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ABSTRACT

Predictive coding networks (PCNs) offer a local-learning alternative to backprop-
agation in which layers communicate residual errors, aligning well with biolog-
ical computation and neuromorphic hardware. In this work we introduce Differ-
ence Predictive Coding (DiffPC), a spike-native PC formulation for spiking neu-
ral networks. DiffPC replaces dense floating-point messages with sparse ternary
spikes, provides spike-compatible target and error updates, and employs adaptive
threshold schedules for event-driven operation. We validate DiffPC on fully con-
nected and convolutional architectures, demonstrating competitive performance
on MNIST (99.3%) and Fashion-MNIST (89.6%), and outperforming a backprop-
agation baseline on CIFAR-10. Crucially, this performance is achieved with high
communication sparsity, reducing data movement by over two orders of magni-
tude compared to standard predictive coding. DiffPC thus establishes a faithful,
hardware-aligned framework for communication-efficient training on neuromor-
phic platforms.

1 INTRODUCTION

The error backpropagation algorithm has been fundamental to the success of deep learning, yet
its core mechanisms are widely considered biologically implausible [Salvatori et al.| (2023). Key
limitations include the requirement for global error signals—where synaptic updates depend on
information transmitted across multiple layers, far beyond locally available signals—and the reliance
on continuous-valued communication and gradients, in contrast to the brain’s use of discrete, event-
driven signals|N’dri et al.|(2024). These discrepancies create a significant gap between conventional
artificial neural networks (ANNSs) and biological neural systems.

Artificial intelligence does not need to replicate biology—airplanes do not flap their wings—but
certain biological properties are worth emulating. Examples include the brain’s energy efficiency
and its ability to perform robust and adaptive computation with sparse, noisy, and low-precision sig-
nals [N’dri et al.| (2024). These observations align with the development of neuromorphic systems,
which address the limitations of conventional von Neumann architectures by co-locating memory
and computation to reduce data movement Al Abdul Wahid et al.| (2024), thereby enabling substan-
tially lower energy consumption—a key biological property worth emulating. Within this hardware
setting, Spiking Neural Networks (SNNs) provide a natural computational model: information is
represented not by continuous activations but by discrete spikes, as observed in the brain|Olshausen
& Field| (1996; 2004). In SNNs, neurons communicate through sparse, asynchronous events rather
than dense, synchronous updates Mainen & Sejnowskil (1995)); Cox et al.[(2000), making them in-
trinsically well suited for low-power implementation.

One promising framework for training such systems is Predictive Coding (PC). Originating from
neuroscience, PC theorizes that the brain functions as a prediction machine, continuously generating
top-down predictions of sensory input while bottom-up signals convey only the residual prediction
errors [Rao & Ballard| (1999)); [Friston| (2005)); |Spratling (2017); Huang & Rao| (2011); Keller &
Mrsic-Flogel (2018)). Importantly, PC relies on local learning rules, where synaptic updates depend
only on the activity of adjacent pre- and post-synaptic neurons. This locality makes PC highly
compatible with the parallel and distributed organization of neuromorphic hardware N’dri et al.
(2024); Salvatori et al.| (2023)).
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However, despite its theoretical alignment with neuromorphic principles, the standard formulation
of PC faces practical computational challenges. To infer neural activities, PC networks typically per-
form an iterative settling process, requiring multiple forward and backward passes of information to
converge for a single input. In standard implementations, this process relies on dense, floating-point
message passing, resulting in a computational overhead that notably exceeds that of backpropaga-
tion [Rosenbaum)| (2022). This reliance on dense, continuous communication during the iterative
phase can offset the efficiency gains sought by deploying SNNs on event-driven hardware. There-
fore, while PC offers a solution to the global transport problem of backpropagation, its standard
formulation does not fully exploit the sparsity and efficiency of neuromorphic substrates.

Combining SNNs with PC-based training is a natural research direction to address these issues
et all| (2022)); [Wacongne et al| (2012)); Boerlin et al.| (2013); [Ororbia (2023)). In this work, we intro-
duce Difference Predictive Coding (DiffPC), an algorithm that reformulates the predictive coding
framework for native implementation in SNNs. DiffPC seeks to address the communication over-
head of standard PC by replacing dense, floating-point message passing with sparse, ternary spike-
based communication. By employing spike-compatible state update rules and adaptive threshold
schedules, DiffPC ensures that computation and message passing are event-driven, occurring when
necessary to correct prediction errors. Our results indicate that DiffPC achieves accuracy matching
or exceeding that of standard predictive coding networks (PCNs) and backpropagation trained mod-
els on benchmark datasets, while reducing the number of transmitted bits by more than two orders
of magnitude compared to standard PC baselines.

* We propose Difference Predictive Coding (DiffPC), a spike-native framework based on
novel update rules that transmit incremental state updates via sparse ternary spikes rather
than broadcasting the full state, resulting in reduced communication costs.

* We introduce an adaptive threshold scheduling mechanism that enables the discrete spiking
network to closely approximate the dynamics of standard continuous predictive coding with
fewer timesteps.

* We empirically validate DiffPC on fully connected and convolutional architectures, demon-
strating that it matches the accuracy of standard predictive coding and matches or exceeds
that of Backpropagation on MNIST, Fashion-MNIST, and CIFAR-10, while reducing the
number of transmitted bits by more than two orders of magnitude compared to standard
predictive coding baselines.

2 RELATED WORKS

Spiking neural networks. SNNs compute with discrete events and update their state only upon
spike arrivals, yielding sparse, asynchronous processing that maps well to neuromorphic substrates

and modern accelerators [Pfeiffer & Pfeil (2018)); [Tavanaei et al.|(2019). This event-driven operation

provides a natural match to the parallel, low-power architecture of neuromorphic hardware such as

TrueNorth [Akopyan et al.| (2015)), Loihi[Davies et al.| (2018)), Loihi 2 Intel Corporation| (2021b), and
SpiNNaker Furber et al.|(2014). Beyond neuromorphic-vision benchmarks, deep SNNs now achieve

competitive accuracy on static datasets when equipped with convolutional backbones and carefully

engineered neuron and normalization layers (2024).

Several software frameworks have been developed to simulate and train SNNs, including Brian2
Stimberg et al (2019), NEST [Gewaltig & Diesmann| (2007)), SpikingJelly [Fang et al. (2023), and
LAVA |Intel Corporation| (2021a)). In this work we use LAVA to verify that our methods are com-
patible with the Intel hardware chip Loihi 2 |Intel Corporation| (2021b)), but also provide a PyTorch
implementation for easy verification and faster runtimes.

SNN training. A key challenge in SNN learning is that spike generation is non-differentiable,
preventing direct application of backpropagation. Contemporary approaches can be divided into
three main families, each with distinct accuracy, latency, and efficiency trade-offs (2024).

(i) ANN—SNN conversion. In this approach, a ReLU ANN is trained with backpropagation and
mapped to an SNN under a rate or latency coding assumption |Cao et al.[|(2015). Practical pipelines
reduce activation—rate mismatch via weight and threshold normalization Diehl et al. or reset-
by-subtraction Rueckauer et al.| (2017), and further tighten equivalence using quantization mapping

(2023)), clip-floor-shift activation (2023)), and post-training parameter calibration
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Li et al| (2024). Conversion scales well and can match ANN accuracy with few timesteps, but
training remains off-chip with dense floating-point communication, and residual conversion error or
latency may erode energy benefits.

(ii) Direct surrogate-gradient training. By treating SNNs as recurrent systems unrolled over time,
the zero derivative of the spike function is replaced with a smooth surrogate, enabling backprop-
agation through time (BPTT) Wu et al.| (2018); |[Neftci et al| (2019). Representative methods in-
clude temporal-loss formulations (SpikeProp) Bohte et al.|(2002)) and time-based error reassignment
(SLAYER) |Shrestha & Orchard| (2018)). Later advances improved optimization and representation
by learning neuron dynamics such as time constants |[Fang et al.| (2021). Significant progress was
also made in normalizing membrane dynamics across time via threshold-dependent scaling (tdBN)
Zheng et al.| (2021), time-varying parameter decoupling (BNTT) |Kim & Panda|(2021)), input rescal-
ing for uniform temporal distributions (TEBN) Duan et al.| (2022), or direct membrane potential
regulation (MPBN) |Guo et al.| (2023). Finally, other methods mitigate surrogate mismatch via gra-
dient re-weighting (TET) [Deng et al.| (2022), information maximization objectives (IM-Loss) |(Guo
et al|(2022), or learnable surrogate shapes [Lian et al.| (2023). These methods reach state-of-the-art
accuracy with O(1 — 8) timesteps, but they still rely on global backward signals and dense commu-
nication, which can limit viability of on-chip training.

(iii) Local plasticity. Purely local rules, such as spike-timing-dependent plasticity (STDP) and
reward-modulated variants, are aligned with both biology and hardware constraints. However, they
typically require auxiliary classifiers and tend to underperform on complex tasks [Diehl & Cook
(2015); |[Kheradpisheh et al.| (2018]); Ororbial (2023)).

Overall, these approaches highlight a central trade-off in SNN training: methods that achieve the
highest accuracy typically rely on dense, non-local signals or off-chip training, while methods that
are fully local and spiking have yet to consistently match this performance on complex tasks.

Predictive coding. Predictive coding (PC) has recently emerged as an alternative to backpropaga-
tion that is both biologically motivated and compatible with event-driven computation. In PC, each
layer generates predictions of activity in the layer below, while only the residual prediction errors
are communicated forward Rao & Ballard| (1999); |Friston| (2005); |Spratling| (2017); Huang & Rao
(2011). PC has been developed into a computational framework with formal links to backpropaga-
tion and variational inference Millidge et al.| (2021)); Rao & Ballard| (1999). A central advantage is
its use of local learning rules: synaptic updates depend only on the activity of adjacent pre- and post-
synaptic neurons, making the framework well suited for distributed neuromorphic implementation
N’dr1 et al.| (2024); Salvatori et al.| (2023)).

Several works have sought to integrate PC with SNNs |Lan et al.[(2022); |Ororbial (2023)); [Lee et al.
(2024). The PC-SNN algorithm formulates predictive coding in time-to-first-spike (TTFS) encod-
ing, where each neuron spikes at most once [Lan et al.| (2022). This achieves unmatched energy
efficiency in terms of spikes, but runtime scales exponentially with input precision (27 timesteps for
B-bit input) and must be predefined due to the single-spike restriction. Additionally, their training
schema remains reliant on transmission of dense floating point numbers and is done on GPU. Recent
work toward creating purely spiking predictive coding frameworks|Ororbia| (2023); Lee et al.|(2024)
has made significant progress. However, to evaluate performance on discriminative benchmarks
like MNIST, these frameworks adopt a hybrid approach. The spiking network is first trained in a
purely unsupervised manner to learn representations. Subsequently, its weights are frozen, and a
separate, non-spiking linear classifier is trained post-hoc on rate-coded activities extracted from the
network’s final layer. This reliance on an external, non-spiking component for the final classification
step means the reported accuracies do not reflect the performance of an end-to-end spiking system,
complicating a direct assessment of their utility for fully neuromorphic deployment.

Relation to DiffPC. Event-driven ’gradient-by-spikes’ approaches approximate backpropagation by
discretizing gradients into spikes [Bohte et al.| (2000); |Cai et al.| (2024)), which enables training and
inference using only spikes. We apply a similar approach in our proposed Difference Predictive
Coding. Distinct from prior work, DiffPC integrates these concepts through three key mechanisms:
(1) a spike-based message passing protocol that adapts sparse ternary communication specifically for
predictive coding error propagation; (2) a difference-based update rule that triggers communication
only upon state changes to minimize redundancy; and (3) a cyclic threshold scheduler designed to
accelerate the convergence of discrete spiking states toward continuous PCN targets.
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3 BACKGROUND

3.1 SPIKING NEURAL NETWORKS

SNNs are a class of artificial neural networks that mimic the behavior of biological neurons more
closely than conventional neural networks. Neurons in spiking neural networks communicate
through discrete spikes, or action potentials, when their membrane potential V' reaches a certain
activation threshold Tj. The output of the neuron i is a function of the potential s;(V;). The neu-
ron model utilized in this work is based on the difference equation of the Integrate-and-Fire neuron
model:

Vi(t+1) = Vi(t) = Tosi(Vi(t) + >_wizs;(t), Vi(0) =b; , (1)

J

where V;(t) is the integration variable (membrane potential), Ty is the threshold, b, is the bias and
w; is the weight of the synapse connecting the input neuron j to the neuron ¢. The spike activation
function s;(t) € {—1,0,1} is

1 itVi() > T,
s (Vi(t)) == ¢ =1 if Vi(t) < —Tp, 2
0 otherwise .

Activation of the Integrate-and-Fire-neuron output causes a voltage drop (damping) in the difference
equation (I)).

3.2 PREDICTIVE CODING

In the context of neural networks, PC proposes that each layer generates predictions of the activity
in the next layer. The next layer then computes the error between the forward propagated prediction
and the target activity. This error signal is then propagated backwarcﬂ to update both the targets and
synaptic weights of the previous layer. The learning objective is to reduce the overall prediction error
in the network. Unlike the separate forward and backward passes of conventional deep learning.

Predictive Coding Networks (PCNs) involve a bidirectional local flow of information; predictions
of current targets in one direction and prediction errors in another (Figure [T). The target activity
is updated using the received prediction error and the synaptic weights using the target activity.
The updates are local, which is a substantial difference from the backpropagation algorithm, where
updates depend on a single error signal calculated at the final output and propagated backward
through the entire network.

Xip1 \ ..... y
€| | €

Figure 1: The structure of a multi-layer Predictive Coding Network (PCN). Each neuronal unit,
bounded by the dashed line, consists of the target activity x7, prediction x z, and prediction error €.
The arrows indicate the flow of information between layers [ = 0, 1, ..., L, where the feedforward
path carries the predictions from x7; to X 11, and the feedback path conveys the prediction errors
¢; which are used to update x7 ;1. Computations and updates can be asynchronous.

We review the PC principles for a conventional Multi-Layer Perceptron network (MLP) of L dense
layers to the input x to output y. The input and output layers are indexed as ! = 0 and [ = L, and
between them are the hidden layers | = 1 to L — 1. Predictive Coding (PC) makes use of each layer’s

'In the PCN literature the terms top/down are more common, but we opt forward/backward for consistency
with the deep learning terminology.
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current activation vectors x7; ("'T” referring to *Target’). In addition, the layers include vectors X
(F: *forward’) that are the predictions generated by the previous layer [ — 1. Ideally, the predictions
and the targets should be the same.

Energy function. Layer [ predictions are calculated from the target activity of the layer [ — 1
xpy = Wio(xr-1) , 3)

where W; € RNiXNi-1 are the weights, NV is the number of neurons, and ¢(-) is an activation
function. The difference between the targets and predictions is fed back as the prediction error

€ =X, — XF] . €]

The errors from all layers are summed to compute the ’free-energy’ of a network and PC operates
by minimizing this free-energy function

L

L
F= llalls =D (xri—xm)* - (5)
=1

=1

Update steps. The main difference between PC and the gradient descent error backpropagation
is that PC alternates between the two updates, the target and weight updates, which are computed
locally and can be asynchronous. The synaptic weight update is

OF
Wit = Wi g = Wi aadbari) T ©)

where « is the learning rate, and the prediction update is

LD ) or _ X(If,)l -y (e =W a1 ©¢(ery)), forl<L,
T T T oxyy ng,)l — e, forl =L

(D

where «y is the prediction learning rate and © is the Hadamard product. Because updates only
occur between adjacent layers, they must be performed iteratively to allow information to propagate
throughout the entire network. See Appendix for an intuitive explanation of predictive coding.

4 THE DIFFERENCE PREDICTIVE CODING ALGORITHM (DIFFPC)

In this section, we propose the Difference Predictive Coding (DiffPC) algorithm that implements
the standard PC on SNNs. To ensure that our algorithm can be deployed on a neuromorphic chip,
we used the instruction set of the Intel Loihi 2 neuromorphic chip. The algorithm was verified in
the official simulator because access to the actual Loihi 2 hardware is limited to Intel partners. We
provide the full simulator code and the pseudocode is given in Algorithm|[I]

4.1 ALGORITHM OVERVIEW

To adapt the predictive coding framework from Section [3.2]for spiking neural networks, its floating-
point computations and information transfer must be converted into discrete spikes (Algorithm[I]). In
this formulation, all information transmitted during the learning steps takes the form of a sequence
of ternary values (-1, O, 1).

In DiffPC, each unit maintains a farget state x7 and an actual state x 4. The target state z repre-
sents the desired (target) activity, while the actual state z 4 attempts to follow z7, aiming to minimize
the difference between them. Their difference is reduced incrementally by steps proportional to an
adaptive threshold Tj. The difference-based adjustments are communicated as spikes to subsequent
layers, which integrate the incoming spiking information.

Two error variables, e and e 4, function in the same way and represent the errors of the two states.
et is the target error and e 4 is the actual error that attempts to align with er. The error e 4 is adjusted
by steps proportional to Ty, which are then transmitted to subsequent layers as spikes. Since the
threshold 7T} determines the step size of these updates, its schedule is critical for convergence. In the
next section, we will introduce specific scheduling strategies.
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Feed Forward Initialization. Before the iterative DiffPC process begins (as detailed in Algo-
rithm [I)), the network undergoes a feed forward initialization phase. In this phase, input spikes are
propagated through the layers in a single pass without feedback error calculation. This rapidly es-
tablishes an initial estimate for the target activities x7 and predictions X, reducing the number of
subsequent iterative steps required for convergence. This phase effectively mimics a standard feed-
forward SNN inference step to prime the network state and can be implemented by utilizing graded
spikes on the Loihi 2 chip. See section [7.2] of the appendix for a more detailed explanation of the
algorithm.

Algorithm 1 DiffPC Algorithm for Spiking Neural Network Training
Input: Spike signals si,, Se
Process parameters: threshold Ty(t), learning rate ~(t), weight Ir «
Initialize: xr, xT, T4, €T, €4, €B, S4, Se

1: Feed Forward Initialization: Propagate input to prime x

2: for each time step ¢ do

3: st Wlsf‘fl > Receive spike input

4: xlF — x% + siln “Tp(t—1) > Update forward prediction

50 ify! gt) > ( then

6: ep xlT — x% > Compute target error

7: oo o+ A () - (e + (2h > 0) o ey) > Update Target Activity

8: if ! gt) > 0 then

9: el a2 -l > Update target error
10: sy < sign(al, — 2Yy) © (|of, — 24| > Ty(t)) > Generate spikes
11 sy« sy o (2 +s4 - Ty(t) > 0) > 'Spiking ReLU’
12: oy 2y + Tp(t) - sy > Update Actual Activity
13:  s_outsend(sl) > Send state spikes
14: > Propagate Error: N
15: e_out.send(s!) > Send error spikes
16:  edn' « (Wit1)Tgktl > Receive error input
17: 653 — 653 +Tp(t—1)- ein’ > Accumulate incoming errors
18: s« sign(eh, — i) © (|ef — ey| > Ty(1)) > Generate error spikes
19: ey ey +Tp(t) - st > Update actual error
200 W Wt ael ¢(:clT_1)T > Update Weights

4.2 Ty AND v SCHEDULES

We present a cyclic scheduler, which allows for accurate approximation of the standard PC algo-
rithm,

2m
Ty(t) = Srmod ~v(t) = g(t mod n) , ®)
where
v, ifx=0
= 9
9() {O, otherwise ’ ©)

where n,t € NT denote the cycle length and timestep index, respectively, m € Z sets the initial
magnitude of the threshold via Ty (0) = 2™, and ¢t mod n denotes the modulo operation. The set of
n steps starting with y(t) = + is referred to as y-cycle and a set of timesteps during which we train
the network with a single input and output pair is called an iteration. A single iteration therefore
consists of multiple y-cycles.

To theoretically motivate the precision of this approach, we establish the following bound on the
quantization error demonstrating that, in the absence of error, the spiking states exponentially con-
verge to their floating-point targets within a cycle.
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Theorem 4.1. Suppose that the target activity for layer I, denoted as xk, satisfies |z, — 2!y | < 2m+1
and :r]T > 0. Then, after one ~y-cycle of n timesteps of a cyclic scheduler, the difference between the
target activity and the actual activity \T’T — Ti_x‘ is less than 2m+1—n,

Proof. See Appendix [7.3] O

Though this method is able to attain great precision in the approximation of standard PC when we
set n large, it comes at the cost of extra timesteps and spikes. In practice, we observe that as the PC
network converges, the changes in ez and x7 become smaller. Thus we should also scale the cyclic
scheduler to be smaller as the network converges allowing us to use smaller n and still attain high
accuracies. This is the motivation behind the cyclic decay scheduler defined as

m

Ty(t) = d(t mod T) ~v(t) = g(t mod n) , (10)

9t mod n’

where d(t) is a decreasing function. We set

d(t) = (1 —a —a);> , (in

where a € (0, 1] such that d(¢t mod T') € (0,1] and T is the length of the iteration. In addition to
the cyclic decay scheduler, we introduce the constant decay scheduler, defined as

Ty(t) = d(t mod T) e, ~(t) = g(t mod n), (12)

where ¢ € R, This schedule maintains a fixed threshold ¢ that is scaled by the decay function d(t),
thereby reducing the update size over the course of an iteration.

5 EXPERIMENTS

5.1 DATA AND SETTINGS

We evaluate our method using Multi-Layer Perceptron (MLP) architectures as MLPs provide a clean
and well-studied baseline for predictive coding, and we extend our evaluation to Convolutional Neu-
ral Networks (CNNs) on the CIFAR-10 dataset to demonstrate the method’s applicability to convo-
lutional networks. For empirical validation, we use the MNIST, Fashion-MNIST, and CIFAR-10
benchmarks. MNIST and Fashion-MNIST comprise 60,000 training and 10,000 test grayscale im-
ages of size 28 x 28 across 10 classes. CIFAR-10 consists of 50,000 training and 10,000 test color
images of size 32 x 32 across 10 classes. We train fully connected networks with one or two hidden
layers for the simpler tasks, utilizing dropout. For CIFAR-10, we utilize a convolutional architec-
ture, consisting of two convolutional layers with 5 x 5 kernels and stride 2 (with 10 and 5 filters
respectively), followed by three fully connected layers. All models are optimized using AdamW.
Data augmentation includes random translation jitter for MNIST and random horizontal flips for
CIFAR-10. We assess performance by test-set classification accuracy and by spike efficiency, quan-
tified as the average number of activity and error spikes per neuron per sample during training. Our
CIFAR-10 implementation is based on code from Millidge et al.| (2020); |Whittington & Bogacz
(2017).

Selected baselines For comparison, we focus on Convolutional and MLP networks and include
both conventional floating-point and spiking implementations. In addition, we report results from
spiking networks trained with alternative learning rules beyond predictive coding, providing context
on how our approach compares to state-of-the-art non-PC methods

5.2 RESULTS

Classification accuracy On MNIST, DiffPC achieves high accuracy that matches previously re-
ported results for non-convolutional spike-based methods. For example, DiffPC-L attains 99.3%
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accuracy and DiffPC-S reaches 98.2%, placing them on par with or above several recent SNN mod-
els, as shown in Table On Fashion-MNIST, which presents a greater challenge, DiffPC also
achieves competitive accuracy (Table[2). Finally, on CIFAR-10, DiffPC demonstrates effective scal-
ing to convolutional architectures; DiffPC-Long achieves 65.6% accuracy, surpassing the standard
backpropagation baseline of 63.5%, while DiffPC-Efficient reaches 63.3% (Table ).

Communication efficiency Communication efficiency provides further insight into the advan-
tages of DiffPC. On modern hardware, the energy cost of moving data is often comparable to, and in
many workloads higher than, the cost of arithmetic operations |[Horowitz (2014); Lian et al.| (2023).
Because memory access and interconnect traffic can be orders of magnitude more energy-intensive
than a multiply—accumulate, the number of floating-point values transmitted during training and
inference is a key proxy for communication energy. In addition, spiking implementations require
computation to unfold in discrete timesteps, and the number of timesteps needed for convergence
strongly predicts runtime performance Li et al.| (2023).

Table [3| reports the average number of bits transmitted per neuron during error propagation and the
corresponding timestep counts on the MNIST task. Standard backpropagation transmits 32 bits per
neuron in a single timestep, while predictive coding (PC-SE) requires 960 bits across 15 timesteps.
SNN-based predictive coding (PC-SNN) is similar as they use floating point numbers during the
training stage of their network. In contrast, DiffPC achieves orders-of-magnitude improvements:
DiffPC-L transmits only 0.18 bits (0.09 spikes) per neuron on average across 120 timesteps, and
DiffPC-S reduces this further to 0.08 bits (0.04 spikes) per neuron across 75 timesteps. These results
demonstrate that DiffPC combines competitive accuracy with substantially improved efficiency in
terms of communication.

We observe similar trends on the CIFAR-10 dataset, as detailed in Table Here, we compare
two configurations: DiffPC-Long, which utilizes a scheduler cycle length of n = 16, and DiffPC-
Efficient, which employs a shorter cycle length of n = 12. Both configurations run for 15 cycles per
sample. While the convolutional architecture utilizes higher-fidelity error messaging compared to
the MLP used for MNIST, DiffPC retains a substantial efficiency advantage. DiffPC-Long requires
only 1.9 bits per neuron, and DiffPC-Efficient further reduces this to 0.7 bits. Although these values
are higher than those for MNIST, they remain significantly lower than the 32 bits required by back-
propagation or the 960 bits used by standard PC, demonstrating that the communication sparsity of
DiffPC scales effectively to convolutional networks.

Table 1: Comparison of the Test Accuracy of Different SNN and PC Models on the MNIST dataset.
(FC denotes fully connected layers)

Method Network Architecture Acc. (%)
Backpropagation 784FC-1024FC-512FC-10FC 99.3
PC-SE (Standard PC) (Pinchetti et al.|(2024)) 784FC-128FC-128FC-128FC-10FC 98.3
STiDi-BP (Mirsadeghi et al.[(2021)) 40C5-P2-1000FC-10FC 99.2
SSTDP (Liu et al.| (2021}))) 784FC-300FC-10FC 98.1
PC-SNN (Lan et al.[(2022)) 784FC-200FC-10FC 98.1
SRC-RNN (De Geeter et al.|(2024)) 784FC-512FC-512FC-512FC-10FC 98.4
FastSNN (Taylor et al.|(2022)) 784FC-1000FC-10FC 97.9
FastSNN (Taylor et al.|(2022)) 32C5-P2-64C5-P2-1000FC-10FC 99.3
DiffPC-L (Ours) T84FC-1024FC-512FC-10FC 99.3
DiffPC-S (Ours) 784FC-400FC-10FC 98.3

Table 2: Comparison of the Test Accuracy of models on the Fashion-MNIST dataset.

Method Network Architecture Acce. (%)
FastSNN (Taylor et al.[(2022)) 784FC-1000FC-10FC 89.1
FastSNN (Taylor et al.| (2022)) 32C5-P2-64C5-P2-1000FC-10FC 90.6
SRC-RNN (De Geeter et al.[(2024)) 784FC-512FC-512FC-512FC-512FC-512FC-10FC 88.5
DiffPC-M (Ours) 784FC-1000FC-10FC 89.6
DiffPC-S (Ours) 784FC-400FC-10FC 89.2
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Table 3: Average bits transferred during the error propagation stage of different models, along with
the timesteps used on the MNIST task. (fp: floating-point operations; sp: spikes)

Method Ops Network Architecture Bits/N  Timesteps
Backpropagation fp  784FC-1024FC-512FC-10FC 32 1
PC-SE (Pinchetti et al.[(2024)) fp  784FC-1024FC-512FC-10FC 960 15
PC-SNN (Lan et al.[(2022)) fp  784FC-200FC-10FC 960 15
DiffPC-L (Ours) sp  784FC-1024FC-512FC-10FC  0.18 120
DiffPC-S (Ours) sp  784FC-400FC-10FC 0.08 75

Table 4: Comparison of Test Accuracy and Efficiency (average bits per neuron during error propa-
gation) on the CIFAR-10 dataset. (fp: floating-point; sp: spikes)

Method Ops Network Architecture Acc. (%) Bits/N Timesteps
Backpropagation fp  10C5S52-5C5S52-50FC-30FC-10FC 63.5 32 1
PC-SE (Pinchetti et al.|(2024)) fp  10C5S2-5C5S2-50FC-30FC-10FC 65.3 960 15
DiffPC-Long (Ours) sp  10C5S82-5C5S52-50FC-30FC-10FC 65.6 1.9 240
DiffPC-Efficient (Ours) sp  10C5S2-5C5S2-50FC-30FC-10FC 63.3 0.7 180
Numerical precision — We evaluated the numerical precision of DiffPC by comparing the final

states xp obtained with standard predictive coding (PCN) and with our method. To quantify the
approximation, we measured the absolute difference between the hidden-layer activations produced
by the two algorithms.

In this experiment, we used a fixed multilayer perceptron (MLP) with architecture 128—200—10.
For each trial, we initialized the synaptic weights randomly but shared them between PCN and
DiffPC, ensuring that differences arise solely from the approximation scheme. As inputs, we used
i.i.d. random vectors sampled uniformly from [—1,1]!?® and as output we similarly had i.i.d. ran-
dom vectors sampled uniformly from [—1, 1]1. We repeated the evaluation over 300 random weight
initializations and inputs.

For each random trial, we computed the absolute difference between the final states x7 of PCN and
DiffPC. We observed that the error depends systematically on the scheduler parameters. Specifically,
the error is larger when the number of approximation steps n is small and the limit-decay value a
is large, and it decreases consistently as n increases and a decreases. This trend was robust across
weight initializations and random inputs, showing that approximation precision can be tuned directly
through scheduler parameters.

This constitutes a general test of numerical fidelity within the specified architecture and activation
function for three reasons. First, it eliminates dataset-specific structure and labels, so the comparison
probes only the update rules rather than task semantics. Second, by combining random bounded in-
puts with many random weights, it explores a wide region of the state space. Third, the use of shared
weights across both algorithms isolates the approximation error from any modeling differences.

The results seen in Table [5| demonstrate that DiffPC provides a close approximation of standard
PCN dynamics under random input conditions, confirming that the method faithfully reproduces
PCN across a broad range of states for the given architecture.

Table 5: Mean absolute difference between DiffPC and standard PC, averaged over three seeds. The
value after the = symbol represents the sample standard deviation. Lower is better.

1.0 0.5 0.25 0.1

0.1506 £ 0.0051 0.0627 £ 0.0014 0.0292 £ 0.0014 0.0168 = 0.0004
0.0750 £ 0.0018 0.0312 £ 0.0005 0.0158 £ 0.0005 0.0106 £ 0.0003
0.0373 £0.0006 0.0169 £ 0.0006 0.0102 £ 0.0004 0.0083 £ 0.0006
0.0197 £ 0.0005 0.0107 £ 0.0005 0.0083 £ 0.0005 0.0075 =£ 0.0006
0.0117 £0.0002  0.0085 £ 0.0005 0.0075 £ 0.0006  0.0072 £ 0.0006
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6 CONCLUSION

In this work, we presented Difference Predictive Coding, a learning framework that reformulates
standard predictive coding for native implementation in spiking neural networks. By replacing dense
floating-point communication with sparse, event-driven ternary spikes, DiffPC addresses the data
movement bottleneck that typically constrains on-chip training.

Our results on MNIST, Fashion-MNIST, and CIFAR-10 indicate that DiffPC approximates continu-
ous predictive coding dynamics with high precision. Crucially, it achieves competitive classification
accuracy while greatly reducing the number of transmitted bits compared to backpropagation and
standard predictive coding baselines. These findings suggest that DiffPC offers a viable pathway for
spiking based learning on neuromorphic systems.

Looking forward, a primary direction for future research in this domain is the evaluation of DiffPC
on significantly deeper architectures. Recent advancements, such as p-PC[Innocenti et al.| (2025a)),
have shown that predictive coding can scale to deep ResNets when inference dynamics are stabilized.
Since DiffPC is designed as a faithful discretization of PC, it is reasonable to hypothesize that these
stabilization techniques would transfer to this spike-based framework. A valuable extension of this
work would be to quantify the layer-wise deviation between DiffPC and continuous PC states in deep
networks, establishing how the spike-communication window must scale to maintain approximation
fidelity.

A complementary future direction concerns temporally correlated data. Recent work shows that
when inputs evolve smoothly over time, PC inference can be warm-started from previous states, re-
ducing inference iterations by half and substantially lowering the number of weight updates
Jousdani et al| (2025). Prototype-based continual-learning methods similarly demonstrate that re-
ducing update frequency yields large energy benefits on neuromorphic hardware such as Loihi 2
Hajizada et al| (2024} [2023)). Since DiffPC is intrinsically event-driven—remaining silent during
steady states and emitting spikes only on changes—Ieveraging temporal priors may further reduce
both inference steps and plasticity operations. Quantifying these temporal-sparsity benefits repre-
sents another natural extension of the present work.

Finally, beyond algorithmic scalability and temporal experiments, transitioning DiffPC from simu-
lation to physical neuromorphic hardware remains a critical milestone. Deployment on platforms
such as Intel Loihi 2 would allow for the assessment of the protocol under real-world hardware
constraints and provide a rigorous verification of its potential energy efficiency advantages.
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7 APPENDIX

7.1 INTUITION OF PREDICTIVE CODING TRAINING

To clarify the mechanics of the learning process, we provide a step-by-step intuition of how a Pre-
dictive Coding Network (PCN) learns to classify inputs. Unlike Backpropagation, which calculates
gradients of a loss function with respect to weights, PCN frames learning as an energy minimization
problem involving local neuronal activities.

The training process for a single input-label pair (x,y) proceeds as follows:

1. Prediction (Forward Pass): The input x is clamped to the input layer. The network
propagates activity forward layer-by-layer to generate a prediction at the output layer.

2. Constraint (Clamping): During training, the output layer is clamped to the correct label
y. This immediately creates a prediction error at the output layer (since the network’s initial
guess likely did not match y).

3. Relaxation (Backward Error Flow): This is the core of PC. The error at the output
layer implies that the penultimate layer’s activity was “wrong.” This error flows backward,
pulling the hidden layer neurons away from their original values toward states that would
have produced the correct output. This happens iteratively across all layers. The network
“relaxes” into a low-energy state where the activities are consistent with both the input and
the correct label.

4. Weight Update (Learning): Once the neuron activities have shifted to this better configu-
ration, the synaptic weights are updated locally. The update rule effectively says: “Change
the weight so that next time, this input naturally produces this ’better’ hidden activity.”

7.2 ALGORITHM BREAKDOWN

Update forward prediction — Forward prediction xr is updated using the incoming spike signal
s 4 from the previous layer,

X X Wb Ty (¢ — 1) (13)

Update Target Activity and Generate Spikes

The core of the DiffPC algorithm lies in iteratively updating the target activity vector xr for each
layer and communicating changes via spikes. The process begins by adjusting x7 to minimize
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prediction error, followed by generating spikes based on the discrepancy between this new target
and the layer’s current state.

First, the target activity x7 is updated based on both the local prediction error er and the error
propagated from the subsequent layer, which is accumulated in eg. This update, performed only
when the learning rate +(t) is active, is defined as:

XT — X7 + ’Y(t) . (—eT + (XT > 0) ® eB)

This rule closely mirrors the standard PC update in Equation [/| The term —ep corrects for local
prediction error, while the second term incorporates feedback from the next layer. The element-wise
condition (x7 > 0) serves as the derivative of the ReLU activation function, ensuring that updates
are only applied to active neurons. During training, the target activities of the input and output layers
are clamped to the provided data and labels, respectively. During inference, only the input layer is
clamped.

Next, the algorithm generates spikes to communicate the necessary adjustments for bringing the
layer’s actual state, x4, in line with the newly updated target state, xp. Instead of transmitting
dense floating-point values, DiffPC sends sparse ternary spikes. A spike is generated only if the
magnitude of the difference between the target and actual activity for a given neuron exceeds the
adaptive threshold Tj(t).

The activity spike vector s 4 is computed as follows:
sa = sign(xr —x4) O (Jxr —xa| > Tp(t)) , (14)

where ® denotes the Hadamard product. The sign(-) function determines the spike’s polarity (+1 or
-1), while the comparison operator produces a binary mask, ensuring that spikes are only generated
when the required update is significant. This event-driven mechanism ensures that communication
is sparse, as spikes are only transmitted to correct meaningful deviations from the target state.

Spiking ReLU - To implement a non-linear transfer function similar to the Rectified Linear Unit
(ReLU) in conventional neural networks, we propose a masking operation that effectively prevents
the actual neural activity x 4 from becoming negative.

SX%SAQ(XA+SA~T9(25)>O) . (15)

The spiking ReLLU ensures that only correction spikes in s4 maintaining x4 > 0 are allowed,
effectively implementing a ReLU-like activation function. We can also implement a clipped ReLU
activation function in a similar manner by setting an additional constraint:

shsa0(1>x4+sa-Tp(t)>0) . (16)

Update activation — The spiking ReLU produces a simple update step to update the actual activity
XA
x4 x4+ Tp(t) sk . (17)

The activation update operation adjusts x 4 towards x.

Error encoding in spikes — The target update is the same as in the standard PC in Sec.

The target error vector ¢; is computed using (4). Similarly to the original PC, this error term received
from the following layer serves as a measure of how well the current forward prediction matches the
target activity. However, unlike the standard PC we cannot directly use the update rule (7)) since the
error is encoded in the form of spikes. Instead, after computing the target error er = ¢, the DiffPC
algorithm generates error spikes s, based on the difference between ey and the actual error e 4,

se = sign(er —e4) © (|ler —ea| > Tp(t)) . (18)
The spikes s, are then sent to the following layers as error signals.

Accumulate incoming errors — Errors from the next layers are integrated into the network using the
accumulated error vector ep. This vector represents the sum of the incoming error signals weighted
by the threshold Ty (¢),

eg < ep+Tp(t)-edin ,
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where e_in denotes the incoming error signals from the next layer. The accumulated error vector ep
helps refine the target activity x by incorporating feedback from different layers of the network.

The actual error e 4 is then updated using previously generated error spikes s.,

ep — 6A+T9(t) - Se .

Weight Update Mechanism — The update rule for a single sample, derived from minimizing free
energy, is computed as AW;; o er; - ¢(z7,;), where er; is the post-synaptic error state and x
is the pre-synaptic activity state. This computation is compatible with neuromorphic hardware like
Loihi 2, which supports fixed-precision multiplication and accumulation of local variables.

7.3 PROOF OF CONVERGENCE

Here we provide the proof for Theorem . T|regarding the convergence of the cyclic scheduler.

Proof. Consider the cyclic scheduler where Ty(0) = 2™. At the first timestep ¢t = 0, if 2™+ >
|z, — 2!y| > 2™, then x4 is updated by 2™. Consequently, after the update, we have:

lzhy — 2ty | < 2™,
The same trivially holds if |z, — x| < 2™ already held on the first timestep. At the next timestep
t = 1, with Tp(1) = 2™~1, the difference |} — 24| can again be reduced by 2™~ ! if it exceeds
2m—1 Repeating this process over n timesteps, each reduction step halves the threshold compared
to the previous timestep from which the result follows by induction. 0

7.4 HYPERPARAMETER ANALYSIS

To understand the impact of our key scheduler hyperparameters, the cycle length n and the decay
factor a, we performed an extensive grid search. The results, visualized in Figure 2] reveal a clear
trade-off between classification accuracy, communication cost (spikes), and runtime (timesteps).

Figure 2a] shows that, with a fixed decay (a=1.0), increasing the cycle length n generally improves
performance. On both datasets, the accuracy gains diminish as performance saturates for sufficiently
large n. However, this accuracy gain comes at a direct cost. By definition, a larger n value increases
the number of timesteps per iteration, which in turn increases both the total runtime and the number
of spikes transmitted.

The role of the adaptive decay parameter a is to tune the precision of spike-based communication
within a fixed number of timesteps. Figure 2] illustrates this trade-off effectively. For smaller cycle
lengths, reducing a from 1.0 to smaller values provides a notable accuracy boost. This performance
gain is achieved by allowing the adaptive threshold to decrease more over the iteration, which in
turn generates more spikes to represent the error signals with higher fidelity. This can increase
communication cost, but does not increase the runtime as the number of timesteps per iteration is
fixed by n.

Crucially, the benefit of a smaller a diminishes as n increases. For large n, the performance is already
high and stable, and varying a has little to no effect on the final accuracy. This suggests that a long
cycle length n already provides sufficient timesteps for the network’s states to converge with high
precision. In this regime, the fine-tuning offered by the adaptive decay (aj1.0) becomes redundant,
as the inherent precision of the long spike train is already maximal for the task.

7.5 HYPERPARAMETER SELECTION HEURISTICS

Choosing optimal hyperparameters for DiffPC, as with many complex models, is a non-trivial task
without a closed-form solution. However, we have identified several heuristics that provide a strong
starting point for tuning the network for a new task.

From standard predictive coding theory, a functional network requires a minimum number of re-
laxation steps, typically at least twice the depth of the network, to allow information to propagate
fully between the input and output layers (see e.g. A.3.2 of [Innocenti et al.[(2025b))). This principle
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(a) Effect of cycle length n (see Eq. [8)) on test accuracy with fixed decay (a=1.0). Performance increases with n
on both MNIST and Fashion-MNIST, though returns diminish for sufficiently large n.
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(b) Trade-off between test accuracy and communication cost (spikes). Varying the decay parameter a (marker
size) can improve accuracy, particularly for smaller cycle lengths n (marker shape/color), at the cost of increased
spike activity.

Figure 2: Analysis of scheduler hyperparameters n and a on MNIST and Fashion-MNIST. The top
figure isolates the effect of n, while the bottom figure shows the interplay between n, a, accuracy,
and spike cost.

provides a useful guideline for the minimum number of timesteps required. For DiffPC, we offer
the following more specific guidance.

Choosing m For the cyclic scheduler, a robust choice is m=2 when using a clipped activation
function like ReLU6. The parameter m sets the initial and largest threshold value in a cycle, which
is 2", If this value is significantly larger than the maximum possible activation (e.g., 6 for ReLU6),
the initial timesteps will generate no spikes, as the difference |z — 4| will never exceed the
threshold. Setting m=2 yields an initial threshold of 4, which is on the same order of magnitude as
the activation range, ensuring that the spike generation process is active from the beginning of the
cycle.

Choosing n and a The parameters n and a jointly control the trade-off between runtime, commu-
nication cost, and precision. A practical approach to tuning them is a two-step process:

1. Find an effective cycle length n. First, set a=1.0 (disabling adaptive decay) and incre-
mentally increase n while monitoring test accuracy. Continue until performance saturates,
establishing a baseline for the required precision.

2. Optimize for efficiency. Once a saturation point n, is found, one can attempt to reduce
the cycle length to 7pey = ngy — k for some small integer k, thereby reducing runtime. To
compensate for the potential loss of precision, the decay factor can be set to a =~ 1/2*.

17



Under review as a conference paper at ICLR 2026

The reasoning for this two-step process is as follows. Reducing the cycle length by k steps removes
the k timesteps that have the smallest, and therefore most precise, threshold values. To compensate,
a smaller value of a is used to scale down the entire threshold schedule within the new, shorter cycle.
The heuristic a ~ 1/ 2k is specifically chosen because it ensures that the final, smallest threshold in
the new npey-step cycle is approximately equal to what the final threshold was in the original 7-
step cycle with a=1.0. This approach aims to recover the necessary representational fidelity while
benefiting from a shorter runtime.

8 TABLE OF NOTATION

Table [f] summarizes the mathematical symbols used in the Difference Predictive Coding (DiffPC)
algorithm.

Table 6: Nomenclature and Symbols

Symbol Description

Shared Variables (Standard PC & DiffPC)

l Layer index, [ € {0, ..., L}.

W! Synaptic weight matrix connecting layer [ — 1 to (.

Xp Forward Prediction. The prediction generated by the previous layer.

X Target Activity. The ideal state calculated to minimize prediction energy.
€ Prediction Error. The difference between target and prediction (X7 —X ).
~(¢) Inference learning rate at time .

DiffPC-Specific States (Spiking Implementation)

XA Actual Activity. The discrete state that tracks the shared target x7, updated
via spikes.

SA Activity Spikes. Ternary spikes {—1, 0, 1} communicating changes in x 4.

er Target Error. The local error variable (functionally equivalent to € in this
context).

e, Actual Error. The discrete state that tracks e, updated via spikes.

Se Error Spikes. Ternary spikes communicating changes in the error state.

ep Backward Error. The error signal accumulated from layer [ + 1.

Scheduler & Thresholds
Ty(t) Adaptive firing threshold at time ¢.

m Scheduler magnitude parameter (sets max threshold 2).
n Scheduler cycle length (periodicity of the steps).
a Decay factor for the cyclic decay scheduler.

9 EVENT-DRIVEN RESPONSE TO INPUT CHANGES

To demonstrate the event-driven nature of our method, we conducted an experiment to measure
the network’s spiking activity in response to a changing input. We presented a static input image
from the test set to a trained DiffPC network and monitored the total number of activity spikes (s4)
across all layers over time. After an initial period of 25 timesteps, we introduced an abrupt change
by shifting the input image by a single pixel.

The results, averaged over 1000 different input images, are shown in Figure [3] Initially, there is a
burst of spiking activity as the network processes the new image. This activity quickly subsides,
and the network becomes nearly silent as its internal state converges to a stable representation of
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the static input. At timestep 25 when the input is shifted, the network immediately responds with
another burst of spikes, which then decays as it settles into a new stable state.

This behavior highlights a key feature of DiffPC: computation is performed only when necessary to
process new or changed information. For applications where inputs may remain static for periods of
time, this event-driven property suggests the potential for energy savings by eliminating redundant
processing, making the approach highly suitable for energy-constrained neuromorphic hardware.
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Figure 3: Event-driven spiking in a trained DiffPC network. The network shows an initial burst of
spikes when an image is presented, then falls silent. A second burst of activity is triggered precisely
at timestep 25, when the input image is shifted by one pixel, demonstrating that the network only
computes in response to change.

REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our research. The complete PyTorch implemen-
tation of the Difference Predictive Coding algorithm, including model architectures, schedulers, and
training procedures, will be made available as supplementary material. Our core method is detailed
in Section [7.2] with a step-by-step breakdown provided in the Appendix. The source code includes
the exact configurations and hyperparameters used to generate all reported results, including clas-
sification accuracy on MNIST (Table E]) and Fashion-MNIST (Table @, and the communication
efficiency analysis (Table [3). Further, the codes used to generate the CIFAR-10 results will also be
made public. All experiments were conducted using standard public datasets, and the specific data
processing pipelines are explicitly defined within our implementation.

THE USE OF LARGE LANGUAGE MODELS (LLMS)

In the preparation of this manuscript, Large Language Models (LLMs) were utilized as a general-
purpose assistive tool. The authors take full responsibility for all content, ensuring its scientific
accuracy and originality. The specific roles of the LLMs are outlined below:

* Writing Assistance: LLMs were employed to improve the language and clarity of the
manuscript. This included refining sentence structures, correcting grammatical errors, and
ensuring overall readability. The core scientific ideas, arguments, and conclusions pre-
sented are entirely the work of the authors.

* Literature Discovery: LLMs were used as a tool to aid in the literature review process by
suggesting potentially related academic papers and summarizing established concepts. All
works cited in this paper were subsequently retrieved, read, and critically evaluated by the
authors to verify their relevance and accuracy.

* Coding Support: LLMs assisted in the software development process by generating boil-
erplate code, helping to debug specific code segments, and suggesting algorithmic opti-
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mizations. The overall design of the experiments, the core logic of the implementation,
and the final analysis were conceived and performed by the authors.
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