DT, and diode carry a higher weight inversely proportional to their occurrence.

4.2 EVALUATION

We have mentioned that the node classes of both datasets are highly imbalanced (see Appendix A).
As a union of many different component types, the “others” class is substantially larger in size.
Therefore, we propose to evaluate model performance using the F1-score, which is the harmonic
mean of the recall and precision.

As we are mainly interested in the IC components, we want to evaluate whether a model can tackle
the confusion among “IC”, “DT” and “Diode” classes. To this end, we report the Subset F1-score,
which excludes the "others" class from the evaluation. Specifically, the Subset F1-Score is computed
by slicing the confusion matrix to retain only the rows and columns corresponding to the selected
classes, completely ignoring class 3 in both the ground truth and predictions. This metric provides
a more targeted and meaningful assessment of the model’s performance on the primary classes of
interest, ensuring that the evaluation aligns with the specific goals of the task.

In this work, we want to explore whether a graph-based method can capture useful structural
information (over visual details) for the classification task. For this, we report the percentage of
overlapping detections (POD) (a metric used in Latif et al. (2023)) between the CV baseline (MLP)
and each GNN baseline, for “IC”, “DT”, and “Diode” classes. A smaller POD indicates more distinct
information provided by the graph approach.

4.3 RESULTS AND DISCUSSIONS

From the scores reported in Table 2, we observe that direct feature aggregation via message passing
(GCN, GAT, or GIN) performs poorly. It is likely due to the heterophilic nature of the datasets.
Different versions of GraphSAGE show consistent good performance for both datasets, which
suggests GraphSAGE is a good candidate for such a task. It verifies the effectiveness of GraphSAGE
in inductive settings. Dedicated models for heterophilic datasets are strong competitors, particularly
for the Graph-W dataset. These models show less confusion among the three main classes. The
observations generally agree with our findings in Section 3.3 regarding the dataset properties.

For POD shown in Table 3, we notice the general trend that POD for “IC” is relatively higher than
“DT” and “Diode”. Nevertheless, they show substantial disagreement with MLP, particularly for the
“Diode” class. This suggests that the graph-based approaches can extract structural information in
addition to visual information, resulting in different predictions. This may enhance our understanding
of the patterns in PCB design.

1https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html?
highlight=torch_geometric+nn+aggr#aggregation-operators

7

https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html?highlight=torch_geometric+nn+aggr#aggregation-operators
https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html?highlight=torch_geometric+nn+aggr#aggregation-operators


378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: The F1- and Subset F1-scors for the benchmarks (GPU: A5000, Memory: 24G). Red
indicates the highest, blue the second highest performance in each column.

Model Graph-F Graph-W
F1-Score Subset F1-Score F1-Score Subset F1-Score

MLP 0.68 0.77 0.49 0.61

GCN 0.44 0.72 0.36 0.53
GAT 0.44 0.76 0.17 0.52

GIN 0.41 0.60 0.31 0.69
GraphSAGE (S-M) 0.71 0.81 0.54 0.60
GraphSAGE (Std) 0.71 0.84 0.56 0.61
GraphSAGE (Attn) 0.69 0.80 0.55 0.59

GAT-sep 0.67 0.85 0.59 0.63
GT-sep 0.65 0.83 0.58 0.63
ACM-GNN 0.66 0.79 0.53 0.59

Table 3: Classwise percentage of overlap detections (POD) calculated over all graphs in the test set.

Model POD for Graph-F POD for Graph-W
IC DT Diode IC DT Diode

GCN 0.86 0.39 0.21 0.43 0.15 0.00
GAT 0.86 0.49 0.39 0.76 0.67 0.37

GIN 0.77 0.45 0.20 0.57 0.00 0.14

GraphSAGE (S-M) 0.89 0.59 0.27 0.69 0.43 0.32
GrapgSAGE (Std) 0.91 0.65 0.20 0.75 0.48 0.39
GraphSAGE (Attn) 0.79 0.52 0.21 0.69 0.43 0.32

GAT-sep 0.85 0.73 0.28 0.62 0.49 0.37
GT-sep 0.90 0.65 0.28 0.61 0.48 0.26
ACM-GNN 0.59 0.41 0.08 0.37 0.13 0.01

4.4 POTENTIAL APPLICATION TO IC SEGMENTATION

Accurate IC segmentation is essential for advanced PCB analysis, enabling functional validation,
fault localization, and systematic debugging. It is critical for automated electronic inspection systems.
To illustrate the potential application of our GNN-based classifier, we consider IC segmentation as a
downstream task.

We use SSRNet (Wang et al., 2025) as the backbone. It consists of a coarse segmentation module
and an image classifier (see Appendix B for more details). To incorporate the approach of our
paper, we keep the coarse segmentation module intact and replace the image classifier with our
GNN-based classifier. Based on the overall performance (see section 4.3), we choose GraphSAGE
for the classifier, and call the resulting IC segmentation model SSR-SAGE.

We remark that SSR-SAGE is not a rigorous IC segmentation model, as a full-fledged model requires
a module for object detection, which is beyond the scope of this paper. The main purpose of the study
is to demonstrate the potential benefit of incorporating a graph-based classifier. For this, we illustrate
with an explicit test image in Figure 6. More numerical results are shown in Appendix B.

We notice that generic CV models, such as U-Net (Ronneberger et al., 2015), LinkNet (Chaurasia
& Culurciello, 2017), fail to generate a clean binary segmentation image. A possible reason is
that PCB images have different characteristics as compared with natural images, on which generic
CV models are trained (cf. Section 1). Comparing PCBSegClassNet (Makwana et al., 2023) and
SSR-NC (SSRNet without a classifier) with SSRNet, we see that a classifier is crucial to remove
false-positive IC components. On the other hand, SSR-SAGE demonstrates its ability to correctly

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

(a) Input PCB Image (b) GT Mask for IC (c) GT Mask for All Components

(d) U-Net (e) LinkNet (f) PCBSegClassNet

(g) SSR-NC (h) SSRNet (i) SSR-SAGE

Figure 6: Comparison of different methods for IC segmentation. Row 1 shows the input PCB image
and ground truth (GT) masks. (d), (e) are results from generic image segmentation models. (f) is
the output of PCBSegClassNet. (g) shows the result for SSRNet without using a classifier, while (i)
replaces the image classifier in SSRNet with a graph classifier. SSRNet output is shown in (h).

identify very small IC components as compared with SSRNet. The graph-based classifier indeed
offers new insights into the pure image task.

5 CONCLUSION

In this paper, we provide a novel perspective on PCB image analysis as node classification in graph-
based machine learning. We propose a generic procedure that converts a PCB image dataset into a
graph-structured dataset. Two GraphPCB datasets are constructed (and released) and carefully ana-
lyzed for their geometric properties and label-edge correlations. Based on the uncovered heterophilic
properties of the datasets, a list of GNN benchmarks is applied to the dataset, and their pros and cons
are thoroughly discussed based on the performance.

The datasets can be beneficial to both the HA community and the GNN community. On the application
side, the classification results can be used for downstream PCB image processing tasks such as IC
segmentation, as illustrated in the paper. On the other hand, GraphPCB datasets display unique
characteristics as compared with existing node or graph classification datasets, which may facilitate
the development of new GNN models.

Limitations We have experimented with many existing GNN baselines. However, from the results,
we believe there is room for further improvement in terms of the classification performance. To
summarize the requirements, a successful model is expected to be able to handle heterophilic graphs
in an inductive setting. Moreover, it should be able to aggregate features of different node types in a
hybrid manner that takes advantage of both node and graph classification techniques.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Fityanul Akhyar, Ledya Novamizanti, Muhammad Azka Imaddudin, Ikhsanico Henda Pratama,
Shandy Ramanda Firmansyach, Ming-Ching Chang, and Chih-Yang Lin. Observation of attention
mechanism baseline for pcb surface inspection system. In APWiMob, pp. 1–6, 2022.

F. Aurenhammer. Voronoi diagrams – a survey of a fundamental geometric data structure. ACM
Comput. Surv., 23(3):345–405, 1991.

Abhishek Chaurasia and Eugenio Culurciello. Linknet: Exploiting encoder representations for
efficient semantic segmentation. In VCIP, December 2017. doi: 10.1109/vcip.2017.8305148.

Liang-Chieh Chen, George Papandreou, Florian Schroff, and Hartwig Adam. Rethinking atrous
convolution for semantic image segmentation. CoRR, 2017. URL http://arxiv.org/abs/
1706.05587.

Wenbin Chen, Hongchao Zhao, and Zheng Wang. Defect detection model of printed circuit board
components based on the fusion of multi-scale features and efficient channel attention mechanism.
IEEE Access, 12:62964–62974, 2024.

Deruo Cheng, Yiqiong Shi, Yee-Yang Tee, Jingsi Song, Xue Wang, Bihan Wen, and Bah Hwee
Gwee. Deep-learning-based X-ray CT slice analysis for layout verification in printed circuit boards.
ISCAS, pp. 1–5, 2023.

Deruo Cheng, Jingyang Dai, Yee-Yang Tee, Yiqiong Shi, and Bah-Hwee Gwee. PCB surface
component detection with computer vision assisted label generation. In IPFA, pp. 1–5, 2024.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A large-scale
hierarchical image database. In CVPR, pp. 248–255, 2009.

V. Dwivedi and X. Bresson. A generalization of transformer networks to graphs. AAAI Workshop on
Deep Learning on Graphs: Methods and Applications, 2021.

D. Eppstein, M. S. Paterson, and Frances Yao. On nearest-neighbor graphs. Discrete Comput. Geom.,
17(3):263–282, 1997.

Q. Fan, W. Pei, Y. Tai, and C. Tang. Self-support few-shot semantic segmentation. In ECCV, pp.
701–719, 2022.

William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large graphs.
In Advances Neural Inf. Process. Syst., 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In CVPR, pp. 770–778, 2016.

X. Hong, Y. Tee, Z. Hu, T. Lin, Y. Shi, D. Cheng, and B. Gwee. GNNReveal: A novel graph neural
network based attack method for IC logic gate de-camouflaging. IEEE Intell. Syst., 2024.

Xingyao Huang, Taifu Li, and Wenbin Chen. Pcb assembly component recognition based on semantic
segmentation and attention mechanism. Int. core j. eng., 8(4):299–310, 2022.

Nathan Jessurun, Olivia P. Dizon-Paradis, Jacob Harrison, Shajib Ghosh, Mark M. Tehranipoor,
Damon L. Woodard, and Navid Asadizanjani. FPIC: A novel semantic dataset for optical PCB
assurance. J. Emerg. Technol. Comput. Syst., 19(2), 2023.

F. Ji, Y. Zhao, K. Zhao, H. Meng, J. Yang, and W. P. Tay. Rethinking graph neural networks from a
geometric perspective of node features. In Proc. Int. Conf. Learn. Representations, 2025.

Qiyu Kang, Kai Zhao, Qinxu Ding, Feng Ji, Xuhao Li, Wenfei Liang, Yang Song, and Wee Peng Tay.
Unleashing the potential of fractional calculus in graph neural networks with FROND. In Proc. Int.
Conf. Learn. Representations, Vienna, Austria, 2024.

Steven Kearnes, Kevin McCloskey, Marc Berndl, Vijay Pande, and Patrick Riley. Molecular graph
convolutions: moving beyond fingerprints. Journal of Computer-Aided Molecular Design, pp.
595–608, 2016.

10

http://arxiv.org/abs/1706.05587
http://arxiv.org/abs/1706.05587


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Joungho Kim, Junso Pak, Jongbae Park, and Hyungsoo Kim. Noise generation, coupling, isolation,
and em radiation in high-speed package and pcb. In ISCAS, pp. 5766–5769, 2005.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In Proc. Int. Conf. Learn. Representations, 2017.

M. Kramer, E. Kolaczyk, and H. Kirsch. Emergent network topology at seizure onset in humans.
Epilepsy Research, 79(2):173–186, 2008.

Chia-Wen Kuo, Jacob D. Ashmore, David Huggins, and Zsolt Kira. Data-efficient graph embedding
learning for PCB component detection. In WACV, pp. 551–560, 2019.

Hamid Latif, José Suárez-Varela, Albert Cabellos-Aparicio, and Pere Barlet-Ros. Detecting contextual
network anomalies with graph neural networks. GNNet Workshop, 2023.

S. Lee, F. Ji, W. P. Tay, and K. Xia. Graph neural networks with a distribution of parametrized graphs.
In Proc. Int. Conf. Mach. Learn., 2024.

Wei Li, Bernhard Esders, and Matthias Breier. SMD segmentation for automated PCB recycling. In
INDIN, pp. 65–70, 2013.

S. Luan, C. Hua, Q. Lu, J. Zhu, M. Zhao, S. Zhang, X. Chang, and D. Precup. Revisiting heterophily
for graph neural networks. In Advances Neural Inf. Process. Syst., 2022.

P. Vandergheynst M. Defferrard, X. Bresson. Convolutional neural networks on graphs with fast
localized spectral filtering. In Advances Neural Inf. Process. Syst., 2016.

Dhruv Makwana, Sai Chandra Teja R., and Sparsh Mittal. PCBSegClassNet — a light-weight network
for segmentation and classification of PCB component. Expert Syst. Appl., 225(C), 2023.

Zhaoting Ou, Jienan Chen, and Jie Zheng. An automatic pcb imposition method based on reinforce-
ment learning. In ISCAS, pp. 1–5, 2024.

Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-GCN: Geometric
graph convolutional networks. In Proc. Int. Conf. Learn. Representations, 2020.

O. Platonov, D. Kuznedelev, A. Babenko, and L. Prokhorenkova. Characterizing graph datasets
for node classification: Homophily–heterophily dichotomy and beyond. In Advances Neural Inf.
Process. Syst., 2024.

Oleg Platonov, Denis Kuznedelev, Michael Diskin, Artem Babenko, and Liudmila Prokhorenkova. A
critical look at evaluation of GNNs under heterophily: Are we really making progress? In Proc.
Int. Conf. Learn. Representations, 2023.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional networks for biomedical
image segmentation. MICCAI, pp. 234–241, 2015.

T. Konstantin Rusch, Benjamin Paul Chamberlain, James Rowbottom, Siddhartha Mishra, and
Michael M. Bronstein. Graph-coupled oscillator networks. In Proc. Int. Conf. Mach. Learn., 2022.

P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Galligher, and T. Eliassi-Rad. Collective classification in
network datas. AI Mag., 29(3), 2008.

David I Shuman, Sunil K. Narang, Pascal Frossard, Antonio Ortega, and Pierre Vandergheynst.
The emerging field of signal processing on graphs: Extending high-dimensional data analysis to
networks and other irregular domains. IEEE Signal Process. Mag., 30(3):83–98, 2013.

Xiangguo Sun, Hong Cheng, Jia Li, Bo Liu, and Jihong Guan. All in One: Multi-Task Prompting for
Graph Neural Networks. In ACM SIGKDD, pp. 2120–2131, 2023.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In Proc. Int. Conf. Learn. Representations, pp. 1–12, 2018.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

T. Wang, D. Jin, R. Wang, D. He, and Y. Huang. Powerful graph convolutional networks with
adaptive propagation mechanism for homophily and heterophily. Proc. AAAI Conf. Artif. Intell.,
36:4210–4218, 2022.

Y. Wang, X. Wang, D. Cheng, T. Lin, F. Ji, Y. Shi, and B. Gwee. SSRNet: Few-shot IC segmentation
in automated PCB image processing. In ISCAS, 2025.

K. Xu, W. Hu, J. Leskovec, and S. Jegelka. How powerful are graph neural networks? In Proc. Int.
Conf. Learn. Representations, 2019.

H. Zhang, T. Lin, F. Ji, Y. Shi, D. Cheng, and B. Gwee. Long-Short-GNN: A novel graph neural
network for detecting FPGA IP circuits for hardware assurance. In ISCAS, 2025.

J. Zhu, Y. Yan, L. Zhao, M. Heimann, L. Akoglu, and D. Koutra. Beyond homophily in graph neural
networks: Current limitations and effective designs. In Advances Neural Inf. Process. Syst., 2020.

J. Zhu, R. Rossi, A. Rao, T. Mai, N. Lipka, N. Ahmed, and D. Koutra. Graph neural networks with
heterophily. Proc. AAAI Conf. Artif. Intell., 35:11168–11176, 2021.

A FULL LISTS OF PCB COMPONENTS AND DATA INFORMATION

Table 4: Component types and counts in the FPIC dataset, with GraphPCB labels.

Component Type Count GraphPCB Label
Resistor (R) 7246 3
Capacitor (C) 6896 3
Integrated Circuit (U) 761 0
Discrete Transistor (Q) 616 1
Connector (J) 579 3
Inductor (L) 473 3
Resistor Coil (RA) 404 3
Diode (D) 362 2
Resistor Network (RN) 330 3
Test Point (TP) 266 3
Integrated Circuit (IC) 237 0
Plug (P) 200 3
Thyristor (CR) 194 3
Motor (M) 74 3
Button (BTN) 72 3
Ferrite Bead (FB) 69 3
CRA 54 3
Switch (SW) 50 3
Transformer (T) 47 3
Fuse (F) 44 3
Vaccum Tube (V) 41 3
Light Emitting Diode (LED) 39 3
Switch (S) 37 3
QA 36 3
Jumper Link (JP) 31 3

We show full lists of PCB components and their (total) counts for the FPIC and WACV datasets in
Table 4 and Table 5, respectively. Their labels in the converted GraphPCB datasets are given. As
many more components belong to the “others” class (with label 3), the datasets are label imbalanced.

The datasets introduced in our paper are diverse in terms of PCB types and manufacturing processes,
having been sourced from over 38 (Graph-F) or 13 (Graph-W) different companies.

For Graph-F and Graph-W data split, we randomly split the dataset into train/test to approximately
0.7/0.3 ratio (as in Makwana et al. (2023)) for the number of graphs. We check and adjust such

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Table 5: Component types and counts in the WACV PCB dataset, with GraphPCB labels.

Component Type Count GraphPCB Label
Capacitor 2552 3
Resistor 2271 3
Connector 635 3
IC 400 0
Pads 336 3
Pins 319 3
Test Point 292 3
Electrolytic 251 3
LED 219 3
Transistor 135 1
Button 87 3
Jumper 86 3
Diode 85 2
Inductor 69 3
Switch 60 3
EMI Filter 51 3
Relay 47 3
Clock 37 3
Ferrite Bead 30 3
Potentiometer 9 3
Zener Diode 8 2
Fuse 7 3
Display 6 3
Heatsink 4 3
Buzzer 1 3
Battery 1 3
Transformer 1 3

that the classes “IC”, “DT” and “Diode” are close to 0.7/0.3 ratio in the train/test split. For the IC
segmentation study in Section 4.4, we retrain GraphSAGE using the exact same (image) data split as
in Makwana et al. (2023).

B MORE ON IC SEGMENTATION

We first provide more details on the backbone model SSRNet (Wang et al., 2025). It consists of two
key modules: (a) a few short self-support prototype segmentation (Fan et al., 2022), and (b) a region
classifier. The former generates a coarse segmentation with many false positives, i.e., non-IC regions
that are visually similar to an IC, while the region classifier uses an image classifier to remove the
false positive regions. As proposed in Section 4.4, SSR-SAGE replaces the image classifier with the
GraphSAGE classifier, while keeping the coarse segmentation (module (a)) intact.

For reference, we show the IC segmentation evaluation metrics IoU, Dice, Dice loss, and (pixel-wise)
error rate in Table 6. As we have mentioned in Section 4.4, the comparison does not lead to a rigorous
conclusion regarding the superiority of SSR-SAGE. Nevertheless, we may observe useful trends.
For example, comparing SSRNet with other benchmarks, we see the advantage of using a classifier,
which is inherited by SSR-SAGE. The difference in results of SSR-SAGE may be attributed to the
GNN classifier that leverages structural information among the PCB components. Therefore, it is
worthwhile to consider incorporating graph methods in PCB image processing.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Table 6: A comparison of IC segmentation models.

Model IoU ↑ Dice ↑ Dice loss ↓ Error rate ↓
LinkNet 0.5518 0.6734 0.3266 0.0363
U-Net 0.5481 0.6717 0.3283 0.0435
DeepLabv3 Chen et al. (2017) 0.5364 0.6658 0.3342 0.0412

PCBSegClassNet 0.4246 0.5452 0.4548 0.0434
SSRNet-NC 0.5759 0.6978 0.3022 0.0345
SSRNet 0.5957 0.7123 0.2877 0.0319

SSR-SAGE 0.6619 0.7599 0.2401 0.0224

C HARDWARE CONFIGURATION AND COMPUTATION OVERHEAD

The hardware setup is: CPU: AMD Ryzen Threadripper PRO 5975WX, 32 Cores; GPU: NVIDIA
RTX A5000, CUDA: v12.3, 24GB memory. The configuration is used for obtaining the run-time
reported below.

There are 2 main components requiring additional computation: graph construction and GNN. The
graph construction is used to produce the datasets. It is not part of any GNN model and can be reused
for various downstream tasks. Graph construction is not time-consuming: average 1.49s to convert an
image to a graph for FPIC, and 0.81s for WACV.

For GNN, the models we have benchmarked are not complex, and the graphs are generally small. For
reference, we show the run-time (in seconds) for the entire training (200 epochs) as:

Graph-F Graph-W

MLP 22.04 9.70
GCN 29.22 12.34

GraphSage 50.86 26.23
GT-sep 103.13 32.54

None of these models incurs a serious computation burden.

D MORE ON THE GRAPH CONSTRUCTION

Figure 7: We show the resulting graph from our proposed construction (left), the k-NN construction
(middle), and the similarity-based construction (right). The k-NN construction is similar in spirit to
our proposed construction, while our approach more faithfully represents the floor plan of the PCB
design. On the other hand, the similarity-based construction may connect components far away from
each other.

In this section, we consider other popular graph construction methods: (1) the k-NN method (Eppstein
et al., 1997) and (2) feature similarity-based graph constructions (Kramer et al., 2008). Briefly, the
k-NN construction connects each component to its closest k-nearest components, measured by the
Euclidean distance. It is similar in spirit to our approach but less principled. For example, if resistors
surround an IC I , k-NN may exclude some of them from the graph neighbors of I . An inherent

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

limitation of k-NN lies in the inhomogeneity of neighborhood structures across components. On the
other hand, the similarity-based construction connects pairs of nodes with a large similarity score,
usually measured by the cosine similarity of feature vectors. The construction may connect far-away
components with similar features. However, this approach may face the same challenge as CV-based
approaches, since the construction may connect different and visually similar components.

Table 7: knn: k-NN graph construction, sim: similarity-based construction. Best: boldface, 2nd:
underscore

Model Graph-F Graph-W
F1 Sub. F1 F1 Sub. F1

GraphSAGE-knn 0.66 0.75 0.57 0.65
GraphSAGE-sim 0.63 0.76 0.54 0.59
GraphSAGE 0.71 0.84 0.56 0.61

GT-sep-knn 0.57 0.64 0.56 0.58
GT-sep-sim 0.58 0.69 0.56 0.59
GT-sep 0.65 0.83 0.58 0.63

The results are as shown in Table 7. As discussed above, the similarity-based construction often
yields suboptimal performance, and feature aggregation via message passing on the similarity graph
fails to introduce new information that helps distinguish visually similar components. Compared
with the k-NN construction, our construction generally leads to better performance for Graph-F. For
Graph-W, our approach is comparable to k-NN, possibly due to the similar functionality of the graph
neighborhoods.

E LLM USAGE

We acknowledge the use of large language models (LLMs) as a general-purpose assistive tool
in preparing this manuscript. Specifically, LLMs were employed to aid in polishing the writing,
including refining grammar, improving clarity, and enhancing fluency of expression. LLMs were
NOT used for generating research ideas, conducting analysis, or producing results. All conceptual
contributions, theoretical developments, experimental designs, and interpretations presented in this
work are entirely the responsibility of the authors.

15


	Introduction
	Related works
	The GraphPCB datasets
	Graph construction
	Features and labels
	Dataset properties

	Experimental results
	Baselines
	Evaluation
	Results and discussions
	Potential application to IC segmentation

	Conclusion
	Full lists of PCB components and data information
	More on IC segmentation
	Hardware configuration and computation overhead
	More on the graph construction
	LLM usage

