

000 001 DIFFERENCE PREDICTIVE CODING FOR TRAINING 002 SPIKING NEURAL NETWORKS 003 004

005 **Anonymous authors**
006 Paper under double-blind review

007 008 ABSTRACT 009

011 Predictive coding networks (PCNs) offer a local-learning alternative to backprop-
012 agation in which layers communicate residual errors, aligning well with biolog-
013 ical computation and neuromorphic hardware. In this work we introduce *Differ-*
014 *ence Predictive Coding* (DiffPC), a spike-native PC formulation for spiking neu-
015 ral networks. DiffPC replaces dense floating-point messages with sparse ternary
016 spikes, provides spike-compatible target and error updates, and employs adaptive
017 threshold schedules for event-driven operation. We validate DiffPC on fully con-
018 nected and convolutional architectures, demonstrating competitive performance
019 on MNIST (99.3%) and Fashion-MNIST (89.6%), and outperforming a backprop-
020 agation baseline on CIFAR-10. Crucially, this performance is achieved with high
021 communication sparsity, reducing data movement by over two orders of magni-
022 tude compared to standard predictive coding. DiffPC thus establishes a faithful,
023 hardware-aligned framework for communication-efficient training on neuromor-
024 phic platforms.

025 026 1 INTRODUCTION 027

029 The error backpropagation algorithm has been fundamental to the success of deep learning, yet
030 its core mechanisms are widely considered biologically implausible Salvatori et al. (2023). Key
031 limitations include the requirement for global error signals—where synaptic updates depend on
032 information transmitted across multiple layers, far beyond locally available signals—and the reliance
033 on continuous-valued communication and gradients, in contrast to the brain’s use of discrete, event-
034 driven signals N’dri et al. (2024). These discrepancies create a significant gap between conventional
035 artificial neural networks (ANNs) and biological neural systems.

036 Artificial intelligence does not need to replicate biology—airplanes do not flap their wings—but
037 certain biological properties are worth emulating. Examples include the brain’s energy efficiency
038 and its ability to perform robust and adaptive computation with sparse, noisy, and low-precision sig-
039 nals N’dri et al. (2024). These observations align with the development of neuromorphic systems,
040 which address the limitations of conventional von Neumann architectures by co-locating memory
041 and computation to reduce data movement Al Abdul Wahid et al. (2024), thereby enabling substan-
042 tially lower energy consumption—a key biological property worth emulating. Within this hardware
043 setting, Spiking Neural Networks (SNNs) provide a natural computational model: information is
044 represented not by continuous activations but by discrete spikes, as observed in the brain Olshausen
045 & Field (1996; 2004). In SNNs, neurons communicate through sparse, asynchronous events rather
046 than dense, synchronous updates Mainen & Sejnowski (1995); Cox et al. (2000), making them in-
047 trinsically well suited for low-power implementation.

048 One promising framework for training such systems is Predictive Coding (PC). Originating from
049 neuroscience, PC theorizes that the brain functions as a prediction machine, continuously generating
050 top-down predictions of sensory input while bottom-up signals convey only the residual prediction
051 errors Rao & Ballard (1999); Friston (2005); Spratling (2017); Huang & Rao (2011); Keller &
052 Mrsic-Flogel (2018). Importantly, PC relies on local learning rules, where synaptic updates depend
053 only on the activity of adjacent pre- and post-synaptic neurons. This locality makes PC highly
054 compatible with the parallel and distributed organization of neuromorphic hardware N’dri et al.
055 (2024); Salvatori et al. (2023).

054 However, despite its theoretical alignment with neuromorphic principles, the standard formulation
 055 of PC faces practical computational challenges. To infer neural activities, PC networks typically per-
 056 form an iterative settling process, requiring multiple forward and backward passes of information to
 057 converge for a single input. In standard implementations, this process relies on dense, floating-point
 058 message passing, resulting in a computational overhead that notably exceeds that of backpropagation
 059 Rosenbaum (2022). This reliance on dense, continuous communication during the iterative
 060 phase can offset the efficiency gains sought by deploying SNNs on event-driven hardware. There-
 061 fore, while PC offers a solution to the global transport problem of backpropagation, its standard
 062 formulation does not fully exploit the sparsity and efficiency of neuromorphic substrates.

063 Combining SNNs with PC-based training is a natural research direction to address these issues Lan
 064 et al. (2022); Wacongne et al. (2012); Boerlin et al. (2013); Ororbia (2023). In this work, we intro-
 065 duce *Difference Predictive Coding* (DiffPC), an algorithm that reformulates the predictive coding
 066 framework for native implementation in SNNs. DiffPC seeks to address the communication over-
 067 head of standard PC by replacing dense, floating-point message passing with sparse, ternary spike-
 068 based communication. By employing spike-compatible state update rules and adaptive threshold
 069 schedules, DiffPC ensures that computation and message passing are event-driven, occurring when
 070 necessary to correct prediction errors. Our results indicate that DiffPC achieves accuracy matching
 071 or exceeding that of standard predictive coding networks (PCNs) and backpropagation trained mod-
 072 els on benchmark datasets, while reducing the number of transmitted bits by more than two orders
 073 of magnitude compared to standard PC baselines.

- 074 • We propose *Difference Predictive Coding* (DiffPC), a spike-native framework based on
 075 novel update rules that transmit incremental state updates via sparse ternary spikes rather
 076 than broadcasting the full state, resulting in reduced communication costs.
- 077 • We introduce an adaptive threshold scheduling mechanism that enables the discrete spiking
 078 network to closely approximate the dynamics of standard continuous predictive coding with
 079 fewer timesteps.
- 080 • We empirically validate DiffPC on fully connected and convolutional architectures, demon-
 081 strating that it matches the accuracy of standard predictive coding and matches or exceeds
 082 that of Backpropagation on MNIST, Fashion-MNIST, and CIFAR-10, while reducing the
 083 number of transmitted bits by more than two orders of magnitude compared to standard
 084 predictive coding baselines.

085 2 RELATED WORKS

086 **Spiking neural networks.** SNNs compute with discrete events and update their state only upon
 087 spike arrivals, yielding sparse, asynchronous processing that maps well to neuromorphic substrates
 088 and modern accelerators Pfeiffer & Pfeil (2018); Tavanaei et al. (2019). This event-driven operation
 089 provides a natural match to the parallel, low-power architecture of neuromorphic hardware such as
 090 TrueNorth Akopyan et al. (2015), Loihi Davies et al. (2018), Loihi 2 Intel Corporation (2021b), and
 091 SpiNNaker Furber et al. (2014). Beyond neuromorphic-vision benchmarks, deep SNNs now achieve
 092 competitive accuracy on static datasets when equipped with convolutional backbones and carefully
 093 engineered neuron and normalization layers Hu et al. (2024).

094 Several software frameworks have been developed to simulate and train SNNs, including Brian2
 095 Stimberg et al. (2019), NEST Gewaltig & Diesmann (2007), SpikingJelly Fang et al. (2023), and
 096 LAVA Intel Corporation (2021a). In this work we use LAVA to verify that our methods are
 097 compatible with the Intel hardware chip Loihi 2 Intel Corporation (2021b), but also provide a PyTorch
 098 implementation for easy verification and faster runtimes.

099 **SNN training.** A key challenge in SNN learning is that spike generation is non-differentiable,
 100 preventing direct application of backpropagation. Contemporary approaches can be divided into
 101 three main families, each with distinct accuracy, latency, and efficiency trade-offs Hu et al. (2024).

102 *(i) ANN→SNN conversion.* In this approach, a ReLU ANN is trained with backpropagation and
 103 mapped to an SNN under a rate or latency coding assumption Cao et al. (2015). Practical pipelines
 104 reduce activation–rate mismatch via weight and threshold normalization Diehl et al. (2015) or reset-
 105 by-subtraction Rueckauer et al. (2017), and further tighten equivalence using quantization mapping
 106 Hu et al. (2023), clip-floor-shift activation Bu et al. (2023), and post-training parameter calibration

108 Li et al. (2024). Conversion scales well and can match ANN accuracy with few timesteps, but
 109 training remains off-chip with dense floating-point communication, and residual conversion error or
 110 latency may erode energy benefits.

111 (ii) *Direct surrogate-gradient training*. By treating SNNs as recurrent systems unrolled over time,
 112 the zero derivative of the spike function is replaced with a smooth surrogate, enabling backprop-
 113 agation through time (BPTT) Wu et al. (2018); Neftci et al. (2019). Representative methods in-
 114 clude temporal-loss formulations (SpikeProp) Bohte et al. (2002) and time-based error reassignment
 115 (SLAYER) Shrestha & Orchard (2018). Later advances improved optimization and representation
 116 by learning neuron dynamics such as time constants Fang et al. (2021). Significant progress was
 117 also made in normalizing membrane dynamics across time via threshold-dependent scaling (tdBN)
 118 Zheng et al. (2021), time-varying parameter decoupling (BNTT) Kim & Panda (2021), input rescal-
 119 ing for uniform temporal distributions (TEBN) Duan et al. (2022), or direct membrane potential
 120 regulation (MPBN) Guo et al. (2023). Finally, other methods mitigate surrogate mismatch via
 121 gradient re-weighting (TET) Deng et al. (2022), information maximization objectives (IM-Loss) Guo
 122 et al. (2022), or learnable surrogate shapes Lian et al. (2023). These methods reach state-of-the-art
 123 accuracy with $\mathcal{O}(1 - 8)$ timesteps, but they still rely on global backward signals and dense commu-
 124 nication, which can limit viability of on-chip training.

125 (iii) *Local plasticity*. Purely local rules, such as spike-timing-dependent plasticity (STDP) and
 126 reward-modulated variants, are aligned with both biology and hardware constraints. However, they
 127 typically require auxiliary classifiers and tend to underperform on complex tasks Diehl & Cook
 128 (2015); Kheradpisheh et al. (2018); Ororbia (2023).

129 Overall, these approaches highlight a central trade-off in SNN training: methods that achieve the
 130 highest accuracy typically rely on dense, non-local signals or off-chip training, while methods that
 131 are fully local and spiking have yet to consistently match this performance on complex tasks.

132 **Predictive coding.** Predictive coding (PC) has recently emerged as an alternative to backpropaga-
 133 tion that is both biologically motivated and compatible with event-driven computation. In PC, each
 134 layer generates predictions of activity in the layer below, while only the residual prediction errors
 135 are communicated forward Rao & Ballard (1999); Friston (2005); Spratling (2017); Huang & Rao
 136 (2011). PC has been developed into a computational framework with formal links to backpropaga-
 137 tion and variational inference Millidge et al. (2021); Rao & Ballard (1999). A central advantage is
 138 its use of local learning rules: synaptic updates depend only on the activity of adjacent pre- and post-
 139 synaptic neurons, making the framework well suited for distributed neuromorphic implementation
 140 N'dri et al. (2024); Salvatori et al. (2023).

141 Several works have sought to integrate PC with SNNs Lan et al. (2022); Ororbia (2023); Lee et al.
 142 (2024). The PC-SNN algorithm formulates predictive coding in time-to-first-spike (TTFS) encod-
 143 ing, where each neuron spikes at most once Lan et al. (2022). This achieves unmatched energy
 144 efficiency in terms of spikes, but runtime scales exponentially with input precision (2^B timesteps for
 145 B -bit input) and must be predefined due to the single-spike restriction. Additionally, their training
 146 schema remains reliant on transmission of dense floating point numbers and is done on GPU. Recent
 147 work toward creating purely spiking predictive coding frameworks Ororbia (2023); Lee et al. (2024)
 148 has made significant progress. However, to evaluate performance on discriminative benchmarks
 149 like MNIST, these frameworks adopt a hybrid approach. The spiking network is first trained in a
 150 purely unsupervised manner to learn representations. Subsequently, its weights are frozen, and a
 151 separate, non-spiking linear classifier is trained post-hoc on rate-coded activities extracted from the
 152 network's final layer. This reliance on an external, non-spiking component for the final classification
 153 step means the reported accuracies do not reflect the performance of an end-to-end spiking system,
 154 complicating a direct assessment of their utility for fully neuromorphic deployment.

155 **Relation to DiffPC.** Event-driven 'gradient-by-spikes' approaches approximate backpropagation by
 156 discretizing gradients into spikes Bohte et al. (2000); Cai et al. (2024), which enables training and
 157 inference using only spikes. We apply a similar approach in our proposed Difference Predictive
 158 Coding. Distinct from prior work, DiffPC integrates these concepts through three key mechanisms:
 159 (1) a spike-based message passing protocol that adapts sparse ternary communication specifically for
 160 predictive coding error propagation; (2) a difference-based update rule that triggers communication
 161 only upon state changes to minimize redundancy; and (3) a cyclic threshold scheduler designed to
 162 accelerate the convergence of discrete spiking states toward continuous PCN targets.

162 **3 BACKGROUND**
 163

164 **3.1 SPIKING NEURAL NETWORKS**
 165

166 SNNs are a class of artificial neural networks that mimic the behavior of biological neurons more
 167 closely than conventional neural networks. Neurons in spiking neural networks communicate
 168 through discrete spikes, or action potentials, when their membrane potential V reaches a certain
 169 activation threshold T_0 . The output of the neuron i is a function of the potential $s_i(V_i)$. The neu-
 170 ron model utilized in this work is based on the difference equation of the Integrate-and-Fire neuron
 171 model:

$$V_i(t+1) = V_i(t) - T_\theta s_i(V_i(t)) + \sum_j w_{ij} s_j(t), \quad V_i(0) = b_i, \quad (1)$$

172 where $V_i(t)$ is the integration variable (membrane potential), T_θ is the threshold, b_i is the bias and
 173 w_{ij} is the weight of the synapse connecting the input neuron j to the neuron i . The spike activation
 174 function $s_i(t) \in \{-1, 0, 1\}$ is

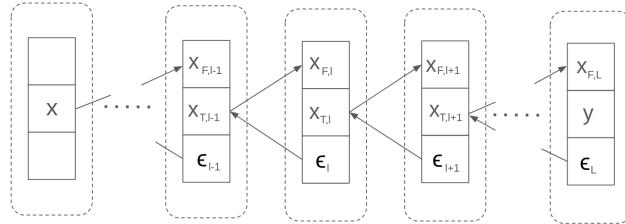
$$s_i(V_i(t)) := \begin{cases} 1 & \text{if } V_i(t) \geq T_\theta, \\ -1 & \text{if } V_i(t) \leq -T_\theta, \\ 0 & \text{otherwise.} \end{cases} \quad (2)$$

175 Activation of the Integrate-and-Fire-neuron output causes a voltage drop (damping) in the difference
 176 equation (1).

177 **3.2 PREDICTIVE CODING**
 178

179 In the context of neural networks, PC proposes that each layer generates predictions of the activity
 180 in the next layer. The next layer then computes the error between the forward propagated prediction
 181 and the target activity. This error signal is then propagated backward¹ to update both the targets and
 182 synaptic weights of the previous layer. The learning objective is to reduce the overall prediction error
 183 in the network. Unlike the separate forward and backward passes of conventional deep learning.

184 Predictive Coding Networks (PCNs) involve a bidirectional local flow of information; predictions
 185 of current targets in one direction and prediction errors in another (Figure 1). The target activity
 186 is updated using the received prediction error and the synaptic weights using the target activity.
 187 The updates are local, which is a substantial difference from the backpropagation algorithm, where
 188 updates depend on a single error signal calculated at the final output and propagated backward
 189 through the entire network.



190 Figure 1: The structure of a multi-layer Predictive Coding Network (PCN). Each neuronal unit,
 191 bounded by the dashed line, consists of the target activity x_T , prediction x_F , and prediction error ϵ .
 192 The arrows indicate the flow of information between layers $l = 0, 1, \dots, L$, where the feedforward
 193 path carries the predictions from $x_{T,l}$ to $x_{F,l+1}$, and the feedback path conveys the prediction errors
 194 ϵ_l which are used to update $x_{T,l-1}$. Computations and updates can be asynchronous.

195 We review the PC principles for a conventional Multi-Layer Perceptron network (MLP) of L dense
 196 layers to the input \mathbf{x} to output \mathbf{y} . The input and output layers are indexed as $l = 0$ and $l = L$, and
 197 between them are the hidden layers $l = 1$ to $L - 1$. Predictive Coding (PC) makes use of each layer's

198 ¹In the PCN literature the terms top/down are more common, but we opt forward/backward for consistency
 199 with the deep learning terminology.

216 current activation vectors $\mathbf{x}_{T,l}$ ('T' referring to 'Target'). In addition, the layers include vectors $\mathbf{x}_{F,l}$,
 217 (F: 'forward') that are the predictions generated by the previous layer $l - 1$. Ideally, the predictions
 218 and the targets should be the same.

219 **Energy function.** Layer l predictions are calculated from the target activity of the layer $l - 1$

$$221 \quad \mathbf{x}_{F,l} = \mathbf{W}_l \phi(\mathbf{x}_{T,l-1}) , \quad (3)$$

222 where $\mathbf{W}_l \in \mathbb{R}^{N_l \times N_{l-1}}$ are the weights, N is the number of neurons, and $\phi(\cdot)$ is an activation
 223 function. The difference between the targets and predictions is fed back as the prediction error

$$225 \quad \epsilon_l = \mathbf{x}_{T,l} - \mathbf{x}_{F,l} . \quad (4)$$

226 The errors from all layers are summed to compute the 'free-energy' of a network and PC operates
 227 by minimizing this free-energy function

$$229 \quad \mathcal{F} = \sum_{l=1}^L \|\epsilon_l\|_2^2 = \sum_{l=1}^L (\mathbf{x}_{T,l} - \mathbf{x}_{F,l})^2 . \quad (5)$$

232 **Update steps.** The main difference between PC and the gradient descent error backpropagation
 233 is that PC alternates between the two updates, the target and weight updates, which are computed
 234 locally and can be asynchronous. The synaptic weight update is

$$237 \quad \mathbf{W}_l^{(t+1)} = \mathbf{W}_l^{(t)} - \alpha \frac{\partial \mathcal{F}}{\partial \mathbf{W}_l} = \mathbf{W}_l^{(t)} + \alpha \epsilon_l \phi(\mathbf{x}_{T,l-1})^\top , \quad (6)$$

238 where α is the learning rate, and the prediction update is

$$240 \quad \mathbf{x}_{T,l}^{(t+1)} = \mathbf{x}_{T,l}^{(t)} - \gamma \frac{\partial \mathcal{F}}{\partial \mathbf{x}_{T,l}} = \begin{cases} \mathbf{x}_{T,l}^{(t)} - \gamma (\epsilon_l - \mathbf{W}_{l+1}^\top \epsilon_{l+1} \odot \phi'(\mathbf{x}_{T,l})) , & \text{for } l < L, \\ \mathbf{x}_{T,l}^{(t)} - \gamma \epsilon_l, & \text{for } l = L \end{cases} , \quad (7)$$

243 where γ is the prediction learning rate and \odot is the Hadamard product. Because updates only
 244 occur between adjacent layers, they must be performed iteratively to allow information to propagate
 245 throughout the entire network. See Appendix 7.1 for an intuitive explanation of predictive coding.

247 4 THE DIFFERENCE PREDICTIVE CODING ALGORITHM (DIFFPC)

249 In this section, we propose the Difference Predictive Coding (DiffPC) algorithm that implements
 250 the standard PC on SNNs. To ensure that our algorithm can be deployed on a neuromorphic chip,
 251 we used the instruction set of the Intel Loihi 2 neuromorphic chip. The algorithm was verified in
 252 the official simulator because access to the actual Loihi 2 hardware is limited to Intel partners. We
 253 provide the full simulator code and the pseudocode is given in Algorithm 1.

255 4.1 ALGORITHM OVERVIEW

257 To adapt the predictive coding framework from Section 3.2 for spiking neural networks, its floating-
 258 point computations and information transfer must be converted into discrete spikes (Algorithm 1). In
 259 this formulation, all information transmitted during the learning steps takes the form of a sequence
 260 of ternary values (-1, 0, 1).

261 In DiffPC, each unit maintains a *target state* x_T and an *actual state* x_A . The target state x_T repre-
 262 sents the desired (target) activity, while the actual state x_A attempts to follow x_T , aiming to minimize
 263 the difference between them. Their difference is reduced incrementally by steps proportional to an
 264 adaptive threshold T_θ . The difference-based adjustments are communicated as spikes to subsequent
 265 layers, which integrate the incoming spiking information.

266 Two error variables, e_T and e_A , function in the same way and represent the errors of the two states.
 267 e_T is the target error and e_A is the actual error that attempts to align with e_T . The error e_A is adjusted
 268 by steps proportional to T_θ , which are then transmitted to subsequent layers as spikes. Since the
 269 threshold T_θ determines the step size of these updates, its schedule is critical for convergence. In the
 next section, we will introduce specific scheduling strategies.

270 **Feed Forward Initialization.** Before the iterative DiffPC process begins (as detailed in Algo-
 271 rithm 1), the network undergoes a feed forward initialization phase. In this phase, input spikes are
 272 propagated through the layers in a single pass without feedback error calculation. This rapidly es-
 273 tablishes an initial estimate for the target activities \mathbf{x}_T and predictions \mathbf{x}_F , reducing the number of
 274 subsequent iterative steps required for convergence. This phase effectively mimics a standard feed-
 275 forward SNN inference step to prime the network state and can be implemented by utilizing graded
 276 spikes on the Loihi 2 chip. See section 7.2 of the appendix for a more detailed explanation of the
 277 algorithm.

Algorithm 1 DiffPC Algorithm for Spiking Neural Network Training

280 **Input:** Spike signals s_{in} , s_e
 281 **Process parameters:** threshold $T_\theta(t)$, learning rate $\gamma(t)$, weight lr α
 282 **Initialize:** $x_F, x_T, x_A, e_T, e_A, e_B, s_A, s_e$

283 1: **Feed Forward Initialization:** Propagate input to prime x_F
 284 2: **for** each time step t **do**
 285 3: $s_{\text{in}}^l \leftarrow W^l s_A^{l-1}$ ▷ Receive spike input
 286 4: $x_F^l \leftarrow x_F^l + s_{\text{in}}^l \cdot T_\theta(t-1)$ ▷ Update forward prediction
 287 5: **if** $\gamma^l(t) > 0$ **then**
 288 6: $e_T^l \leftarrow x_T^l - x_F^l$ ▷ Compute target error
 289 7: $x_T^l \leftarrow x_T^l + \gamma^l(t) \cdot (-e_T^l + (x_T^l > 0) \odot e_B^l)$ ▷ Update Target Activity
 290 8: **if** $\gamma^l(t) > 0$ **then**
 291 9: $e_T^l \leftarrow x_T^l - x_F^l$ ▷ Update target error
 292 10: $s_A^l \leftarrow \text{sign}(x_T^l - x_A^l) \odot (|x_T^l - x_A^l| > T_\theta(t))$ ▷ Generate spikes
 293 11: $s_A^l \leftarrow s_A^l \odot (x_A^l + s_A^l \cdot T_\theta(t) > 0)$ ▷ 'Spiking ReLU'
 294 12: $x_A^l \leftarrow x_A^l + T_\theta(t) \cdot s_A^l$ ▷ Update Actual Activity
 295 13: $s_{\text{out}}.\text{send}(s_A^l)$ ▷ Send state spikes
 296 14: ▷ Propagate Error:
 297 15: $e_{\text{out}}.\text{send}(s_e^l)$ ▷ Send error spikes
 298 16: $e_{\text{in}}^l \leftarrow (W^{l+1})^\top s_e^{l+1}$ ▷ Receive error input
 299 17: $e_B^l \leftarrow e_B^l + T_\theta(t-1) \cdot e_{\text{in}}^l$ ▷ Accumulate incoming errors
 300 18: $s_e^l \leftarrow \text{sign}(e_T^l - e_A^l) \odot (|e_T^l - e_A^l| > T_\theta(t))$ ▷ Generate error spikes
 301 19: $e_A^l \leftarrow e_A^l + T_\theta(t) \cdot s_e^l$ ▷ Update actual error
 302 20: $W^l \leftarrow W^l + \alpha e_T^l \phi(x_T^{l-1})^\top$ ▷ Update Weights
 303

304
 305 4.2 T_θ AND γ SCHEDULES
 306

307 We present a *cyclic scheduler*, which allows for accurate approximation of the standard PC algo-
 308 rithm,

309
$$T_\theta(t) = \frac{2^m}{2^{t \bmod n}}, \quad \gamma(t) = g(t \bmod n) , \quad (8)$$

 310

311 where
 312

313
 314
$$g(x) = \begin{cases} \gamma, & \text{if } x = 0 \\ 0, & \text{otherwise} \end{cases} , \quad (9)$$

 315

316 where $n, t \in \mathbb{N}^+$ denote the cycle length and timestep index, respectively, $m \in \mathbb{Z}$ sets the initial
 317 magnitude of the threshold via $T_\theta(0) = 2^m$, and $t \bmod n$ denotes the modulo operation. The set of
 318 n steps starting with $\gamma(t) = \gamma$ is referred to as γ -cycle and a set of timesteps during which we train
 319 the network with a single input and output pair is called an iteration. A single iteration therefore
 320 consists of multiple γ -cycles.

321 To theoretically motivate the precision of this approach, we establish the following bound on the
 322 quantization error demonstrating that, in the absence of error, the spiking states exponentially con-
 323 verge to their floating-point targets within a cycle.

324 **Theorem 4.1.** Suppose that the target activity for layer l , denoted as x_T^l , satisfies $|x_T^l - x_A^l| < 2^{m+1}$
 325 and $x_T^l > 0$. Then, after one γ -cycle of n timesteps of a cyclic scheduler, the difference between the
 326 target activity and the actual activity $|x_T^l - x_A^l|$ is less than 2^{m+1-n} .
 327

328 *Proof.* See Appendix 7.3. □
 329

330 Though this method is able to attain great precision in the approximation of standard PC when we
 331 set n large, it comes at the cost of extra timesteps and spikes. In practice, we observe that as the PC
 332 network converges, the changes in e_T and x_T become smaller. Thus we should also scale the cyclic
 333 scheduler to be smaller as the network converges allowing us to use smaller n and still attain high
 334 accuracies. This is the motivation behind the cyclic decay scheduler defined as
 335

$$336 \quad T_\theta(t) = d(t \bmod T) \frac{2^m}{2^{t \bmod n}}, \quad \gamma(t) = g(t \bmod n), \quad (10)$$

339 where $d(t)$ is a decreasing function. We set
 340

$$341 \quad d(t) = \left(1 - (1-a) \frac{t}{T}\right), \quad (11)$$

343 where $a \in (0, 1]$ such that $d(t \bmod T) \in (0, 1]$ and T is the length of the iteration. In addition to
 344 the cyclic decay scheduler, we introduce the *constant decay scheduler*, defined as
 345

$$346 \quad T_\theta(t) = d(t \bmod T) c, \quad \gamma(t) = g(t \bmod n), \quad (12)$$

348 where $c \in \mathbf{R}^+$. This schedule maintains a fixed threshold c that is scaled by the decay function $d(t)$,
 349 thereby reducing the update size over the course of an iteration.
 350

351 5 EXPERIMENTS

353 5.1 DATA AND SETTINGS

355 We evaluate our method using Multi-Layer Perceptron (MLP) architectures as MLPs provide a clean
 356 and well-studied baseline for predictive coding, and we extend our evaluation to Convolutional Neu-
 357 ral Networks (CNNs) on the CIFAR-10 dataset to demonstrate the method’s applicability to convo-
 358 lutional networks. For empirical validation, we use the MNIST, Fashion-MNIST, and CIFAR-10
 359 benchmarks. MNIST and Fashion-MNIST comprise 60,000 training and 10,000 test grayscale im-
 360 ages of size 28×28 across 10 classes. CIFAR-10 consists of 50,000 training and 10,000 test color
 361 images of size 32×32 across 10 classes. We train fully connected networks with one or two hidden
 362 layers for the simpler tasks, utilizing dropout. For CIFAR-10, we utilize a convolutional archi-
 363 tecture, consisting of two convolutional layers with 5×5 kernels and stride 2 (with 10 and 5 filters
 364 respectively), followed by three fully connected layers. All models are optimized using AdamW.
 365 Data augmentation includes random translation jitter for MNIST and random horizontal flips for
 366 CIFAR-10. We assess performance by test-set classification accuracy and by spike efficiency, quan-
 367 tified as the average number of activity and error spikes per neuron per sample during training. Our
 368 CIFAR-10 implementation is based on code from Millidge et al. (2020); Whittington & Bogacz
 369 (2017).
 370

371 **Selected baselines** For comparison, we focus on Convolutional and MLP networks and include
 372 both conventional floating-point and spiking implementations. In addition, we report results from
 373 spiking networks trained with alternative learning rules beyond predictive coding, providing context
 374 on how our approach compares to state-of-the-art non-PC methods
 375

376 5.2 RESULTS

377 **Classification accuracy** On MNIST, DiffPC achieves high accuracy that matches previously re-
 378 ported results for non-convolutional spike-based methods. For example, DiffPC-L attains 99.3%

accuracy and DiffPC-S reaches 98.2%, placing them on par with or above several recent SNN models, as shown in Table 1. On Fashion-MNIST, which presents a greater challenge, DiffPC also achieves competitive accuracy (Table 2). Finally, on CIFAR-10, DiffPC demonstrates effective scaling to convolutional architectures; DiffPC-Long achieves 65.6% accuracy, surpassing the standard backpropagation baseline of 63.5%, while DiffPC-Efficient reaches 63.3% (Table 4).

Communication efficiency Communication efficiency provides further insight into the advantages of DiffPC. On modern hardware, the energy cost of moving data is often comparable to, and in many workloads higher than, the cost of arithmetic operations Horowitz (2014); Lian et al. (2023). Because memory access and interconnect traffic can be orders of magnitude more energy-intensive than a multiply-accumulate, the number of floating-point values transmitted during training and inference is a key proxy for communication energy. In addition, spiking implementations require computation to unfold in discrete timesteps, and the number of timesteps needed for convergence strongly predicts runtime performance Li et al. (2023).

Table 3 reports the average number of bits transmitted per neuron during error propagation and the corresponding timestep counts on the MNIST task. Standard backpropagation transmits 32 bits per neuron in a single timestep, while predictive coding (PC-SE) requires 960 bits across 15 timesteps. SNN-based predictive coding (PC-SNN) is similar as they use floating point numbers during the training stage of their network. In contrast, DiffPC achieves orders-of-magnitude improvements: DiffPC-L transmits only 0.18 bits (0.09 spikes) per neuron on average across 120 timesteps, and DiffPC-S reduces this further to 0.08 bits (0.04 spikes) per neuron across 75 timesteps. These results demonstrate that DiffPC combines competitive accuracy with substantially improved efficiency in terms of communication.

We observe similar trends on the CIFAR-10 dataset, as detailed in Table 4. Here, we compare two configurations: DiffPC-Long, which utilizes a scheduler cycle length of $n = 16$, and DiffPC-Efficient, which employs a shorter cycle length of $n = 12$. Both configurations run for 15 cycles per sample. While the convolutional architecture utilizes higher-fidelity error messaging compared to the MLP used for MNIST, DiffPC retains a substantial efficiency advantage. DiffPC-Long requires only 1.9 bits per neuron, and DiffPC-Efficient further reduces this to 0.7 bits. Although these values are higher than those for MNIST, they remain significantly lower than the 32 bits required by backpropagation or the 960 bits used by standard PC, demonstrating that the communication sparsity of DiffPC scales effectively to convolutional networks.

Table 1: Comparison of the Test Accuracy of Different SNN and PC Models on the MNIST dataset. (FC denotes fully connected layers)

Method	Network Architecture	Acc. (%)
Backpropagation	784FC-1024FC-512FC-10FC	99.3
PC-SE (Standard PC) (Pinchetti et al. (2024))	784FC-128FC-128FC-128FC-10FC	98.3
STiDi-BP (Mirsadeghi et al. (2021))	40C5-P2-1000FC-10FC	99.2
SSTDP (Liu et al. (2021))	784FC-300FC-10FC	98.1
PC-SNN (Lan et al. (2022))	784FC-200FC-10FC	98.1
SRC-RNN (De Geeter et al. (2024))	784FC-512FC-512FC-512FC-10FC	98.4
FastSNN (Taylor et al. (2022))	784FC-1000FC-10FC	97.9
FastSNN (Taylor et al. (2022))	32C5-P2-64C5-P2-1000FC-10FC	99.3
DiffPC-L (Ours)	784FC-1024FC-512FC-10FC	99.3
DiffPC-S (Ours)	784FC-400FC-10FC	98.3

Table 2: Comparison of the Test Accuracy of models on the Fashion-MNIST dataset.

Method	Network Architecture	Acc. (%)
FastSNN (Taylor et al. (2022))	784FC-1000FC-10FC	89.1
FastSNN (Taylor et al. (2022))	32C5-P2-64C5-P2-1000FC-10FC	90.6
SRC-RNN (De Geeter et al. (2024))	784FC-512FC-512FC-512FC-512FC-10FC	88.5
DiffPC-M (Ours)	784FC-1000FC-10FC	89.6
DiffPC-S (Ours)	784FC-400FC-10FC	89.2

432 Table 3: Average bits transferred during the error propagation stage of different models, along with
 433 the timesteps used on the MNIST task. (fp: floating-point operations; sp: spikes)

435 Method	436 Ops	437 Network Architecture	438 Bits/N	439 Timesteps
436 Backpropagation	437 fp	438 784FC-1024FC-512FC-10FC	439 32	440 1
436 PC-SE (Pinchetti et al. (2024))	437 fp	438 784FC-1024FC-512FC-10FC	439 960	440 15
436 PC-SNN (Lan et al. (2022))	437 fp	438 784FC-200FC-10FC	439 960	440 15
436 DiffPC-L (Ours)	437 sp	438 784FC-1024FC-512FC-10FC	439 0.18	440 120
436 DiffPC-S (Ours)	437 sp	438 784FC-400FC-10FC	439 0.08	440 75

441 Table 4: Comparison of Test Accuracy and Efficiency (average bits per neuron during error propa-
 442 gation) on the CIFAR-10 dataset. (fp: floating-point; sp: spikes)

444 Method	445 Ops	446 Network Architecture	447 Acc. (%)	448 Bits/N	449 Timesteps
446 Backpropagation	447 fp	448 10C5S2-5C5S2-50FC-30FC-10FC	449 63.5	450 32	451 1
446 PC-SE (Pinchetti et al. (2024))	447 fp	448 10C5S2-5C5S2-50FC-30FC-10FC	449 65.3	450 960	451 15
446 DiffPC-Long (Ours)	447 sp	448 10C5S2-5C5S2-50FC-30FC-10FC	449 65.6	450 1.9	451 240
446 DiffPC-Efficient (Ours)	447 sp	448 10C5S2-5C5S2-50FC-30FC-10FC	449 63.3	450 0.7	451 180

450
 451 **Numerical precision –** We evaluated the numerical precision of *DiffPC* by comparing the final
 452 states x_T obtained with standard predictive coding (PCN) and with our method. To quantify the
 453 approximation, we measured the absolute difference between the hidden-layer activations produced
 454 by the two algorithms.

455 In this experiment, we used a fixed multilayer perceptron (MLP) with architecture 128–200–10.
 456 For each trial, we initialized the synaptic weights randomly but shared them between PCN and
 457 *DiffPC*, ensuring that differences arise solely from the approximation scheme. As inputs, we used
 458 i.i.d. random vectors sampled uniformly from $[-1, 1]^{128}$ and as output we similarly had i.i.d. ran-
 459 dom vectors sampled uniformly from $[-1, 1]^{10}$. We repeated the evaluation over 300 random weight
 460 initializations and inputs.

461 For each random trial, we computed the absolute difference between the final states x_T of PCN and
 462 *DiffPC*. We observed that the error depends systematically on the scheduler parameters. Specifically,
 463 the error is larger when the number of approximation steps n is small and the limit-decay value a
 464 is large, and it decreases consistently as n increases and a decreases. This trend was robust across
 465 weight initializations and random inputs, showing that approximation precision can be tuned directly
 466 through scheduler parameters.

467 This constitutes a general test of numerical fidelity within the specified architecture and activation
 468 function for three reasons. First, it eliminates dataset-specific structure and labels, so the comparison
 469 probes only the update rules rather than task semantics. Second, by combining random bounded
 470 inputs with many random weights, it explores a wide region of the state space. Third, the use of shared
 471 weights across both algorithms isolates the approximation error from any modeling differences.

472 The results seen in Table 5 demonstrate that *DiffPC* provides a close approximation of standard
 473 PCN dynamics under random input conditions, confirming that the method faithfully reproduces
 474 PCN across a broad range of states for the given architecture.

476 Table 5: Mean absolute difference between DiffPC and standard PC, averaged over three seeds. The
 477 value after the \pm symbol represents the sample standard deviation. Lower is better.

479 $n \backslash a$	1.0	0.5	0.25	0.1	
480 n	3	0.1506 \pm 0.0051	0.0627 \pm 0.0014	0.0292 \pm 0.0014	0.0168 \pm 0.0004
481 4	0.0750 \pm 0.0018	0.0312 \pm 0.0005	0.0158 \pm 0.0005	0.0106 \pm 0.0003	
482 5	0.0373 \pm 0.0006	0.0169 \pm 0.0006	0.0102 \pm 0.0004	0.0083 \pm 0.0006	
483 6	0.0197 \pm 0.0005	0.0107 \pm 0.0005	0.0083 \pm 0.0005	0.0075 \pm 0.0006	
484 7	0.0117 \pm 0.0002	0.0085 \pm 0.0005	0.0075 \pm 0.0006	0.0072 \pm 0.0006	

486 6 CONCLUSION
487488 In this work, we presented Difference Predictive Coding, a learning framework that reformulates
489 standard predictive coding for native implementation in spiking neural networks. By replacing dense
490 floating-point communication with sparse, event-driven ternary spikes, DiffPC addresses the data
491 movement bottleneck that typically constrains on-chip training.492 Our results on MNIST, Fashion-MNIST, and CIFAR-10 indicate that DiffPC approximates continuous
493 predictive coding dynamics with high precision. Crucially, it achieves competitive classification
494 accuracy while greatly reducing the number of transmitted bits compared to backpropagation and
495 standard predictive coding baselines. These findings suggest that DiffPC offers a viable pathway for
496 spiking based learning on neuromorphic systems.497 Looking forward, a primary direction for future research in this domain is the evaluation of DiffPC
498 on significantly deeper architectures. Recent advancements, such as μ -PC Innocenti et al. (2025a),
499 have shown that predictive coding can scale to deep ResNets when inference dynamics are stabilized.
500 Since DiffPC is designed as a faithful discretization of PC, it is reasonable to hypothesize that these
501 stabilization techniques would transfer to this spike-based framework. A valuable extension of this
502 work would be to quantify the layer-wise deviation between DiffPC and continuous PC states in deep
503 networks, establishing how the spike-communication window must scale to maintain approximation
504 fidelity.505 A complementary future direction concerns temporally correlated data. Recent work shows that
506 when inputs evolve smoothly over time, PC inference can be warm-started from previous states, re-
507 ducing inference iterations by half and substantially lowering the number of weight updates Zadeh-
508 Jousdani et al. (2025). Prototype-based continual-learning methods similarly demonstrate that re-
509 ducing update frequency yields large energy benefits on neuromorphic hardware such as Loihi 2
510 Hajizada et al. (2024; 2025). Since DiffPC is intrinsically event-driven—remaining silent during
511 steady states and emitting spikes only on changes—leveraging temporal priors may further reduce
512 both inference steps and plasticity operations. Quantifying these temporal-sparsity benefits repre-
513 sents another natural extension of the present work.514 Finally, beyond algorithmic scalability and temporal experiments, transitioning DiffPC from simu-
515 lation to physical neuromorphic hardware remains a critical milestone. Deployment on platforms
516 such as Intel Loihi 2 would allow for the assessment of the protocol under real-world hardware
517 constraints and provide a rigorous verification of its potential energy efficiency advantages.518
519 REFERENCES
520521 Philipp Akopyan, Jun Sawada, Andrew Cassidy, Rodrigo Alvarez-Icaza, John Arthur, Paul Merolla,
522 Nabil Imam, Yutaka Nakamura, Pallab Datta, Gi-Joon Nam, et al. Truenorth: Design and tool
523 flow of a 65 mw 1 million neuron programmable neurosynaptic chip. *IEEE transactions on*
524 *computer-aided design of integrated circuits and systems*, 34(10):1537–1557, 2015.
525 Seham Al Abdul Wahid, Arghavan Asad, and Farah Mohammadi. A survey on neuromorphic archi-
526 tectures for running artificial intelligence algorithms. *Electronics*, 13(15):2963, 2024.
527 M Boerlin, CK Machens, and S Denève. Predictive coding of dynamical variables in balanced
528 spiking networks. *PLoS computational biology*, 9(11):e1003258, 2013.
529 Sander M Bohte, Joost N Kok, and Johannes A La Poutré. Spikeprop: backpropagation for networks
530 of spiking neurons. In *ESANN*, volume 48, pp. 419–424. Bruges, 2000.
531 Sander M Bohte, Joost N Kok, and Han La Poutre. Error-backpropagation in temporally encoded
532 networks of spiking neurons. *Neurocomputing*, 48(1-4):17–37, 2002.
533 Tong Bu, Wei Fang, Jianhao Ding, PengLin Dai, Zhaofei Yu, and Tiejun Huang. Optimal ann-
534 snn conversion for high-accuracy and ultra-low-latency spiking neural networks. *arXiv preprint*
535 *arXiv:2303.04347*, 2023.
536 Zhengyu Cai, Hamid Rahimian Kalatehbal, Ben Walters, Mostafa Rahimi Azghadi, Roman Genov,
537 and Amirali Amirsoleimani. Advancing image classification with phase-coded ultra-efficient

540 spiking neural networks. In *2024 IEEE international symposium on circuits and systems (ISCAS)*, pp. 1–5. IEEE, 2024.

541

542

543 Yongqiang Cao, Yang Chen, and Deepak Khosla. Spiking deep convolutional neural networks for
544 energy-efficient object recognition. *International Journal of Computer Vision*, 113(1):54–66,
545 2015.

546 Charles L Cox, Winfried Denk, David W Tank, and Karel Svoboda. Action potentials reliably invade
547 axonal arbors of rat neocortical neurons. *Proceedings of the National Academy of Sciences*, 97
548 (17):9724–9728, 2000.

549 Mike Davies, Narayan Srinivasa, Tsung-Han Lin, Gautham Chinya, Yongqiang Cao, Sri Harsha
550 Choday, Georgios Dimou, Prasad Joshi, Nabil Imam, Shweta Jain, et al. Loihi: A neuromorphic
551 manycore processor with on-chip learning. *Ieee Micro*, 38(1):82–99, 2018.

552

553 Florent De Geeter, Damien Ernst, and Guillaume Drion. Spike-based computation using classical
554 recurrent neural networks. *Neuromorphic Computing and Engineering*, 4(2):024007, 2024.

555 Shikuang Deng, Yuhang Li, Shanghang Zhang, and Shi Gu. Temporal efficient training of spiking
556 neural network via gradient re-weighting. *arXiv preprint arXiv:2202.11946*, 2022.

557

558 Peter U Diehl and Matthew Cook. Unsupervised learning of digit recognition using spike-timing-
559 dependent plasticity. *Frontiers in computational neuroscience*, 9:99, 2015.

560

561 Peter U Diehl, Daniel Neil, Jonathan Binas, Matthew Cook, Shih-Chii Liu, and Michael Pfeiffer.
562 Fast-classifying, high-accuracy spiking deep networks through weight and threshold balancing.
563 In *2015 International joint conference on neural networks (IJCNN)*, pp. 1–8. ieee, 2015.

564

565 Chaoteng Duan, Jianhao Ding, Shiyuan Chen, Zhaofei Yu, and Tiejun Huang. Temporal effective
566 batch normalization in spiking neural networks. *Advances in Neural Information Processing
567 Systems*, 35:34377–34390, 2022.

568

569 Wei Fang, Zhaofei Yu, Yanqi Chen, Timothée Masquelier, Tiejun Huang, and Yonghong Tian. In-
570 corporating learnable membrane time constant to enhance learning of spiking neural networks.
571 In *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 2661–2671,
572 2021.

573

574 Wei Fang, Yanqi Chen, Jianhao Ding, Zhaofei Yu, Timothée Masquelier, Ding Chen, Liwei Huang,
575 Huihui Zhou, Guoqi Li, and Yonghong Tian. Spikingjelly: An open-source machine learning
576 infrastructure platform for spike-based intelligence. *Science Advances*, 9(40):ead1480, 2023.

577

578 Karl Friston. A theory of cortical responses. *Philosophical Transactions of the Royal Society B:
579 Biological Sciences*, 360(1456):815–836, 2005.

580

581 Steve B Furber, Francesco Galluppi, Steve Temple, and Luis A Plana. The spinnaker project. *Pro-
582 ceedings of the IEEE*, 102(5):652–665, 2014.

583

584 Marc-Oliver Gewaltig and Markus Diesmann. Nest (neural simulation tool). *Scholarpedia*, 2(4):
585 1430, 2007.

586

587 Yufei Guo, Yuanpei Chen, Liwen Zhang, Xiaode Liu, Yinglei Wang, Xuhui Huang, and Zhe Ma. Im-
588 loss: information maximization loss for spiking neural networks. *Advances in Neural Information
589 Processing Systems*, 35:156–166, 2022.

590

591 Yufei Guo, Yuhang Zhang, Yuanpei Chen, Weihang Peng, Xiaode Liu, Liwen Zhang, Xuhui Huang,
592 and Zhe Ma. Membrane potential batch normalization for spiking neural networks. In *Proceed-
593 ings of the IEEE/CVF International Conference on Computer Vision*, pp. 19420–19430, 2023.

594

595 Elvin Hajizada, Balachandran Swaminathan, and Yulia Sandamirskaya. Continual learning for au-
596 tonomous robots: A prototype-based approach, 2024. URL <https://arxiv.org/abs/2404.00418>.

597

598 Elvin Hajizada, Danielle Rager, Timothy Shea, Leobardo Campos-Macias, Andreas Wild, Eyke
599 Hüllermeier, Yulia Sandamirskaya, and Mike Davies. Real-time continual learning on intel loihi
600 2, 2025. URL <https://arxiv.org/abs/2511.01553>.

594 Mark Horowitz. 1.1 computing’s energy problem (and what we can do about it). In *2014 IEEE*
 595 *international solid-state circuits conference digest of technical papers (ISSCC)*, pp. 10–14. IEEE,
 596 2014.

597 Yangfan Hu, Qian Zheng, Xudong Jiang, and Gang Pan. Fast-snn: Fast spiking neural network by
 598 converting quantized ann. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 45
 599 (12):14546–14562, 2023.

600 Yangfan Hu, Qian Zheng, Guoqi Li, Huajin Tang, and Gang Pan. Toward large-scale spiking neural
 601 networks: A comprehensive survey and future directions. *arXiv preprint arXiv:2409.02111*, 2024.

602 Yan Huang and Rajesh PN Rao. Predictive coding. *Wiley Interdisciplinary Reviews: Cognitive*
 603 *Science*, 2(5):580–593, 2011.

604 Francesco Innocenti, El Mehdi Achour, and Christopher L Buckley. μ pc: Scaling predictive coding
 605 to 100+ layer networks. *arXiv preprint arXiv:2505.13124*, 2025a.

606 Francesco Innocenti, El Mehdi Achour, and Christopher L. Buckley. μ pc: Scaling predictive coding
 607 to 100+ layer networks, 2025b. URL <https://arxiv.org/abs/2505.13124>.

608 Intel Corporation. Intel advances neuromorphic computing with loihi 2 and lava software
 609 framework. <https://www.intel.com/content/www/us/en/newsroom/news/intel-advances-neuromorphic-loihi-2.html>, September 2021a.

610 Intel Corporation. Loihi 2 Technology Brief. Technical report, Intel Corporation, 2021b. URL <https://www.intel.com/content/www/us/en/research/neuromorphic-computing-loihi-2-technology-brief.html>. Accessed: 2025-09-24.

611 Georg B Keller and Thomas D Mrsic-Flogel. Predictive processing: a canonical cortical computa-
 612 tion. *Neuron*, 100(2):424–435, 2018.

613 Saeed Reza Kheradpisheh, Mohammad Ganjtabesh, Simon J Thorpe, and Timothée Masquelier.
 614 Stp-based spiking deep convolutional neural networks for object recognition. *Neural Networks*,
 615 99:56–67, 2018.

616 Youngeun Kim and Priyadarshini Panda. Revisiting batch normalization for training low-latency
 617 deep spiking neural networks from scratch. *Frontiers in neuroscience*, 15:773954, 2021.

618 Mengting Lan, Xiaogang Xiong, Zixuan Jiang, and Yunjiang Lou. Pc-snn: Supervised learning with
 619 local hebbian synaptic plasticity based on predictive coding in spiking neural networks. *arXiv*
 620 *preprint arXiv:2211.15386*, 2022.

621 Kwangjun Lee, Shirin Dora, Jorge F Mejias, Sander M Bohte, and Cyriel MA Pennartz. Predictive
 622 coding with spiking neurons and feedforward gist signaling. *Frontiers in Computational Neuro-
 623 science*, 18:1338280, 2024.

624 Yuhang Li, Tamar Geller, Youngeun Kim, and Priyadarshini Panda. Seenn: Towards tem-
 625 poral spiking early-exit neural networks. In *Advances in Neural Information Process-
 626 ing Systems (NeurIPS)*, pp. 63327–63342. Curran Associates, Inc., 2023. doi: 10.5555/
 627 3666122.3668886. URL https://papers.nips.cc/paper_files/paper/2023/hash/9a3f3c16c1d4b89b3b4e2f24f44f5cb4-Abstract-Conference.html.

628 Yuhang Li, Shikuang Deng, Xin Dong, and Shi Gu. Error-aware conversion from ann to snn via post-
 629 training parameter calibration. *International Journal of Computer Vision*, 132(9):3586–3609,
 630 2024.

631 Shuang Lian, Jiangrong Shen, Qianhui Liu, Ziming Wang, Rui Yan, and Huajin Tang. Learnable
 632 surrogate gradient for direct training spiking neural networks. In *IJCAI*, pp. 3002–3010, 2023.

633 Fangxin Liu, Wenbo Zhao, Yongbiao Chen, Zongwu Wang, Tao Yang, and Li Jiang. Sstdp: Super-
 634 vised spike timing dependent plasticity for efficient spiking neural network training. *Frontiers in*
 635 *Neuroscience*, 15:756876, 2021.

648 Zachary F Mainen and Terrence J Sejnowski. Reliability of spike timing in neocortical neurons.
 649 *Science*, 268(5216):1503–1506, 1995.
 650

651 Beren Millidge, Alexander Tschantz, and Christopher L Buckley. Predictive coding approximates
 652 backprop along arbitrary computation graphs. *arXiv preprint arXiv:2006.04182*, 2020.
 653

654 Beren Millidge, Anil Seth, and Christopher L Buckley. Predictive coding: A theoretical and experi-
 655 mental review. *arXiv preprint arXiv:2107.12979*, 2021.
 656

657 Maryam Mirsadeghi, Majid Shalchian, Saeed Reza Kheradpisheh, and Timothée Masquelier. Stidi-
 658 bp: Spike time displacement based error backpropagation in multilayer spiking neural networks.
 659 *Neurocomputing*, 427:131–140, 2021.
 660

661 Antony W N'dri, William Gebhardt, Céline Teulière, Fleur Zeldenrust, Rajesh PN Rao, Jochen
 662 Triesch, and Alexander Ororbia. Predictive coding with spiking neural networks: a survey. *arXiv*
 663 preprint *arXiv:2409.05386*, 2024.
 664

665 Emre O Neftci, Hesham Mostafa, and Friedemann Zenke. Surrogate gradient learning in spiking
 666 neural networks: Bringing the power of gradient-based optimization to spiking neural networks.
 667 *IEEE Signal Processing Magazine*, 36(6):51–63, 2019.
 668

669 Bruno A Olshausen and David J Field. Emergence of simple-cell receptive field properties by
 670 learning a sparse code for natural images. *Nature*, 381(6583):607–609, 1996.
 671

672 Bruno A Olshausen and David J Field. Sparse coding of sensory inputs. *Current opinion in neuro-
 673 biology*, 14(4):481–487, 2004.
 674

675 Alexander Ororbia. Spiking neural predictive coding for continually learning from data streams.
 676 *Neurocomputing*, 544:126292, 2023.
 677

678 Michael Pfeiffer and Thomas Pfeil. Deep learning with spiking neurons: Opportunities and chal-
 679 lenges. *Frontiers in neuroscience*, 12:409662, 2018.
 680

681 Luca Pinchetti, Chang Qi, Oleh Lokshyn, Gaspard Olivers, Cornelius Emde, Mufeng Tang, Amine
 682 M'Charrik, Simon Frieder, Bayar Menzat, Rafal Bogacz, et al. Benchmarking predictive coding
 683 networks—made simple. *arXiv preprint arXiv:2407.01163*, 2024.
 684

685 Rajesh PN Rao and Dana H Ballard. Predictive coding in the visual cortex: a functional interpreta-
 686 tion of some extra-classical receptive-field effects. *Nature neuroscience*, 2(1):79–87, 1999.
 687

688 Robert Rosenbaum. On the relationship between predictive coding and backpropagation. *Plos one*,
 689 17(3):e0266102, 2022.
 690

691 Bodo Rueckauer, Iulia-Alexandra Lungu, Yuhuang Hu, Michael Pfeiffer, and Shih-Chii Liu. Con-
 692 version of continuous-valued deep networks to efficient event-driven networks for image classifi-
 693 cation. *Frontiers in neuroscience*, 11:682, 2017.
 694

695 Tommaso Salvatori, Ankur Mali, Christopher L Buckley, Thomas Lukasiewicz, Rajesh PN Rao,
 696 Karl Friston, and Alexander Ororbia. A survey on brain-inspired deep learning via predictive
 697 coding. *arXiv preprint arXiv:2308.07870*, 2023.
 698

699 Sumit B Shrestha and Garrick Orchard. Slayer: Spike layer error reassignment in time. *Advances
 700 in neural information processing systems*, 31, 2018.
 701

702 Michael W Spratling. A review of predictive coding algorithms. *Brain and Cognition*, 112:92–97,
 703 2017.
 704

705 Marcel Stimberg, Romain Brette, and Dan FM Goodman. Brian 2, an intuitive and efficient neural
 706 simulator. *elife*, 8:e47314, 2019.
 707

708 Amirhossein Tavanaei, Masoud Ghodrati, Saeed Reza Kheradpisheh, Timothée Masquelier, and
 709 Anthony Maida. Deep learning in spiking neural networks. *Neural networks*, 111:47–63, 2019.
 710

702 Luke Taylor, Andrew King, and Nicol Harper. Robust and accelerated single-spike spik-
 703 ing neural network training with applicability to challenging temporal tasks. *arXiv preprint*
 704 *arXiv:2205.15286*, 2022.

705 C Wacongne, J-P Changeux, and S Dehaene. A neuronal model of predictive coding accounting for
 706 the mismatch negativity. *Journal of Neuroscience*, 32(11):3665–3678, 2012.

708 James CR Whittington and Rafal Bogacz. An approximation of the error backpropagation algorithm
 709 in a predictive coding network with local hebbian synaptic plasticity. *Neural computation*, 29(5):
 710 1229–1262, 2017.

711 Yujie Wu, Lei Deng, Guoqi Li, Jun Zhu, and Luping Shi. Spatio-temporal backpropagation for
 712 training high-performance spiking neural networks. *Frontiers in neuroscience*, 12:331, 2018.

714 Darius Masoum Zadeh-Jousdani, Elvin Hajizada, and Eyke Hüllermeier. Efficient online learn-
 715 ing with predictive coding networks: Exploiting temporal correlations, 2025. URL <https://arxiv.org/abs/2510.25993>.

717 Hanle Zheng, Yujie Wu, Lei Deng, Yifan Hu, and Guoqi Li. Going deeper with directly-trained
 718 larger spiking neural networks. In *Proceedings of the AAAI conference on artificial intelligence*,
 719 volume 35, pp. 11062–11070, 2021.

722 7 APPENDIX

724 7.1 INTUITION OF PREDICTIVE CODING TRAINING

726 To clarify the mechanics of the learning process, we provide a step-by-step intuition of how a Pre-
 727 dictive Coding Network (PCN) learns to classify inputs. Unlike Backpropagation, which calculates
 728 gradients of a loss function with respect to weights, PCN frames learning as an energy minimization
 729 problem involving local neuronal activities.

730 The training process for a single input-label pair (\mathbf{x}, \mathbf{y}) proceeds as follows:

- 732 1. **Prediction (Forward Pass):** The input \mathbf{x} is clamped to the input layer. The network
 733 propagates activity forward layer-by-layer to generate a prediction at the output layer.
- 734 2. **Constraint (Clamping):** During training, the output layer is clamped to the correct label
 735 \mathbf{y} . This immediately creates a prediction error at the output layer (since the network’s initial
 736 guess likely did not match \mathbf{y}).
- 737 3. **Relaxation (Backward Error Flow):** This is the core of PC. The error at the output
 738 layer implies that the *penultimate* layer’s activity was “wrong.” This error flows backward,
 739 pulling the hidden layer neurons away from their original values toward states that *would*
 740 *have* produced the correct output. This happens iteratively across all layers. The network
 741 “relaxes” into a low-energy state where the activities are consistent with both the input and
 742 the correct label.
- 743 4. **Weight Update (Learning):** Once the neuron activities have shifted to this better configu-
 744 ration, the synaptic weights are updated locally. The update rule effectively says: “Change
 745 the weight so that next time, this input naturally produces this ‘better’ hidden activity.”

747 7.2 ALGORITHM BREAKDOWN

749 **Update forward prediction –** Forward prediction \mathbf{x}_F is updated using the incoming spike signal
 750 \mathbf{s}_A from the previous layer,

$$751 \mathbf{x}_F^{(t+1)} \leftarrow \mathbf{x}_F^{(t)} + \mathbf{W}^l \mathbf{s}_A^{l-1} \cdot T_\theta(t-1) . \quad (13) \\ 752$$

753 7.3 Update Target Activity and Generate Spikes

755 The core of the DiffPC algorithm lies in iteratively updating the target activity vector \mathbf{x}_T for each
 layer and communicating changes via spikes. The process begins by adjusting \mathbf{x}_T to minimize

756 prediction error, followed by generating spikes based on the discrepancy between this new target
 757 and the layer's current state.

758 First, the target activity \mathbf{x}_T is updated based on both the local prediction error \mathbf{e}_T and the error
 759 propagated from the subsequent layer, which is accumulated in \mathbf{e}_B . This update, performed only
 760 when the learning rate $\gamma(t)$ is active, is defined as:

$$762 \quad \mathbf{x}_T \leftarrow \mathbf{x}_T + \gamma(t) \cdot (-\mathbf{e}_T + (\mathbf{x}_T > 0) \odot \mathbf{e}_B) .$$

763 This rule closely mirrors the standard PC update in Equation 7. The term $-\mathbf{e}_T$ corrects for local
 764 prediction error, while the second term incorporates feedback from the next layer. The element-wise
 765 condition $(\mathbf{x}_T > 0)$ serves as the derivative of the ReLU activation function, ensuring that updates
 766 are only applied to active neurons. During training, the target activities of the input and output layers
 767 are clamped to the provided data and labels, respectively. During inference, only the input layer is
 768 clamped.

769 Next, the algorithm generates spikes to communicate the necessary adjustments for bringing the
 770 layer's *actual* state, \mathbf{x}_A , in line with the newly updated *target* state, \mathbf{x}_T . Instead of transmitting
 771 dense floating-point values, DiffPC sends sparse ternary spikes. A spike is generated only if the
 772 magnitude of the difference between the target and actual activity for a given neuron exceeds the
 773 adaptive threshold $T_\theta(t)$.

774 The activity spike vector \mathbf{s}_A is computed as follows:

$$775 \quad \mathbf{s}_A = \text{sign}(\mathbf{x}_T - \mathbf{x}_A) \odot (|\mathbf{x}_T - \mathbf{x}_A| > T_\theta(t)) , \quad (14)$$

776 where \odot denotes the Hadamard product. The $\text{sign}(\cdot)$ function determines the spike's polarity (+1 or
 777 -1), while the comparison operator produces a binary mask, ensuring that spikes are only generated
 778 when the required update is significant. This event-driven mechanism ensures that communication
 779 is sparse, as spikes are only transmitted to correct meaningful deviations from the target state.

780 **Spiking ReLU** – To implement a non-linear transfer function similar to the Rectified Linear Unit
 781 (ReLU) in conventional neural networks, we propose a masking operation that effectively prevents
 782 the actual neural activity \mathbf{x}_A from becoming negative.

$$783 \quad \mathbf{s}_A^+ \leftarrow \mathbf{s}_A \odot (\mathbf{x}_A + \mathbf{s}_A \cdot T_\theta(t) > 0) . \quad (15)$$

784 The spiking ReLU ensures that only correction spikes in \mathbf{s}_A maintaining $\mathbf{x}_A \geq 0$ are allowed,
 785 effectively implementing a ReLU-like activation function. We can also implement a clipped ReLU
 786 activation function in a similar manner by setting an additional constraint:

$$787 \quad \mathbf{s}_A^+ \leftarrow \mathbf{s}_A \odot (1 > \mathbf{x}_A + \mathbf{s}_A \cdot T_\theta(t) > 0) . \quad (16)$$

788 **Update activation** – The spiking ReLU produces a simple update step to update the actual activity
 789 \mathbf{x}_A :

$$790 \quad \mathbf{x}_A \leftarrow \mathbf{x}_A + T_\theta(t) \cdot \mathbf{s}_A^+ . \quad (17)$$

791 The activation update operation adjusts \mathbf{x}_A towards \mathbf{x}_T .

792 **Error encoding in spikes** – The target update is the same as in the standard PC in Sec. 3.2.

793 The target error vector \mathbf{e}_T is computed using (4). Similarly to the original PC, this error term received
 794 from the following layer serves as a measure of how well the current forward prediction matches the
 795 target activity. However, unlike the standard PC we cannot directly use the update rule (7) since the
 796 error is encoded in the form of spikes. Instead, after computing the target error $e_T = \mathbf{e}_T$, the DiffPC
 797 algorithm generates error spikes \mathbf{s}_e based on the difference between \mathbf{e}_T and the actual error \mathbf{e}_A ,

$$798 \quad \mathbf{s}_e = \text{sign}(\mathbf{e}_T - \mathbf{e}_A) \odot (|\mathbf{e}_T - \mathbf{e}_A| > T_\theta(t)) . \quad (18)$$

799 The spikes \mathbf{s}_e are then sent to the following layers as error signals.

800 **Accumulate incoming errors** – Errors from the next layers are integrated into the network using the
 801 accumulated error vector \mathbf{e}_B . This vector represents the sum of the incoming error signals weighted
 802 by the threshold $T_\theta(t)$,

$$803 \quad \mathbf{e}_B \leftarrow \mathbf{e}_B + T_\theta(t) \cdot \mathbf{e_in} ,$$

810 where e_{in} denotes the incoming error signals from the next layer. The accumulated error vector e_B
 811 helps refine the target activity x_T by incorporating feedback from different layers of the network.
 812

813 The actual error e_A is then updated using previously generated error spikes s_e ,

$$814 \quad e_A \leftarrow e_A + T_\theta(t) \cdot s_e .$$

816 **Weight Update Mechanism –** The update rule for a single sample, derived from minimizing free
 817 energy, is computed as $\Delta W_{ij} \propto e_{T,i} \cdot \phi(x_{T,j})$, where $e_{T,i}$ is the post-synaptic error state and $x_{T,j}$
 818 is the pre-synaptic activity state. This computation is compatible with neuromorphic hardware like
 819 Loihi 2, which supports fixed-precision multiplication and accumulation of local variables.
 820

821 7.3 PROOF OF CONVERGENCE

823 Here we provide the proof for Theorem 4.1 regarding the convergence of the cyclic scheduler.

825 *Proof.* Consider the cyclic scheduler where $T_\theta(0) = 2^m$. At the first timestep $t = 0$, if $2^{m+1} >$
 826 $|x_T^l - x_A^l| > 2^m$, then x_A^l is updated by 2^m . Consequently, after the update, we have:

$$828 \quad |x_T^l - x_A^l| < 2^m.$$

829 The same trivially holds if $|x_T^l - x_A^l| < 2^m$ already held on the first timestep. At the next timestep
 830 $t = 1$, with $T_\theta(1) = 2^{m-1}$, the difference $|x_T^l - x_A^l|$ can again be reduced by 2^{m-1} if it exceeds
 831 2^{m-1} . Repeating this process over n timesteps, each reduction step halves the threshold compared
 832 to the previous timestep from which the result follows by induction. \square
 833

834 7.4 HYPERPARAMETER ANALYSIS

836 To understand the impact of our key scheduler hyperparameters, the cycle length n and the decay
 837 factor a , we performed an extensive grid search. The results, visualized in Figure 2, reveal a clear
 838 trade-off between classification accuracy, communication cost (spikes), and runtime (timesteps).

839 Figure 2a shows that, with a fixed decay ($a=1.0$), increasing the cycle length n generally improves
 840 performance. On both datasets, the accuracy gains diminish as performance saturates for sufficiently
 841 large n . However, this accuracy gain comes at a direct cost. By definition, a larger n value increases
 842 the number of timesteps per iteration, which in turn increases both the total runtime and the number
 843 of spikes transmitted.

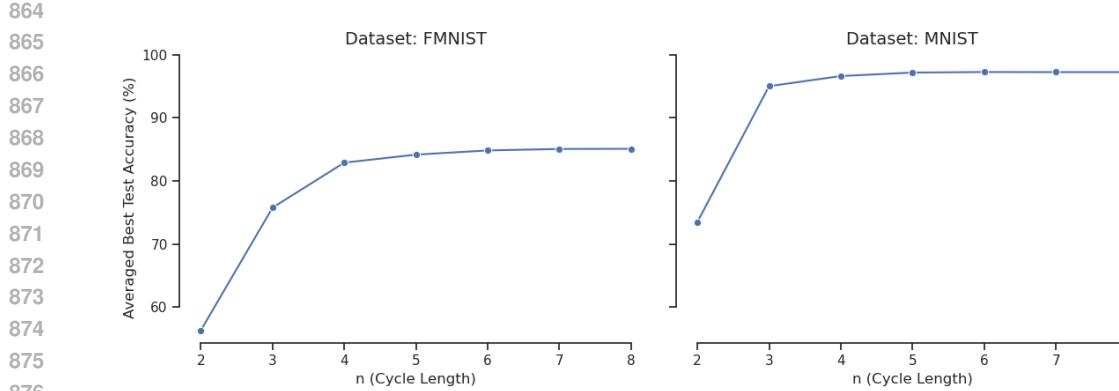
844 The role of the adaptive decay parameter a is to tune the precision of spike-based communication
 845 within a fixed number of timesteps. Figure 2b illustrates this trade-off effectively. For smaller cycle
 846 lengths, reducing a from 1.0 to smaller values provides a notable accuracy boost. This performance
 847 gain is achieved by allowing the adaptive threshold to decrease more over the iteration, which in
 848 turn generates more spikes to represent the error signals with higher fidelity. This can increase
 849 communication cost, but does not increase the runtime as the number of timesteps per iteration is
 850 fixed by n .

851 Crucially, the benefit of a smaller a diminishes as n increases. For large n , the performance is already
 852 high and stable, and varying a has little to no effect on the final accuracy. This suggests that a long
 853 cycle length n already provides sufficient timesteps for the network’s states to converge with high
 854 precision. In this regime, the fine-tuning offered by the adaptive decay ($a \neq 1.0$) becomes redundant,
 855 as the inherent precision of the long spike train is already maximal for the task.

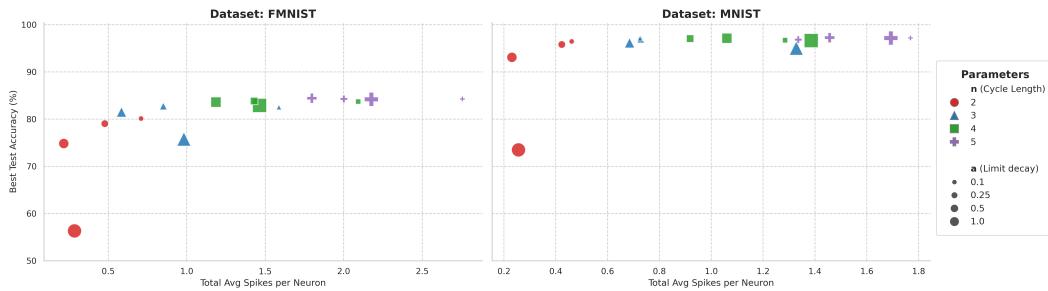
856 7.5 HYPERPARAMETER SELECTION HEURISTICS

859 Choosing optimal hyperparameters for DiffPC, as with many complex models, is a non-trivial task
 860 without a closed-form solution. However, we have identified several heuristics that provide a strong
 861 starting point for tuning the network for a new task.

862 From standard predictive coding theory, a functional network requires a minimum number of relax-
 863 ation steps, typically at least twice the depth of the network, to allow information to propagate
 864 fully between the input and output layers (see e.g. A.3.2 of Innocenti et al. (2025b)). This principle



(a) Effect of cycle length n (see Eq. 8) on test accuracy with fixed decay ($\alpha=1.0$). Performance increases with n on both MNIST and Fashion-MNIST, though returns diminish for sufficiently large n .



(b) Trade-off between test accuracy and communication cost (spikes). Varying the decay parameter α (marker size) can improve accuracy, particularly for smaller cycle lengths n (marker shape/color), at the cost of increased spike activity.

Figure 2: Analysis of scheduler hyperparameters n and α on MNIST and Fashion-MNIST. The top figure isolates the effect of n , while the bottom figure shows the interplay between n , α , accuracy, and spike cost.

provides a useful guideline for the minimum number of timesteps required. For DiffPC, we offer the following more specific guidance.

Choosing m For the cyclic scheduler, a robust choice is $m=2$ when using a clipped activation function like ReLU6. The parameter m sets the initial and largest threshold value in a cycle, which is 2^m . If this value is significantly larger than the maximum possible activation (e.g., 6 for ReLU6), the initial timesteps will generate no spikes, as the difference $|x_T - x_A|$ will never exceed the threshold. Setting $m=2$ yields an initial threshold of 4, which is on the same order of magnitude as the activation range, ensuring that the spike generation process is active from the beginning of the cycle.

Choosing n and α The parameters n and α jointly control the trade-off between runtime, communication cost, and precision. A practical approach to tuning them is a two-step process:

1. **Find an effective cycle length n .** First, set $\alpha=1.0$ (disabling adaptive decay) and incrementally increase n while monitoring test accuracy. Continue until performance saturates, establishing a baseline for the required precision.
2. **Optimize for efficiency.** Once a saturation point n_{sat} is found, one can attempt to reduce the cycle length to $n_{\text{new}} = n_{\text{sat}} - k$ for some small integer k , thereby reducing runtime. To compensate for the potential loss of precision, the decay factor can be set to $\alpha \approx 1/2^k$.

918 The reasoning for this two-step process is as follows. Reducing the cycle length by k steps removes
 919 the k timesteps that have the smallest, and therefore most precise, threshold values. To compensate,
 920 a smaller value of a is used to scale down the entire threshold schedule within the new, shorter cycle.
 921 The heuristic $a \approx 1/2^k$ is specifically chosen because it ensures that the final, smallest threshold in
 922 the new n_{new} -step cycle is approximately equal to what the final threshold was in the original n_{sat} -
 923 step cycle with $a=1.0$. This approach aims to recover the necessary representational fidelity while
 924 benefiting from a shorter runtime.

8 TABLE OF NOTATION

928 Table 6 summarizes the mathematical symbols used in the Difference Predictive Coding (DiffPC)
 929 algorithm.

931 Table 6: Nomenclature and Symbols

933 Symbol	934 Description
<i>Shared Variables (Standard PC & DiffPC)</i>	
935 l	936 Layer index, $l \in \{0, \dots, L\}$.
937 \mathbf{W}^l	938 Synaptic weight matrix connecting layer $l - 1$ to l .
939 \mathbf{x}_F	940 Forward Prediction. The prediction generated by the previous layer.
940 \mathbf{x}_T	941 Target Activity. The ideal state calculated to minimize prediction energy.
941 ϵ	942 Prediction Error. The difference between target and prediction ($\mathbf{x}_T - \mathbf{x}_F$).
942 $\gamma(t)$	943 Inference learning rate at time t .
<i>DiffPC-Specific States (Spiking Implementation)</i>	
944 \mathbf{x}_A	945 Actual Activity. The discrete state that tracks the shared target \mathbf{x}_T , updated 946 via spikes.
947 \mathbf{s}_A	948 Activity Spikes. Ternary spikes $\{-1, 0, 1\}$ communicating changes in \mathbf{x}_A .
948 \mathbf{e}_T	949 Target Error. The local error variable (functionally equivalent to ϵ in this 950 context).
950 \mathbf{e}_A	951 Actual Error. The discrete state that tracks \mathbf{e}_T , updated via spikes.
951 \mathbf{s}_e	952 Error Spikes. Ternary spikes communicating changes in the error state.
952 \mathbf{e}_B	953 Backward Error. The error signal accumulated from layer $l + 1$.
<i>Scheduler & Thresholds</i>	
954 $T_\theta(t)$	955 Adaptive firing threshold at time t .
955 m	956 Scheduler magnitude parameter (sets max threshold 2^m).
956 n	957 Scheduler cycle length (periodicity of the steps).
957 a	958 Decay factor for the cyclic decay scheduler.

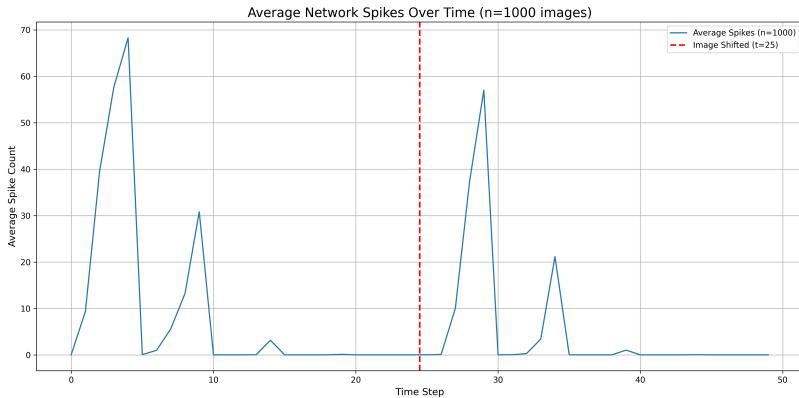
9 EVENT-DRIVEN RESPONSE TO INPUT CHANGES

965 To demonstrate the event-driven nature of our method, we conducted an experiment to measure
 966 the network’s spiking activity in response to a changing input. We presented a static input image
 967 from the test set to a trained DiffPC network and monitored the total number of activity spikes (s_A)
 968 across all layers over time. After an initial period of 25 timesteps, we introduced an abrupt change
 969 by shifting the input image by a single pixel.

970 The results, averaged over 1000 different input images, are shown in Figure 3. Initially, there is a
 971 burst of spiking activity as the network processes the new image. This activity quickly subsides,
 972 and the network becomes nearly silent as its internal state converges to a stable representation of

972 the static input. At timestep 25 when the input is shifted, the network immediately responds with
 973 another burst of spikes, which then decays as it settles into a new stable state.
 974

975 This behavior highlights a key feature of DiffPC: computation is performed only when necessary to
 976 process new or changed information. For applications where inputs may remain static for periods of
 977 time, this event-driven property suggests the potential for energy savings by eliminating redundant
 978 processing, making the approach highly suitable for energy-constrained neuromorphic hardware.
 979



993 Figure 3: Event-driven spiking in a trained DiffPC network. The network shows an initial burst of
 994 spikes when an image is presented, then falls silent. A second burst of activity is triggered precisely
 995 at timestep 25, when the input image is shifted by one pixel, demonstrating that the network only
 996 computes in response to change.
 997

998 REPRODUCIBILITY STATEMENT

1000 We are committed to ensuring the reproducibility of our research. The complete PyTorch implemen-
 1001 tation of the Difference Predictive Coding algorithm, including model architectures, schedulers, and
 1002 training procedures, will be made available as supplementary material. Our core method is detailed
 1003 in Section 7.2, with a step-by-step breakdown provided in the Appendix. The source code includes
 1004 the exact configurations and hyperparameters used to generate all reported results, including clas-
 1005 sification accuracy on MNIST (Table 1) and Fashion-MNIST (Table 2), and the communication
 1006 efficiency analysis (Table 3). Further, the codes used to generate the CIFAR-10 results will also be
 1007 made public. All experiments were conducted using standard public datasets, and the specific data
 1008 processing pipelines are explicitly defined within our implementation.
 1009

1010 THE USE OF LARGE LANGUAGE MODELS (LLMs)

1011 In the preparation of this manuscript, Large Language Models (LLMs) were utilized as a general-
 1012 purpose assistive tool. The authors take full responsibility for all content, ensuring its scientific
 1013 accuracy and originality. The specific roles of the LLMs are outlined below:
 1014

- 1015 • **Writing Assistance:** LLMs were employed to improve the language and clarity of the
 1016 manuscript. This included refining sentence structures, correcting grammatical errors, and
 1017 ensuring overall readability. The core scientific ideas, arguments, and conclusions pre-
 1018 sented are entirely the work of the authors.
- 1019 • **Literature Discovery:** LLMs were used as a tool to aid in the literature review process by
 1020 suggesting potentially related academic papers and summarizing established concepts. All
 1021 works cited in this paper were subsequently retrieved, read, and critically evaluated by the
 1022 authors to verify their relevance and accuracy.
- 1023 • **Coding Support:** LLMs assisted in the software development process by generating boil-
 1024 erplate code, helping to debug specific code segments, and suggesting algorithmic opti-
 1025

1026
1027 mizations. The overall design of the experiments, the core logic of the implementation,
1028 and the final analysis were conceived and performed by the authors.
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079