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Abstract

Reward modelling from preference data is a
crucial step in aligning large language models
(LLMs) with human values, requiring robust gen-
eralisation to novel prompt-response pairs. In
this work, we propose to frame this problem in
a causal paradigm, providing the rich toolbox
of causality to identify the persistent challenges,
such as causal misidentification, preference het-
erogeneity, and confounding due to user-specific
factors. Inheriting from the literature of causal
inference, we identify key assumptions neces-
sary for reliable generalisation and contrast them
with common data collection practices. We illus-
trate failure modes of naive reward models and
demonstrate how causally-inspired approaches
can improve model robustness. Finally, we out-
line desiderata for future research and practices,
advocating targeted interventions to address inher-
ent limitations of observational data.

1. Introduction
The remarkable success of LLMs lies partially in their abil-
ity to align with human values, producing responses that
are helpful, harmless, and honest. A central method for
achieving this alignment is reinforcement learning from hu-
man feedback (RLHF), with the LLM’s behaviour shaped
by reward models derived from datasets of human prefer-
ences (Ouyang et al., 2022; Bai et al., 2022). The reward
modelling, aka preference learning stage seeks to address a
seemingly straightforward question: Given two responses
to the same prompt, which one aligns better with human
objectives? However, the challenges of this stage are of-
ten underestimated, assuming that simple regression-based
models fitted to observational datasets can generalise effec-
tively to unseen texts. Meanwhile, evidence suggests this
optimism may be misplaced (Tien et al., 2023; Skalse et al.,
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2022). Sole reliance on statistical associations observed in
the training data is prone to learning rewards that pick up on
spurious correlations rather than the true factors influencing
user preferences (Singhal et al., 2024; Chen et al., 2024).
Latent features of texts often exhibit strong correlations,
making it difficult to generalise to examples where such
correlations no longer hold. Moreover, pairwise preference
datasets are often collected opportunistically, with LLM
users both evaluating model responses and generating the
prompts eliciting them. As a result, recorded preferences are
shaped by the interplay of the LLM’s sampling distribution,
latent features of the generated responses, and user-specific
contexts that vary across the population. These factors raise
fundamental concerns about the robustness and reliability
of current approaches.

In this work, we argue that building robust reward models
requires addressing what if type of questions: What would
happen if we intervened on specific response characteristics,
such as conciseness or creativity? How might preferences
change if a different objective were pursued? Current meth-
ods are poorly equipped to answer such questions, motivat-
ing the need to reframe preference learning through a causal
perspective. A causal framework enables the disentangling
of the effects of different causes on outcomes, facilitating ro-
bust predictions under interventions and distribution shifts.
Adopting this lens not only offers new insights but also
raises pivotal questions: What assumptions are required to
generalise across diverse prompts and user groups? How do
these assumptions influence data collection practices? How
can we address violations of causal assumptions, such as
confounding due to user-specific objectives?

Contributions. We introduce a causal framework of prefer-
ence learning for AI alignment, defining the key challenges
and identifying critical assumptions for generalising reward
models to unseen texts and contexts. Through examples
and real-world experiments, we highlight failure modes of
naı̈ve models when causal assumptions are violated, includ-
ing confounding due to user-specific objectives–an issue we
are first to identify and address explicitly. We demonstrate
how causal representation learning approaches can improve
model robustness and propose desiderata for future prefer-
ence data collection, advocating for targeted interventions
to mitigate the inherent limitations of observational data.

1



Preference Learning for AI Alignment: a Causal Perspective

2. Background
Notation. Throughout this paper, we refer to a random
variable with a capital letter (e.g., X) and the value it takes
as a lowercase letter (e.g., X = x). We let Σ∗ denote the
space of natural language. We use coloured boxes to high-
light: insights (blue), key assumptions (yellow), theoretical
implications (red), and empirical case studies (green).

Setup. We consider the standard setup of preference learn-
ing for LLM alignment in which we have access to a
dataset D consisting of i.i.d. realisations (x, y, y′, ℓ) of
random variables (X,Y, Y ′, L), where X ∈ X ⊂ Σ∗ is
the prompt, Y, Y ′ ∈ Y ⊂ Σ∗, two candidate responses,
and L ∈ {0, 1} is a binary preference label with L = 1
indicating that (X,Y ) is preferred over (X,Y ′), denoted by
(X,Y ) ≻ (X,Y ′), and L = 0 the opposite. Here, X × Y
denotes the space of all plausible prompt-response of pairs.

Reward modelling for RLHF. It is standard to assume that
the pairwise preference labels L, are dependent on unobserv-
able rewards R and R′ assigned internally by the individual
to each of (X,Y ) and (X,Y ′), respectively. Rewards are
determined by a function r : Σ∗ → R, so that R = r(X,Y )
and R′ = r(X,Y ′). The likelihood of the option (X,Y )
being preferred over (X,Y ′) is described by the Bradley-
Terry-Luce (BTL) model (Bradley & Terry, 1952):

P ((X,Y ) ≻ (X,Y ′)) = σ(r(X,Y )− r(X,Y ′)), (1)

where σ stands for the sigmoid function. The reward func-
tion r is approximated by a parametric model rθ : Σ∗ → R
whose parameters θ are chosen by minimising the negative
log-likelihood of the observed examples (x, y, y′, ℓ) ∈ D:

L(θ) = −
∑

(x,yw,yℓ)∈D

log σ(rθ(x, y
w)− rθ(x, y

ℓ)), (2)

where yw indicates the winning response and yℓ the loosing
one. The fitted reward function is subsequently used in the
RL stage to provide feedback on generations of the LLM.

Causality and Potential Outcomes. The potential out-
comes framework (Rosenbaum & Rubin, 1983; Splawa-
Neyman et al., 1990) provides a formal approach to causal
inference by conceptualising causation in terms of interven-
tions. At its core, the framework models how an outcome of
interest would differ under different interventions, enabling
reasoning about causal effects. It considers a set of units
(e.g., individuals) to which a treatment or intervention is
applied. For each unit, the treatment T can take on different
values t, where most commonly we have either T = 1 for
receiving the treatment and T = 0 for being in the control
group; see e.g., (Lopez & Gutman, 2017) for extensions to
multiple treatments. In the case of binary treatments, each
unit has two potential outcomes denoted as Y (T = 1),
or in short Y (1)–the outcome if the unit receives the treat-
ment, and Y (T = 0) ≡ Y (0)–the outcome if the unit does

not. However, only one of these outcomes is observed (the
factual outcome Y ), while the other (the counterfactual out-
come) remains unobserved. The goal of causal inference is
to estimate the potential outcomes under both treatments, or
their difference Y (1)− Y (0), known as the causal effect.

3. The Causal Framework

Y

Y ′

R

R′

X L

Outcome

Treatment Rewards

Figure 1: The causal model of preferences. Given prompt
X and the two responses Y , Y ′ users assigns them unob-
servable rewards R, R′ determining the preference label L.

We can think of the observed tuples (X,Y, Y ′) as treatments
assigned to human labellers tasked with selecting a response
that they prefer and the observed labels L as outcomes.
Treatments are assigned according to some (often unknown)
propensities: π(x, y, y; ) := P (X = x, Y = y, Y ′ = y′),
where in most cases we have that Y and Y ′ are conditionally
independent given X . The distributions P (Y |X = x) and
P (Y ′|X = x) are not necessarily the same. For instance,
given X , Y can be sampled from a base LLM policy and Y ′

from a policy controlled by the researcher in a pre-defined
way. We assume that conceptually, each individual provid-
ing their preferences is a priori associated with a set of po-
tential outcomes L(X = x;Y = y, Y = y′) ≡ L(x; y, y′),
for any two responses y, y′ ∈ Y , and prompt x ∈ X . Po-
tential outcomes capture the hypothetical preferences for all
pairs of texts that could have been observed. If we had a
way of knowing L(x; y, y′), for any x ∈ X and y, y′ ∈ Y ,
we could answer counterfactual questions regarding user
preferences for hypothetical LLM’s responses. However, in
reality, we only observe the preference choice associated
with the treatments actually received: (X,Y, Y ′).

We can adopt the potential outcomes framework to the
BTL model by introducing the notion of potential rewards,
R(x, y) ≡ R(X = x, Y = y) and R′(x, y′) ≡ R′(X =
x, Y ′ = y′), representing the hypothetical rewards assigned
by an individual to any prompt-response pair for x ∈ X ,
y, y′ ∈ Y in our corpus so that:

E[L(x; y, y′)] = P (L(x; y, y′) = 1)

= σ(R(x, y)−R′(x, y′)), (3)

Thus, the BTL model directly relates the difference of po-
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tential rewards with the expected potential outcome.1

The fundamental challenge. The fact that for a given
unit we can observe the outcome L only for the observed
treatment conditiona (X,Y, Y ′) is known as the funda-
mental challenge of causal inference. Potential outcome
prediction is related to the generalisation challenge in
conventional machine learning terminology—our goal
is to predict the effect of hypothetical interventions on
LLM’s responses, by estimating E[L(x; y, y′)] for any
x ∈ X and y, y′ ∈ Y .

aor at most a finite set of treatments {(Xi, Yi, Y
′
i )}ni=1.

3.1. What makes potential outcomes identifiable?
Causal inference provides a framework to answer counter-
factual, ’what if’ questions even when only observational
data is available. The key part lies in ensuring that the causal
quantity of interest can be estimated from observational data
alone. The following commonly made assumptions, adapted
to our preference learning setup, are sufficient to guarantee
identifiability and non-parametric estimability:

Assumption 1 (Consistency). For an individual with
prompt-response assignment (X,Y, Y ′), we observe the
associated potential outcome, i.e. L = L(X;Y, Y ′).

Assumption 2 (Unconfoundedness). There are no unob-
served confounders, so that L(x; y, y′) ⊥⊥ (X,Y, Y ′),
for all x ∈ X , y, y′ ∈ Y .

Assumption 3 (Unconditional Positivity). Treatment as-
signment is non-deterministic, i.e. 0 < P (X = x, Y =
y, Y ′ = y′) < 1 for all x ∈ X and y, y′ ∈ Y .

Proposition 1. Under assumptions (1), (2) and (3), for
all x ∈ X , y, y′ ∈ Y ,

E [L(x; y, y′)] = E [L|X = x, Y = y, Y ′ = y′] ,

so that observed statistical associations have a causal
interpretation.

Proof. Appendix B.

1The notion of potential rewards R(x, y) and R′(x, y′) should
not be confused with the reward function. R and R′ represent two
random variables which, in principle, can have distinct distribu-
tions so that P (R(X = x, Y = y)) ̸= P (R′(X = x, Y ′ = y))–
this can be the case, for instance, if the response seen on the left is
systematically valued higher than the response seen on the right.
Most commonly, it is however assumed that R = r(X,Y ) and
R′ = r(X,Y ′) for a deterministic reward function r : Σ∗ → R in
which case P (R(X = x, Y = y)) = P (R′(X = x, Y ′ = y)).

We note that the absolute values of the potential re-
wards are, in general, not identifiable (any shift of
the reward function by an arbitrary function of the
prompt results in the same likelihood). However, we
have: R(x, y) − R(x, y′) = σ−1

{
E [L(x; y, y′)]

}
=

σ−1
{
E [L|X = x, Y = y, Y ′ = y′]

}
, so that the difference

in potential rewards is a function of the observable distribu-
tion P (L|X,Y, Y ′), and therefore it is identifiable.

Corollary 1. The difference in potential rewards
R(x, y)−R′(x, y′) is identifiable.

The importance of assumptions 1-3 in enabling causal in-
ferences from observational data makes us questions their
feasibility in the context of typical preference data collec-
tion. In particular, we identify several potential challenges:

X

Y R

C

(a) Self-written prompts

X

Y R

C

(b) Randomised prompts

Figure 2: Confounding due to user-specific objectives. a)
The user-specific contextual variable C can act as a con-
founder. If the prompts X are written by the users them-
selves, C affects the assigned rewards R, R′ and partially
determines the treatment (X,Y, Y ′). b) Even if C is not
confounding, it may influence the user specific rewards, in-
troducing individual-level variation in treatment effects.

� Confounding bias. The assumption of unconfounded-
ness is about who scores the texts and not their contents.
We stress that this assumption can be easily violated.
This may be the case if the prompts X are not randomly
assigned, but written by the individuals who then score
the generated responses. As a result, users scoring the
LLM’s responses of one kind may systematically differ
from users scoring responses of another kind. We can
formalise this by introducing a user-specific contextual
variable C that influences both X and R (see Figure 2).

Example 1 (Violation of Unconfoundedness). Suppose
the population consists of medical experts (C = expert)
and non-trained users (C = ¬expert). Experts are more
likely to ask questions about niche topics, leading to
complex LLM responses filled with medical jargon, and
are also more inclined to prefer such detailed responses
due to their professional focus. In this case, the as-
sumption of unconfoundedness would not hold, as the
unobservable user-specific variable C, indicating the
expertise of a user influences both the treatment assign-
ment and their preference choices.
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In the face of confounding due to user-specific covariates C,
it is necessary to adjust for these variables to avoid the bias.
Instead of focusing on the average E[L(x, y, y′)], we shall
instead consider: E[L(x, y, y′)|C = c]. Assumptions 2 and
3 must be then modified accordingly as: 2) L(x; y, y′) ⊥⊥
(X,Y, Y ′)|C = c and 3) 0 < P (X = x, Y = y, Y ′ =
y′|C = x) < 1 for all x ∈ X , y, y′ ∈ Y and c ∈ C, where C
is the space of all levels of covariates. Throughout the rest of
this work we will use the term positivity as a shorthand for
the unconditional case and the term conditional positivity,
aka the overlap, will be used when user-specific covariates
are considered.

To the best of our knowledge, confounding due to user-
specific covariates has not been addressed in prior works on
preference learning for AI alignment. We find this issue of a
significant importance and we will study it in greater depth
in sections 3.2.1 and 4.

Heterogenous treatment effects. Even under prompt ran-
domisation, the characteristics of a user or other forms of un-
observable context (represented by the variable C in Figure
2) may influence the rewards assigned to each response, lead-
ing to heterogeneity in preferences among the users. In this
case, implicitly marginalizing over C inflates the variance of
the predictions and may mask the true causal relationships
present among different subpopulations characterised by
distinct C’s. Siththaranjan et al. (2024) refer to this variable
as the “hidden context” and show that averaging over C is
equivalent to adopting the so called Borda count rule, which
may lead to counter-intuitive results. From the point of view
of causal inference, C introduces individual-level variation,
leading to heterogenous treatment effects where any given
treatment (here, any given response) might affect different
users in different ways. If not adequately addressed, this
in turn may lead to underrepresentation issues (Wu et al.,
2023), resulting in allocation of suboptimal treatments for
underrepresented populations. In our context, an LLM fine-
tuned to the average preferences may generate suboptimal
responses for certain subgroups of users. This underscores
the importance of not only focusing on the population aver-
age effects, E[L(x, y, y′)], but also subgroup-level effects:
E[L(x, y, y′)|C = c].

The assumption of overlap requires that every user has a
non-zero probability of being assigned any combination of
texts given their covariates. In conventional, non-parametric
treatment effect estimation, this ensures that we have enough
data to estimate the causal effects across all levels of treat-
ments and covariates. In our case, however, treatments
belong to the extremely high-dimensional space of natu-
ral language. We only observe a small subset of potential
prompt-response pairs, each often being scored by at most
one user, while in general, our goal is to generalise to texts
not part of the training corpus. With no sufficient overlap

in the observational space generalisation of reward mod-
els is possible by assuming that the observed texts can be
compressed into a lower-dimensional latent representations
capturing all latent features of texts that influence the re-
wards assigned.

3.2. Robust Generalisation via Latent Treatments

We present a model of latent treatments allowing us to con-
sider assigned texts not on the literal level, but in terms of
their underlying features. This formulation is key to facilitat-
ing generalisation to unseen texts and enables the learning of
human-interpretable reward models, supporting the design
of targeted interventions (see Appendix C). While appealing,
the introduction of the latent treatment model presents its
own set of challenges. For brevity and clarity, we focus on
a single prompt-response pair (X,Y ), assuming the same
applies to the alternative (X,Y ′).

X

Y
ZT

ZX

R

Latent Factors Z

Figure 3: The latent treatment model. The effect of observed
texts on R can be compressed into a set of latent variables
Z partitioned into two kinds: ZX–the artifacts of X and
ZT –the latent treatments determined jointly by X and Y .

We assume that features of texts that affect the rewards
can be effectively summarised into a set of latent features
Z = {Z1, . . . , Zn} ∈ Z split into two parts: ZX–artefacts
of the prompt influenced by X only, and ZT –the latent
treatments influenced by (X,Y ) jointly. ZX may describe
features like the topic of the conversation or the type of task
involved. On the other hand, ZT contains the features of the
response Y that cannot be determined without putting them
in the context of X . This involves, for instance, factual cor-
rectness or instruction-following. In our definition, ZT also
subsumes the artifacts of the response that can be extracted
from Y without having access to X , like its style or length.

Formally, we assume existence of a feature extracting func-
tion g : Σ∗ → Z , (X,Y ) 7→ Z = [ZX , ZT ], that can
be decomposed into two maps: gX : Σ∗ → ZX and
gT : Σ∗ → ZT , s.t. ZX = gX(X) and ZT = gT (X,Y ),
Z ′T = gT (X,Y ′). The assumption of sufficiency of the
latent factors in determining the rewards assigned can be
then defined as:

Assumption 4 (Latent Sufficiency). Assume there exists
functions gX : Σ∗ → ZX and gT : Σ∗ → ZT such that
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for any x ∈ X , y, y′ ∈ Y we have

R(X = x, Y = y) = R(ZX = zX , ZT = zT )

R′(X = x, Y = y′) = R′(ZX = zX , Z ′
T = z′T ),

where zX = gX(x), zT = gT (x, y), z′T = gT (x, y′).

� Why ZX matters? If the effect of ZX on R is ad-
ditive so that for any x, y we have R(x, y) = f1(z

T ) +
f2(z

X), then we could omit ZX from the model, as it
would have no influence on the outcome L defined by
R(x, y)−R′(x, y′) = f1(z

T )−f1(z
′T ), ∀x, y, y′. Our

claim, however, is that the effect of ZX is rarely of an
additive nature and thus, it cannot be disregarded.

Example 2 (Non-additive effects of ZX ). Consider ZX ,
representing the task type (e.g., summarisation or cre-
ative writing), and ZT ∈ R, the conciseness of a re-
sponse. While in general, responses should not be ex-
cessively short or excessively long, the optimal level of
conciseness varies between the two task types, introduc-
ing a non-additive interaction effect between ZX and
ZT which could be, for instance, described as:

R(x, y) =

{
β0(z

T − γ0)
2 if zX = summarisation

β1(z
T − γ1)

2 if zX = creative writing,

where we would expect that γ0 > γ1, reflecting that the
optimal conciseness level for summarisation is greater
(i.e., more concise) than for creative writing.

The information-compressing nature of g makes it possi-
ble to estimate the causal effects E[L(x; y, y′)] for prompt-
response pairs not previously observed in our training cor-
pus. In particular, instead of requiring that the positivity
assumption holds in the observable space, it is sufficient to
consider the weaker assumption of latent positivity:

Assumption 5 (Unconditional Latent Positivity). For
all zX ∈ ZX and zT , z′

T ∈ ZT

0 < P (ZT = zT , Z ′
T = z′

T
, ZX = zX) < 1.

Proposition 2. Under assumptions 1, 2, 4, and 5

E [L(x; y, y′)] = E
[
L|ZX = zX , ZT = zT , Z ′T = z′

T
]
,

for zX = gX(x), zT = gT (x, y) and z′
T
= gT (x, y′).

Proof. Appendix B.

� The significance of sufficiency and latent positivity
is that, if these assumptions hold, it is possible to esti-
mate the potential outcome for a previously unobserved
examples (x, y, y′), by only considering the average out-
comes of texts observed within our corpus that have the
same latent structure as (x, y, y′).

3.2.1. IMPLICATIONS FOR PRACTITIONERS

� Limited latent positivity. The assumption of latent
positivity requires that all combinations of latent factors
need to be observable. However, it may be that certain
factors are perfectly correlated with each other, in which
case disentangling their effects is not possible. When
the positivity is limited, i.e. when strong correlations ex-
ists, it hinders the efficiency of estimators (Hahn, 1998;
Hirano et al., 2003; Crump et al., 2006), requiring large
amounts of data for robust results.

Example 3 (Correlated latent factors).
a) Topic and Tone: Suppose ZX stands for the topic of
the prompt and one of ZT

i ’s, indicates the presence of
a formal tone. Professional, work-related topics may
naturally lead to LLM responses with a formal tone
so that P (ZT

i = informal, ZX = professional) and
P (ZT

i = formal, ZX = causal) being near 0.

b) Completeness and Conciseness: Suppose ZT
1 repre-

sents whether a response is complete and ZT
2 indicates

whether it is succinct. Complete responses often require
elaboration, making succinct yet complete responses
rare, i.e., P (ZT

1 = 1, ZT
2 = 1) close to 0.

Interpretable causal effects. If the latent factors Z carry a
human-interpretable meaning, we can draw further insights
regarding the causal effects of each individual factor on user
preferences. Appendix C.1 defines the appropriate mea-
surement tools. We also make connections on how such
causally-interpretable models can enable targeted modifi-
cations to LLM’s responses and thus enable collection of
interventional data (Appendix C.2).

Discovery of Z. Thus far, we have assumed that the map-
ping from raw observations to latent causal factors is given.
In practice, it needs to be learned from the available data.
Since it is not plausible to obtain an exhaustive list of
all causal factors and label each example in the corpus
with respect to these factors, we must instead shift towards
causal discovery–which is significantly more challenging
(Schölkopf et al., 2021). Discovering Z in a an unsupervised
or semi-supervised fashion (i.e., without explicit labels for
the latent factors or only with partial labels) creates the risk
of causal misidentification (Locatello et al., 2019; Makar
et al., 2022; Brehmer et al., 2022; Ahuja et al., 2023), where
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Table 1: Test time accuracy [%] of the BTL models with
varying values of latent positivity in the observational
dataset.

ρtr 0.0 0.3 0.6 0.9

ID 69.3 ± 0.2 68.3 ± 0.2 67.8 ± 0.2 67.6 ± 0.2
OOD 64.5 ± 0.2 62.0 ± 0.2 59.7 ± 0.2 57.8 ± 0.1

the learned rewards mistakenly rely on spurious features
(e.g., length (Singhal et al., 2024; Chen et al., 2024) or
formatting (Zhang et al., 2024)) instead of the true causal
factors. This in turn leads to robustness issues. The learned
latent representations cannot capture features that are spuri-
ously correlated with true causal factors. At the same time,
none of the causal factors can be omitted–not measuring all
causal factors influencing the rewards will necessarily lead
to omitted-variable bias (Fong & Grimmer, 2023).

Experiment (Limited latent positivity). We illustrate
the significance of the latent positivity by examining its
influence on standard BTL models. Using the UltraFeed-
back dataset (Cui et al., 2024), we consider the truthful-
ness and instruction following factors of each prompt-
response pair, denoted Z1 and Z2, respectively, and
scored from 0 to 5. We construct five training datasets by
varying the correlation coefficient ρtr between Z1 and
Z2. We let the reward function be r(x, y) = 1

4z1 +
3
4z2,

with the true values of z1 and z2 not available for train-
ing. The datasets consists of tuples (x, y, y′, ℓ) with ℓ
determined by the function r. We assess the robustness
of the learned reward models to shifts in the correlation
of Z1 and Z2, testing on previously unseen examples
either from the same distribution as the training exam-
ples (ID: ρtest = ρtr), or not, with ρtest being negative
(OOD: ρtest < 0). Refer to Appendix D.2 for details.

As shown in Table 1, performance on unseen ID exam-
ples remains high across all ρtr values, demonstrating
that latent sufficiency enables generalisation to unob-
served prompt-response pairs. However, with OOD ex-
amples breaking the training-time correlation between
Z1 and Z2, performance significantly declines due to
reduced latent positivity. The ID-OOD accuracy gap
widens as ρtr increases. Even at a moderate ρtr = 0.6,
accuracy drops to 59.7%, compared to 67.8% on unseen
ID examples (note, the correlation between truthfulness
and instruction-following across the entire UltraFeed-
back dataset is precisely 0.63). Appendix D.1 provides
further analysis and a visualisation explaining this be-
haviour.

We note that this experimental setup does not strictly
violate the positivity assumption, making identifiabil-
ity possible in the infinite data limit. However, perfect

correlation is unrealistic in practice. The focus of this ex-
periment is on the statistical challenges posed by limited
latent overlap. The observed performance degradation
reflects a statistical issue arising from near-violations
of the positivity assumption, rather than a fundamental
identifiability failure.

� Confounding & Latent Overlap. The challenges of
reward modelling are exacerbated even further when con-
founding effects are present, in which case we require
that 0 < P (ZX = zX , ZT = zT , Z ′T = z′

T |C =

c) < 1, for all zX ∈ ZX , zT , z′T ∈ ZT and c ∈ C. If
C represents an objective according to which the LLM’s
responses are evaluated and this objective C also affects
the type of prompts that the user writes, then the latent
overlap is likely to be particularly limited.

Example 4. Imagine two groups of labellers, each with
a distinct objective C ∈ {0, 1}. For C = 0, a labeller is
focused on assessing the helpfulness of the model, while
for C = 1, they are focused on assessing the harmless-
ness of the model. These differing objectives lead the
two groups to generate prompts with distinct intents: the
helpfulness-focused (C = 0) produce assistance-related
prompts, while the harmlessness-focused (C = 1) gen-
erate prompts designed to elicit harmful behaviour. Con-
sequently, the prompt distributions P (X|C = 0) and
P (X|C = 1) are distinct, potentially leading to over-
lap violations in P (Z|C). Despite this, we wish to an-
swer interventional questions regarding the preference
choices of the helpfulness-focused users (C = 0), if
presented examples (x, y, y′), with x ∼ P (X|C = 1)
and vice versa (see Figure 4). With no latent overlap,
fundamental assumptions of causal inference deem this
is an infeasible task. In section 4 we will study this case
from an empirical perspective.

Even when the ground-truth latent overlap holds, learning ro-
bust representations Ẑ from finite datasets poses significant
challenges. Correlations between the observed examples
(X,Y, Y ′) and the objectives C in the training data can lead
to Ẑ entangling features of the text with user-specific objec-
tives. As a result, Ẑ may fail to generalise to examples with
X’s and C’s no longer correlated.

4. Case Study: The Challenge of Confounding
Modern reward learning systems frequently rely on prefer-
ence data collected opportunistically–a user types a query,
two candidate responses are generated, and the user is asked
to select the response they prefer. In such setups, user-
specific objectives can act as confounders, influencing both
the types of prompts the user formulates and the subsequent
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Figure 4: A reward model relying on the set of true causal
factors Z enables prediction of outcomes under targeted
interventions. We wish to predict the rewards when interven-
ing on the prompt distribution X , breaking the correlations
between prompt type and user-specific objectives C.

preference choices. This study highlights the challenges as-
sociated with robust reward learning in the presence of such
confounding effects. To illustrate these issues, we revisit
Example 4 and simulate the described scenario utilising an
augmented version of the well-known HH-RLHF dataset,
as provided by Siththaranjan et al. (2024).

The original HH-RLHF dataset (Bai et al., 2022) con-
tains prompt-response pairs categorised into two sub-
sets: helpful and harmless. Siththaranjan et al. (2024)
noted significant distributional differences between the
prompts in these two subsets. Meanwhile, all prompt-
response pairs in the helpful subset are evaluated based
on the objective of helpfulness, while those in the harm-
less subset are assessed according to the objective of
harmlessness. To examine the challenges arising when
users operate under potentially conflicting objectives,
Siththaranjan et al. (2024) created an augmented version
of this dataset, introducing synthetic, counterfactual la-
bels so that texts in the helpful subset are also scored
according to the harmlessness objective, and vice versa.

As in Example 4, we let C ∈ {0, 1} encode the objec-
tive of the labeller. We also denote by type(x) ∈ {0, 1},
whether a given example (x, y, y′) was originally part
of the helpful or harmless subset. To control the degree
of confounding due to C, we define a parameter ρ that
measures the alignment between a user’s objective and
the type of prompts they write: ρ = P (type(X) = C).
At ρ = 1.0, the prompt-response distribution recovers
the original HH-RLHF dataset, with prompt type and
user objective being perfectly correlated. In contrast, at
ρ = 0.5, the prompt type is fully randomised, eliminat-
ing the confounding effect.

The Goal. Our aim is to investigate how the confound-
ing effects related to user-specific objective influence re-
ward model performance and to explore mitigation strate-
gies. We seek to answer the interventional questions,
such as “What would the preferences of the helpfulness-
focused users (C = 0) be, have they been presented

examples (x, y, y′) with type(x) = 1?”. We note that,
the two objectives considered are not always aligned–a
highly helpful response may not necessarily be harmless–
making this a challenging machine learning problem.

Dataset: W create six training datasets varying the value
of ρ. The datasets comprise of tuples (x, y, y′, c, ℓ),
with an equal number of examples for each objective
c ∈ {0, 1}. Type labels are not part of the training data
as they wouldn’t be available in a real-world data col-
lection setup. Models: We train three multi-objective
reward models. The Base model corresponds to the most
straightforward architecture, where the objective label
c is concatenated with the reward model’s inputs (Fig-
ure 5(a)). In contrast, the Multihead model is inspired
by the ground-truth causal graph wherein the latent fac-
tors Z are conditionally independent of C given (X,Y ).
The model learns a latent representation of the prompt-
response pairs, Ẑ, passed to two independent prediction
heads corresponding to the two objectives (Figure 5(b)).
Finally, the proposed Adversarial model (Figure 5(c))
incorporates an additional adversarial objective (Ganin
et al., 2016) to regularise representation learning. This is
inspired by recent advancements in representation learn-
ing for treatment effect estimation (Bica et al., 2020;
Ozery-Flato et al., 2020; Du et al., 2021) (see section 4.1
for details). Evaluation: Trained models are evaluated
on unseen prompt-response pairs derived from either
of the data subsets and labelled according to objectives
both consistent and inconsistent with their prompt type.
Refer to Appendix E.1 for more details.

4.1. The Adversarial Multi-objective Reward Model.

Due to the training time correlation between type(X) and
C the learned latent representations may mistakenly treat
the information about type(X)–easily extractable from the
observations (X,Y )–as having a causal effect on R. The
goal of the proposed adversarial training method is to make
Ẑ not predictive of type(X), while retaining all features that
causally influence R. Let gθ represent the network learning
a latent representation Ẑ from (X,Y ), s.t. ẑ = gθ(x, y)
for all x, y ∈ X × Y . In the Multihead reward model, the
rewards are obtained by passing the latent ẑ to the respective
reward head fw0

: Ẑ → R or fw1
: Ẑ → R so that:

rθ,w0,w1
(x, y, c) =

{
fw0(gθ(x, y)) if c = 0

fw1(gθ(x, y)) if c = 1
(4)

The Adversarial model introduces an additional network
hϕ : Z → {0, 1} whose goal is to predict the objective
label C from Z as a proxy for type(X). Adversarial train-
ing enourages gθ to discard the spurious information about
type(X) while retaining causal features relevant to the out-
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Figure 5: Comparison of model architectures.

come. The training objective for this model is:

min
θ,w0,w1

max
ϕ

LR(θ, w0, w1)− λLadv(θ, ϕ), (5)

where LR(θ, w0, w1) is the standard BTL loss for the re-
ward function rθ,w0,w1 , the second term Ladv(θ, ϕ) is the
binary cross-entropy loss between the true c’s and their log-
probabilities predicted by hϕ ◦gθ, and λ is a hyperparameter
balancing the two objectives. Appendix E.1 contains further
details regarding implementation and training.
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Figure 6: Test time accuracy vs. confounding. The label
“consistent” indicates whether type(X) = C. The causally-
inspired multihead architecture with additional adversarial
balancing significantly reduces overfitting and improves
generalisation to the inconsistent OOD examples.

4.2. Case Study Results

We analyse the results of the experiments summarised
in Figure 6 and presented in detail in Appendix E.2.

▶ No overlap ⇒ failure to generalise. When the objec-
tive is fully determined by the data subset (ρ = 1.0), all
three models exhibit substantial overfitting to the train-
ing distribution. While the performance on the unseen,
consistent samples is high–with the multihead and adver-
sarial architectures showing modest improvements–all
models fail to generalise to inconsistent examples, with
their accuracies falling just below 55%. This outcome
is expected, as the latent overlap assumption is likely
violated at ρ = 1.0. Higher ρ values lead to training
sets with fewer inconsistent examples, making models
more susceptible to overfitting and causal misidentifi-
cation. ▶ Increasing the overlap helps. As expected,

Code for reproducing the experiments is made available at:
https://github.com/kasia-kobalczyk/causal-preference-learning.

accuracy on inconsistent test samples improves across
all models as ρ decreases in the observational training
data. ▶ Extra gains from causally-inspired models.
We observe that the Multihead architecture significantly
outperforms the Base model, supporting our hypothesis
that separation of latent representation learning from
objective-conditioned reward prediction enhances ro-
bustness to training-time correlations between prompt
types and objectives. Introducing the adversarial objec-
tive further strengthens this effect, significantly boosting
accuracy, especially in strong confounding regimes.

5. Conclusions & Limitations
Below, we summarise key conclusions from this work, con-
textualise them within existing literature, and outline future
research directions. Appendix A contains an extended dis-
cussion of the related work.

The importance of data collection. This study underscores
the critical role of data collection mechanisms in reward
learning for preference modelling. Controlled, randomised
experiments, where prompt-response pairs are allocated ran-
domly across a representative population serve as the gold
standard. However, in practice, preference data is often
collected opportunistically, relying on user-written prompts
and LLM-generated responses. This approach introduces
the risk of confounding, where users’ latent objectives in-
fluence both the queries they pose and the feedback they
provide, as demonstrated in our case study.

The challenge of unobserved confounding. Our experi-
ments assumed explicit access to user-specific objectives,
allowing us to simulate and control for confounding effects.
While this setup provided a clear experimental framework,
it does not fully reflect real-world scenarios, where user
objectives are not directly observable, posing the challenge
of unobserved confounding. To address this, preference data
collection methods could be enhanced to infer user-specific
objectives through, e.g. a) explicit feedback: users could
provide rationales for their preferences, offering richer in-
sights into their underlying objectives; b) auxiliary data:
preferences could be inferred from contextual information,
such as user demographics or historical interactions. Only
a limited number of existing works (Li et al., 2024; Wu
et al., 2024; Liu et al., 2024; Kobalczyk et al., 2024) have
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considered incorporating user-specific information for per-
sonalised alignment, yet none have explicitly examined the
confounding issues identified in this work.

Mitigating low overlap. Our findings underscore the impor-
tance of latent overlap. Strong correlations between latent
response features can cause catastrophic overfitting, hinder-
ing generalisation under distribution shifts. However, con-
trolling overlap in practice is not straightforward. Existing
work on robust reward modelling mainly addresses biases
from response-specific artefacts, such as length (Singhal
et al., 2024; Chen et al., 2024) or formatting (Zhang et al.,
2024), but as demonstrated, causal misidentification extends
beyond these cases. While approaches derived from causal
representation learning can help, architectural modifications
have inherent limitations. Instead, we advocate for a shift
in preference data collection practices—from passive data
gathering to targeted interventions wherein latent factors
are systematically controlled to reduce model uncertainty
about the set of true causal features. Appendix C.2 outlines
potential research directions in this pursuit.

Limitations. We note that the assumptions discussed in this
paper are sufficient–but not strictly necessary–for identifi-
ability. In practice, identifiability may still be achievable
under weaker conditions, particularly when data from multi-
ple environments is available (Ahuja et al., 2023; Richens
& Everitt, 2024; Von Kügelgen, 2023). This is especially
pertinent to recent work on reward learning across diverse
datasets and personalised reward modelling–areas that have
garnered increasing attention in alignment research (Wang
et al., 2024; Ramé et al., 2023; Bose et al., 2025). A com-
prehensive treatment of robust reward learning in the multi-
dataset setting is left for future work.
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A. Related Work
Causal Inference for Text Data and LLM Alignment. Causality has gained increasing attention in NLP, with several
studies proposing methods for treatment effect estimation from text data, each with a different focus. Examples include the
discovery of latent text attributes (Fong & Grimmer, 2016), the impact of unmeasured latent treatments (Fong & Grimmer,
2023), non-parametric treatment effect estimation (Pryzant et al., 2021), and the robustness of such estimators (Gui &
Veitch, 2023). These works predominantly address data analysis tasks where causality is used as an interpretability tool.
In large language models (LLMs), Vig et al. (2020) use causal mediation analysis to study gender biases, while Cao et al.
(2022) analyse prompt-based probing from a causal perspective. Other works, such as Wang et al. (2023), introduce
in-context causal interventions to alleviate entity biases in prompts, and Hu & Li (2021) adopt causality for controllable
text generation. However, none of these directly apply to the pairwise preference learning setup explored in our work
or the subsequent LLM fine-tuning stage via RLHF. Few notable exceptions addressing our call for adapting a causal
perspective for preference learning and alignment involve the work of Xia et al. (2024) who attempt to leverage a pre-trained
reward model as an instrumental variable for causal intervention on LLMs. Lin et al. (2024) draw on importance weighting
and double robustness principles to present methods for more robust preference optimization in DPO. Reber et al. (2025)
introduce a causal framework for understanding and evaluating spurious correlations of reward models. Butcher (2024) use
counterfactual pairs to address spurious correlations during the alignment process. Finally, Liu et al. (2025) propose a causal
framework for learning preferences independent of response artifacts (e.g., length), assuming that prompt-independent
features are spurious, and introduce a data augmentation technique to eliminate them.

Reward Hacking and Causal Confusion. Many prior works in reinforcement learning have studied reward hacking (Skalse
et al., 2022), closely linked to causal misidentification (de Haan et al., 2019; Tien et al., 2023). This occurs when learned
policies or rewards achieve high accuracy within their training distribution but fail to generalise to novel scenarios because
the models do not correctly identify the underlying causal structure. In preference learning for AI alignment, this issue has
primarily been explored in the context of response-specific biases, such as length formatting (Zhang et al., 2024) or response
length itself (Singhal et al., 2024; Chen et al., 2024; Park et al., 2024), where authors demonstrate that learned reward models
or downstream policies improve significantly by simply increasing response length, rather than considering other relevant
features. Some evidence suggests that reward model ensembles can improve the robustness of LLM policies (Annervaz
et al., 2018; Coste et al., 2024; Eisenstein et al., 2024), but they do not fully eliminate the reward hacking problem, leaving
it an open challenge.

B. Identifiability Proofs
For convenience, we restate the assumptions enabling identifiability of E[L(x′y, y′)].

Assumption 1 (Consistency). For an individual with prompt-response assignment (X,Y, Y ′), we observe the associated
potential outcome, i.e. L = L(X;Y, Y ′).

Assumption 2 (Unconfoundedness). There are no unobserved confounders, so that L(x; y, y′) ⊥⊥ (X,Y, Y ′), for all x ∈ X ,
y, y′ ∈ Y .

Assumption 3 (Unconditional Positivity). Treatment assignment is non-deterministic, i.e. 0 < P (X = x, Y = y, Y ′ =
y′) < 1 for all x ∈ X and y, y′ ∈ Y .

Proposition 1. Under assumptions (1), (2) and (3), for all x ∈ X , y, y′ ∈ Y ,

E [L(x; y, y′)] = E [L|X = x, Y = y, Y ′ = y′] ,

so that observed statistical associations have a causal interpretation.

Proof.

E [L(x; y, y′)] =

= E(L(x; y, y′)|X = x, Y = y, Y ′ = y′) (by positivity and unconfoundedness)
= E [L|X = x, Y = y, Y ′ = y′] (by consistency)
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As outlined in the main body of the paper, the assumption of overlap in the observational space can be replace with the
assumptions of latent sufficiency and latent overlap:

Assumption 4 (Latent Sufficiency). Assume there exists functions gX : Σ∗ → ZX and gT : Σ∗ → ZT such that for any
x ∈ X , y, y′ ∈ Y we have

R(X = x, Y = y) = R(ZX = zX , ZT = zT )

R′(X = x, Y = y′) = R′(ZX = zX , Z ′
T = z′T ),

where zX = gX(x), zT = gT (x, y), z′T = gT (x, y′).

Assumption 5 (Unconditional Latent Positivity). For all zX ∈ ZX and zT , z′
T ∈ ZT

0 < P (ZT = zT , Z ′
T = z′

T
, ZX = zX) < 1.

Proposition 2. Under assumptions 1, 2, 4, and 5

E [L(x; y, y′)] = E
[
L|ZX = zX , ZT = zT , Z ′T = z′

T
]
,

for zX = gX(x), zT = gT (x, y) and z′
T
= gT (x, y′).

Proof. Let x ∈ X , y, y′ ∈ Y and let zX = gX(x), zT = gT (x, y), z′T = gT (x, y′). Since L = f(R−R′, U), where U is
an independent exogenous noise variable2 and due to the sufficiency condition, we have that:

1) Consistency in the observational space implies consistency in the latent space, i.e. for an individual with prompt-
response assignment (X,Y, Y ′) whose latent factors are (ZX , ZT , Z ′T ) ≡ (gX(X), gT (X,Y ), gT (X,Y ′)), we observe
the associated potential outcome, i.e. L = L(ZX , ZT , Z ′T ).

2) Unconfoundedness in the observational implies unconfoundedness in the latent space, i.e. L(ZX = zX ;ZT = zT , Z ′T =

z′
T
) ≡ L(zX ; zT , z′

T
) is independent of (ZX , ZT , Z ′T ).

3) E [L(x; y, y′)] = E
[
L(zX ; zT , z′

T
)
]

Thus, it follows that:

E [L(x; y, y′)] = E
[
L(zX , zT , z′

T
)
]

(by sufficiency)

= E
[
L(zX , zT , z′

T
)|ZX = zX , ZT = zT , Z ′T = z′

T
]

(by latent overlap & unconfoundedness)

= E
[
L|ZX = zX , ZT = zT , Z ′T = z′

T
]

(by latent consistency)

C. Extended Discussion
C.1. Interpretability of Latent Factors

Aside from estimating the potential outcomes L(x, y, y′) or rewards R(x, y) for any x ∈ X y, y′ ∈ Y , we may wish to
consider the average effects of their underlying latent factors. If the individual components Zk of the set of latent factors
Z enjoy a human-interpretable meaning, we would like to predict how an intervention of one of these components (e.g.
increasing creativity of an answer, or its length) will affect user preferences while holding other features constant. If we
assume that each of Zk’s can be represented as a binary value indicating the presence or absence of a particular feature, then

2The re-expression of L as a function of R−R′ under the BTL model is possible thanks to the Gumbel-softmax trick (Luce, 1959;
Maddison et al., 2014; Oberst & Sontag, 2019).
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following the convention adopted by Fong & Grimmer (2016; 2023) such inferences are made possible by considering a
version of the Average Marginal Component Effect (AMCE) adopted to our pairwise preference learning setup:

AMCEk :=

∫
z∈Z−k

E
[
L(Zk = 1, Z ′k = 0, Z−k = z, Z ′−k

= z
]
m(z)dz, (6)

where Z−k denotes the latent space Z except the k-th one and m(·) is some analyst-defined density on this space, which
can be taken, e.g. as a uniform distribution or the distribution induced by the observable (X,Y, Y ′). The sufficiency and
latent overlap conditions imply that this measure is identifiable from observational data.

C.2. A Roadmap for Robust and Interpretable Alignment

Despite the appealing interpretability properties of the AMCE, similarly to direct potential outcome estimation, it assumes
that the mapping g : Σ∗ → Z between the observable texts and their latent features is given and that it captures all
factors that causally influence the reward, while disregarding any spuriously correlated features. In practice, the map g
needs to be learned from data and ideally, with minimal supervision–i.e., not requiring humans to label large numbers of
prompt-response pairs according to a prohibitively long list of factors that can plausibly be causally linked to the outcomes.
To enable learning of more robust and interpretable feature-extracting and reward predicting functions we outline some key
directions for future research and data collection practices.

Collection of rationales, not only preference choices. Current preference learning frameworks typically collect binary
comparisons between responses, but these do not reveal why a particular choice was made. This lack of transparency
obscures the true causal mechanisms driving user preferences and makes it difficult to disentangle spurious correlations from
genuine reward-relevant features. Instead of solely collecting pairwise preference choices, future data collections practices
could incorporate rationale elicitation, with users providing short explanations for their decisions. Such rationales could
be used as weak supervision signals, guiding the learning of latent causal representations without requiring an exhaustive,
predefined list of relevant features. This additional form of supervision could also for interpretable post-hoc causal analyses
via causal estimands like the AMCE.

Active querying strategies and interventions. Much theoretical work has been done demonstrating how identification of
causal representations requires auxiliary labels (Locatello et al., 2019; Makar et al., 2022; Brehmer et al., 2022; Ahuja et al.,
2023). To gather such labels, rather than querying users at random points during the conversation and generating responses
with unknown latent features, active querying strategies (Melo et al., 2024; Muldrew et al., 2024) can improve the efficiency
and robustness of preference learning by selecting data points that maximize information gain. This applies to both feature
identification (learning to predict ẑ’s) and reward prediction (learning to predict rewards from ẑ’s). Queries for rationales
should prioritize instances where the model is least confident the feature-extracting part, reducing ambiguity of the learned
representations. Reducing the ambiguity of the reward prediction part should benefit from interventional data collection so
that given a prompt, two responses are generated that differ in isolation by a specific latent factors, allowing for direct causal
attributions. Such interventions should also take into the account user-specific contextual variables to ensure that the latent
treatments are well-balanced across different demographic subgroups.

Interpretable control over LLM-generated content. To enable targeted and interpretable interventions as described above,
it is necessary that LLM-generated content can be explicitly controlled (Hu & Li, 2021; Liang et al., 2024; Dekoninck et al.,
2024) to specify desired properties of text . Without such form of control, intervention-based preference learning becomes
infeasible, as models would lack the ability to systematically vary latent factors. Language models should be designed to
generate responses that explicitly vary along key latent dimensions, such as response verbosity or style, rather than letting
these factors emerge implicitly.

Preference learning and optimisation remain an exciting field whose success necessarily relies on integrating multiple
approaches, with causality playing a central role. By moving beyond passive preference collection to rationale-aware
learning, active data querying, and attribute-conditional control, we can train models that are more robust, interpretable, and
generalisable to unseen settings. This shift is crucial for aligning AI systems with human values while avoiding the negative
effects of causal misidentification or confounding.
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C.3. The connection to conventional treatment effect estimation

Our formalism follows the potential outcomes framework (Rosenbaum & Rubin, 1983; Splawa-Neyman et al., 1990), but
applied to preference learning rather than traditional treatment effect estimation.

In classical causal inference with binary treatments (e.g., drug trials), we define a treatment assignment T ∈ {0, 1} and the
observed outcomes Y , as well as the potential outcomes under treatment (Y (1)) and potential outcomes under no treatment
(Y (0)). We then aim to estimate treatment effects defined as: E[Y (1)− Y (0)]. The fundamental challenge of causality lies
in the fact that for a given individual we only observe one outcome, i.e. if their treatment assignment is T = t, then we
observe Y = Y (t), but not the counterfactual outcome.

Our framework extends this to preference learning by treating each prompt-response pair (x, y, y′) as a distinct ”treatment”.
Here, the tuple (X,Y, Y ′) is the random variable representing the treatment assignment, and L(x; y, y′) represents the
potential preference outcome when (X,Y, Y ′) = (x, y, y′), i.e. when the user observes (x, y, y′). However, just as in
traditional causal inference, we only observe the outcomes for the assigned texts and not all possible texts–a given user is
only shown one (or at most a finite subset of) possible prompts and responses. The observed label, defined as L, satisfies
the consistency condition so that if (X,Y, Y ′) = (x, y, y′), then L = L(x; y, y′). The key difference from conventional
treatment effect estimation is that while drug studies typically focus on binary treatment effects, we operate in an extremely
high-dimensional space of natural language where each (x, y, y′) combination is effectively a unique treatment. Rather than
computing pairwise contrasts between all possible treatments, we focus on the expected potential preference E[L(x, y, y′)]
for any given tuple (x, y, y′). This is analogous to estimating E[Y (t)] for each treatment t in a multi-arm trial, which in
turn enables making relative comparisons E[Y (t1)− Y (t2)] between different treatment choices t1, t2. In our framework,
for instance, we could compare E[L(x, y0, y1)] against E[L(x, y0, y2)] to study how the expected preference change if the
second observed response Y ′ is set to y2 instead of y1, while keeping the prompt X = x and the first response Y = y0
fixed. Given the vast space of possible relative comparisons we direct our attention to just the expected potential outcomes,
E[L(x, y, y′)], rather than their pairwise differences.
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D. The UltraFeedback Case Study
D.1. Case Analysis

Suppose that the latent factor Z determining the rewards are two dimensional taking values in R2 (e.g. Z may correspond
to the extent of truthfulness and instruction-following of a candidate response). Suppose that the distribution of X’s Y ’s
and Y ′’s is such that Y ⊥⊥ Y ′|X and Y, Y ′ are identically distributed given X . Further, assume that P (X,Y, Y ′) induces a
distribution on P (Z,Z ′) such that Z,Z ′ iid∼ N (µ,Σ). As a result, we have:

δ := [Z − Z ′] ∼ N
([

0
0

]
,

[
σ1 ρ
ρ σ2

])
, (7)

where WLOG σ1 = σ2 = 1.

Now, suppose that the reward function is linear in Z1 and Z2, so that for all x ∈ X , y ∈ Y , we have

r(x, y) = r(z) = αz1 + (1− α)z2 for α ∈ [0, 1]. (8)

Then, the preference label is completely determined by the vector δ. With δ1 := Z1 − Z ′
1 and δ2 = Z2 − Z ′

2, we have that
for any samples for which αδ1 + (1− α)δ2 > 0 the first option is preferred, and vice versa. This can be visualised in the
(δ1, δ2)-plane, as in Figure 7.
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Figure 7: The impact of ρ on determining α̂ and the classification accuracy.

The decision boundary determining the preference label L is dependent on the ground-truth value of α. It is defined
by a straight line with a slope of − α

1−α and the intercept at the origin. In a noise-free setting, examples (x, y, y′, ℓ) for
which δ falls below the decision boundary are labelled with ℓ = 0 (i.e, the first option (x, y) wins) and all samples above
the decision boundary have the label ℓ = 1 (i.e., the second option (x, y′) wins). An optimal fitted reward function
r̂(z) = α̂z1 + (1− α̂)z2 is s.t. α̂ = α. Samples falling into the first and third quadrants of the (δ1, δ2)-plane are classified
correctly no matter if the fitted decision boundary (determined by α̂) aligns with the ground-truth boundary (determined by
α). Samples falling into the second and fourth quadrants (red-shaded region) are prone to misclassification, if the fitted and
ground-truth decision boundaries diverge. If the training data exhibits a high correlation (see the plot with ρ = 0.9) few
samples fall into the red-shaded region (the probability of this event is precisely 1

2 − arcin(ρ)
π ), making α̂ sensitive to outliers

and exhibiting a higher variance than for non-correlated samples.

D.2. Experimental Details

Code for reproducing the experiments is made available at: https://github.com/kasia-kobalczyk/causal-preference-learning.

To emulate the setting described above, we rely on the UltraFeedback dataset (Cui et al., 2024) containing prompt-response
pairs scored according to the objectives of honesty, helpfulness, truthfulness and instruction-following, each represented as
scalar values between 0 and 5. For simplicity, we focus on just the last two features: truthfulness and instruction-following,
as the ground-truth causal factors determining the rewards.

Datasets. We create a large dataset of candidate pairs (x, y, y′, z, z′, ℓ), where z and z′ are 2-dimensional vectors corre-
sponding to the truthfulness and instruction-following scores of the of the candidate options (x, y) and (x, y′), respectively.
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The label ℓ is defined based on the value of r(x, y)− r(x, y′), with

r(x, y) = r(z) = αz1 + (1− α)z2, (9)

where we set α = 0.25. For examples with r(x, y)− r(x, y′) > 0 we set ℓ = 0, for examples with r(x, y)− r(x, y′) < 0
we set ℓ = 1 and for those with r(x, y)− r(x, y′) = 0 we sample ℓ at random. Based on this large data set containing all
prompts and responses in the UltraFeedback dataset we create 4 training subsets, controlling the value of the correlation
ρtr between z1 − z′1 and z2 − z′2, where z1, z

′
1 represents the truthfulness score and z2, z

′
2 the instruction-following score.

Training: With stratified sampling based on the value of z − z′, we create 4 training datasets with 15.000 samples, one for
each value of ρtr ∈ {0.0, 0.3, 0.6, 0.9}. The resulting training sets contain tuples (x, y, y′, ℓ)–the ground-truth values of
the latent factors are not available during training and need to be approximated in an unsupervised fashion. Validation:
Validation splits used to determine the optimal stopping point during training of the reward models are samples according to
the same distribution as the training datasets and contain 2.000 samples. Testing: For each value of ρtr we also create a
testing dataset with matching value of the correlation coefficient (ID), and a testing dataset with only samples falling into the
second and fourth quadrants in the (δ1, δ2)-plane, resulting in a correlation coefficient of -0.8 (OOD). The testing datasets
are always disjoint from the training examples and contain 15.000 samples.

Reward model training. We fit a standard BTL model by passing each prompt-response pair (x, y) through an LLM
to obtain its embedding e. We do not perform LLM fine-tuning and simply fit the reward models on the pre-computed
embeddings. In this experiment we use embeddings of the Llama-3-8B* model. The LLM embeddings are processed with a
3-layer MLP with a hidden dimension 512 and an output size of 64. The last linear layer maps from the 64-dimensional
latent embedding to a scalar value representing the reward. All models are trained by minimising the empirical estimate of
the negative-loglikelihood loss according to the BTL model:

LR = −
∑

(x,yw,yℓ)

log σ
(
rθ(x, y

w)− rθ(x, y
ℓ)
)
, (10)

where yw, yℓ stand for the winning and loosing responses, respectively. All models are trained using the Adam optimiser
with a learning rate of 1e-4 for 10 epochs. Model weights θ with the highest validation accuracy are saved for evaluation.
For each value of ρtr we train models with 3 random seeds.

E. The HH-RLHF Case Study
E.1. Experimental Details

Code for reproducing the experiments is made available at: https://github.com/kasia-kobalczyk/causal-preference-learning.

Dataset. We rely on the extended version of the HH-RLHF dataset (Bai et al., 2022) as provided by Siththaranjan et al.
(2024). The entire dataset can be represented as tuples (t, x, y, y′, c, ℓ), where c ∈ {0, 1} denotes the objective with
which the choice ℓ ∈ {0, 1} is made and t ∈ {0, 1} denotes the type of x, i.e. whether (x, y, y′) was originally part
of the helpful (t = 0) or harmless split (t = 1). In the original data (Bai et al., 2022) we only observe examples with
t = c. Siththaranjan et al. (2024) augment this dataset with counterfactual labels for such that t ̸= c which we refer to as
inconsistent samples. We create six independent training datasets, controlling the ratio of consistent to inconsistent samples,
i.e. the parameter ρ = P (type(X) = C) ∈ {0.5, 0.6, 0.7, 0.8, 0.9, 1.0}. The resulting training datasets consist of 30.000
samples (x, y, y′, c, ℓ), with the label t not being part of the training sets. We also create validation splits with the same
values of ρ’s of 6.000 sample. The remaining 46518 samples is left for testing.

Models. We train three different versions of multi-objective BTL models. Each model has the same pre-processing backbone.
Prompt-response pair (x, y) are passed through an LLM to obtain its embedding e. We do not perform LLM fine-tuning and
simply fit the reward models on the pre-computed embeddings. We use embeddings of the Llama-3-8B* model.

• Base: The embeddings e are concatenated with the objective label c and passed through a 3-layer MLP rθ : Rd → R
with a hidden dimension of 512 and outputting the predicted scalar reward r̂. The model is trained by finding parameters
θ that maximise the log-likelihood under the BTL model as in (10).

• Multihead: The embeddings e are passed through a 3-layer MLP gθ : Rd → R512 with a hidden dimension of 512
mapping them to a latent representation ẑ ∈ R512. Depending on the value of c, the vectors ẑ are then passed to one of

* huggingface.co/meta-llama/Meta-Llama-3-8B
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the two prediction heads fw0
: R512 → R or f1 : R512 → R. Here, we let f0 and f1 be 1 layer MLPs with a hidden

dimension of 512. Thus the reward function can be defined as:

rθ,w0,w1(x, y, c) =

{
fw0

(gθ(x, y)) if c = 0

fw1
(gθ(x, y)) if c = 1

(11)

The model is trained by finding parameters (θ, w0, w1) that maximise the log-likelihood under the BTL model analogously
to (10), replacing rθ with rθ,w0w1

.

• Adversarial: The adversarial model adds an additional network hϕ : R512 → R on top of the multihead architecture,
mapping from ẑ to unnormalised log probabilities of C = 1. Here, we let hϕ be a 1-layer MLP with a hidden dimension
of 512. The model is trained under the adversarial objective:

min
θ,w0,w1

max
ϕ

LR(θ, w0, w1)− λLadv(θ, ϕ), (12)

where LR(θ, w0, w1) is the negative log-likelihood under the BTL model of the reward function rθ,w0,w1
as in the

Multihead model and Ladv is the binary-cross entropy loss computed across all prompt-response pairs–i.e., both for
(x, y) and (x, y′) within each sample (x, y, y′, c, ℓ):

Ladv(ϕ, θ) = −
∑

(x,y,y′,c)∈D

hϕ(ẑ)c+ (1− hϕ(ẑ))(1− c) + hϕ(ẑ
′)c+ (1− hϕ(ẑ

′))(1− c), (13)

where ẑ = gθ(x, y) and ẑ′ = gθ(x, y
′). The trade off between the two losses is controlled by the hyperparameter λ,

which in our experiments we set to 1.0. The min-max optimisation problem is implemented with the gradient reversal
technique (Ganin et al., 2016).

All MLPs are implemented with GELU activation functions (Hendrycks & Gimpel, 2023).

Training. All models are trained using the Adam optimiser with a learning rate of 1e-4 for 10 epochs. Model weights with
the highest validation accuracy are saved for evaluation. For each value of ρ we train models with 5 random seeds.

E.2. Results

Table 2 shows the test-time accuracies of all models trained on datasets with varying values of ρ. Table 3 shows the
accuracies on the training sets at the training step corresponding to the best model performance on the validation set. As
discussed in the main body of the paper, the Base model exhibits strong overfitting. The Multihead architecture mitigates
this to an extent, with the additional Adversarial objective bringing further improvements on the inconsistent samples.

type(X) = C False True

model Base Multihead Adversarial Base Multihead Adversarial
ρ

0.5 60.0 ± 0.2 62.9 ± 0.2 63.7 ± 0.2 60.9 ± 0.1 66.0 ± 0.1 66.3 ± 0.1
0.6 59.6 ± 0.1 62.4 ± 0.1 63.0 ± 0.1 61.3 ± 0.1 67.0 ± 0.1 67.3 ± 0.1
0.7 58.4 ± 0.1 60.6 ± 0.1 62.3 ± 0.1 62.5 ± 0.2 67.2 ± 0.1 67.6 ± 0.1
0.8 56.7 ± 0.1 58.6 ± 0.1 61.3 ± 0.1 63.7 ± 0.2 67.6 ± 0.2 67.9 ± 0.2
0.9 55.9 ± 0.1 56.3 ± 0.1 58.9 ± 0.1 64.2 ± 0.2 67.9 ± 0.2 68.4 ± 0.2
1.0 54.9 ± 0.1 53.8 ± 0.1 53.5 ± 0.1 64.1 ± 0.2 67.9 ± 0.2 68.4 ± 0.2

Table 2: Test accuracy [%] across all model architectures trained on datasets with varying values of ρ.
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type(X) = C False True

model Base Multihead Adversarial Base Multihead Adversarial
ρ

0.5 73.5 ± 0.2 72.2 ± 0.2 72.2 ± 0.2 74.1 ± 0.2 74.8 ± 0.2 74.2 ± 0.2
0.6 71.3 ± 0.2 73.0 ± 0.2 73.0 ± 0.2 73.1 ± 0.1 75.8 ± 0.1 75.8 ± 0.1
0.7 73.9 ± 0.2 70.0 ± 0.2 68.0 ± 0.2 78.0 ± 0.1 74.9 ± 0.1 72.7 ± 0.1
0.8 69.4 ± 0.3 68.0 ± 0.3 69.9 ± 0.3 75.1 ± 0.1 75.3 ± 0.1 74.7 ± 0.1
0.9 73.7 ± 0.4 64.5 ± 0.4 67.2 ± 0.4 80.1 ± 0.1 75.0 ± 0.1 74.6 ± 0.1
1.0 – – – 79.6 ± 0.1 74.1 ± 0.1 72.4 ± 0.1

Table 3: Training accuracy [%] across all model architectures trained on datasets with varying values of ρ.
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