
Value-Aligned Imitation via Focused Satisficing

Rushit N. Shah∗1 Nikolaos Agadakos∗1 Synthia Sasulski1

Ali Farajzadeh1 Sanjiban Choudhury2 Brian D. Ziebart1
1Department of Computer Science, University of Illinois at Chicago
{rshah231,nagada2,lsasu2,afaraj5,bziebart}@uic.edu

2Department of Computer Science, Cornell University
sanjibanc@cornell.edu

Abstract

According to satisficing theory, humans often choose acceptable behavior based
on their personal aspirations, rather than achieving (near-) optimality. For example,
a lunar lander demonstration that successfully lands without crashing might be
acceptable to a novice despite being slow or jerky. When human aspirations are
much lower than autonomous system capabilities, this can allow learned policies
that sufficiently satisfy differing human objectives. Maximizing the likelihood of
demonstrator satisfaction also provides guidance for learning under competing ob-
jectives that are difficult for existing imitation learning methods to resolve. Using a
margin-based objective to guide deep reinforcement learning, our focused satisfic-
ing approach to imitation learning seeks a policy that surpasses the demonstrator’s
aspiration levels—defined over trajectories—on unseen demonstrations without
explicitly learning those aspirations. We show experimentally that this focuses
the policy to imitate higher quality demonstrations better than existing imitation
learning methods, providing much higher rates of guaranteed acceptability to the
demonstrator, and competitive true returns on a range of environments.

1 Introduction

When faced with challenging decision tasks, satisficing theory [19] suggests that demonstrators
produce behavior that is acceptable rather than (near) optimal. By viewing imitation learning
through this lens, we aim for imitator behavior that is similarly acceptable to the demonstrator,
despite never knowing the demonstrator’s precise acceptability criteria (Figure 1, left)—working
instead with an assumed class of cost functions that defines it. To pursue this aim, we develop
Minimally Subdominant Focused Imitation (MinSubFI), which employs the subdominance [26], a
margin-based measure of insufficiency (i.e., the distance from guaranteeing imitator-acceptability by
a margin), as a training objective for policy gradient optimization (Figure 1, right). This produces
policies that are maximally acceptable rather than reward-maximizing. Compared to existing inverse
reward learning methods [5, 7, 23, 24, 8, 25], which are highly reliant on an estimated scalar reward
function to guide reinforcement learning (e.g., using the pipeline of engineered components in
Figure 2, top), our approach more directly optimizes the imitator’s policy, enabling it to: (1) Learn
context-sensitive policies without learning context-sensitive cost functions; (2) Ignore less optimal
demonstrations without requiring explicit noise modeling; and (3) Provide generalization guarantees
for changing acceptability (e.g., due to skill improvement or fatigue).

Under our satisficing theory perspective of imitation learning, policies are learned from demonstra-
tions that are acceptable, according to an unknown acceptability set, rather than near-optimal. We

∗Equal contribution

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

Figure 1: Left: Pareto-dominating in the cost
function bases (f1, f2) of acceptable behavior
(purple: imitator acceptable set) guarantees
the imitator is acceptable to the demonstrator
(red: demonstrator acceptable set). Right:
The subdominance (orange lines) measures
how far imitator trajectory rollouts are from
guaranteeing acceptance (by a margin).

define this notion of acceptability and develop new imitation learning methods that are designed to be
performant with respect to the demonstrators’ unknown acceptability sets in both theory and practice.

1.1 Imitation Learning Problem Setting & Satisficing Perspective of Demonstrations

We consider the imitation learning [15] task of producing a policy π̂ based on demonstrated trajectories
of states and actions, ξ̃ = (s̃1, ã1, s̃2, . . . , s̃T). Demonstrations are produced from a task-indexed
Markov decision process (MDP),M = (S,A, {τi}, C), characterized by states S, actions A, state
transition probability distributions τi : S × A → ∆S (with ∆ representing a probability simplex),
and an (unknown) cost function C : S → R≥0. We use ξ̃i,j to denote the jth demonstration for the ith

task, Ξ̃ to denote the set of all demonstrations, and Ξ̃i to denote the set of demonstrations of task i.

According to satisficing theory [19], when faced with challenging decision tasks, humans tend to
prioritize behaviors that are personally acceptable, rather than striving for optimality.
Definition 1. Trajectory ξ satisfices (or is acceptable) for a particular aspiration, defined by (w, ν)
if and only if it is less costly than the aspirational threshold ν evaluated using the cost function
parameterized by w: costw(ξ) < ν. It satisfices the aspiration/acceptability set Ω = {(w, ν)}, i.e.,
ξ ∈ SatisfΩ, if and only if ξ satisfices each aspiration in Ω.

Note that the aspiration set can be context-dependent and vary for each demonstration. For example,
it may change with the growing experience (or fatigue) of the demonstrator, or based on available
side information (e.g., the weather conditions when controlling a vehicle). Aspiration sets—and
their relationships to available contextual information—are generally unknown. Our aim is not to
learn them explicitly. Instead, we seek a policy that produces trajectories ξ ∼ π × τ , with maximal
probability of acceptance, P (ξ ∈ Satisfξ̃), for ξ̃’s implicit satisfaction set. Further, in Appendix A
we show that existing imitation learning methods do not provide acceptability guarantees with
respect to the (unknown) acceptability sets of demonstrations.

1.2 Subdominance Minimization and Satisficing

The subdominance measures how far trajectory ξ is from Pareto-dominating a demonstrated trajectory
ξ̃ by a margin (Figure 1, right) and has been previously employed for inverse optimal control [26]:

subdomα(ξ, Ξ̃)=
1

|Ξ̃|

∑
ξ̃∈Ξ̃

∑
k

(feature k) subdomkαk (ξ,ξ̃)︷ ︸︸ ︷[
αk(fk(ξ)− fk(ξ̃)) + 1

]
+︸ ︷︷ ︸

(aggregated) subdomα(ξ,ξ̃)

, (1)

with [x]+ ≜ max(x, 0) as the hinge function, and trajectory cost features f : Ξ → RK≥0. See
Appendix B for further details. Importantly, minimizing the subdominance to zero guarantees that
the imitator’s behavior is acceptable to the demonstrator.

Our objective is to minimize the subdominance by finely optimizing over a flexible class of policies.
To generalize to unseen data, we additionally seek a margin of improvement over the demonstrator,
i.e., subdomα, throughout our formulation. With this added margin, the subdominance is a convex
function (in trajectory features) that upper bounds the Satisfξ̃ non-membership, measuring how far
the trajectory is from being guaranteed to satisfy the demonstrator’s aspirations by a margin.
Definition 2. The minimally subdominant stochastic policy πθ : S → ∆A minimizes the expected
subdominance of the minimum cost trajectory, ξ∗(πθ) induced by the weights θ of policy π, with

2

respect to the set of demonstration trajectories ξ̃i using hinge slopes α:

min
θ

min
α⪰0

∑
task i

|Ξ̃i|
|Ξ̃|

Eξ∼π×τ
[
subdomα(πθ, Ξ̃i)

]
+
λα
2
||α||+ λθ

2
||θ||. (2)

This optimization seeks hinge loss slopes α and a policy πθ that both minimize the subdominance.
Further details of the optimization of θ and α are provided in Appendices C and G, respectively.

1.3 Learning a Cost Feature Representation

Though shaping the imitator’s behavior from demonstrations is much less dependent on a highly-
expressive cost model/features under our approach, hand-engineering features can still be a significant
burden in many domains. To mitigate this, we learn a set of cost features fψ from pairwise preferences
over demonstrations (juxtaposition with our method and TREX is presented in Appendix F).

Definition 3. Given pairwise preferences over demonstrations D̃ = {ξ̃i ≺ ξ̃j |ξ̃i, ξ̃j ∈ Ξ̃}, and a
sufficiently-rich function class F , a preference-preserving (latent) representation fψ : S → RK′

≥0

(of dimensionality K ′) can be learned by minimizing: argminfψ∈F E(ξ̃i≺ξ̃j)∼D̃

[
− log eci,j

eci,j+ecj,i

]
,

where ci,j = subdomα(fψ(ξ̃i), fψ(ξ̃j)).

2 Experiments

2.1 Demonstrations, Baseline Methods, and Training Details

We conduct experiments using a mix of simple, classic control environments (cartpole,
lunarlander) and complex robotics environments (Mujoco hopper, halfcheetah, walker) from
OpenAI Gym [4]. For each environment, we obtain 200 (mostly suboptimal) demonstrations (100
for training, 100 held-out for evaluation) from a suboptimal, RL PPO policy. Methodology and
detailed demonstration statistics are provided in Table 3 in the Appendix. The baselines we employ
are: behavior cloning (BC), generative adversarial imitation learning (GAIL) [11], adversarial inverse
reinforcement learning (AIRL) [10], an unaltered version of T-REX [5], and a modified version of
TREX with a cost function C that is a linear combination of cost features f and cost function weights
ŵ, rather than as a function mapping from the observation vector ϕ to cost C (abbreviated TREXCF).

Using Algorithm 1 and analytically computed α values in step 4, we train all variants of our MinSubFI
policy with a behavior-cloned policy initialization; the non-random policy initialization is motivated
by the sample efficiency it provides (Figure 3 in Appendix H). We train two MinSubFI models: an
offline version using only demonstration samples without environment interactions (MinSubFIOFF),
and an online version (MinSubFION). We additionally train MinSubFILCF an online subdominance
minimizer with a learned cost feature space of K ′ = 3 dimensions via Definition 3. Architecture
details are provided in Appendix F. Cost features are environment-specific and are provided in Table
4 in Appendix J.2, and we employ a quadratic expansion of these during training.

Table 1: Relative γ-satisficing values of different versions of MinSubFI, on held out demonstrations,
on basic cost features (values greater than 1 are formatted in bold and the best of each environment
is colored green).

Environment BC TREX TREXCF AIRL GAIL MinSubFIOFF MinSubFION MinSubFILCF

cartpole 0.19 0.04 0.00 0.09 2.24 2.62 2.53 1.99
lunarlander 0.00 0.00 0.00 0.02 0.00 0.49 0.38 1.72

hopper 0.00 0.00 0.00 0.02 6.40 0.86 1.69 1.99
halfcheetah 0.00 0.00 0.00 1.12 3.99 1.93 1.80 0.87

walker2d 8.73 0.00 0.00 0.00 0.00 2.15 0.46 1.97

2.2 Demonstrator Acceptability Analysis

In Table 1, we evaluate the rate that the imitator satisfices demonstrations (Definition 8), guaranteeing
demonstrator satisfaction, relative to the rate that a randomly chosen demonstration satisfices other

3

demonstrations, γrel ≜ P (ξ ∈ Ωξ̃)/P (ξ̃′ ∈ Ωξ̃), using trajectory-level cost features. Imitation
learning methods designed to minimize predictive losses (BC) or learned cost functions (TREX)
produce trajectories with very different cost features than demonstrations, leading to small values
in this analysis (with a few exceptions, e.g., BC on walker2d). Reinforcement learning using an
estimated cost function often focuses too narrowly on minimizing a small subset of cost features
at the expense of ignoring one or more other features, allowing them to take unacceptable values.
For example, though TREX produces cartpole policies keeping the pole upright (near optimally),
it does so with much larger amounts of horizontal motion than demonstrations exhibit, making it
potentially unacceptable to the demonstrator. Despite imitating suboptimal demonstrations, GAIL
surprisingly achieves high acceptability rates on some environments, although in some cases it does
so at the cost of lower true returns (e.g., on hopper in Table 2).

In contrast, since MinSubFI minimizes an upper bound on the imitator’s satisficing value, it
consistently guarantees demonstrator acceptability much more frequently, with the exception of
lunarlander, which all methods struggle with due to the difficulty of optimizing some of its
sparse cost features. We find that online subdominance minimization tends to provide more frequent
acceptability guarantees than the offline variant.

In addition, though MinSubFILCF learns its own space of cost features, it still provides large rates of
guaranteed demonstrator acceptance in the original, provided cost feature space for most environments.
This suggests that knowing the demonstrator’s cost feature space is unnecessary for providing
demonstrator-acceptable behavior.

Table 2: Mean (and standard deviation) of the true episode returns of the held out demonstrations
and trajectories sampled from different imitation learning methods’ learned policies.

Baselines Ours

Environment Demonstrations BC TREX TREXCF AIRL GAIL MinSubFIOFF MinSubFION MinSubFILCF

cartpole 116 (74) 70 (37) 199 (0.1) 199 (0.1) 15 (4) 200 (0.0) 200 (0.1) 199 (1) 200 (0.0)
lunarlander 113 (132) 164 (27) -171 (3) 195 (7) -416 (30) 256 (9) 268 (0.5) 268 (0.9) -562 (227)

hopper 858 (884) 671 (80) 1335 (15) 2657 (28) 11 (4) 601 (30) 570 (33) 1433 (146) 2001 (92)
halfcheetah 686 (584) 1283 (53) 1017 (7) 1535 (49) 768 (47) 1595 (4) 1626 (10) 1582 (15) 890 (332)

walker2d 891 (1141) 526 (99) 20 (0.0) 90 (5) -3 (0.1) 489 (82) 1461 (449) 2306 (391) 2374 (135)

2.3 True Returns Using Full Demonstration Set

Though MinSubFI seeks to achieve demonstrator acceptability for all cost functions defined by its
cost features (Table 1), it also provides improvements over demonstrations in terms of true return
when the true return can be (approximately) defined by the cost features. In Table 2, we evaluate
the true returns of the demonstrations and each of the imitation learning methods averaged over ten
random seeds. Behavioral Cloning (BC) and AIRL often underperform relative to the demonstrations
(except for halfcheetah), while the relative performance for TREX and GAIL is more mixed. In
contrast, the various forms of MinSubFI tend to consistently outperform the demonstrations with few
exceptions (e.g., MinSubFIOFF on walker2d). Different variants of MinSubFI provide the highest
returns except for hopper, in which TREXCF provides the largest returns. Interestingly, TREX
benefits from using the cost features as the basis for its cost function estimate (TREXCF) rather than
using the learned scalar reward of the original formulation (TREX).

3 Conclusions & Future Work

In this paper, we reformulated imitation learning using satisficing theory, defining a new objective
for imitation learning: producing policies that are maximally acceptable to (dynamic) demonstrators
without explicitly learning demonstrator notions of acceptability. We introduced MinSubFI, a policy
gradient approach for imitation learning that minimizes policy subdominance to ensure the imitator’s
behavior aligns with the demonstrator’s expectations. We demonstrated its effectiveness in both online
and offline learning scenarios, highlighting its robust alignment compared to existing methods. Future
work includes improving feature representation learning, integrating additional information from
demonstrators about their notions of acceptability, and developing methods to enhance demonstrator
acceptability in dynamic and subjective contexts.

4

References
[1] Pieter Abbeel and Andrew Y. Ng. Apprenticeship learning via inverse reinforcement learning.

In Proceedings of the International Conference on Machine Learning, pages 1–8, 2004.

[2] Stuart Armstrong, Jan Leike, Laurent Orseau, and Shane Legg. Pitfalls of learning a reward
function online. In Proceedings of the International Joint Conference on Artificial Intelligence,
2021.

[3] Ralph Allan Bradley and Milton E Terry. Rank analysis of incomplete block designs: I. the
method of paired comparisons. Biometrika, 39(3/4):324–345, 1952.

[4] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang,
and Wojciech Zaremba. Openai gym, 2016.

[5] Daniel Brown, Wonjoon Goo, Prabhat Nagarajan, and Scott Niekum. Extrapolating beyond sub-
optimal demonstrations via inverse reinforcement learning from observations. In International
Conference on Machine Learning, pages 783–792. PMLR, 2019.

[6] Daniel S. Brown, Wonjoon Goo, and Scott Niekum. Better-than-demonstrator imitation learning
via automatically-ranked demonstrations. In Proceedings of the Conference on Robot Learning,
pages 330–359, 2020.

[7] Benjamin Burchfiel, Carlo Tomasi, and Ronald Parr. Distance minimization for reward learning
from scored trajectories. Proceedings of the AAAI Conference on Artificial Intelligence, 30(1),
2016.

[8] Letian Chen, Rohan Paleja, and Matthew Gombolay. Learning from suboptimal demonstration
via self-supervised reward regression. arXiv preprint arXiv:2010.11723, 2020.

[9] Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences. Advances in Neural Information Processing
Systems, 30, 2017.

[10] Justin Fu, Katie Luo, and Sergey Levine. Learning robust rewards with adverserial inverse
reinforcement learning. In International Conference on Learning Representations, 2018.

[11] Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. In Advances in
Neural Information Processing Systems, volume 29, 2016.

[12] Rudolf E. Kalman. When is a linear control system optimal? Trans ASME, J. Basic Eng., pages
51–60, 1964.

[13] Omid Memarrast, Linh Vu, and Brian D Ziebart. Superhuman fairness. In Proceedings of
the International Conference on Machine Learning, volume 202, pages 24420–24435. PMLR,
23–29 Jul 2023.

[14] Andrew Y Ng and Stuart J Russell. Algorithms for inverse reinforcement learning. In Interna-
tional Conference on Machine Learning, pages 663–670, 2000.

[15] Takayuki Osa, Joni Pajarinen, Gerhard Neumann, J Andrew Bagnell, Pieter Abbeel, and Jan
Peters. An algorithmic perspective on imitation learning. arXiv preprint arXiv:1811.06711,
2018.

[16] Dean A. Pomerleau. Efficient Training of Artificial Neural Networks for Autonomous Naviga-
tion. Neural Computation, 3(1):88–97, 03 1991.

[17] Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah
Dormann. Stable-baselines3: Reliable reinforcement learning implementations. Journal of
Machine Learning Research, 22(268):1–8, 2021.

[18] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

5

[19] Herbert A Simon. Rational choice and the structure of the environment. Psychological review,
63(2):129, 1956.

[20] Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient meth-
ods for reinforcement learning with function approximation. Advances in Neural Information
Processing Systems, 12, 1999.

[21] Umar Syed and Robert E Schapire. A game-theoretic approach to apprenticeship learning.
Advances in Neural Information Processing Systems, 20, 2007.

[22] Vladimir Vapnik and Olivier Chapelle. Bounds on error expectation for support vector machines.
Neural Computation, 12(9):2013–2036, 2000.

[23] Christian Wirth, Riad Akrour, Gerhard Neumann, and Johannes Fürnkranz. A survey of
preference-based reinforcement learning methods. Journal of Machine Learning Research,
18(136):1–46, 2017.

[24] Yueh-Hua Wu, Nontawat Charoenphakdee, Han Bao, Voot Tangkaratt, and Masashi Sugiyama.
Imitation learning from imperfect demonstration. In International Conference on Machine
Learning, pages 6818–6827. PMLR, 2019.

[25] Songyuan Zhang, Zhangjie Cao, Dorsa Sadigh, and Yanan Sui. Confidence-aware imitation
learning from demonstrations with varying optimality. arXiv preprint arXiv:2110.14754, 2021.

[26] Brian D. Ziebart, Sanjiban Choudhury, Xinyan Yan, and Paul Vernaza. Towards uniformly
superhuman autonomy via subdominance minimization. In Proceedings of the International
Conference on Machine Learning, pages 27654–27670, 2022.

6

A Existing Imitation Learning Methods and Satisificing

Behavioral cloning approaches [16] directly estimate a (stochastic) policy πθ : S → ∆A from
demonstrated state-action pairs, (st, at). The simplicity of this approach allows the full range of su-
pervised machine learning techniques to be employed to estimate the policy. For example, generative
adversarial imitation learning (GAIL) [11] employs a discriminator to distinguish between human
and automated action choices, and guide policy learning to minimize any differences. Unfortunately,
behavioral cloning methods cannot outperform the demonstration policy beyond being Bayes optimal
for a predictive loss that may not align with the acceptability set cost function(s).This prevents
behavioral cloning methods from providing satisficing guarantees.

Inverse reinforcement learning [12] estimates the cost function C(s) that explains or rationalizes
demonstrations (making them near optimal). It is common to assume that the cost function is
linear in a set of state features, f : S → RK , or state-action features, f : S × A → RK [14].
Under this assumption, feature matching [1] guarantees the estimated policy π̂ has expected cost
under the demonstrator’s unknown fixed cost function weights w̃ ∈ RK equal to the average of the
demonstration policies π if the expected feature counts match:

E τi∼Ξ̃,
ξ∼π×τi

[fk(ξ)] =
1

|Ξ̃|

∑
ξ̃i,j∈Ξ̃

fk(ξ̃i,j), ∀k (3)

=⇒ E τi∼Ξ̃,
ξ∼πθ×τi

[Cŵ(ξ)] =
1

|Ξ̃|

∑
ξ̃i,j∈Ξ̃

Cw̃(ξ̃i,j),

where fk(ξ)≜
∑
st,at∈ξ fk(st, at) and Cŵ(ξ)≜

∑
st,at∈ξ Cŵ(st, at). This feature-matching con-

straint (3) can be enforced using a potential term measuring the demonstration ξ̃’s suboptimality
relative to induced behavior ξ. Closer to our approach, game-theoretic apprenticeship learning
[21] assumes the sign of the linear cost function’s weights are known and produces a policy that is
guaranteed to be better in expectation than the demonstration average under worst-case weights.

Unfortunately, matching the demonstrator’s unknown expected rewards (or outperforming on average)
only guarantees that the imitator achieves the aspiration level in expectation. If the demonstrators’
aspirations depend on context that is not incorporated in the learned cost function, better levels of
aspiration will not be guaranteed. Thus, inverse reinforcement learning does not provide useful
guarantees for per-demonstration satisficing; it is not a discriminative enough policy optimization
method.

B Minimally Subdominant Inverse Optimal Control

Subdominance has been employed previously in inverse optimal control to make the optimal tra-
jectory induced by learned linear cost function weights w ∈ RK≥0, outperform sets of task-specific
demonstrations {Ξ̃i} [26]:

min
w≥0

min
α≥0

N∑
i=1

|Ξ̃i|
|Ξ̃|

subdomα(ξ
∗
i (w), Ξ̃i) +

λ

2
||α||, where:

subdomα(ξ, Ξ̃)=
1

|Ξ̃|

∑
ξ̃∈Ξ̃

∑
k

(feature k) subdomkαk (ξ,ξ̃)︷ ︸︸ ︷[
αk(fk(ξ)− fk(ξ̃)) + 1

]
+︸ ︷︷ ︸

(aggregated) subdomα(ξ,ξ̃)

, (4)

with [x]+ ≜ max(x, 0) as the hinge function, and trajectory cost features f : Ξ → RK≥0. Other
variants include defining the subdominance using relative cost features, relsubdomk

αk
(ξ, ξ̃) ≜[

αk

(
fk(ξ)

fk(ξ̃)
− 1
)
+ 1
]
+

, and/or aggregating over feature dimensions using maximization,

subdomα(ξ, ξ̃) ≜ maxk subdomk
αk

(ξ, ξ̃) [26]. Like support vector machines [22], only a subset

7

Figure 2: Existing reward-based imitation methods, e.g., TREX [5], seek to outperform demonstra-
tions using a pipeline of engineered components (top) to first segment trajectories into “snippets,”
and to ultimately estimate a reward function that is then optimized using reinforcement learning. Our
approach (bottom) uses the subdominance as the reinforcement learning objective, which is defined
by the relative performance of the imitator compared to the demonstrations in each cost feature. This
effectively uses feedback from the learned imitator policy to guide additional reinforcement learning
without an explicit reward function.

of support demonstrations, Ξ̃SVk
i (ξi) ⊆ Ξ̃i, for each task i and feature k, actively influence θ:

ξ̃i,j ∈ Ξ̃SVk
i (ξi) ⇐⇒ fk(ξi) +

1

αk
≥ fk(ξ̃i,j). (5)

Unfortunately, optimal control is impractical for many realistic imitation learning problems of interest.
Additionally, it makes the learned cost/reward function (Fig. 2) a bottleneck that can prevent the
imitation policy from better fitting to (or outperforming) demonstrations.

C Subdominance Policy Gradient Algorithms

C.1 Online MinsubFI

Algorithm 1 outlines our high-level approach for optimization. For each task (i), a trajectory is rolled
out by sampling from the current learned policy (Line 2). The cost features of the sampled trajectory
and the demonstrated trajectory are compared to determine which dimensions the sampled trajectory
does not sufficiently outperform the demonstration, and are thus support vectors (Line 4). Here, the α
values defining margin slopes (Eq. (5)) can either be optimized numerically (e.g., using stochastic
gradient descent) or analytically [13] as described in appendix section G. A policy update is then
employed to reduce the subdominance (Line 7).

Algorithm 1 Online subdominance policy gradient

1: while θ not converged do
2: Sample a set of M trajectories Ξi = {ξ(m)

i }Mm=0 from policy πθ × τi for each task i

3: for each ξ
(m)
i ∈ Ξi do

4: Find support vectors Ξ̃SVk
i,m (and α) given ξ(m)

i

5: Compute loss L(ξ(m)
i) = subdomα(ξ

(m)
i , Ξ̃i)

6: end for
7: Update θ via policy gradient update rule on L(ξ(m)

i)
8: end while

8

Theorem 4. Policy πθ’s subdominance with respect to demonstration set {Ξ̃i} has policy gradient:

∇θ

∑
i

|Ξ̃i|
|Ξ̃|

Eξi∼πθ×τi

[
subdomα(ξi, Ξ̃i)

]
=
∑
i

|Ξ̃i|
|Ξ̃|

Eξi∼πθ×τi

[
subdomα(ξi, Ξ̃i)

∑
(s,a)∈ξi

∇θ log πθ(a|s)
]
,

For a set of single trajectory samples, ξi ∼ πθ × τi, for each task i, the policy parameters θ can
be (stochastically) updated via gradient descent: θ ← θ + η

∑
i

∑
(at,st)∈ξi Gt∇θ log πθ (at|st),

where Gt is any function of the full or future expected subdominance, subdomα(ξi, Ξ̃i), such as the
Q-value, the advantage estimate, or the trajectory return [20].

Proof of Theorem 4. The general form of the gradient in the policy gradient update may be written as

g = Eξ∼π×τ

 ∑
(st,at)∈ξ

Gt∇θ log πθ(at|st)

 , (6)

where Gt measures the quality of acting under policy πθ in state st (e.g., discounted sum of
future costs/rewards

∑T
t+1 γ

tr(St), state-action value function Qπθ (St, At), advantage estimate
Aπθ (St, At), or a measure of expected future returns.

Further, the absolute subdominance of a trajectory can be decomposed over its states according to the
equations of Corollary 5, which we rewrite for notational simplicity as:

subdom[Σ]
α (ξ, Ξ̃) =

∑
st∈ξ

subdom[Σ]
α (st, Ξ̃) (7)

=
∑
st∈ξ,k

subdom[Σ],k
α (st, Ξ̃), (8)

where
∑
st∈ξ,k subdom[Σ],k

α (st, Ξ̃) is the contribution of each state st ∈ ξ towards the total subdomi-
nance the trajectory ξ. It can be computed as:

subdom[Σ],k
α (st, Ξ̃) =

C̃k

|ξ|
+ C̃kαkfk(st)−

αkf̃
(j)
k,abs

|ξ||Ξ̃|
,

where C̃k = |Ξ̃SVk |
|Ξ̃| , f̃ (j)

k,abs =
∑

ξ̃j∈Ξ̃SVk

∑
s′t∈ξ̃j

fk(s
′
t).

Assume Gt to be the total trajectory return in Equation (6) Gt =
∑
st∈ξ r(st), and assume the

subdominance contribution of each state to be its negative reward,

r(st) = −subdom[Σ]
α (st, Ξ̃)

Then Equation (6) may be rewritten as

g = Eξ∼π×τ
[∑
(st,at)∈ξ

Gt∇θ log πθ(at|st)
]

= Eξ
[∑
(st,at)∈ξ

∑
st∈ξ

r(st)∇θ log πθ(at|st)
]

= Eξ
[∑
(st,at)∈ξ

∑
st∈ξ

−subdom[Σ]
α (st, Ξ̃)∇θ log πθ(at|st)

]

= Eξ
[∑
(st,at)∈ξ

−subdom[Σ]
α (ξ, Ξ̃)∇θ log πθ(at|st)

]

= Eξ
[
−subdom[Σ]

α (ξ, Ξ̃)
∑

(st,at)∈ξ

∇θ log πθ(at|st)
]
,

9

where ξ ∼ π × τ , and the final expression follows from the fact that the total subdominance
subdom[Σ]

α (ξ, Ξ̃) of trajectory ξ is the same for each state st ∈ ξ. Substituting this gradient expression
g into the policy gradient update rule over multiple tasks i, we get the subdominance policy gradient
update rule in Theorem 4. Alternatively, decomposing the relative subdominance according to its
definition in Corollary 5 gives us the equivalent result for the relative definition of subdominance.

C.2 Per-State Cost Decomposition

Corollary 5. The absolute and relative subdominances for a trajectory from a single task i with
respect to a set of demonstrations can be further expanded as:

subdomα(ξi, Ξ̃i) =
∑

st∈ξi,k

(
C̃k

i

|ξi|
+ C̃k

i αkfk(st)−
αkf̃

(i,j)
k,abs

|ξi||Ξ̃i|

)
;

relsubdomα(ξi, Ξ̃i) =
∑

st∈ξi,k

(
C̃k

i (1−αk)

|ξi|
+

αkfk(st)f̃
(i,j)
k,rel

|Ξ̃i|

)
,

where C̃k
i =

|Ξ̃SVk
i |

|Ξ̃i|
, f̃ (i,j)
k,abs =

∑
ξ̃i,j∈Ξ̃

SVk
i

∑
s′t∈ξ̃i,j

fk(s
′
t), and f̃

(i,j)
k,rel =

∑
ξ̃i,j∈Ξ̃

SVk
i

(∑
s′t∈ξ̃i,j

fk(s
′
t)
)−1

.

Proof of Corollary 5 (Absolute). The absolute, sum-aggregated subdominance is defined as:

subdomΣ
α(ξi,n, Ξ̃i) =

∑
k

subdomk
αk (ξi,n, Ξ̃i) =

∑
k

1

|Ξ̃i|

∑
ξ̃i,j∈Ξ̃i

[
αk(fk(ξi,n)− fk(ξ̃i,j)) + 1

]
+

=
∑
k

1

|Ξ̃i|

∑
ξ̃i,j∈Ξ̃

SVk
i,n

(
αk(fk(ξi,n)− fk(ξ̃i,j)) + 1

)
(9)

=
∑
k

αk

|Ξ̃i|

∑
ξ̃i,j∈Ξ̃

SVk
i,n

 1

αk
+
∑

st∈ξi,n

fk(st)−
∑

s′t∈ξ̃i,j

fk(s
′
t)



=
∑

st∈ξi,n,k

αk

|Ξ̃i|

∑
ξ̃i,j∈Ξ̃

SVk
i,n

 1

αk|ξi,n|
+ fk(st)−

∑
s′t∈ξ̃i,j

fk(s
′
t)

|ξi,n|



=
∑

st∈ξi,n,k

αk|Ξ̃SVk
i,n |

|Ξ̃i|

 1

αk|ξi,n|
+fk(st)−

∑
ξ̃i,j∈Ξ̃

SVk
i,n

∑
s′t∈ξ̃i,j

fk(s
′
t)

|ξi,n||Ξ̃SVk
i,n |


=

∑
st∈ξi,k

C̃k
i

|ξi|
+ C̃k

i αkfk(st)−
αkf̃

(i,j)
k,abs

|ξi||Ξ̃i|
,

where C̃k
i =

|Ξ̃SVk
i |

|Ξ̃i|
, and f̃

(i,j)
k,abs =

∑
ξ̃i,j∈Ξ̃

SVk
i

∑
s′t∈ξ̃i,j

fk(s
′
t).

10

Proof of Corollary 5 (Relative). The relative, sum-aggregated subdominance is defined as:

relsubdomΣ
α(ξi,n, Ξ̃i) =

∑
k

relsubdomk
αk (ξi,n, Ξ̃i)

=
∑
k

1

|Ξ̃i|

∑
ξ̃i,j∈Ξ̃i

[
αk

(
fk(ξi,n)

fk(ξ̃i,j)
− 1

)
+ 1

]
+

=
∑
k

1

|Ξ̃i|

∑
ξ̃i,j∈Ξ̃

SVk
i

(
αk

(
fk(ξi,n)

fk(ξ̃i,j)
− 1

)
+ 1

)
(10)

=
∑
k

1

|Ξ̃i|

∑
ξ̃i,j∈Ξ̃

SVk
i

(
(βk − αk) + αk

∑
st∈ξi,n

fk(st)∑
s′t∈ξ̃i,j

fk(s′t)

)

=
∑

st∈ξi,n,k

(
(1− αk)|Ξ̃SVk

i |
|ξi||Ξ̃i|

+
αkfk(st)

|Ξ̃i|

∑
ξ̃i,j∈Ξ̃

SVk
i

1∑
s′t∈ξ̃i,j

fk(s′t)

)

=
∑

st∈ξi,k

C̃k
i (1− αk)

|ξi|
+

αkfk(st)f̃
(i,j)
k,rel

|Ξ̃i|
,

where C̃k
i =

|Ξ̃SVk
i |

|Ξ̃i|
, and f̃

(i,j)
k,rel =

∑
ξ̃i,j∈Ξ̃

SVk
i

(∑
s′t∈ξ̃i,j

fk(s
′
t)

)−1

.

Subdominance using the maximum over each feature to aggregate per-feature subdominances takes
a similar form. It becomes identical to the expression starting from Equation (9) with the key
difference that each demonstration can only be a support vector for a single feature dimension k
for max-aggregated subdominance (and conversely, each demonstration can be a support vector for
multiple feature dimensions k for sum-aggregated subdominance).

This decomposition enables state-of-the-art reinforcement learning algorithms [18] that assign credit
to actions in a causally consistent manner (i.e., only future returns influence an action’s updates) to
be employed. Further flexibility is gained via the choice of policy representation. When deploying or
simulating a policy is expensive, offline policy gradient methods that are based entirely on the set of
demonstrated trajectories can instead be employed.

C.3 Offline MinSubFI

Corollary 6. Offline policy gradient (MinSubFIOFF) employs importance weighting to estimate the
gradient for online subdominance minimization from available demonstrations::

θ←θ+η
∑

i,ξ̃i,j∈Ξ̃i

r̃
(i,j)
θ subdomα(ξ̃i,j , Ξ̃i)

∑
(s,a)∈ξ̃i,j

∇θlog πθ(a|s) , (11)

where r̃
(i,j)
θ =

πθ(ξ̃i,j)

π̃(ξ̃i,j)
is the importance ratio, and π̃ is an estimate of the demonstrator’s policy.

The high-level approach of the offline policy gradient method outlined in Corollary 6 is outlined in
Algorithm 2.

D Generalization Bound

Our generalization bound relies on the absence of distinct local optima of the objective function.
Formally, this is provided by the property of quasiconvexity, which guarantees that regions achieving
a particular level of subdominance (or lower) are convex.

Lemma 7. When the set of features F realizable by the class of policies (F : f(ξ) ∈ F ,∀ξ ∈ Π) is
convex, the subdominance of realizable features is a quasiconvex function.

11

Algorithm 2 Offline, joint stochastic sub-gradient optimization

1: Estimate π̃ by performing behavior cloning on demonstrations Ξ̃
2: while θ not converged do
3: for each ξ̃i,j ∈ Ξ̃i do
4: Find support vectors Ξ̃SVk

i,j (αk) given ξ̃i,j
5: for each k do
6: αk←αk exp

{
−η′

tr̃
(i,j)
θ

∑
ξ̃i,m∈Ξ̃

SVk
i,j (αk)

(
f
(ξ̃i,j)

k −f (ξ̃i,m)

k

)
+λ|Ξ̃|αk

}
7: end for
8: Update θ according to Equation (11).
9: end for

10: end while

Proof. As a function of the realized features (fk) of the imitator, minαk subdomk
αk,1

(fk, Ξ̃) is mono-
tonic (increasing). Thus, minα subdomα,1(f , Ξ̃) is a quasiconvex function of f for sum- or max-
aggregated subdominance. The intersection of any sublevel set of minα subdomα,1(f , Ξ̃) with F is
also convex. Therefore, minf∈F subdomα(f , Ξ̃) is a quasiconvex minimization problem.

Proof of Theorem 9. The generalization guarantee is based on leave-one-out cross validation error,
which is an almost-unbiased estimate of generalization error under IID assumptions [22]. Removing
non-support vectors does not change global optima of subdominance minimization when no distinct
local optima exist, which is the case for this quasiconvex optimization problem.

E Generalization Bound Analysis

We now define the notion of a γ–satisficing stochastic policies and present a generalization bound.

Definition 8. A policy is considered γ–satisficing (or γ–acceptable) for cost features f and dis-
tribution of demonstrated trajectories P (ξ̃), if its trajectories ξ drawn from policy π satisfies with
probability at least γ: P (ξ ∈ Ωξ̃) ≥ γ.

Theorem 9. The policy minimizing the absolute or relative subdomα

(
ξ∗(πθ), ξ̃i

)
(N iid demonstra-

tions) with realizable features that are convex sets has the support vector set
{
Ξ̃SVk(ξ

∗(πθ), αk)
}

and

is on average γ–satisficing on the population distribution with: γ = 1− 1
N

∥∥∥ K⋃
k=1

Ξ̃SVk(ξ
∗(πθ), αk)

∥∥∥.

This bound motivates subdominance minimization for producing demonstrator-acceptable behavior.

F Learning a Cost Feature Representation

Formulation:Out formulation for learning a cost feature representation in §1.3 differs from the
formulation of TREX in two key aspects. First, under the exponential preference model [3, 9, 5, 6],
we employ subdominance between pairs of demonstrations as a loss function, rather than a linear
cost function. The second difference emerges from choosing subdominance as the loss function: our
formulation permits learning latent representations of any dimensionality, rather than just a scalar
cost signal; such a vector representation allows us to recover multiple, competing objectives from
preferences, rather than arbitrarily extrapolating over a scalar reward signal.

Architecture:To learn the cost feature representation, we use a multi-layer perceptron network with
two hidden layers of width 8 as our cost feature architecture. In contrast with TREX, which employs
four different levels of preference (or ranks) to categorize demonstration quality, we consider two
preference levels (i.e., acceptable or not acceptable).

12

0e+00 1e+06 2e+06

10 3

10 1

101

103

cartpole

0e+00 1e+06

104

lunarlander

0e+00 2e+06 4e+06

103

104

105
hopper

BC
Online (Random start)
Online (BC start)

0e+00 2e+06 4e+06

104

105

106 halfcheetah

0e+00 5e+05
0

100

200

300

walker

Environment Interactions

Su
bd

om
in

an
ce

 L
os

s

Environment Interactions

Su
bd

om
in

an
ce

 L
os

s

Environment Interactions

Su
bd

om
in

an
ce

 L
os

s

Environment Interactions

Su
bd

om
in

an
ce

 L
os

s

Environment Interactions

Su
bd

om
in

an
ce

 L
os

s

Figure 3: Subdominance loss as a function of online environment interactions for MinSubFION
initialized from either: a random policy (yellow), or a behavior cloning policy (green). Subdomi-
nance of the behavioral cloning policy (brown) is shown for comparison. Some environments (e.g.,
lundarlander, halfcheetah) require non-random initialization for subdominance minimization
method to be effective.

G Optimization of α: Numerical and Analytical

The α values of the subdominance define the sensitivity of the learned policy to not performing
significantly better than demonstrations. For a given imitator trajectory and set of demonstrations,
the α values can be updated numerically via (exponentiated) stochastic gradient optimization (e.g.,
within Algorithm 1), as shown in Algorithm 3.

Algorithm 3 Online update of α values

1: for each k do
2: αk←αk exp

{
−η′t

∑
i,ξ̃i,j∈Ξ̃

SVk
i,m

(
f
(ξi)
k − f

(ξ̃i,j)
k

)
+λ|Ξ̃|αk

}
3: end for

Alternatively, the optimal α values for can be computed analytically [13]:

α∗
k = argmin

αk

m such that: fk(ξ) + λ ≤ 1

m

m∑
j=1

fk(ξ
(j)), . (12)

where α
(j)
k = 1

fk(ξ)−fk(ξ̃(j))
is the hinge slope that makes demonstration ξ̃(j) exactly where the

subdominance becomes zero. Further, naively approaching the optimization in Equation 2 can be
problematic, since α = 0 corresponds to a degenerate local optimum. However, the optimal α values
for a policy achieving at least the average feature counts of the demonstrations are not degenerate.
This suggests bootstrapping from an initial policy estimate when minimizing α values or restricting
α values above zero.

H Non-Random Policy Initialization

Using Algorithm 1 and analytically computed α values in step 4, we train our Online MinSubFI policy
with different policy initializations. For all of our experiments throughout the paper, we employ a
quadratic expansion of the original cost features, as described in Table 4 in Appendix J.2. Figure 3
shows the resulting training subdominance loss curves for each. While low subdominance is achieved
by all initialization methods for some environments, some environments (e.g., lundarlander,
halfcheetah) require non-random initialization for subdominance minimization method to be
effective. We adopt behavioral-cloned policy initialization in the remainder of our experiments.

I Demonstration Details

For each environment, we obtain 100 demonstrations using a suboptimal policy learned using
PPO. For each timestep in a demonstration, we collect the state observation vector along with the

13

corresponding action, cost feature vector, and true reward (for evaluation only). Demonstration return
statistics for environment-specific demonstration sets of varying quality are provided in Table 3.

Table 3: True return statistics of demonstration sets for each environment (100 demonstrations each).
Environment Min Mean Max

lunarlander -196 112 284
cartpole 10 76 194
hopper 6 939 3441

halfcheetah −83 680 1483
walker 18 968 4293

J Implementation Details

J.1 Environments

The environments used for our experiments are famous games re-implemented by OpenAI’s gym [4],
providing the tools and interface for interacting with reinforcement learning algorithms. We present
the specifications and goals of the environments considered in this work. The available environments
are separated into two categories: classic control (Cartpole, Lunar Lander) and MuJoCo environments
(Hopper, Walker, HalfCheetah). Observations in classic control environments are 1D state vectors.

J.1.1 cartpole (CartPole-v0)

The task is to keep a rotating pole, attached to a moving cart, vertical for as long as possible under a
gravity model. The player can control the angle by moving the cart either left or right, each movement
affecting the angular velocity of the pole. An episode terminates when the pole angle θ exceeds ±12◦
(from the vertical y-axis) or, when the cart position x exceeds ±2.4. Maximum true return is 200.

J.1.2 lunarlander (LunarLander-v2)

The task is to land a shuttle that operates under a gravitational model, on the surface of the moon. An
initial force is applied to the lander, providing with a starting velocity and angle; the player must then
balance the shuttle and land it at the center of the screen, in a location delimited by two yellow flags.
The player controls the shuttle by engaging one vertical and two lateral engines; the main vertical
engine displaces the lander while the lateral ones pitch the lander. In the MinSubFI implementation,
we modified the lander to have fixed starting parameters (starting force and moon layout) which then
characterize a single task; the maximum true reward in this case is approximately 310.

J.1.3 hopper (Hopper-v3)

The task is to control various joints of a hopping robot (restricted to the vertical xz-plane) to “hop"
and make forward progress. Reward at each timestep is a function of the forward velocity of the robot
and its “health" (determined by the physics engine based on the joint angles of the robot).

J.1.4 halfcheetah (HalfCheetah-v3)

The task is to control various joints of a bipedal robot (restricted to the vertical xz-plane) to "run" and
make forward progress. Reward at each timestep is a function of the forward velocity of the robot
and its "health" (determined by the physics engine based on the joint angles of the robot).

J.1.5 walker (Walker2d-v3)

Adds an additional leg to the hopper environment so that the task is to “walk" forward rather than
“hop".

14

Figure 4: Illustration of cost features for the lunarlander environment. These features can be computed
directly from the environment’s observation vector.

Table 4: Description of cost features for each environment. σ(x) = (1 + exp (x))−1 is the sigmoid
function used to scale features to [−1,+1].

Environment # Cost Features Cost Feature Description

cartpole 4 x2 (cart position)2
v2 (cart velocity)2
θ2 (pole angle)2
ω2 (pole angular velocity)2

lunarlander 6 x2 (lander x-position)2
y2 (lander y-position)2
v2x (lander x-velocity)2
v2y (lander y-velocity)2

θ2 (lander angle)2
ω2 (lander angular velocity)2

3 ∥at∥22 control cost

hopper 2 −σ(vtopx) + 1 cost inversely proportional to x-velocity
−σ(vtopz) + 1 cost inversely proportional to z-velocity

1 1− tanh(z) cost inversely proportional to z-position
1 −σ(θ) + 1 cost inversely proportional to torso-angle
1

∑
∥at∥22 control cost

halfcheetah 1 −σ(vtopx) + 1 cost inversely proportional to x-velocity
1 −vtopx + 10 cost inversely proportional to x-velocity
1 −[vtopx]+ + 10 cost inversely proportional to x-velocity
1

∑
∥at∥22 control cost

walker 2 −σ(vtopx) + 1 cost inversely proportional to x-velocity
−σ(−z) + 1 cost inversely proportional to z-position

1
∑
∥at∥22 control cost

J.2 Computing Cost Features

For all environments employed in our experiments, we compute trajectory cost features f : Ξ→ RK≥0
that characterize the trajectory. Trajectory cost features are additive over the states of the trajectory,
which are in turn characterized by state cost features f : S → RK≥0 or state-action cost features
f : S ×A → RK≥0. The specific cost features employed differ between environments, but are chosen
such that they may be readily computed from each environment’s respective observation and/or action
vector. For example, in case of cartpole and lunarlander environments, for a given state st, the cost

15

feature vector may be computed as either

f(st) = {ϕk(st)2}Kk=1

where ϕ(s) : S → RD is simply the D-dimensional observation vector returned by the respective
environments. Alternatively, ϕ can be chosen to also be a function of the actions at, ϕ : S×A → RD;
this is useful in integrating control costs in the subdominance minimization problem. The cost feature
set can be expanded to include any linear or non-linear, monotonic transformations of the entire cost
feature vector f or a subset of its components fk. We can expand this cost feature set by computing
the outer product of the original cost feature vector, fexpanded = f · f⊤.

In essence, cost features are easily characterizable properties of each environment which, when
minimized over a trajectory, allow an agent to successfully complete a task. Note, however, that these
features are chosen carefully so as to not leak the true cost signal for an environment. For example,
for the cartpole problem, the cost features comprise the pole angle θ2, pole angular velocity ω2, the
cart position x2, and the cart velocity v2. While these cost features are pertinent to task-completion,
they are unrelated to the true reward signal for the cartpole environment i.e., the number of timesteps
elpased before the pole tips over. The number of cost features defined is environment-specific; the
complete list of cost features defined for each environment is provided in Table 4.

J.3 Trajectory Padding

It follows from the definition of subdominance (Eq. (5)) that minimizing fk(ξ) naturally minimizes
subdominance. Based on the specific definition of cost features employed, this sometimes results
in degenerate policies. This degenerate behavior most commonly manifests as the trained policy
learning to terminate episodes early to achieve lower subdominance via encountering fewer states in
the trajectory. This phenomenon is best illustrated using the following example with a single, simple
cost feature.

J.3.1 Example

Consider a problem setting where we employ a single cost feature f . An agent incurs cost features
f(s) = 0 upon reaching the terminal state ssuccess and f(s) = 10 in all other states (including sfail.)
Now, consider three trajectories for this task – a human demonstration ξ̃ = {s1, s2, s3, s4, ssuccess},
and two trajectories ξ1 = {s1, s2, s3, s4, s5, s6, ssuccess} and ξ2 = {s1, s2, sfail}, sampled from
policies π1 and π2 respectively. In choosing between the candidate policies π1 and π2, an agent
opts for π2, since, given any α, π2 results in lower subdominance despite not completing the task
successfully.

f(ξ̃) =
∑
st∈ξ̃

f(st) = (4× 10) + 0 = 40

f(ξ1) =
∑
st∈ξ1

f(st) = (6× 10) + 0 = 60

f(ξ2) =
∑
st∈ξ2

f(st) = (3× 10) = 30

=⇒ [rel]subdom[Σ]
α,β(ξ1, ξ̃) > [rel]subdom[Σ]

α,β(ξ1, ξ̃)

=⇒ ξ1 ≺ ξ2.

This toy examples gives us a peek into the source of this degeneracy. This phenomenon is very similar
in nature to ’reward gaming’ often encountered in other reinforcement learning settings [2]. In our
problem setting, this typically results from misalignment between the defined cost features and task
objective, and is encountered experimentally when training is initialized from a random policy in
such cases. For environments with such misaligned cost features and when starting subdominance
minimization from a random policy, we employ the trajectory padding scheme described next.

J.3.2 Padding Scheme

For an environment with misaligned cost features f (mis) ∈ RK≥0, we fix a time horizon h < H where
H is number of steps deemed sufficient to complete the task objective for that environment. The cost

16

features of any short trajectory ξ = (f
(mis)
1 , . . . , f

(mis)
T) where T < h is padded with a fixed padding

cost vector fpad ∈ RK≥0 up to the horizon h. The padded/augmented trajectory ξ′ then becomes:

ξ′ = (f
(mis)
1 , . . . , f

(mis)
T , f

(pad)
T+1 , . . . , f

(pad)
h).

Intuitively, this enables a random policy to avoid degenerate solutions by augmenting the cost of such
solutions.

gym.Env

OfflineDemoInjector

SubdominanceRewardWrapper

Demos
Ξ"

(s,a,s’,r,f)

Demos Ξ" rsub = -subdom(f)

(𝜶, 𝜷)
𝛼 = 𝛼′

a ~ 𝝅𝜽(* |𝒔)

OfflinePPO

SubdominanceCallback

Rollouts
𝜉

Demos Ξ"𝛼! ← 𝑎 + 𝜂∇subdom ",$ (ξ,Ξ2)

𝜃! ← 𝜃 − 𝜂!∇𝐺%

(s,a,rsub,s’,f)

(s,a)

(s,a,s’,rsub,f)

Offline MinSubFI
(MinSubFI-OFF)

a ~ 𝝅𝜽(* |𝒔)

stable-baselines3.PPO
CostFeatureWrapper

SubdominanceRewardWrapper

Demos Ξ"

(s’,r)

(s’,r,f)

rsub = -subdom(f)

action a

(𝜶, 𝜷)

Rollouts
𝜉

Demos Ξ"

(s’,rsub,f)

𝛼! ← 𝑎 + 𝜂∇subdom ",$ (ξ,Ξ2)𝛼 = 𝛼′

gym.Env 𝜃! ← 𝜃 − 𝜂!∇𝐺%

(s,a,rsub,s’,f)

(s,a)

𝜃 = 𝜃′

Online MinSubFI
(MinSubFI-ON)

SubdominanceCallback

Figure 5: Implemented architecture of Online MinSubFI (top) and Offline MinSubFI (bot-
tom) using gym and stable-baselines3. The primary functionality of cost feature and sub-
dominance computation is tackled via two environment wrappers CostFeatureWrapper and
SubdominanceRewardWrapper. The former computes cost features from observations and the latter
computes subdominance relative to demonstrations using cost features. SubdominanceCallback is
called periodically to update α. Offline MinSubFI uses the OfflineDemoInjector wrapper around
an environment to pass (s, a, r, s′, f) tuples from demonstrations as rollout data instead, and there is
no action returned from the policy to the environment.

J.4 Reinforcement Learning

For our experiments, we utilize a modified Proximal Policy Optimization (PPO) approach for our
policy gradient updates. We implement the policy optimization of MinSubFI using Stable Baselines3’s
[17] implementation of the PPO algorithm [18] employing the same base policy model across all
experiments and baseline methods, and minimal hyperparameter tuning (hyperparameters provided
in the Appendix section J.5). We build our core subdominance minimization functionalities via
wrapper classes for gym environments and callback classes for stable-baselines3 models. The
MinSubFI architectures for online and offline training are shown in Figure 5. Specifically, for online
MinSubFI the CostFeatureWrapper computes cost features f for observation s received from the
environment. The SubdominanceRewardWrapper contains the demonstrator’s cost features which
it uses to compute the subdominance; environment reward r is replaced with negative subdominance
rsub and returned to the PPO agent. We find that equivalently returning the total negative subdominance
as a sparse cost in the terminal state of the rollout (i.e., avoiding the per-step cost decomposition from
Corollary 5) works equally well in practice. The subdominance slopes α are updated via a periodic
call to SubdominanceCallback. For offline MinSubFI, we create a dummy environment wrapper
OfflineDemoInjector which returns (s, a, r) tuples sequentially from demonstrations concealed
as rollouts. We build OfflinePPO and modify it’s rollout collection to not sample the policy, and

17

instead treat the demonstrator’s action as the one taken. Finally, the offline MinSubFI architecture in
Figure 5 shows three separate demonstration buffers only for sake of clarity.

J.5 Hardware Details and Hyperparameters Used

Details of the hardware employed are provided in Table 5. Training the online version of MinSubFI
end-to-end requires approximately 2 hours for 9e6 environment interactions, on lunarlander, utilizing
approximately 15% of the GPU’s memory; measured on a tabletop computer equipped with an
NVIDIA GeForce RTX 3080 GPU and Ryzen 5600X CPU. The other two more powerful machines
were used for concurrent experimentation. The values of (relevant) hyperparameters used for each
environment are provided in Table 5 and Table 6 respectively.

Table 5: Hardware used for experiments.

Machine Tag OS GPU (VRAM) CPU Memory

Tabletop PC Ubuntu 20.04 GeForce RTX 3080 (10GB) AMD Ryzen 5 5600X 64 GB
Lab Server Ubuntu 20.04 2 x GeForce GTX 1080 Ti (12GB) Intel Xeon E5-2697 180 GB

Shared Cluster Ubuntu 20.04 2 x Tesla V100 (32 GB) Intel Xeon Silver 4114 380 GB

Table 6: Values of relevant PPO hyperparameters for each environment

Environment learning rate entropy coefficient minibatch size horizon epochs clip range total steps

cartpole 1e−4 0 512 2048 10 0.2 2e6
lunarlander 1e−4 1e−6 2048 2048 10 0.2 2e6

hopper 9.8e−5 1e−2 512 2048 5 0.2 5e6
halfcheetah 9.8e−5 1e−4 256 2048 5 0.2 5e6

walker 2e−5 6e−4 32 512 20 0.1 1e6

K Impact of Demonstration Quality on Performance

TO
P 6

0%

TO
P 7

0%

TO
P 8

0%

TO
P 9

0%
10

0%

BO
T 9

0%

BO
T 8

0%

BO
T 7

0%

BO
T 6

0%
0

50

10
0

15
0

20
0

M
ea

n
Re

tu
rn

cartpole

TO
P 6

0%

TO
P 7

0%

TO
P 8

0%

TO
P 9

0%
10

0%

BO
T 9

0%

BO
T 8

0%

BO
T 7

0%

BO
T 6

0%
80

0
60

0
40

0
20

0

0
20

0

lunarlander

TO
P 6

0%

TO
P 7

0%

TO
P 8

0%

TO
P 9

0%
10

0%

BO
T 9

0%

BO
T 8

0%

BO
T 7

0%

BO
T 6

0%

0

10
00

20
00

30
00

hopper

TO
P 6

0%

TO
P 7

0%

TO
P 8

0%

TO
P 9

0%
10

0%

BO
T 9

0%

BO
T 8

0%

BO
T 7

0%

BO
T 6

0%

0

50
0

10
00

15
00

halfcheetah

TO
P 6

0%

TO
P 7

0%

TO
P 8

0%

TO
P 9

0%
10

0%

BO
T 9

0%

BO
T 8

0%

BO
T 7

0%

BO
T 6

0%

0
10

00
20

00
30

00
40

00

walker

Training Demonstration Subset (%)

Min Demo Return Mean Demo Return Max Demo Return MinSubFI TREX AIRL GAIL

Figure 6: Mean true returns of 100 trajectories rolled out from the learned policies and the minimum,
average, and maximum reward of the training set trajectories. Each policy was trained on a subset of
demonstrations obtained by removing the best or worst 10%, 20%, 30%, or 40% of the demonstrations.
Compared to T-REX (orange), GAIL (blue), and AIRL (purple), the performance of MinSubFI (green)
is more robust to increases in the proportion of suboptimal demonstrations in the dataset.

Demonstrated behavior is often noisy and suboptimal, making learning from such data a desirable
capability. In this section, we control the quality of demonstrations used for imitation. We sort all
demonstrations by their total (true) return and then choose a subset by retaining the best or worst
90%, 80%, 70%, or 60% of the original set. We use this demonstration subset to train T-REX and
Online MinSubFI. The performance is shown in Figure 6.

For the simple cartpole environment, TREX, GAIL, and MinSubFI are all able to continue out-
performing the best demonstrations even when they become worse in quality. For the remaining
environments, except for halfcheetah in which TREX performs exceptionally well, MinSubFI
tends to provide better true returns as the quality of demonstrations becomes worse. The performance
of AIRL, which assumes demonstrations are optimal, is poor across all environments often failing to
match even the mean returns of demonstrations.

18

	Introduction
	Imitation Learning Problem Setting & Satisficing Perspective of Demonstrations
	Subdominance Minimization and Satisficing
	Learning a Cost Feature Representation

	Experiments
	Demonstrations, Baseline Methods, and Training Details
	Demonstrator Acceptability Analysis
	True Returns Using Full Demonstration Set

	Conclusions & Future Work
	Existing Imitation Learning Methods and Satisificing
	Minimally Subdominant Inverse Optimal Control
	Subdominance Policy Gradient Algorithms
	Online MinsubFI
	Per-State Cost Decomposition
	Offline MinSubFI

	Generalization Bound
	Generalization Bound Analysis
	Learning a Cost Feature Representation
	Optimization of bold0mu mumu appendix: Numerical and Analytical
	Non-Random Policy Initialization
	Demonstration Details
	Implementation Details
	Environments
	cartpole (CartPole-v0)
	lunarlander (LunarLander-v2)
	hopper (Hopper-v3)
	halfcheetah (HalfCheetah-v3)
	walker (Walker2d-v3)

	Computing Cost Features
	Trajectory Padding
	Example
	Padding Scheme

	Reinforcement Learning
	Hardware Details and Hyperparameters Used

	Impact of Demonstration Quality on Performance

