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Abstract
We address the regression problem under the con-
straint of demographic parity, a commonly used
fairness definition. Recent studies have revealed
fair minimax optimal regression algorithms, the
most accurate algorithms that adhere to the fair-
ness constraint. However, these analyses are
tightly coupled with specific data generation mod-
els. In this paper, we provide meta-theorems
that can be applied to various situations to val-
idate the fair minimax optimality of the corre-
sponding regression algorithms. Furthermore, we
demonstrate that fair minimax optimal regression
can be achieved through post-processing methods,
allowing researchers and practitioners to focus
on improving conventional regression techniques,
which can then be efficiently adapted for fair re-
gression.

1. Introduction
Machine learning systems have become increasingly preva-
lent in decision-making across various domains, including
healthcare, finance, and criminal justice. While these sys-
tems promise more efficient and data-driven decisions, they
also raise significant concerns regarding fairness and eq-
uity. As machine learning models learn from historical data,
they can inadvertently perpetuate or even exacerbate exist-
ing societal biases, leading to unfair outcomes for certain
social groups. Numerous instances of unfair behaviors in
real-world machine learning systems have been reported,
including biased recidivism risk prediction (Angwin et al.,
2016), discriminatory hiring practices (Dastin, 2018), in-
equitable facial recognition performance (Crockford, 2020;
Najibi, 2020), and biased credit scoring (Vigdor, 2019).
These reports underscore the urgent need to address the
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issue of unfairness in machine learning.

To mitigate unfair bias, researchers have developed di-
verse methodologies for constructing accurate predictors
that ensure certain fairness definitions. These method-
ologies can be categorized into three main types: pre-
processing techniques that modify the training data (Feld-
man et al., 2015), in-processing methods that incorpo-
rate fairness constraints during model training (Chuang &
Mroueh, 2020; Zhang et al., 2018; Du et al., 2021; Cotter
et al., 2019; Khalili et al., 2023; Jovanović et al., 2023),
and post-processing approaches that adjust the model’s out-
puts (Menon & Williamson, 2018; Chzhen et al., 2019; Jiang
et al., 2020; Schreuder & Chzhen, 2021; Chen et al., 2023;
Xu & Strohmer, 2023; Xian et al., 2023; Zhao & Gordon,
2019; Chzhen et al., 2020). Methodologies of each type
have been proposed for various fairness definitions, includ-
ing demographic parity (Pedreshi et al., 2008), equalized
odds (Hardt et al., 2016), multicalibration (Kleinberg et al.,
2017), and individual fairness (Dwork et al., 2012). Each
of these fairness criteria aims to address different aspects of
algorithmic bias. These diverse methodologies have signifi-
cantly advanced the field of fair machine learning, enabling
researchers and practitioners to address fairness concerns in
various contexts and applications.

Recent advancements in fair learning algorithms have led to
the development of methods that achieve the best possible
predictive accuracy while adhering to specific fairness defini-
tions, particularly demographic parity. Such advancements
were achieved by constructing fair learning algorithms and
proving their minimax optimality under regression (Chzhen
& Schreuder, 2022; Fukuchi & Sakuma, 2023) and classifi-
cation (Zeng et al., 2024) setups. The fair minimax optimal
algorithm is an algorithm that satisfies the fairness definition
and minimizes the worst-case error taken over a certain set
of data generation models. No fair algorithm can outper-
form the fair minimax optimal algorithm in the sense of the
worst-case error, as the minimization is taken over all the
fair algorithms.

While these optimal methods represent significant progress,
they are often tightly coupled with specific data generation
models, limiting their applicability to a broader range of
real-world scenarios. For example, Chzhen & Schreuder
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(2022) and Fukuchi & Sakuma (2023) each employ certain
linear models of the outcome with Gaussian features, albeit
with different specific formulations. Zeng et al. (2024) work
under assumptions including that the regression function
is within the Hölder class and that both the margin and
strong density conditions are satisfied. The dependence on
these particular data distributions and model assumptions
can restrict the applicability of these approaches, potentially
hindering their adoption in diverse applications where the
underlying data characteristics may differ significantly from
these specific conditions.

Our contributions (Meta-optimality) We address the
limitations of existing analyses for fair regression by es-
tablishing a meta-theorem that applies to a wide range of
scenarios. This meta-theorem provides a connection be-
tween the minimax optimal error for fair regression and that
for conventional regression, allowing for rates tailored to
various situations by leveraging well-established results re-
garding the minimax optimality in conventional regression.
Our approach can combine with minimax optimal regres-
sions under diverse smoothness assumptions (e.g., Hölder,
Sobolev, and Besov spaces (Donoho & Johnstone, 1998;
Giné & Nickl, 2015)) and minimax optimal deep learning
methods (Schmidt-Hieber, 2020; Suzuki, 2018; Suzuki &
Nitanda, 2021; Nishimura & Suzuki, 2023).

(Optimal fair regression by post-processing) We pro-
pose a post-processing algorithm that leverages an opti-
mal conventional regression algorithm. Guided by our
meta-theorem, this construction ensures minimax optimal-
ity under the assumptions employed by the conventional
regression algorithm. Since the proposed algorithm is post-
processing, practitioners can concentrate on refining con-
ventional regression methods, which can then be seamlessly
adapted for fair regression.

(Convergence rate analysis for optimal transport map
estimation in Wasserstein barycenters) A key compo-
nent of our algorithm is optimal transport map estimation
within the Wasserstein barycenter problem, which seeks
a distribution (often called the barycenter) A key compo-
nent of our algorithm is optimal transport map estimation
within the Wasserstein barycenter problem, which seeks a
distribution (often called the barycenter) that minimizes the
(Wasserstein) distances to a set of distributions. The opti-
mal transport map is a mapping between distributions that
achieves the minimum cost. One of our main contributions
is to provide a convergence rate analysis of a transport map
estimator for the Wasserstein barycenter problem, which
may be of independent interest. The analyzed estimator
is based on Korotin et al. (2020), but they did not provide
a convergence rate analysis. The detailed discussion will
appear in Section 7.

All the missing proofs can be found in Appendix A.

Notations For a positive integer m, let [m] = {1, ...,m}
and ∆m denote the probability simplex over [m]. We de-
note the indicator function by 1. For real values a and b,
we define a ∨ b = max{a, b} and a ∧ b = min{a, b}. For
a sequence at indexed by t ∈ T , we represent the family
(at)t∈T as a:. The first derivative of a function f : R → R is
denoted by Df . Given an event E ∈ Z in a probability space
(Z,Z, ν), we denote its complement by Ec and its probabil-
ity by Pν{E}. For a random variable X from (Z,Z, ν) to
a measurable space (X ,X), we denote its expectation and
variance by Eν [X] and Vν [X], respectively.

2. Problem Setup and Preliminaries
2.1. Fair Regression Problems

Consider a fair regression problem with M ≥ 2 social
groups. Let X and Ω ⊂ R be the domains of fea-
tures and outcomes, respectively, where we assume Ω
is open and bounded. For each social group s ∈ [M ]
(e.g., male and female for gender), let X(s) ∈ X and
Y (s) ∈ Ω be random variables on a probability measure
space (Z,Z, µs), representing the features and outcomes
of an individual in group s, respectively. The goal of the
regression problem is to construct a (group-wise) regres-
sor f:, mappings from X to Ω indexed by s ∈ [M ], that
accurately predicts Y (s) based on X(s). The ideal regres-
sor, known as the Bayes-optimal regressor, is defined as
f∗
µ,s = argminf Eµs [(f(X

(s)) − Y (s))2] and is given by
f∗
µ,s(X

(s)) = Eµs [Y
(s) | X(s)]. We use µY,s and µX,s to

denote the laws of Y (s) and X(s), respectively. Additionally,
we denote the law of f∗

µ,s(X
(s)) by µf,s.

Given samples consisting of ns i.i.d. copies of (X(s), Y (s)),
the objective of the learning algorithm is to construct a
regressor f̄n,: that maximizes accuracy while satisfying a
fairness constraint. Let n =

∑
s∈[M ] ns for notational con-

venience. We now introduce the definition of fairness, define
a measure of accuracy, and provide the definition of the fair
optimal algorithm.

Fairness We employ demographic parity (Pedreshi et al.,
2008) as our fairness criterion. A regressor f: satisfies de-
mographic parity if its output distribution remains invariant
across all groups s ∈ [M ].

Definition 2.1. A regressor f: satisfies (strict) demo-
graphic parity if, for all s, s′ ∈ [M ] and for all events E,
P{fs(X(s)) ∈ E} = P{fs′(X(s′)) ∈ E}.

Let F̄(µX,:) denote the set of all regressors satisfying de-
mographic parity for given laws µX,:.

Instead of enforcing strict demographic parity in Def-
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inition 2.1, we adopt the concept of fairness consis-
tency (Chzhen et al., 2020; Fukuchi & Sakuma, 2023).

Definition 2.2. A learning algorithm is consistently fair if
f̄n,: converges in probability to an element of F̄(µX,:) as
n1, ..., nM approach infinity.

Definition 2.2 implies that a consistently fair learning algo-
rithm eventually constructs a regressor that satisfies strict
demographic parity given a sufficiently large sample size.

Accuracy We evaluate the accuracy of a given regressor
by measuring its expected squared distance from the fair
Bayes-optimal regressor. Given probability measures ν: on
a measurable space (Z,Z) indexed by [M ] and weights
w: ∈ ∆M (known to the learner), we define the squared
distance dν:

between functions fs, f ′
s : Z → R indexed by

s ∈ [M ] as

d2ν:
(f:, f

′
: ) =

∑
s∈[M ]

ws

∫
(fs(z)− f ′

s(z))
2
µs(dz)

:=
∑

s∈[M ]

wsd
2
νs
(fs, f

′
s).

The fair Bayes-optimal regressor is defined as the regressor
that satisfies strict demographic parity and minimizes the
deviation from the Bayes-optimal regressor:

f̄∗
µ,: = argmin

f:∈F̄(µX,:)

d2µX,:
(f:, f

∗
µ,:).

The accuracy of a regressor f: is then evaluated by
d2µX,:

(f:, f̄
∗
µ,:).

Optimality The fair minimax optimal algorithm for a
set of distributions P is a consistently fair algorithm that
achieves the fair minimax optimal error over P . The fair
minimax optimal error over P is defined as

Ēn(P) = inf
f̄n,::fair

sup
µ:∈P

Eµn
:
[d2µX,:

(f̄n,:, f̄
∗
µ,:)], (1)

where the infimum is taken over all consistently fair learning
algorithms, and Eµn

:
denotes the expectation over samples.

Thus, no consistently fair learning algorithm can outperform
the fair minimax optimal algorithm in terms of worst-case
expected deviation.

2.2. Fair Bayes-Optimal Regressors and Optimal
Transport Maps

Recent analyses have characterized fair Bayes-optimal re-
gressors using optimal transport maps that arise in the
Wasserstein barycenter problem (Chzhen et al., 2020;
Chzhen & Schreuder, 2022). Given two probability mea-
sures ν and ν′, the optimal transport map with a quadratic
cost function is the unique solution of Monge’s formulation

of the optimal transportation problem between ν and ν′, i.e.,
a transport map ϑ∗ : R → R that realizes the infimum

W 2
2 (ν, ν

′) = inf
ϑ:ϑ♯ν=ν′

∫
1

2
(z − ϑ(z))2ν(dz),

where ϑ♯ν denotes the pushforward measure of ν by ϑ 1.
Given probability measures ν1, . . . , νk, the Wasserstein
barycenter problem with weights w: ∈ ∆k is defined as

inf
ν

∑
i∈[k]

wsW
2
2 (νi, ν). (2)

We refer to the unique solution of Equation (2) as the
barycenter of ν: with weights w:. The optimal transport
map from νi to the barycenter of ν: is denoted by ϑ∗

ν,i.
Building on these concepts, the fair Bayes-optimal regressor
is obtained as follows:
Theorem 2.3 (Chzhen et al. (2020)). Assume that µf,s ad-
mits a density for all s ∈ [M ]. Then, the fair Bayes-optimal
regressor is given by

f̄∗
µ,s(x) = (ϑ∗

µf ,s
◦ f∗

µ,s)(x).

Theorem 2.3 reveals that the fair Bayes-optimal regressor is
characterized by the Bayes-optimal regressor f∗

µ,: and the
optimal transport maps ϑ∗

µf ,:
. Throughout the paper, we

assume µf,s admits a density for all µ: ∈ P and s ∈ [M ] so
that the condition of Theorem 2.3 holds.

2.3. Potential Minimization and Optimal Transport
Maps

The transport maps in Wasserstein barycenter problems
are characterized by the minimizer of multiple correla-
tion over congruent potentials (Korotin et al., 2020). Con-
gruent potentials with weights w: ∈ ∆k are convex and
lower semi-continuous functions u : R → R such that∑

i∈[k] wiDu†(z) = z for all z ∈ Ω, where u†(z) =

supx(zx− u(x)) is the convex conjugate of u. Given
probability measures ν:, the multiple correlation of ν: with
weights w: for congruent potentials u: is defined as

C(u:; ν:) =
∑
i∈[k]

wi

∫
uidνi.

Let u∗
: denote the optimal congruent potentials that mini-

mize C(u:; ν:). Through the analyses by Agueh & Carlier
(2011); Álvarez Esteban et al. (2016), we obtain the follow-
ing characterization of the optimal transport maps:
Corollary 2.4 (Agueh & Carlier (2011); Álvarez Esteban
et al. (2016)). Let ϑ∗

: be the optimal transport maps from ν:
to the barycenter of ν: with weights w:. Suppose that for all
i ∈ [k], νi admits densities. Then, ϑ∗

i = Du∗
i for i ∈ [k].

1We use the notation W2 because W2 is known as the 2-
Wasserstein distance.
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By Corollary 2.4, we can obtain the optimal transport maps
ϑ∗
: by solving infu::congruent C(u:; ν:).

3. Main Result
Our main result is a meta-theorem that characterizes the fair
minimax optimal error (see Equation (1)), showing how its
convergence rate depends on P . We begin by introducing
several technical assumptions on P before presenting our
main meta-theorem.

For convinience, we introduce several notations. We use
notations PY = {µY,: : µ: ∈ P}, PX = {µX,: : µ: ∈ P},
and Pf = {µf,: : µ: ∈ P}. We denote Ps = {µs : µ: ∈ P}
for s ∈ [M ]. Let FP = {f∗

µ,: : µ: ∈ P}, and let FP,s =
{f∗

µ,s : µ: ∈ P} for s ∈ [M ]. Let ΘP = {ϑ∗
µf ,:

: µ: ∈ P}.
We omit P in the subscript of these notations if P is clear
from the context.

Assumptions We begin with our first assumption.

Assumption 3.1. P satisfies the following three conditions:

1. PY × PX ⊆ {(µY,:, µX,:) : µ: ∈ P},
2. for any permutation π over [M ], µπ(:) ∈ P if µ: ∈ P ,
3. Fs is convex, meaning for any f, f ′ ∈ Fs and t ∈ (0, 1),

tf + (1− t)f ′ ∈ Fs.

Intuitively, the first and second conditions imply that the
learner has no prior knowledge about (i) how the distribu-
tions of Y (s) and X(s) are related, nor (ii) how the distri-
butions {µs}s∈[M ] differ. These conditions are naturally
satisfied in many real-world scenarios. Note that the third
condition does not require the regression functions them-
selves to be convex but rather that the set Fs is convex,
which can still accommodate non-convex functions.

Next, we impose assumptions on µf,: to facilitate the estima-
tion of the optimal transport maps ϑ∗

µf ,:
. First, we assume

that ϑ∗
µf ,:

are elements of Lipschitz and strictly increasing
functions ML

2. Specifically, ML is defined as the set of
functions ϑ : Ω → Ω satisfying

L−1(y − x) ≤ ϑ(x)− ϑ(y) ≤ L(y − x) ∀x > y. (3)

Second, we assume that µf,s satisfies the Poincaré-type
inequality: there exists a constant C > 0 such that for any
function g : Ω → Ω with L-Lipschitz continuous gradient,

Vµs

[
g
(
X(s)

)]
≤ CEµs

[(
Dg
(
X(s)

))2]
. (4)

Assumption 3.2. There exists a constant L > 1 such that
for all µ: ∈ P and all s ∈ [M ], 1) ϑ∗

µf ,s
∈ ML and 2) µf,s

satisfies the Poincaré-type inequality in Equation (4).

2It is worth noting that any transport map over the real line is a
non-decreasing function due to the convexity of the potential.

Note that similar assumptions to Assumption 3.2 are also
employed in studies on transport map estimation, including
Hütter & Rigollet (2021); Divol et al. (2024).

We use the following complexity measure of the class of
transport maps Θ based on metric entropy. Given ϵ > 0,
the ϵ-covering number of a set A ⊆ X with a metric space
(X , d) is denoted as N(ϵ, A, d); namely, N(ϵ, A, d) denotes
the minimum number of balls whose union covers A. Let
ln+(x) = 0 ∨ ln(x). The complexity measure is defined as
follows:

Definition 3.3. The complexity of Pf is (α, β) for α > 0
and β ≥ 0 if there exist constants C,C ′ > 0 and ϵ̄ > 0, and
a sequence of subsets Θ1 ⊆ Θ2 ⊆ ... ⊆

{
ϑ∗
ν,: : ν: ∈ Pf

}
such that for any integer j ≥ 0,

1. supν:∈Pf
infϑ:∈Θj d

2
ν:
(ϑ:, ϑ

∗
µ,:) ≤ C2−αj ,

2. supν:∈Pf
lnN(ϵ,Θj , dν:

) ≤ C ′2βj ln+(1/ϵ) for ϵ ∈
(0, ϵ̄].

In our main theorem, we will assume the complexity is
(α, β) for some α and β.

Meta-theorem We now characterize the fair minimax op-
timal error Ēn(P) in terms of the conventional minimax
optimal error. Specifically, for a given group s ∈ [M ], the
group s’s conventional minimax optimal error is defined as

Ek(Ps) = inf
fk

sup
µs∈Ps

Eµk
s

[
d2µX,s

(fk, f
∗
µ,s)
]

where the infimum is taken over all regression algorithms
that take k i.i.d. copies of (X(s), Y (s)) as the observed
sample. Let ñ = mins∈[M ] ns/ws.

Theorem 3.4. Assume Assumptions 3.1 and 3.2 and that the
complexity of Pf is (α, β) for some α > 0 and β ≥ 0. Then,
there exists a consistently fair learning algorithm such that

En(P1) ≤ Ēn(P) ≤ C·L2
∑

s∈[M ]

wsEns(Ps) +

(
ñ

ln1/2(ñ)

)− α
α+β

∨ ñ−1

,

for some constant C > 0.

We highlight several implications of Theorem 3.4:

1. Assuming there exists a constant c > 0 such that
ns ≥ cwsn for all s ∈ [M ], Theorem 3.4 shows that
the optimal rate with respect to n is En(P1) (note that
En(P1) = ... = En(PM )) whenever En(P1) is larger
than ( n

ln1/2(n)
)−α/(α+β) ∨ n−1. In such cases, the rate

of Ēn(P) can vary with P along with En(P1).
2. In general, Theorem 3.4 implies that if the conventional

regression problem is more difficult than the transport
map estimation problem, then the optimal fair regression
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error is dominated by the conventional minimax error.
This situation commonly arises in high-dimensional set-
tings for X (e.g., image, text, or audio regression).

3. Chzhen et al. (2020) also established a similar upper
bound on the error under the demographic parity con-
straint. However, their result has two notable limita-
tions. First, their analysis requires stronger assumptions
than ours. For instance, they assume that the conven-
tional regression algorithm admits a sub-Gaussian high-
probability error bound, whereas our results only require
a bound on the expected squared error. Furthermore,
while they require uniform upper and lower bounds on
the density of µf,s, we only assume the Poincaré-type
inequality. These differences broaden the applicability
of our meta-theorem relative to their findings.

4. The second limitation of Chzhen et al. (2020) is that
their results cannot achieve a convergence rate faster
than n−1/2, since their upper bound on the estimation
error of ϑ∗

µ,: is n−1/2 and dominates the other terms. In
contrast, our result can achieve a rate faster than n−1/2

by exploiting the smoothness structure of ϑ∗
µ,:.

Illustrative Example To concretely demonstrate the im-
plications of our theoretical results, we consider a represen-
tative scenario in which the regression function f∗

µ,s is a
composition of multiple functions, as studied by Schmidt-
Hieber (2020), and the optimal transport map ϑ∗

µ,s lies
within a Sobolev function class. Specifically, let f∗

µ,s belong
to the class{

gq ◦ ... ◦ g0 :

gi = (gij)j : [ai, bi]
di → [ai+1, bi+1]

di+1 ,

gij ∈ Cβi

ti

(
[ai, bi]

ti
)}

,

where Cβ
r denotes the Hölder class of functions with smooth-

ness parameter β and r-dimensional input, di is the input
dimension of gi, and ti < di indicates that each gij depends
on only ti out of di variables. This structure captures the
notion of compositional functions with sparse dependencies,
which is prevalent in high-dimensional statistical learning.

For regression functions of this form, the mini-
max optimal error for group s satisfies En(Ps) =

Θ
(
maxi n

−β∗
i /(2β

∗
i +ti)

s

)
up to logarithmic factors, where

β∗
i = βi

∏q
ℓ=i+1(βℓ ∧ 1). Also, for the class of transport

maps ϑ∗
µ,s taken to be the Sobolev class of smoothness

γ > 0, Definition 3.3 is satisfied with α = 2γ and β = 1 by
choosing Θj as the span of the first j wavelet basis functions.
Consequently, the fair minimax error is obtained as

Ēn(P) = Θ
(
max

i
n−β∗

i /(2β
∗
i +ti) + n−2γ/(2γ+1)

)
,

again up to logarithmic factors, provided that there exists a
constant c > 0 such that ns ≥ cwsn for all s ∈ [M ].

An important insight from this example is that if the smooth-
ness of the regression components and the transport maps
are comparable (i.e., β∗

i ≈ γ), then the minimax error is
dominated by the regression term whenever ti > 1 for some
i. Here, ti reflects the intrinsic dimensionality of the essen-
tial intermediate data representation. In practical situations,
the intermediate representations may be multi-dimensional
(ti > 1), and thus the overall rate is determined by the
conventional regression problem.

4. Optimal Algorithm and Upper Bound
In this section, we present our fair regression algorithm. Its
core structure is similar to algorithms proposed by Chzhen
et al. (2020); Chzhen & Schreuder (2022). Leveraging The-
orem 2.3, we obtain the fair Bayes-optimal regressor by
composing the optimal transport maps ϑ∗

µf ,:
from µf,: to the

barycenter of µf,: with the conventional Bayes-optimal re-
gressor f∗

µ,:. Let fn,: and ϑn,: be estimators of f∗
µ,: and

ϑ∗
µf ,s

, respectively. We define the estimator of f̄∗
µ,: as

f̄n,s(x) = (ϑn,s ◦ fn,s)(x). This procedure can be viewed
as post-processing since we first construct fn,: using a con-
ventional learning algorithm and then refine its outputs using
ϑn,:.

We employ a minimax-optimal conventional regression al-
gorithm for the model P as the estimator fn,:. Our main
methodological contribution, distinguishing our work from
earlier approaches, is the introduction of a suitable estimator
for ϑn,:. To estimate ϑ∗

µf ,:
, we utilize the strategy proposed

by Korotin et al. (2020) (see Section 2.3). We also provide
a novel analysis of the convergence rate for the estimation
error of ϑn,:, which was not addressed in Korotin et al.
(2020).

We first describe the construction of ϑn,: and then demon-
strate the overall procedure of our fair regression algorithm
along with analyses of its accuracy and fairness.

Barycenter estimation As discussed in Section 2.3, one
can obtain the optimal transport maps in the Wasserstein
barycenter problem by finding congruent potentials that
minimize the multiple correlation C(u:, ν:). In the fair re-
gression setting, our goal is to estimate the transport maps
in the Wasserstein barycenter problem for µf,:. However,
the learner cannot directly observe µf,: since neither f∗

µ,:

nor µX,: is known. Instead, we substitute fn,: for f∗
µ,: and

use empirical measures from the observed samples in place
of µX,:. Specifically, let µf̂ ,s be the law of fn,s(X(s)) for
s ∈ [M ], and let µn,f̂ ,s be the corresponding empirical mea-
sure induced by a sample of size ns. Then, the estimator
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Algorithm 1 Optimal fair regression

input Samples (Y (s)
1 , X

(s)
1 ), ..., (Y

(s)
2n , X

(s)
2ns

)
output f̄n,:

1: Construct fn,: using a minimax optimal conven-
tional regression algorithm with halves of samples
(Y

(s)
1 , X

(s)
1 ), ..., (Y

(s)
ns , X

(s)
ns )

2: Construct ϑn,: by Equation (5) with the remaining sam-
ples fn,s(X

(s)
n+1), ..., fn,s(X

(s)
2ns

)
3: f̄n,s(x) = (ϑn,s ◦ fn,s)(x)

ϑn,: is defined as the minimizer of

inf
ϑ:∈Θj

C(uϑ,:, µn,f̂ ,:), (5)

where uϑ,: denotes the potential functions corresponding to
the transport maps ϑ:, and Θj is a sequence of subsets of Θ
described in Definition 3.3.
Remark 4.1. We require a specific construction of uϑ,: for
technical reasons. We extend the input and output domains
of any function ϑ : Ω → Ω to R while preserving the
property in Equation (3) by defining ϑ(z) = z + csup for
large z and ϑ(z) = z + cinf for small z with appropriate
constants csup, cinf ∈ R. We interpret functions in Θ as their
extended versions. Letting u†

ϑ,s(z) =
∫ z

0
ϑ−1
s (x)dx, we

define uϑ,s as the convex conjugate of u†
ϑ,s; i.e., uϑ,s(z) =

supx∈R(xz − u†
ϑ,s(x)).

Overall algorithm Algorithm 1 summarizes the overall
procedure of our fair regression algorithm. For simplicity,
we assume that the sample size for group s is 2ns. In the first
step, we execute a minimax-optimal conventional regres-
sion algorithm with half of the samples to obtain fn,:. By
definition, fn,s achieves an error of En(Ps). In the second
step, we estimate the transport map ϑn,: via Equation (5)
using the remaining samples. As shown in the next corollary,
Algorithm 1 achieves the desired properties.

Corollary 4.2. Under the same conditions as in Theo-
rem 3.4, Algorithm 1 achieves the upper bound in Theo-
rem 3.4 and is consistently fair.

Remark 4.3 (Limitation). The minimization over congruent
potentials may present computational challenges. Korotin
et al. (2020) proposed adding a penalty term to enforce con-
gruency instead of handling the constraint directly, which
may be more practical. Analysis of convergence rates under
approximate satisfaction of congruency remains an impor-
tant direction for future work.

Connection between fair regression and transport maps
estimation in Wasserstein barycenter To prove Corol-
lary 4.2, we relate the regression error and unfairness of

Algorithm 1 to the estimation error of the estimated trans-
port maps ϑn,:. Specifically, we demonstrate the connection
of Algorithm 1’s error and unfairness with d2µf̂,:

(ϑn,:, ϑµf̂
)

through the following propositions:
Proposition 4.4. Let f̄n,: be a regressor obtained by Algo-
rithm 1. Under the same conditions as in Theorem 3.4, there
exists a universal constant C > 0 such that

Eµ2n
:

[
d2µX,:

(f̄n,:, f̄
∗
µ,:)
]
≤

C

L2
∑

s∈[M ]

wsEns(Ps) + Eµn
f̂,:

[
d2µf̂,:

(ϑn,:, ϑ
∗
µf̂ ,:

)
],

where Eµn
f̂,:

denotes the expectation over the samples used
for constructing ϑn,:.
Proposition 4.5. Let f̄n,: be a regressor obtained by Algo-
rithm 1. Under the same conditions as in Theorem 3.4, we
have

inf
ν

max
s∈[M ]

W2(f̄n,s♯µX,s, ν) ≤√
1

Mwmin
dµf̂,:

(
ϑn,:, ϑ

∗
µf̂ ,:

)
a.s.,

where wmin = mins∈[M ] ws.

By Proposition 4.4, we obtain an upper bound on
the regression error by deriving an upper bound on
Eµn

f̂,:
[d2µf̂,:

(ϑn,:, ϑ
∗
µf̂ ,:

)]. Additionally, Proposition 4.5 im-
plies that Algorithm 1 achieves fairness consistency in Def-
inition 2.2 if Pµn

f̂,:

{
dµf̂,:

(ϑn,:, ϑ
∗
µf̂ ,:

) = o(1)
}
= 1− o(1).

We will provide upper bounds on the error dµf̂,:
(ϑn,:, ϑµf̂

)
through the analyses shown in the next section.

5. Transport Maps Estimation in Wasserstein
Barycenter

In this section, we investigate the convergence rate of our
estimator for transport maps estimation in the Wasserstein
barycenter. We conduct our analyses under the general setup
of transport maps estimation in the Wasserstein barycenter
for real-valued probability measures. We first describe the
general setup and demonstrate the convergence rate of our
estimator, which is the main result of this section. We then
provide detailed analyses to support the convergence rate.

Setup Consider the problem of estimating the transport
maps that arise in the Wasserstein barycenter problem. Let
ν: ∈ Q be probability measures indexed by [M ] on a mea-
surable space (Ω,Z). Recall that the Wasserstein barycenter
problem involves finding the minimizer of the following
optimization problem:

inf
ν

∑
s∈[M ]

wsW
2
2 (νs, ν).
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Let ν be the minimizer of the above optimization problem,
i.e., the Wasserstein barycenter. Recall that we denote ϑ∗

ν,s

as the optimal transport map from νs to ν for each s ∈ [M ].
Given M samples each i.i.d. from νs, the analyst’s goal
is to estimate ϑ∗

ν,:. We denote the estimator of ϑ∗
ν,: as ϑn,:.

According to Propositions 4.4 and 4.5, we assess the error
of the estimated transport maps by

dν:

(
ϑn,:, ϑ

∗
ν,:

)
=
∑

s∈[M ]

wsdνs

(
ϑn,s, ϑ

∗
ν,s

)
=
∑

s∈[M ]

ws

∫ (
ϑn,s(z)− ϑ∗

ν,s(z)
)2
νs(dz).

Note that dν:

(
ϑn,:, ϑ

∗
ν,:

)
is a random variable with random-

ness stemming from the samples. The goal of the analyses
is thus to provide an upper bound on the expectation of the
error or a probabilistic upper bound on the error.

Estimator Our estimator ϑn,: obtains the estimated trans-
port maps by minimizing the multiple correlation over the
sieved set of transport maps. Let Θ = {ϑ∗

ν,: : ν: ∈ Q} be
the set of possible transport maps. Suppose that the com-
plexity of Q is (α, β) for some α > 0 and β ≥ 0 with a
sequence Θj ⊆ Θ, defined in Definition 3.3. Then, ϑn,: is
the minimizer of the following minimization problem:

inf
ϑ:∈Θj

C(uϑ,:, νn,:),

with an appropriate choice of j.

Estimation Error Bound Our main results in this sec-
tion are expected and probabilistic upper bounds on
dν:

(ϑn,:, ϑ
∗
ν,:).

Theorem 5.1. Let ϑn,: = argminϑ:∈Θj
C(uϑ,:; νn,:) be

the estimated transport maps, with j satisfying 2j ≤
( ñ
ln1/2(ñ)

)1/(α+β)∧ ñ1/α ≤ 2j+1. Suppose that ϑ∗
ν,s ∈ ML

for some L > 1, and that νs satisfies the Poincaré-type
inequality in Equation (4) for all ν: ∈ Q. Also, suppose that
the complexity of Q is (α, β) for some α > 0 and β ≥ 0.
Then, there exists a constant C > 0, possibly depending on
L and M , such that

Eνn
:

[
d2ν:

(ϑn,:, ϑ
∗
ν,:)
]
≤ C

(
ñ

ln1/2(ñ)

)−α/(α+β)

∨ ñ−1.

Moreover, for all t ≥ 1, with probability at least 1− 2e−t,

d2ν:
(ϑn,:, ϑ

∗
ν,:) ≤ Ct

(
ñ

ln1/2(ñ)

)−α/(α+β)

∨ ñ−1.

Theorem 5.1 shows that a larger α and a smaller β result in
a faster convergence rate.

5.1. Analyses

To obtain the upper bound in Theorem 5.1, we follow the
convergence rate analyses for the sieved M -estimator (See,
e.g., Van Der Vaart & Wellner, 2023), as our estimator in
Equation (5) can be viewed as a sieved M -estimator. The
primary challenge in the analyses is that ϑ: → C(uϑ,:, νn,:)
is not a simple empirical process, formally defined as fol-
lows. The expectation operator Eν is defined as Eνu =
Eν [u(Z)] for a function u : Z → R and Z ∼ ν. For a
positive integer n, the empirical expectation operator Eν,n

is given by Eν,nu = 1
n

∑n
i=1 u(Zi), where Z1, ..., Zn are

drawn i.i.d. from ν. Define operators for measurable func-
tions us : Z → R indexed by [M ] as

Eν:
u: =

∑
s∈[M ]

wsEνs
us En,ν:

u: =
∑

s∈[M ]

wsEns,νs
us.

Then, the populational and empirical multiple correlations
can be written as

C(uϑ,:, ν:) = Eν:uϑ,: C(uϑ,:, νn,:) = En,ν:uϑ,:.

To utilize existing analyses of the sieved M -estimator, we
need to reveal the concentration of the process En,ν:

−Eν:
.

Concentration of process We first prove a Bernstein-
type concentration inequality for fixed potentials uϑ,:. For
s ∈ [M ], let νs be a probability measure on a measurable
space (Z,Z). We denote by Z(s) a random variable that
follows νs. Let U be a class of functions us : Z → R
indexed by s ∈ [M ].

Proposition 5.2. Given u: ∈ U such that∑
s∈[M ] wsVνs

[us(Z
(s))] ≤ σ2 and maxs∈[M ] |fs(Z(s))−

Eνs
us| ≤ b almost surely, we have

P{(En,ν:
− Eν:

)u: > t} ≤ exp

(
−1

2

ñt2

σ2 + tb

)
.

Next, based on Proposition 5.2, we establish the maximal
inequality over the set of functions U . Following Proposi-
tion 5.2, for u: ∈ U , define

σ2
ν:
(u:) =

∑
s∈[M ]

wsVνs

[
us(Z

(s))
]
,

bν:(u:) = inf
b

{
b : max

s∈[M ]

∣∣∣us(Z
(s))− Eνsus

∣∣∣ ≤ b a.s.
}
.

Note that σν:
and bν:

satisfy the triangle inequality. As
complexity measures for U , we introduce Dudley integral-
type metrics, defined for δ > 0 as

Hσ,ν:
(δ;U) =

∫ δ

0

√
ln(N(ϵ,U , σν:))dϵ,

7
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Hb,ν:
(δ;U) =

∫ δ

0

ln(N(ϵ,U , bν:
))dϵ.

This leads to the following maximal inequality:

Proposition 5.3. Given a fixed u∗
: ∈ U , σ > 0, and b > 0,

define

U(σ, b;u∗
: ) =

{u: ∈ U : σν:
(u: − u∗

: ) ≤ σ, bν:
(u: − u∗

: ) ≤ b}.

Then, there is an universal constant C > 0 such that for all
t > 0,

Pνn
:

{
sup

u:∈U(σ,b;u∗
: )

√
ñ(En,ν: − Eν:)(u: − u∗

: ) >

C

(
Hσ,ν:

(σ;U) + 1√
ñ
Hb,ν:

(b;U) + t

)}

≤ exp

(
−

√
ñt2√

ñσ2 + tb

)
.

Relationship between potentials and transport maps
To apply existing analyses of sieved M -estimators to our
setting, we establish the relationship between potential uϑ,:

and transport map ϑ:. Specifically, we prove the following:

Proposition 5.4. Let ν: be probability measures indexed by
[M ] such that ϑ∗

ν,: ∈ MM
L for some L > 1. Then, for all

ϑ: ∈ MM
L such that

∑
s∈[M ] wsϑ

−1
s (z) = z for all z ∈ Ω,

1

2L
d2ν:

(
ϑ:, ϑ

∗
ν,:

)
≤ Eν:

(
uϑ: − uϑ∗

ν,:

)
≤ L

2
d2ν:

(
ϑ:, ϑ

∗
ν,:

)
.

As shown in Proposition 5.4, there exists a tight relation-
ship between the distance between transport maps and the
difference between their potentials.

Proof sketch of Theorem 5.1 We conduct a refined anal-
ysis similar to that in Van Der Vaart & Wellner (Theorem
3.4.1 2023). Let ϑ∗

j,: be the minimizer of ϑ: 7→ C(uϑ,:, ν:)
over ϑ: ∈ Θj . From Proposition 5.4, we have

d2ν:

(
ϑn,:, ϑ

∗
j,:

)
≤ 4L(En,ν: − Eν:)(uϑn,: − uϑ∗

j ,:
)

+ 8LEν:

(
uϑ∗

j,:
− uϑ∗

ν,:

)
. (6)

Given t ≥ 1, with an appropriate τ > 0, define

Θj,k =
{
ϑ: ∈ Θj : ktτ

2 ≤ dν:

(
ϑ:, ϑ

∗
j,:

)
≤ (k + 1)tτ2

}
.

Application of the peeling argument yields

Pνn
:

{
d2ν:

(
ϑn,:, ϑ

∗
j,:

)
≥ tτ2

}
≤

∞∑
k=1

Pνn
:
{ϑn,: ∈ Θj,k}.(7)

Elementary calculations combined with Equation (6) yield

Pνn
:
{ϑn,: ∈ Θj,k} ≤

Pνn
:

{
kστ2

4L
− 2Eν:

(
uϑ∗

j,:
− uϑ∗

ν,:

)
≤

sup
ϑ:∈Θj,k

(En,ν: − Eν:)(uϑ,: − uϑ∗
j ,:
)

}
. (8)

We can apply Proposition 5.3 to Equation (8)
while controlling Hσ,ν: and 2Eν:

(
uϑ∗

j,:
− uϑ∗

ν,:

)
≤

L infϑ:∈Θj
d2ν:

(
ϑ∗
j,:, ϑ

∗
µ,:

)
using the assumption of (α, β)-

complexity. Summing over k as in Equation (7) yields the
desired bounds.

6. Lower Bound
To establish our lower bound, we develop a technique based
on reducing the fair regression estimation problem to a
conventional regression estimation problem. Specifically,
let f̄∗

n,: be the optimal fair regression algorithm satisfying

sup
µ:∈P

Eµ:

[
d2µ:

(
f̄∗
n,:, f̄

∗
µ,:

)]
= Ēn(P), (9)

We demonstrate that we can construct a conventional regres-
sion algorithm using f̄∗

n,:. The error of this conventional
regression algorithm is bounded below by En(Ps), which
consequently provides a lower bound on Ēn(P) in terms of
En(Ps).

Consider the scenario where distributions µ1, ..., µM are
identical, and f̄∗

n,: is constructed using samples compris-
ing ns i.i.d. points from µs. Under these conditions, we
can construct a regressor for f∗

µ,1 as fn =
∑

s∈[M ] wsf̄
∗
n,s.

The error of this regressor provides a lower bound on Equa-
tion (9) as follows:

Theorem 6.1. Under the conditions stated in Theorem 3.4,
we have

En(P1) ≤ sup
µ1∈P1:∀s∈[M ],µs=µ1

Eµ:

[
d2µ1

(
fn, f

∗
µ,1

)]
≤ sup

µ:∈P
Eµ:

[
d2µ:

(
f̄∗
n,:, f̄

∗
µ,:

)]
.

This result directly establishes a lower bound on Ēn(P) in
Theorem 3.4.

7. Related Work: Optimal Transport Map
Estimation

The problem of optimal transport map estimation in the
Wasserstein distance has been extensively studied (Hütter &
Rigollet, 2021; Divol et al., 2024; Rigollet & Stromme,

8
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2022; Pooladian et al., 2023; Pooladian & Niles-Weed,
2024; DEB et al., 2021; del Barrio et al., 2023; Manole
et al., 2024). The objective of this estimation problem is
to estimate the transport map in W2(µ, µ

′) between two
distributions µ and µ′, given samples from both distribu-
tions. Several approaches have been proposed: Manole et al.
(2024); DEB et al. (2021); Rigollet & Stromme (2022) uti-
lize plug-in estimators, where they first estimate the joint
distribution of (Z, ϑ(Z)) for Z ∼ µ and subsequently con-
struct a transport map by minimizing the expected error
between Z and ϑ(Z). Alternative estimators proposed by
Hütter & Rigollet (2021); Divol et al. (2024); del Barrio et al.
(2023); Pooladian et al. (2023); Pooladian & Niles-Weed
(2024) employ potential minimization techniques. While
these studies provide convergence rate analyses for their
estimators, their methods cannot be directly applied to opti-
mal transport map estimation in the Wasserstein barycenter
problem, as a sample from the barycenter distribution are
not observable.

Several researchers have developed methods specifically for
optimal transport map estimation in the Wasserstein barycen-
ter problem, though without accompanying convergence
rate analyses. Korotin et al. (2020) proposed an estimator
based on potential minimization, as detailed in Section 2.3.
Fan et al. (2021) introduced an estimator based on minimax
optimization. Korotin et al. (2022) developed an iterative
algorithm based on the fixed-point theorem established by
Álvarez Esteban et al. (2016). Although empirical evalu-
ations have demonstrated that these methods achieve low
estimation errors, theoretical analyses of their convergence
rates remain an open problem.

8. Conclusion
We have presented a minimal optimal fair regression algo-
rithm based on post-processing. Our algorithm achieves
minimax optimality across various scenarios by leveraging
the extensive body of research on minimax optimal con-
ventional regression. Our analysis demonstrates that prac-
titioners can focus their efforts on improving conventional
regression methods, which can then be effectively adapted
for fair regression applications.
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A. Missing Proofs
A.1. Proofs for Section 5

A.1.1. PROOF OF THEOREM 5.1

Analysis for Sieved M -Estimators The estimator for the transport maps ϑ∗
ν,: considered in this work is a sieved M -

estimator. Accordingly, we provide a refined analysis for sieved M -estimators, following the approach of Van Der Vaart &
Wellner (2023, Theorem 3.4.1), under a general framework. Let E and Ê denote the expectation and empirical process
indexed by U , respectively. Let Θ be a parameter space and Θ′ ⊆ Θ a sieved subset. For a family uθ ∈ U parameterized by
θ ∈ Θ, the sieved M -estimator is defined as

θ̂ = argmin
θ∈Θ′

Êuθ.

Let θ0 ∈ Θ denote the ideal parameter such that Euθ0 = infθ∈Θ Euθ, and let θ′0 ∈ Θ′ be the ideal parameter within the
sieved set, i.e., Euθ′

0
= infθ′∈Θ′ Euθ′ . The estimation error of θ̂ is measured by d(θ̂, θ0), where d is a distance function on

Θ.

Within this setup, we derive an error bound for sieved M -estimators under the following assumptions on the processes E
and Ê.
Assumption A.1. There exist constants Kup,Klow > 0 such that for any θ ∈ Θ,

KlowE(uθ − uθ0) ≤ d2(θ, θ0) ≤ KupE(uθ − uθ0).

Assumption A.2. Let γ ∈ (1, 2) and a0, a1, a2, b > 0. Suppose H : R → R is a non-decreasing function such that for all
t > 0,

P

{
sup

θ∈Θ′:d(θ,θ′)≤σ

(E − Ê)(uθ − uθ′) > a0H(σ) + a1 + a2t

}
≤ exp

(
− t2

σ2 + bt

)
,

and σ → H(σ)/σγ is non-increasing for σ > 0.

The following theorem provides the error bound for sieved M -estimators.
Theorem A.3. Suppose that Assumptions A.1 and A.2 hold. Define

τ =
√
4Kup

(√
2E(uθ′

0
− uθ0) +

√
a1 +

√
2a0H

(
A
√
4Kupa0

)
+
√
4a22 + a2b

)
, (10)

where A is a constant such that H(A
√
4Kupa0) ≤ A2. Then, for all t ≥ 1,

P
{
d2(θ̂, θ0) ≥ t

(
2τ2 + 2d2(θ′0, θ0)

)}
≤ 2e−t.

Furthermore,

E
[
d2(θ̂, θ0)

]
≤ 4 ln(2)τ2 + 2d2(θ′0, θ0).

To establish Theorem A.3, we present several supporting lemmas.
Lemma A.4. Suppose there exists τ > 0 such that for all k ≥ 1 and all t ≥ 1,

P
{
ktτ2 ≤ d2(θ̂, θ′0) ≤ (k + 1)tτ2

}
≤ exp(−kt). (11)

Then, for all t ≥ 1,

P
{
d2(θ̂, θ0) ≥ t

(
2τ2 + 2d2(θ′0, θ0)

)}
≤ 2e−t.

Moreover,

E
[
d2(θ̂, θ0)

]
≤ 4 ln(2)τ2 + 2d2(θ′0, θ0).
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Lemma A.5. Under Assumption A.1 and Assumption A.2, the condition in Equation (11) holds for all k ≥ 1 and all t ≥ 1
with τ as defined in Equation (10).

The proof of Theorem A.3 follows directly from Lemma A.4 and Lemma A.5. We provide the proofs of these lemmas
below.

Proof of Lemma A.4. Let t > 0 and τ > 0. Define

Θk(t) =
{
θ ∈ Θ′, ktτ2 ≤ d2(θ, θ′0) ≤ (k + 1)tτ2

}
.

By the peeling argument,

P
{
d2(θ̂, θ′0) ≥ tτ2

}
≤

∞∑
k=1

P
{
θ̂ ∈ Θk(t)

}
. (12)

By assumption, for all k ≥ 1,

P
{
θ̂ ∈ Θk(t)

}
≤ exp(−kt). (13)

Combining Equations (12) and (13) yields

P
{
d2(θ̂, θ′0) ≥ tτ2

}
≤

∞∑
k=1

exp(−kt) =
e−t

1− e−t
≤ 2e−t,

where the last inequality holds for t ≥ ln(2). By the triangle inequality,

d2(θ̂, θ0) ≤ 2d2(θ̂, θ′0) + 2d2(θ′0, θ0). (14)

Therefore, for t ≥ ln(2),

P
{
d2(θ̂, θ0) ≥ 2tτ2 + 2d2(θ′0, θ0)

}
≤ 2e−t.

For t ≥ 1, since 2d2(θ′0, θ0) ≤ 2td2(θ′0, θ0), it follows that

P
{
d2(θ̂, θ0) ≥ t

(
2τ2 + 2d2(θ′0, θ0)

)}
≤ 2e−t.

For the expectation bound, for any t0 > 0,

E
[
d2(θ̂, θ′0)

]
=

∫ ∞

0

P
{
d2(θ̂, θ0) ≥ x

}
dx

≤
(
t0 +

∫ ∞

t0

P
{
d2(θ̂, θ′0) ≥ xτ2

}
dx

)
τ2

=

(
t0 +

∫ ∞

t0

∞∑
k=1

P
{
θ̂ ∈ Θk(x)

}
dx

)
τ2

≤

(
t0 +

∫ ∞

t0

∞∑
k=1

e−kxdx

)
τ2

=

(
t0 +

∞∑
k=1

e−kt0

k

)
τ2

=
(
t0 − ln

(
1− e−t0

))
τ2.

Choosing t0 = ln(2) yields

E
[
d2(θ̂, θ′0)

]
≤ 2 ln(2)τ2.

13
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Again, by Equation (14),

E
[
d2(θ̂, θ0)

]
≤ 4 ln(2)τ2 + 2d2(θ′0, θ0).

Proof of Lemma A.5. By assumption and the triangle inequality, for θ ∈ Θ′,

d2(θ̂, θ′0) ≤2d2(θ̂, θ0) + 2d2(θ′0, θ0)

≤2KupE(uθ̂ − uθ0) + 4KupE(uθ′
0
− uθ0)

=2Kup(E − Ê)(uθ̂ − uθ′
0
) + 2KupÊ(uθ̂ − uθ′

0
) + 4KupE(uθ′

0
− uθ0)

≤2Kup(E − Ê)(uθ̂ − uθ′
0
) + 4KupE(uθ′

0
− uθ0),

where the last inequality uses the fact that θ̂ minimizes Êuθ over θ ∈ Θ′. For notational convenience, let U0 = E(uθ′
0
−uθ0).

Then, the left-hand side of Equation (11) can be bounded as

P
{
ktτ2 ≤ d2(θ̂, θ′0) ≤ (k + 1)tτ2

}
≤P
{
d2(θ̂, θ′0) ≤ (k + 1)tτ2, (E − Ê)(uθ̂ − uθ′

0
) ≥ ktτ2

2Kup
− 2U0

}
≤P

{
sup

θ∈Θ′:d2(θ,θ′
0)≤(k+1)tτ2

(E − Ê)(uθ̂ − uθ′
0
) ≥ ktτ2

2Kup
− 2U0

}
. (15)

By the concentration inequality assumption and Equation (15), letting

γk,t(τ) =
τ

2Kupa2
− 2U0

a2ktτ
− a1

a2ktτ
− a0

a2ktτ
H(
√
(k + 1)tτ),

the condition in Equation (11) holds if

γ2
k,t(τ)

(1 + 1
k ) +

b
τ γk,t(τ)

≥ 1, (16)

provided γk,t(τ) > 0.

We now seek τ such that Equation (16) and γk,t(τ) > 0 are satisfied. For c, b > 0, the function x 7→ x2

c+bx is non-decreasing
for x ≥ 0. Thus, Equation (16) holds if a lower bound γk,t(τ) ≥ γ̄(τ) satisfies

γ̄2(τ)

(1 + 1
k ) +

b
τ γ̄(τ)

≥ 1.

Since σ 7→ H(σ)/σγ is non-increasing, H(aσ)/(aσ)γ ≤ H(σ)/σγ for all a ≥ 1 and τ > 0. Therefore, for k ≥ 1 and
t ≥ 1,

γk,t(τ) ≥
τ

2Kupa2
− 2U0

a2ktτ
− a1

a2ktτ
− a0((k + 1)t)

γ
2

a2ktτ
H(τ)

≥ τ

2Kupa2
− 2U0

a2τ
− a1

a2τ
− 2a0

a2τ
H(τ) := γ̄(τ).

We can rewrite γ̄(τ) as

γ̄(τ) = τγ−1

(
τ2−γ

2Kupa2
− 2U0

a2τγ
− a1

a2τγ
− 2a0

a2τγ
H(τ)

)
.

Since σ 7→ H(σ)/σγ is non-increasing, γ̄(τ) is a product of two non-decreasing functions in τ , and thus is non-decreasing
in τ when these functions are non-negative. Let τ∗ > 0 satisfy

τ∗

2Kup
− 2U0

τ∗
− a1

τ∗
− 2a0

τ∗
H(τ∗) ≥ 0. (17)
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Then, for τ ≥ τ∗, γ̄(τ) is non-decreasing in τ , and for any x > 0, γ̄(τ∗ + 2Kupa2x) ≥ x. Noting that γ̄(τ)/τ ≤ 1
2Kupa2

,

Equation (16) holds if γ̄2(τ) ≥ 2 + b
2Kupa2

. Therefore, for τ∗ satisfying Equation (17), Equation (16) holds with

τ = τ∗ +
√
8K2

upa
2
2 + 2Kupa2b.

It remains to derive τ∗ satisfying Equation (17). Since σ 7→ H(σ)/σγ is non-increasing, for any τ ′ ∈ (0, τ∗],

H(τ∗)

τ∗
≤ τ∗H(τ ′)

τ ′2
.

For some constants C0, C1 > 0, define

τ∗ = C0

√
2Kup

(√
2U0 +

√
a1 +

√
2a0H

(
C1

√
4Kupa0

))

Then,

τ∗

2Kup
− 2U0

τ∗
− a1

τ∗
− 2a0

τ∗
H(τ∗)

≥C0

√
2U0

2Kup
+ C0

√
a1

2Kup
+ C0

√
2a0H

(
C1

√
4Kupa0

)
2Kup

− 2U0

C0

√
2Kup

√
2U0

− a1

C0

√
2Kup

√
a1

−
2a0H

(√
4Kupa0H

(
C1

√
4Kupa0

))
4C0Kupa0H

(
C1

√
4Kupa0

) √
2Kup

(√
2U0 +

√
a1 +

√
2a0H

(
C1

√
4Kupa0

))

≥
(
C0 −

2

C0

)√
2U0

2Kup
+

(
C0 −

2

C0

)√
a1

2Kup
+

(
C0 −

1

C0

)√
2a0H

(
C1

√
4Kupa0

)
2Kup

,

provided H(C1

√
4Kupa0) ≤ C2

1 . Setting C0 =
√
2 suffices to satisfy Equation (17). The resulting τ then coincides with

the definition in Equation (10) with A = C1, completing the proof.

Analysis of Hσ,ν:
and Hb,ν:

Here, we establish upper bounds for Hσ,ν:
(δ;U) and Hb,ν:

(δ;U), where U ={
uϑ∗

ν,:
: ν: ∈ Q

}
and the complexity of Q is (α, β) for some α > 0 and β ≥ 0 as defined in Definition 3.3. The

following lemmas provide the required results.

Lemma A.6. Suppose that ϑ∗
ν,: satisfies the Poincaré-type inequality in Equation (4) for all ν: ∈ Q, and that the complexity

of Q is (α, β) for some α > 0 and β ≥ 0 as in Definition 3.3. Then, there exists a constant C > 0 such that for all j ≥ 0
and all σ ∈ (0, ϵ̄] and σ′ > 0,

Hσ,ν:

(
CPσ;

{
uϑ,: − uϑ∗

ν ,:
: ϑ: ∈ Θj , dν:

(ϑ:, ϑ
∗
ν,:) ≤ σ′}) ≤ CP

√
C ′2βj/2(1 ∧ σ ∧ σ′)

√
1 + ln(1/(1 ∧ σ ∧ σ′)),

where CP is the constant C in Equation (4), and ϵ̄ and C ′ are the constants in Definition 3.3.

Lemma A.7. Suppose that ϑ∗
ν,s ∈ ML for some L > 1 and all ν: ∈ Q. Then, there exists a constant C > 0, possibly

depending on M , such that for all b > 0,

Hb,ν:
(b;
{
u: − uϑ∗

ν ,:
: u: ∈ U , bν:

(u: − uϑ∗
ν ,:
) ≤ b

}
) ≤ C

√
b.

We now present the proofs of Lemmas A.6 and A.7.

Proof of Lemma A.6. By the Poincaré-type inequality,

N
(
ϵ,
{
uϑ,: − uϑ∗

ν ,:
: ϑ: ∈ Θj

}
, σν:

)
≤ N

(
ϵ

CP
,Θj , dν:

)
.
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According to Definition 3.3, we have

lnN
(
ϵ,
{
ϑ: : ϑ: ∈ Θj , dν:

(ϑ:, ϑ
∗
ν,:) ≤ σ′}, dν:

)
≤ C ′2βj ln+(1/ϵ),

for ϵ ≤ σ′ ∧ ϵ̄, and the log-covering number is zero if ϵ > σ′. Therefore,

Hσ,ν:

(
CPσ;

{
uϑ,: − uϑ∗

ν ,:
: ϑ: ∈ Θj , dν:

(ϑ:, ϑ
∗
ν,:) ≤ σ′})

=

∫ CPσ

0

√
lnN

(
ϵ,
{
uϑ,: − uϑ∗

ν ,:
: ϑ: ∈ Θj , dν:(ϑ:, ϑ∗

ν,:) ≤ σ′
}
, σν:

)
dϵ

≤
∫ CP (σ∧σ′)

0

√
C ′2βj ln+(CP /ϵ)dϵ

≤CP

√
C ′2βj/2

∫ σ∧σ′

0

√
ln+(1/ϵ)dϵ.

By the Cauchy-Schwarz inequality, for any z ∈ (0, 1),∫ z

0

√
ln(1/ϵ)dϵ ≤

√∫ z

0

1dϵ

∫ z

0

ln(1/ϵ)dϵ

=
√
z(z ln(1/z) + z) ≤ z

√
1 + ln(1/z).

Thus,

Hσ,ν:

(
CPσ;

{
uϑ,: − uϑ∗

ν ,:
: ϑ: ∈ Θj , dν:

(ϑ:, ϑ
∗
ν,:) ≤ σ′}) ≤ CP

√
C ′2βj/2(1 ∧ σ ∧ σ′)

√
1 + ln(1/(1 ∧ σ ∧ σ′)).

Proof of Lemma A.7. Let ∥·∥∞ denote the ∞-norm over Ω. For any U , N(ϵ,U , bν:
) ≤ N∞(ϵ,U , ∥·∥∞), since ν: ∈ Q

is supported only on Ω. For any ϑ: ∈ MM
L , uϑ,s belongs to the Hölder class with smoothness 2. Interpreting uϑ,: as a

vector-valued function, it follows from Park & Muandet (2023) that there exists a constant C > 0, possibly depending on
M , such that lnN(ϵ,

{
u: − uϑ∗

ν ,:
: u: ∈ U

}
, ∥·∥∞) ≤ Cϵ−1/2. Therefore,

Hb,ν:
(b;
{
u: − uϑ∗

ν ,:
: u: ∈ U , bν:

(u: − uϑ∗
ν ,:
) ≤ b

}
) ≤

∫ b

0

Cϵ−1/2dϵ = 2C
√
b,

which establishes the claim.

Completion of the Proof

Proof of Theorem 5.1. By Proposition 5.4, the processes E = Eν:
and Ê = En,ν:

satisfy Assumption A.1 with Klow = 1
2L

and Kup = L
2 . By the Poincaré-type inequality assumption, if ϑ: ∈ Θj satisfies dν:

(ϑ:, ϑ
∗
ν,:) ≤ σ, then Eν:

(uϑ,: − uϑ∗
ν,:
) ≤

CPσ. Since Ω is bounded, for ϑ: ∈ Θj ⊆ MM
L , there exists a constant Cb > 0 such that bν:(uϑ,: − uϑ∗

ν,:
) ≤ Cb, which

follows from the smoothness of uϑ,s and uϑ∗
ν,s

. Therefore, by applying Proposition 5.3 together with Lemmas A.6 and A.7,
these processes satisfy Assumption A.2 with

a0 =
CCP

√
C ′2βj/2

ñ

a1 =
CCb

ñ

a2 =
C√
ñ

b =
Cb√
ñ

H(σ) =(1 ∧ σ)
√
1 + ln(1/(1 ∧ σ)),
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where C is the constant in Proposition 5.3. The function H satisfies that H(σ)/σγ is non-increasing for any γ ∈
(1, 2]. Furthermore, since H(A

√
4Kupa0)/A

2 is monotonically decreasing in A, it holds that H(A
√
4Kupa0) ≤ A2 for

sufficiently large A > 0. Thus, by applying Theorem A.3, we obtain the error bound with

τ =
√
2L

√2E(uϑ∗
j ,:

− uϑ∗
ν ,:
) +

√
CCb

ñ
+

√√√√√2CCP

√
C ′2βj/2

ñ
H

A

√
2LCCP

√
C ′2βj/2

ñ

+

√
4C2

ñ
+

CCb

ñ

.

From Proposition 5.4 and Definition 3.3, it follows that

E(uϑ∗
j ,:

− uϑ∗
ν ,:
) = inf

ϑ
Eν:

(uϑ,: − uϑ∗
ν ,:
)

≤2L inf
ϑ

d2ν:
(ϑ:, ϑ

∗
ν,:) ≤ 2LC2−αj ,

and

d2ν:
(ϑ∗

j,:, ϑ
∗
ν,:) ≤

L

2
Eν:

(uϑ∗
j,:

− uϑ∗
ν,:
) ≤ 2L2C2−αj .

With the choice of j as stated, we have

2−αj = Θ

( ñ

ln1/2(ñ)

)−α/(α+β)

∨ ñ−1

 2βj ln1/2(ñ)

ñ
= Θ

( ñ

ln1/2(ñ)

)−α/(α+β)

∨ ñ−1

.

Therefore,

τ2 =O

( ñ

ln1/2(ñ)

)−α/(α+β)

∨ ñ−1


d2ν:

(ϑ∗
j,:, ϑ

∗
ν,:) =O

( ñ

ln1/2(ñ)

)−α/(α+β)

∨ ñ−1

,

which establishes the claim.

A.1.2. PROOF OF PROPOSITION 5.2

Proof of Proposition 5.2. We derive a high probability upper bound through bounding the cumulant generating function.
Given a random variable X , define the cumulant generating function of X as for λ ∈ R,

κ(λ;X) = ln(E[exp(λX)]).

The Chernoff bound implies that for λ ≥ 0,

P{X ≥ t} ≤ exp(−λt+ κ(λ;X)). (18)

Hence, an upper bound on the cumulant generating function yields the corresponding high probability upper bound.

Let Z(s)
1 , ..., Z

(s)
ns be ns i.i.d. copies of Z(s). Let σ2

s = Vνs
[us(Z

(s))], and let bs be the minimum real such that us(Z
(s))−

Eνs
[us(Z

(s))] ≤ bs almost surely. For λ > 0, we derive an upper bound on the cumulant generating function of
(En,ν: − Eν:)u:. By the independence among Z

(:)
: , we have

κ(λ; (En,ν: − Eν:)u:) =
∑

s∈[M ]

ns ln

(
Eνs

[
exp

(
λ
ws

ns

(
us(Z

(s)
1 )−

∫
us(z)νs(dz)

))])
.

Noting that the Bernstein’s condition is satisfied for a bounded random variable, we obtain

ln

(
Eνs

[
exp

(
λ
ws

ns

(
us(Z

(s)
1 )−

∫
us(z)νs(dz)

))])
≤

∣∣∣λws

ns

∣∣∣2σ2
s

2
(
1− bs

∣∣∣λws

ns

∣∣∣) ,
17
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provided that
∣∣∣λws

ns

∣∣∣ ≤ 1
bs

. Hence,

κ(λ; (En,ν: − Eν:)u:) ≤
∑

s∈[M ]

ns

λ2w2
s

n2
s
σ2
s

2
(
1− bs

∣∣∣λws

ns

∣∣∣) ,
as long as

∣∣∣λws

ns

∣∣∣ ≤ 1
bs

for all s ∈ [M ].

Define σ̄2 =
∑

s∈[M ]
w2

sσ
2
s

ns
≤ σ2

ñ and b̄ = maxs∈[M ]
wsbs
ns

≤ b
ñ . Set λ = t

σ̄2+tb̄
, which satisfies 0 ≤ λws

ns
≤ 1

bs
for all

s ∈ [M ]. Then, we have

κ(λ; (En,ν: − Eν:)u:)− λt

≤
∑

s∈[M ]

ns

t2
w2

s

n2
s
σ2
s

2
(
σ̄2 + tb̄

)2(
1− bs

∣∣∣λws

ns

∣∣∣) − t2

σ̄2 + tb̄

=
∑

s∈[M ]

ns

t2
w2

s

n2
s
σ2
s

2
(
σ̄2 + tb̄

)(
σ̄2 + tb̄− twsbs

ns

) − t2

σ̄2 + tb̄

≤
∑

s∈[M ]

ns

t2
w2

s

n2
s
σ2
s

2
(
σ̄2 + tb̄

)
σ̄2

− t2

σ̄2 + tb̄
= − t2

2(σ̄2 + tb̄)
≤ − ñt2

2(σ2 + tb)
. (19)

The claim follows by applying the Chernoff bound in Equation (18) with the upper bound derived in Equation (19).

A.1.3. PROOF OF PROPOSITION 5.3

Proof of Proposition 5.3. The desired claim is obtained be applying Van Der Vaart & Wellner (Theorem 2.2.19 and Lemma
2.2.15 2023) with Proposition 5.2 and

d2(u:, u
′
:) = σ2

ν:
(u: − u′

:) d1(u:, u
′
:) =

1√
ñ
bν:

(u: − u′
:).

A.1.4. PROOF OF PROPOSITION 5.4

Proof of Proposition 5.4. Let ϑ: ∈ MM
L be arbitrary. We begin by expressing

Eν:
uϑ,:

=
∑

s∈[M ]

ws

∫
uϑ,s(z)νs(dz)

=
∑

s∈[M ]

ws

∫ (
uϑ,s(z) + u†

ϑ,s

(
ϑ∗
ν,s(z)

))
νs(dz)−

∑
s∈[M ]

ws

∫
u†
ϑ,s

(
ϑ∗
ν,s(z)

)
νs(dz)

=
∑

s∈[M ]

ws

∫ (
uϑ,s(z) + u†

ϑ,s

(
ϑ∗
ν,s(z)

))
νs(dz)−

∫ ∑
s∈[M ]

wsu
†
ϑ,s(z)ν(dz),

where the last equality follows from the change of variables νs = ϑ∗−1
ν,s ♯ν. By the assumption that

∑
s∈[M ] wsϑ

−1
s (z) = z

for all z ∈ Ω, we obtain ∫ ∑
s∈[M ]

wsu
†
ϑs
(z)ν(dz) =

∫ ∑
s∈[M ]

ws

∫ z

0

ϑ−1
s (x)dxν(dz)

18
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=

∫ ∫ z

0

∑
s∈[M ]

wsϑ
−1
s (x)dxν(dz)

=

∫ ∫ z

0

xdxν(dz) =
1

2

∫
z2ν(dz).

Therefore, we have ∑
s∈[M ]

ws

∫
uϑ,s(z)νs(dz)

=
∑

s∈[M ]

ws

∫ (
uϑ,s(z) + u†

ϑ,s

(
ϑ∗
ν,s(z)

))
νs(dz)−

1

2

∫
z2ν(dz). (20)

Next, for any ϑ′
: ∈ MM

L , we derive upper and lower bounds for uϑ,s(z) + u†
ϑ,s(ϑ

′
s(z)) by employing the approach of Hütter

& Rigollet (2021). Since ϑ: ∈ MM
L , the function uϑ,: is L-smooth and 1/L-strongly convex. Thus, for all z, x ∈ R, it holds

that

1

2L
|z − x|2 ≤ uϑ,s(z)− uϑ,s(x)− ϑs(x)(z − x) ≤ L

2
|z − x|2.

We first establish the lower bound. For z, x ∈ R, define

qx(z) = uϑ,s(x) + ϑs(x)(z − x) +
L

2
|z − x|2.

The convex conjugate of qx at ϑ′
s(x) is given by

q†x(ϑ
′
s(x)) =− uϑ,s(x) + xϑ′

s(x) +
1

2L
(ϑ′

s(x)− ϑs(x))
2
.

Since for convex functions f, g, f ≤ g implies f† ≥ g†, it follows that for all z ∈ R and any ϑ:, ϑ
′
: ∈ MM

L ,

uϑ,s(z) + u†
ϑ,s(ϑ

′
s(z)) ≥ zϑ′

s(z) +
1

2L
(ϑ′

s(z)− ϑs(z))
2
. (21)

The upper bound is obtained analogously by considering

qx(z) = uϑ,s(x) + ϑ(x)(z − x) +
1

2L
|z − x|2,

leading to

uϑ,s(z) + u†
ϑ,s(ϑ

′
s(z)) ≤ zϑ′

s(z) +
L

2
(ϑ′

s(z)− ϑs(z))
2
. (22)

We now combine Equations (20) to (22) to establish the claim. From Equation (20), we have

Eν:

(
uϑ,: − uϑ∗

ν ,:

)
=
∑

s∈[M ]

ws

∫ (
uϑ,s(z) + u†

ϑ,s

(
ϑ∗
ν,s(z)

)
− uϑ∗

ν ,s
(z) + u†

ϑ∗,s

(
ϑ∗
ν,s(z)

))
νs(dz). (23)

Observe that Duϑ′,s(z) = ϑ′
s(z), and the equality case of the Young-Fenchel inequality gives

uϑ′,s(z) + u†
ϑ′,s(ϑ

′
s(z)) = zϑ′

s(z). (24)

Applying Equations (21) and (24) with ϑ′
: = ϑ∗

ν,s in Equation (23), we obtain

Eν:

(
uϑ,: − uϑ∗

ν ,:

)
19
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≥
∑

s∈[M ]

ws

∫
1

2L

(
ϑs(z)− ϑ∗

ν,s(z)
)2
νs(dz)

=
1

2L

∑
s∈[M ]

wsd
2
νs

(
ϑs, ϑ

∗
ν,s

)
=

1

2L
d2ν(ϑ:, ϑ

∗
ν,:)

Similarly, by using Equation (22) in place of Equation (21), we have

Eν:

(
uϑ,: − uϑ∗

ν ,:

)
≤ L

2
d2ν(ϑ:, ϑ

∗
ν,:)

A.2. Proofs for Section 4

A.3. Proof of Corollary 4.2

Proof of Corollary 4.2. According to Theorem 5.1 and Proposition 4.5, there exists a decreasing sequence rn and a constant
C > 0 such that, for all t ≥ 1,

P
{
inf
µ

max
s∈[M ]

W2(f̄n,s♯µX,s, µ) > Ctrn

}
≤ e−t.

By choosing t = r
−1/2
n , it follows that

P
{
inf
µ

max
s∈[M ]

W2(f̄n,s♯µX,s, µ) > o(1)

}
≤ o(1).

Therefore, infµ maxs∈[M ] W2(f̄n,s♯µX,s, µ) converges to 0 in probability. In the case where
infµ maxs∈[M ] W2(f̄n,s♯µX,s, µ) = 0, it holds that f̄n,1♯µX,1 = · · · = f̄n,M ♯µX,M , which satisfies (strict) demo-
graphic parity. Consequently, f̄n,: is consistently fair. The error upper bound can be established directly by combining
Theorem 5.1 and Proposition 4.4.

A.3.1. PROOF OF PROPOSITION 4.4

Proof of Proposition 4.4. We begin by applying the triangle inequality, which yields

dµX,:

(
f̄n,:, f̄

∗
µ,:

)
≤ dµX,:

(
f̄n,:, ϑ

∗
µf̂ ,:

◦ fn,:
)
+ dµX,:

(
ϑ∗
µf̂ ,:

◦ fn,:, ϑ∗
µf̂ ,:

◦ f∗
µ,:

)
+ dµX,:

(
ϑ∗
µf̂ ,:

◦ f∗
µ,:, f̄

∗
µ,:

)
. (25)

The first term in (25) represents the estimation error of the optimal transport map:

d2µX,:

(
f̄n,:, ϑ

∗
µf̂ ,:

◦ fn,:
)
=
∑

s∈[M ]

ws

∫ (
(ϑn,s ◦ fn,s)(x)−

(
ϑ∗
µf̂ ,s

◦ fn,s
)
(x)
)2

µX,s(dx)

=
∑

s∈[M ]

ws

∫ (
ϑn,s(z)− ϑ∗

µf̂ ,s
(z)
)2

µf̂ ,s(dz) = d2µf̂,:
(ϑn,:, ϑ

∗
µf̂ ,:

).

For the second term in (25), we establish the L-Lipschitz continuity of ϑ∗
µf̂ ,:

. By the first assumption in Assumption 3.1,
fn,: ∈ F implies fn,:♯µX,: ∈ Pf , which ensures that ϑ∗

µf̂ ,:
∈ Θ. The L-Lipschitz continuity of ϑ∗

µf̂ ,:
then follows from

Assumption 3.2. Therefore, we can bound the second term as

Eµ2n
:

[
d2µX,:

(
ϑ∗
µf̂ ,:

◦ fn,:, ϑ∗
µf̂ ,:

◦ f∗
µ,:

)]
≤ L2Eµn

:

[
d2µX,:

(
fn,:, f

∗
µ,:

)]
≤ L2

∑
s∈[M ]

wsEns
(Ps).

For the third term in (25), we utilize Proposition 5.4 to obtain

d2µX,:

(
ϑ∗
µf̂ ,:

◦ f∗
µ,:, f̄

∗
µ,:

)
=d2µf,:

(
ϑ∗
µf̂ ,:

, ϑ∗
µf ,:

)
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≤2LEµf,:

(
uϑ∗

µ
f̂
,: − uϑ∗

µf
,:

)
≤2L

(
Eµf,:

− Eµf̂ ,:

)(
uϑ∗

µ
f̂
,: − uϑ∗

µf
,:

)
≤2L

∣∣∣∣(Eµf,:
− Eµf̂ ,:

)
uϑ∗

µ
f̂
,:

∣∣∣∣+ 2L
∣∣∣(Eµf,:

− Eµf̂ ,:

)
uϑ∗

µf
,:

∣∣∣
Let φ: be mappings such that φs♯µf̂ ,s = µf,s. For ϑ: = ϑ∗

µf̂ ,:
or ϑ∗

µf ,:
, we have

∣∣∣(Eµf,s
− Eµf̂ ,s

)
uϑ,s

∣∣∣ =∣∣∣∣∫ (uϑ,s(φs(z))− uϑ,s(z))µf̂ ,s(dz)

∣∣∣∣
=

∣∣∣∣∣
∫ ∫ φs(z)

z

ϑs(x)dxµf̂ ,s(dz)

∣∣∣∣∣
≤
∫

L

2
(φs(z)− z)

2
ν(dz)

=
L

2
W 2

2

(
µf,s, µf̂ ,s

)
≤ L

2
d2µ:

(
fn,:, f

∗
µ,:

)
,

where we use the identity uϑ,s(x)− uϑ,s(y) =
∫ x

y
ϑs(z)dz for all x, y ∈ R, which follows from Taylor’s theorem, to obtain

the second equality. Taking expectations, we obtain

Eµ2n
:

[
d2µX,:

(
ϑ∗
µf̂ ,:

◦ f∗
µ,:, f̄

∗
µ,:

)]
≤ 2L2

∑
s∈[M ]

wsEµn
:
[Ens

(Ps)] ≤ 2L2
∑

s∈[M ]

wsEns
(Ps).

By combining the above results, we have

Eµ2n
:

[
d2µX,:

(
f̄n,:, f̄

∗
µ,:

)]
≤ 3Eµ2n

:

[
d2µf̂,:

(
ϑn,:, ϑ

∗
µf̂ ,:

)]
+ 9L2

∑
s∈[M ]

wsEns(Ps),

where Jensen’s inequality is applied. Finally, due to the mutual independence between fn,: and ϑµf̂ ,:
resulting from sample

splitting, we have Eµ2n
:

[
d2µX,:

(
ϑn,:, ϑ

∗
µf̂ ,:

)]
= Eµn

f̂,:

[
d2µf̂,:

(
ϑn,:, ϑ

∗
µf̂ ,:

)]
. This completes the proof.

A.3.2. PROOF OF PROPOSITION 4.5

Proof of Proposition 4.5. Let µf̂ be the barycenter of µf̂ ,: with weight w:. For any probability measure ν, we have

W2

(
f̄n,s♯µX,s, ν

)
= W2

(
ϑn,s♯µf̂ ,s, ν

)
≤W2

(
ϑn,s♯µf̂ ,s, ϑ

∗
µf̂ ,s

♯µf̂ ,s

)
+W2

(
ϑ∗
µf̂ ,s

♯µf̂ ,s, ν
)

≤dµf̂,s

(
ϑn,s, ϑ

∗
µf̂ ,s

)
+W2

(
µf̂ , ν

)
.

Therefore, we obtain

max
s∈[M ]

W2

(
f̄n,s♯µX,s, ν

)
≤ max

s∈[M ]
dµf̂,s

(
ϑn,s, ϑ

∗
µf̂ ,s

)
+W2

(
µf̂ , ν

)
≤
√

1

Mwmin
dµf̂,:

(
ϑn,:, ϑ

∗
µf̂ ,:

)
+W2

(
µf̂ , ν

)
.

Consequently, it follows that

inf
ν

max
s∈[M ]

W2

(
f̄n,s♯µX,s, ν

)
≤
√

1

Mwmin
dµf̂,:

(
ϑn,:, ϑ

∗
µf̂ ,:

)
+ inf

ν
W2

(
µf̂ , ν

)
=

√
1

Mwmin
dµf̂,:

(
ϑn,:, ϑ

∗
µf̂ ,:

)
.
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A.4. Proofs for Section 6

Proof of Theorem 6.1. We begin by noting that, by definition, f̄n,s ∈ Fs. According to the second requirement in
Assumption 3.1, it holds that F1 = · · · = FM . Furthermore, the third requirement in Assumption 3.1 ensures that
fn ∈ F1. Therefore, fn can be interpreted as the standard regression estimator for P1 based on a sample of size n. By the
definition of the minimax error, we have

sup
µ1∈P1:∀s∈[M ],µs=µ1

Eµn
:

[
d2µ1

(
fn, f

∗
µ,1

)]
≥ En(P1).

Next, utilizing the convexity of d2µ1
, we obtain

sup
µ1∈P1:∀s∈[M ],µs=µ1

Eµn
:

[
d2µ1

(
fn, f

∗
µ,1

)]
≤ sup

µ1∈P1:∀s∈[M ],µs=µ1

∑
s∈[M ]

wsEµn
:

[
d2µ1

(
f̄∗
n,s, f

∗
µ,1

)]
= sup

µ1∈P1:∀s∈[M ],µs=µ1

∑
s∈[M ]

wsEµn
:

[
d2µs

(
f̄∗
n,s, f

∗
µ,s

)]
.

When µ1 = · · · = µM , the transport map ϑ∗
µ,s becomes the identity function for all s. Thus,

sup
µ1∈P1:∀s∈[M ],µs=µ1

∑
s∈[M ]

wsEµn
:

[
d2µs

(
f̄∗
n,s, f

∗
µ,s

)]
= sup

µ1∈P1:∀s∈[M ],µs=µ1

∑
s∈[M ]

wsEµn
:

[
d2µs

(
f̄∗
n,s, f̄

∗
µ,s

)]
= sup

µ1∈P1:∀s∈[M ],µs=µ1

Eµn
:

[
d2µ:

(
f̄∗
n,:, f̄

∗
µ,:

)]
.

Moreover, by the second requirement in Assumption 3.1, for any µ ∈ P1, the tuple (µ, . . . , µ)︸ ︷︷ ︸
M times

belongs to P . Therefore,

sup
µ1∈P1:∀s∈[M ],µs=µ1

Eµn
:

[
d2µ:

(
f̄∗
n,:, f̄

∗
µ,:

)]
≤ sup

µ:∈P
Eµn

:

[
d2µ:

(
f̄∗
n,:, f̄

∗
µ,:

)]
.
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