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Abstract

We study the problem of learning the optimal policy in a discounted, infinite-
horizon reinforcement learning (RL) setting in the presence of adversarially cor-
rupted rewards. To address this problem, we develop a novel robust variant of the
Q-learning algorithm and analyze it under the challenging asynchronous sampling
model with time-correlated data. Despite corruption, we prove that the finite-time
guarantees of our approach match existing bounds, up to an additive term that
scales with the fraction of corrupted samples. We also establish an information-
theoretic lower bound, revealing that our guarantees are near-optimal. Notably,
our algorithm is agnostic to the underlying reward distribution and provides the
first finite-time robustness guarantees for asynchronous Q-learning. A key element
of our analysis is a refined Azuma-Hoeffding inequality for almost-martingales,
which may have broader applicability in the study of RL algorithms.

1 Introduction

In a typical reinforcement learning (RL) problem, a learning agent interacts sequentially with an
environment modeled as a Markov Decision Process (MDP). Each interaction involves the agent
playing an action and receiving feedback in the form of a reward for the action taken. Using such
feedback, the agent gains a better understanding of the quality of the actions, allowing it to eventually
learn an optimal decision-making policy. The formalism described above finds use in a variety of
practical applications, spanning finance, medicine, recommendation systems, autonomous driving,
robotics, and most recently, training large language models using human feedback. In each of these
applications, the effectiveness of the learned policy depends crucially on the quality of the feedback
data (rewards) used to train the policy. In real-world applications, however, data can be noisy and
can contain outliers: human feedback can be biased and have malicious intent, recommendation
systems can be skewed by fake users, and sensor data in an autonomous vehicle can be prone to
measurement errors and be corrupted by an adversary. If precautions are not taken to contend with
“bad data", then the consequences can be dire, especially for safety-critical applications. Motivated by
this concern, we revisit the classical RL problem from the perspective of adversarial robustness and
study a scenario where a portion of the rewards observed by the learner can be corrupted arbitrarily.
For this scenario, we wish to understand to what extent one can hope to still learn a (near)-optimal
policy. Surprisingly, despite the popularity of the RL paradigm, a complete theoretical understanding
of this question seems to be lacking in the current literature, especially for the scenario where data
are collected in an online, sequential manner. Our work in this paper contributes to filling this gap.

We consider an infinite-horizon discounted RL problem, where an agent collects data from the
environment based on a behavior/sampling policy, as is done with popular RL algorithms such as
Q-learning [1]. We depart from the standard RL observation model by allowing the rewards to be
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corrupted based on a fixed corruption probability € € [0,1/2): at each time-step, with probability
1 — ¢, the learner (agent) observes a reward sampled from the true reward distribution associated with
the current state and action, and with probability ¢, it observes a sample from an arbitrary adversarial
distribution. Importantly, we put no restrictions at all on the adversarial distribution, allowing for
potentially unbounded attack signals. Furthermore, we allow the true reward distributions to be
heavy-tailed, requiring them to admit no more than a finite second moment. It should be noted
here that our way of modeling corruption is inspired directly by the Huber model from robust
statistics [2, 3]. Furthermore, similar corruption models have been extensively studied for the simpler
bandits setting [4-9], and more recently in offline RL with human feedback [10]. However, when it
comes to learning an optimal policy in the infinite-horizon discounted setting we consider here with
online, sequential data, the effect of such an attack model remains completely unexplored. Since an
optimal policy can be extracted by learning the optimal state-action value function [11], we ask two
concrete questions: Subject to our corruption model: (i) Can one still reliably estimate the optimal
state-action value function? (i) What is a fundamental lower bound on estimation accuracy in this
setting? Our contributions described below comprehensively address these questions.

e Novel Robust Q-Learning Algorithm. In Section 3, we start by considering a setting where
bounds on the first and second moments of the true reward distributions are known to the learner.
For this setting, we propose a new algorithm called Robust Async-Q that comprises two main
ingredients. The first idea is to leverage the recent univariate trimmed mean estimator from [12] to
maintain running estimates of the mean rewards for each state-action pair of the MDP, using historical
data for such pairs. However, this idea is not enough on its own since the guarantees associated
with robust mean estimation are probabilistic in nature, and, as such, may not hold on rare, extreme
events. To control the errors introduced by adversarial contamination on such rare events, we employ
a second layer of safety that involves keeping track of “typical” regions that contain the reward mean
estimates; estimates that fall outside the typical regions are rejected. The size of these typical regions
- as captured by an adaptive threshold - shrinks as the learner acquires more samples.

For the case where bounds on the reward statistics are unknown a priori, constructing the adaptive
threshold accurately becomes much trickier. In Section 4, we propose a simple modification to
Robust Async-Q that addresses this challenge by using a “slowly growing" function of time as a
proxy for such bounds. Overall, we prescribe a framework for constructing robust empirical estimates
of the Bellman optimality operator using noisy, corrupted data collected online.

o Finite-Time Rates under L.I.D. Sampling. To build intuition, we start by analyzing Robust
Async-Q under a simplified i.i.d. sampling model, commonly used in previous RL works [13-16]. In
Theorems 2 and 4, we provide high-probability finite time rates for Robust Async-Q with known
and unknown reward statistics, respectively. Given 1" samples, in each case, our bounds match the
known optimal rate [17—-19] of O(1/+/T), up to a small additive term on the order of O(,/2), where
¢ is the probability of corruption. Interestingly, our bounds also reveal how the effect of asynchronous
sampling can inflate the corruption-induced term. To our knowledge, Theorems 2 and 4 provide the
first formal guarantees of adversarial robustness for asynchronous Q-learning.

e Fundamental Lower Bound. One might ask whether the O(1/¢) term in our upper-bound is
unavoidable. In Theorem 3, we settle this question by providing an information-theoretic fundamental
lower bound, revealing that an (/) error in the estimation of the optimal state-action value function
is unavoidable. Collectively, our results are significant in that they reveal that Robust Async-Q
achieves near-optimal finite-time guarantees for Q-learning under adversarial corruption.

o Finite-Time Rates under Markov Sampling. In Section 4.1, we study our setting in full generality
by considering the challenging single-trajectory Markovian sampling model with time-correlated
data. In Theorem 5, we prove that one can nearly recover the same bounds as in the i.i.d. setting,
up to an inflation in the O(1/+/T) term caused by the mixing time of the underlying Markov chain;
notably this inflation is consistent with prior bounds in the absence of corruption [18].

e Novel Proof Techniques. Arriving at our results involves several new proof ingredients. Even
with i.i.d. sampling and known reward statistics, some work is needed to account for the fact that
under the asynchronous sampling model, the number of times each state-action pair has been sampled
(up to a given time-step) is a random variable, precluding the direct use of robust mean estimation
bounds. To overcome this issue, we use Bernstein’s inequality to control the number of visits to
each state-action pair. A key new step in our analysis is to argue that after a certain burn-in time,
no estimates will be rejected (due to thresholding) on a good event of sufficient measure. When



the reward statistics are unknown a priori, the use of slowly growing functions of time as their
proxies introduces significant new challenges. In particular, as we explain in Section 4, using the
standard version of the Azuma-Hoeffding inequality - which is what is done in existing Q-learning
analyses [18] - will unfortunately lead to vacuous bounds in our setting. Furthermore, relatively
well-known variants of the Azuma-Hoeffding inequality for discrete probability spaces [20], and
sub-Gaussian martingale differences [21] also prove to be inadequate for our purposes. To overcome
this challenge, we show how a refined variant of the Azuma-Hoeffding inequality from [22] can
be carefully exploited to preserve near-optimal bounds; we are unaware of the use of this new tool
in any prior RL work, and believe that it might be more broadly applicable. Finally, to handle the
challenging single-trajectory Markovian data setting, we combine the aforementioned ideas with a
coupling technique that is inspired by recent work [23, 24].

Summary. To sum up, we provide the first principled and comprehensive study of adversarial
robustness in RL for the infinite-horizon, discounted setting with asynchronous Markovian data. Our
new algorithms and analysis techniques, complemented by nearly matching upper and lower-bounds,
paint a fairly complete picture for this setting.

Related Work. We now discuss the most relevant works on corruption-robust RL here, and relegate
a more detailed survey to Appendix A. The topic of reward corruption has been explored in several
papers on bandits [4-7, 25-27, 8, 28, 9]. In the context of MDPs, data corruption in online, finite-
horizon episodic RL problems is studied in [29-32], where performance is measured by cumulative
regret and the algorithms are variants of either Upper-Confidence-Based (UCB) or Action-Elimination
strategies. The infinite-horizon discounted setting we study here differs fundamentally in terms of
the notion of performance (sample-complexity), and also in terms of the algorithm design principle,
which is rooted in stochastic approximation theory. Corruption-robust algorithms in the offline setting
or with access to a generative model/simulator are considered in [33, 34, 10, 35], where batched data
tuples are collected offline in an i.i.d. manner. In sharp contrast, we need to contend with a much more
challenging observation model, where heavy-tailed and corrupted data arrives in an online, sequential
manner as part of a single trajectory, and the state-action pairs are visited asynchronously, creating
the problem of partial observability. Finally, we note that the issue of handling just heavy-tailed
rewards (without adversarial corruption) has been studied in problem settings different from ours: for
offline RL in [36], for episodic RL in [37], and for policy evaluation in [38].

2 Background and Problem Formulation

We start by providing the basic background on RL, and then proceed to describe our problem
of interest. We consider a ~y-discounted infinite-horizon Markov Decision Process (MDP) M =
(S, A, P,R,~), where S is a finite state space, A is a finite action space, P is a set of state transition
kernels, R is a reward function, and v € (0, 1) is a discount factor. When in state s € S the learner
plays an action a € A, it observes a new state s’ drawn from P(+|s,a), and a stochastic reward
sample (s, a) drawn from a reward distribution R (s, a). The noisy reward r (s, a) is unbiased with
mean equal to the true expected reward R(s, a) for state-action pair (s, a), and variance o2(s,a),
ie., E[r(s,a)] = R(s,a), and E[(r(s,a) — R(s,a))?] = 0*(s,a). We assume that the mean rewards
and variances are uniformly bounded, i.e., there exist R,& > 1 such that |R(s,a)] < R and
0%(s,a) < 5%,V(s,a) € S x A. Apolicy pu : S — A(A) is a mapping from the states to a space of
probability distributions over actions, denoted by A(.A). The quality of a policy y is captured by an
expected discounted infinite-horizon cumulative reward known as the value function V'#, defined as

Vi(s) =E

> A'R(s¢,a)
t=0

S0 = s,ul , @

where s; and a, are the state and action at time ¢, respectively, under the action of the policy p on the
MDP M. The goal of the learner is to find a policy p that maximizes the value function V* for all
states, without knowledge of the transition kernels P and reward functions R of the underlying MDP.
To explain how this is done, we will need to introduce the notion of a state-action value function Q"

for a policy p, defined as Q*(s,a) = E {Zio Y R(s¢,a¢) | (s0,a0) = (s,a), iu|. The celebrated

Q@-learning algorithm [1] uses data collected by a suitable behavior/sampling policy p to iteratively
maintain an estimate of the optimal state-action value function, denoted by Q*. It turns out that Q* is
the fixed point of a contractive operator known as the Bellman optimality operator [11]. Using this



contraction property, classical asymptotic results [39, 40] established that the sequence of iterates
generated by Q-learning converges to Q* almost surely (under suitable assumptions on p). More
recently, finite-time rates have been established [17—19], revealing that when run for 7 iterations, the
final iterate of (Q-learning converges to (Q* at a rate of O(l /v/T), with high probability. Once Q* is
known, an optimal policy can be determined by playing actions greedily with respect to Q* [41].

Adversarially Corrupted Reward Model. Our formulation departs from the standard setting
described above in two main ways. First, classical results on Q-learning either assume deterministic
rewards or “light-tailed" noisy rewards with sub-Gaussian reward distributions. In contrast, our
formulation requires the reward distributions R (s, a) to admit only up to a finite second moment, and
nothing more. Thus, the true reward distributions are allowed to be heavy-tailed. More importantly,
we allow a portion of the reward data to be corrupted arbitrarily by an adversary. To explain the
corruption model precisely, suppose that data are collected based on a stochastic behavior policy ,
such that p(als) > 0,Vs € S,Va € A. Upon interacting with the MDP M, the policy p induces a
Markov chain. Let s; be the state of this Markov chain at time ¢. Then, in the standard Q-learning
setting, at each time-step ¢, the learner observes the data tuple (s;, at, St+1), and noisy reward
ri(st, ar), where az ~ u(+|st), se41 ~ P(:|st, ar), and r4(s¢, a¢) ~ R(st,a:). Here, we assume
that the noise process {R(s¢, a;) — 7¢(s¢, at)} is independent over time and of all other sources
of randomness. In our setting, the learner still observes (s, as, s¢11), but now receives a Huber-
contaminated reward y, (s, a;) generated as follows. At time ¢, a biased coin with probability of
heads 1 — ¢ is tossed independently of the past, and all other sources of randomness in the problem;
here € € [0,1/2) is a fixed probability that captures the fraction of corrupted samples. If the coin
lands heads, y(s¢, a;) is drawn from the true reward distribution R (s, a;). If it lands tails, y (s, at)
is drawn from an unconstrained and arbitrary adversarial distribution Q that can depend on history,
and be time and state-action pair dependent. In other words, if y;(s;, a;) is drawn from Q, it can be
arbitrary (and hence, potentially unbounded). Concretely, we write y: (s, a:) ~ (1—&)R(s¢, ar)+eQ,
where the notation (1 — )Py + €Ps is used to represent the mixture of two distributions P; and Ps.

Problem 1. Given T samples (s, at, St41,Y:(St,a¢)),t = 0,...,T — 1 from the adversarially
corrupted reward model described above, and a prescribed failure probability § € (0, 1), our goal
is to generate a robust estimate Q1 of the optimal value function QQ*, and quantify a bound on the
Uos-ervor |Qr — Q*||oo that holds with probability at least 1 — .

Specifically, we ask: (i) Can one still hope to (nearly) preserve the optimal O(1/+/T) rate of vanilla
Q-learning? (ii) What are the fundamental limits on performance imposed by the reward-corrupted
attack model? As far as we are aware, despite the popularity of Q-learning, answers to neither of
these basic questions are available in the literature. The main contribution of our work is to close this
gap by developing an algorithm that achieves near-optimal guarantees for the posed problem.

Challenges. There are several unique technical challenges in our problem. First, the heavy-tailed
nature of the true reward distribution makes it harder for the learner to distinguish between true
samples drawn from the tails of such distributions and adversarial outliers. This uncertainty is further
exacerbated when the learner has no knowledge at all about the statistics of the reward distributions -
a setting we analyze in Section 4. Second, data in our setting are collected in an online, asynchronous
manner, where only a single state-action pair is visited at each time-step. Even in the absence of
corruption, such a setting is non-trivial to analyze in the non-asymptotic regime. Third, the data is
generated based on a time-correlated Markov chain, making it hard to directly apply standard results
from robust statistics that deal with i.i.d. data collected offline. As we will discuss throughout the
paper, overcoming these challenges requires significant algorithmic and technical innovations.

Before we introduce our proposed approach, let us state an assumption that is standard in the analysis
of RL algorithms [39, 42, 43, 18, 19].

Assumption 1. The Markov chain induced by the behavior policy y is aperiodic and irreducible.

If 7 is the stationary distribution of the Markov chain induced by g, then the above assumption
ensures that 7w(s) > 0,Vs € S. At stationarity, note that the visitation probability of a particular state-
action pair (s, a) is given by A(s, a) := m(s)u(a|s), which is non-zero, based on our assumptions
on the behavior policy. For later use, we further define the minimum visitation probability as
Anin = Min(, gyesx.A A(s, a). To clearly explain our main ideas, we will assume in Sections 3 and 4
that at each time-step ¢, the state s; is sampled independently from its stationary distribution 7. Later,
in Section 4.1, we will relax this i.i.d. assumption, and consider single-trajectory Markov data.



3 Robust Asynchronous Q-Learning Algorithm (Robust Async-Q)

In this section, we develop a robust variant of the Q-learning algorithm that accounts for asyn-
chronously sampled data, and adversarially corrupted rewards. Our algorithm, titled Robust
Async-Q, is formally described in Algorithm 1. We start by providing an overview of Robust
Async-Q, and then flesh out the details. Our approach has two core components: (i) Robust Reward
Estimation. The first main idea is to use the history of reward observations for each state-action
pair (s,a) to generate a robust estimate of the mean reward R(s, a); for this purpose, we exploit
the univariate trimmed mean estimator from [12]. (ii) Adaptive Thresholding. To account for rare
events where robust estimation guarantees may not hold, we carefully design an adaptive thresholding
mechanism to discard extreme estimates and ensure that the iterates of Robust Async-Q remain
uniformly bounded. We will show later that by carefully stitching together these ideas, Robust
Async-Q is able to achieve near-optimal convergence rates. We now supply the details.

e Idea 1: Reward Filtering Mechanism. We start by briefly describing the robust univariate trimmed
mean estimator from [12] that we will employ for estimating reward functions. Consider a data set
D comprising of M i.i.d. samples of a scalar random variable X with mean px and variance 0% .
An adversary arbitrarily perturbs up to e M of the samples within D to produce a corrupted data set
D; here, € € [0,1/2) is the fraction of corrupted data. Using D, the corruption fraction ¢, and a
confidence parameter J as inputs, the trimmed mean estimator from [12] produces a robust estimate
fix of the mean px in the following way. The data set D is divided into two equal parts of M /2
samples each. The first part is used to compute empirical quantiles for filtering out extreme values.
The estimate [t x is then simply an average of only those data samples in the second part that fall
within the computed quantiles. To apply the estimator from [12] in our context, we need to make
minor modifications to the algorithm and the analysis in [12] to account for the Huber contamination
model introduced in Section 2. The details of these modifications, along with the manner in which the
quantiles are computed, are provided in Appendix B. Let jix = TRIM[D, ¢, §] be used to succinctly
represent the output of the trimmed mean estimator described above. The following result, adapted
from [12], will be of use to us in the sequel.

Theorem 1. Given any § € (0, 1), the following holds with probability at least 1 — 6,

—~ log(8/6
liix — px| < Cox (\ﬁ-f- Ogj(w/)> ) 2
where C > 1 is a universal constant.

To make use of the estimator explained above, our algorithm maintains a reward history for each
state-action pair (s,a) € S x A via a dynamic array D, (s, a) that is initialized from the empty set,
i.e., Dy(s,a) = (,VY(s,a). Now, under the asynchronous i.i.d. sampling model, at each time-step ¢,
the learner observes a fresh state-action pair sampled as s; ~ 7 and a; ~ p(-|s¢). If (s,a) = (s¢, at),
the observed reward y;(s;, a;) is appended to the corresponding array Dy (s, at). If (s, a) # (s, at),
then the corresponding array remains unchanged from before. Using the dynamic data set D;(s;, a;),
the corruption fraction ¢, and a confidence level 6; = /4T, a robust estimate 7 (s¢, a;) of the true
expected reward R(s;, a;) is computed as follows: 7¢(s¢, a;) = TRIM[D;(s¢, at), €, 01]. Here, note
that if we wish the overall output of Robust Async-Q to be accurate with a prescribed probability
of at least 1 — §, then the failure probability ; = /(47" that needs to be fed to the trimmed mean
estimator needs to be much finer. The operations above are described in lines 4-6 of Algorithm 1.

o Idea 2: Adaptive Thresholding. There are two main obstacles that prevent us from directly using
7¢(s¢, ar) (as estimated above) as a proxy for the true mean R(s;, a;). First, during the initial phases
of our algorithm, one may simply not have visited a particular state-action pair enough times for
the robust estimation guarantee to be meaningful. Thus, we need to wait long enough to acquire
adequate observations for every state-action pair. Second, even when each state-action pair has been
visited several times, the guarantees associated with the mean estimator from [12] only hold with
high-probability, not deterministically (as is evident from Theorem 1). As a result, one cannot rule out
extreme events, where the output of the trimmed mean estimator can deviate arbitrarily from the true
mean. On such events, using 7 (s;, a;) directly can lead to uncontrolled errors. The above discussion
suggests that robust estimation is insufficient on its own. To overcome the two issues described above,
we introduce the idea of an adaptive threshold that dynamically keeps track of the “typical region"
where we expect the output of the trimmed mean estimator to lie within. If the estimate 7 (s¢, a;)
falls outside this region, we deem it to be “extreme" and simply discard it by thresholding it to 0.



Algorithm 1 Robust Asynchronous Q-Learning Algorithm (Robust Async-Q)

1: Input: Step-size «, corruption fraction €, confidence level 4, iteration count 7.
2: Initialize datasets Dy (s, a) = (, for all (s,a) € S x A, and Q-table Qy = 0.
3: for iterationt =0,...,7 — 1 do

4: Observe data tuple {s¢, at, st.41}, and reward y; (s¢, az).
5: Append y;(s¢, at) to Dy(s¢, at), and compute 7 (s, a;) «— TRIM[D;(s¢, at), €, 01].
6: if |Ft(st,at)| > Gy then
7: Set 7:75(8)5, at) +~0
8: else
9: Set Ft(st,at) — Ft(shat)
10: end if
11: Update Q¢41 using Eq. (5).
12: end for

To formally introduce the adaptive threshold, we first define a burn-in time 7 as follows:

_ 104 8|S||A|T

T - ’73)\min log ( 61 )_‘ ’ (3)
where recall from Section 2 that Ay;, > 0 is the minimum state-action visitation probability. Our
analysis will reveal that for V¢ > T, the number of visits to each state-action pair (s, a) up to time ¢
is well concentrated around its mean value A(s, a)t with high probability; this is needed to address
the first issue of acquiring enough data. We now define our adaptive threshold G; as follows:

0, ift <T,

G, = r '

where C is the universal constant from Theorem 1, and & = max{R7 & }; here, note that we implicitly
assume & is known, an assumption we will relax later in Section 4. With the threshold G, in hand,
we account for extreme events as follows: if |7:(s:, atr)| > Gi, then we discard the estimate by
thresholding it to 0. Else, we accept the output of the trimmed mean estimator as is. This operation is
described in lines 7-11 of Algorithm 1, where the output of the thresholding scheme is denoted by
7+(st, a:). We emphasize here that the design of the adaptive threshold is the most innovative part
of our algorithm and needs to be done “just right'' to achieve near-optimal guarantees: if the
threshold is too tight, then we will reject estimates unnecessarily; if it is too loose, we might end up
accepting extreme estimates. Either of these scenarios can lead to vacuous bounds.

e Proposed Robust Q-Update. We can now formally state the update rule of Robust Async-Q
which uses 7;(s¢, a;) - as generated above - as a proxy for the true reward mean R(s¢, a;) in the
Q-learning rule of Watkins [1]:

(1 - a)Qi(s,a) + a |7(s,a) + nggﬁ Qt(3t+1,a/):| , if (s,a) = (8¢, a¢),
Qt(sva)v if (S’a) 7& (St,at)-

The update rule above ensures that only robust and bounded reward estimates influence the learning
dynamics. In the next section, we will see that the combination of robust filtering and thresholding
yields finite-time error bounds for Robust Async-Q that gracefully degrade with the corruption level
¢, while matching the classical Q-learning rate in the absence of corruption.

Qt+l(sva) = (5)

3.1 Main Results for Robust Async-Q

In this section, we provide our first set of results for Robust Async-Q with known bounds on reward
means and variances. To that end, define d; := Q; — Q*,Vt > 0. We then have the following result.
Theorem 2. Suppose Assumption 1 holds, and T satisfies: T > max{T,log(T)/(Anin(1 — 7))}
logT

———=—— then satisfies
Anin(1 — )T ﬁ

Given any given ¢ € (0, 1), the output of Algorithm 1 with step-size o =
the following bound with probability at least 1 — 6:

do|| oo G logT S||A|T o
Izl < 1ol +0< T 10%(%'))”(»”@&))' ©
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Discussion of Theorem 2. To parse the result from Theorem 2, suppose for the moment that there is
no corruption, i.e., ¢ = 0. The dominant convergence rate from Eq. (6) is then O(1/((1 —~)>°V/T)),
which matches the recent finite-time rates for Q-learning obtained in [44, 18]. Up to polynomial
factors in 1/(1 — ), this rate is known to be minimax optimal [19]. When ¢ # 0, our bound features
an additive O(4/¢) term that depends only on the small corruption fraction e, but crucially is not
affected by the magnitude of the injected attacks, highlighting the effectiveness of Algorithm I in
mitigating adversarial influences. The corruption-induced term is inflated by the noise variance (as
one might expect), and by the inverse of the smallest visitation probability A,;,. Intuitively, poisoning
the data for the least-visited state-action pair can make it harder for the learner to reliably estimate the
mean reward for this pair. This intuition is formalized by our upper-bound. The main takeaway from
Theorem 2 is that despite corruption, Robust Async-Q is able to nearly recover the performance
of vanilla Q-learning, up to a small O(y/¢) term. To our knowledge, this is the first result on the
adversarial robustness of Q-learning under asynchronous sampling.

Fundamental Lower Bound. One might ask: Is the additive O(4/¢) term in (6) unavoidable for our
problem of interest? We now show that this is indeed the case by establishing an information-theoretic
lower bound. To do so, it suffices to consider a simpler synchronous observation model [45-47]
for the learner, where it gets to observe data for every state-action pair (s,a) € S x A at each
time-step ¢. More precisely, in each iteration ¢, we toss a biased coin with probability of heads 1 — ¢,
independently of the past. If the coin lands heads, for each (s,a) € S x A, the learner observes
ye(s,a) ~ R(s,a). If it lands tails, for each (s,a) € S x A, y:(s,a) ~ Q, where recall that Q is
an arbitrary adversarial distribution. Let us use (e, &, Q) to collectively represent the set of all
MDPs and observation models with finite state and action spaces, where the true underlying reward
distributions have bounded mean rewards and variance at most 62, and the observed rewards are
generated based on the synchronous Huber contamination model described above. With a slight
abuse of notation, we will use Q* € H(e, 7, Q) to imply that Q* is the optimal value function of an
MDP consistent with the class of MDPs contained in . Now, suppose the learner is presented with
T independent data sets D1, ..., Dy, where D; = {y:(s, a)}(5,a)csx.4- An estimator Q7 of Q* is
some measurable function of these 7" sets. We then have the following fundamental lower bound.

Theorem 3. (Lower Bound) There exists a universal constant ¢ > 0 such that

. A * ~7\ﬁ 1
wt s P10 @z 25) 2 1
Qr Q*eM(z,5,Q) 1= 2

Main Takeaway. From the above result, we infer that the additive corruption term in (6) is tight in its
dependence on the corruption fraction ¢, the discount factor v, and the noise variance &. Interestingly,
these dependencies persist even when the learner is presented with a more favorable observation
model where it gets to observe rewards for all the state-action pairs simultaneously at each time-step.
We note that similar additive corruption terms have been proven to be unavoidable in prior works on
robust mean estimation [48—51], and multi-armed bandits with reward corruptions [5, 7, 8]. Our work
is the first to show that such a term is also unavoidable for Q-learning. Collectively, Theorems 2
and 3 establish the near-optimality of our proposed approach, and paint a fairly complete
picture for the theme of adversarial robustness in Q-learning. To complete this picture, one
would need to establish a lower bound that also clarifies the dependence on the minimum visitation
probability Ayi,. We conjecture that some dependence on Ayij, is likely unavoidable; however,
verifying this formally is left for future work.

Having established the near-optimality of our approach, the next two sections of the paper are devoted
to further generalizing our results to scenarios where bounds on the reward means and variances are
unknown (Section 4), and when the data is sampled in a Markovian manner (Section 4.1). Before
jumping into these sections, we provide brief proof sketches for Theorems 2 and 3.

Proof Sketch of Theorem 2. Using the update rule in (5), we start by writing down a recursion
for the error d; = @; — Q™ that features two main terms: a noise term that exhibits a martingale
difference structure, and a term that captures the effect of adversarial corruption. The main challenge
in the analysis arises from the fact that these two terms are coupled; notably, this difficulty does not
arise when one analyzes the standard Q-learning algorithm. The coupling is a consequence of the fact
that the noise term involves the iterate (); which, in turn, is affected by the adversarially corrupted
reward observations. Our proof strategy is to first control the effect of adversarial corruption via the
following lemma, which is the key new tool in our overall analysis.



Lemma 1. (Bounding Adversarial Effects) Suppose Assumption 1 holds. With probability at least
1 —§/2, the following items are true for all t > T': (i) T1(st, at) = 7i(St, ar), and

(i) |Fe(se,ae) — R(se,a0)| < O <& (,/bi(fﬁ” + ﬁ)) .

Lemma 1 tells us that after the burn-in time 7 is passed, with high-probability, no thresholding will
take place, i.e., 7¢(s¢, at) = T4(s¢, ar), and the reward proxies that we plug into our update rule (5)
will be sufficiently accurate estimates of the true reward functions. The main difficulty in establishing
Lemma 1 is that the number of times each state-action pair has been visited up to any time-step ¢ is
a random variable. As such, we first use Bernstein’s inequality to create a “good event" on which,
after time 7', each state-action pair is sufficiently visited. We then carefully condition on this event to
exploit the bound in (2). Lemma 1 helps us control the effect of adversarial corruption. To control
the noise term, we first use the adaptive thresholding idea and an inductive argument to establish
that the iterate sequence {(Q;} generated by Robust Aysnc-Q is uniformly bounded, and then apply
Azuma-Hoeffding. The complete details of the proof are deferred to Appendix C.

Proof Sketch of Theorem 3. The proof of this result relies on carefully constructing two different
MDPs and associated attack distributions, such that (i) the optimal Q-functions in the two MDPs
differ in magnitude by Q(5+//(1 — )); and (ii) the distributions of the observed reward samples in
the two MDPs are indistinguishable to a learner. The details are provided in Appendix D.

4 Reward-Agnostic Robust Asynchronous Q-Learning (Robust Async-RAQ)

In the previous section, we developed a robust variant of the asynchronous Q-learning algorithm
(Robust Async-Q) that achieves near-optimal guarantees under reward corruption, while assuming
access to upper bounds on just the first two moments of the true reward distributions. These
assumptions enabled us to precisely design the adaptive threshold G in Eq. (4) to safeguard against
adversarial outliers. We now ask: Is it possible to preserve the same rates as before while assuming
no prior knowledge at all about the reward statistics? This is a challenging question motivated by
real-world applications where precise bounds on the moments of the reward distributions may not be
available to the learner. The lack of knowledge of the parameter ¢ = max{R, 5}, which previously
played a central role in designing the threshold function G, now creates more uncertainty for the
learner to contend with. Nonetheless, we establish that one continue to enjoy the same bounds as
before with two simple modifications to Algorithm 1 that we now describe.

Modification 1 (Reward Agnostic Threshold). Our key idea is to use a polynomial function of
time, denoted by m(t) = P, as a proxy for the unknown upper-bound &. Any positive integer p > 1
will suffice for our purpose; we will comment on the choice of p shortly. The new threshold is

Gy =0 if t <T; étCm(t)<\/4l§g)\(§/tm+\@>+m(t) if t>T, @)

where the universal constant C and the burn-in time 7T are defined as before in Section 3. The intuition
for this proxy is quite simple: since ¢ is a constant, any growing function of time will eventually
dominate &, after which point, the new threshold G; will serve as an upper-bound for the threshold
G, that we designed earlier in (4). Lemma 1 will kick in at this point.

Modification 2 (Failure Probability Modification). To make the analysis go through, we will
require the failure probability parameter 7 that is fed as input to the TRIM function, finer than before:
we set &1 = 02/ (512 |S|[A[*T?*3), where p is the same parameter that appears in m(t). Thus,
the overall change to Algorithm 1 involves the new choice of d; in line 5, and the replacement of G,
by G, in line 6. We call this new reward-agnostic variant Robust Async-RAQ.

Our main finite-time result for Robust Async-RAQ is as follows.

Theorem 4. Suppose the conditions in Theorem 2 hold. Then, given any 0 € (0, 1), the output of
Robust Async-RAQ satisfies the following bound with probability at least 1 — §:

~14+1/2 ~
ldr o < lldollee i [ & i la?gT log (M) +(9("\@> _ 8)
T (1="2 22 T 0 Anin(1 = 7)




Main Takeaway. Comparing equations (8) and (6), we note that even with no prior knowledge of
the reward statistics, Robust Async-RAQ is able to remarkably preserve the same near-optimal rates
we established before, up to a slight inflation in the dependence on ¢ in the dominant term. This
goes on to show the flexibility of our overall framework in accommodating asynchronous sampling,
adversarial corruptions, and completely unknown reward statistics. Now, let us comment on the
choice of p in the function m(t). Making p larger would lead to a shorter wait time before the

modified threshold G; dominates the true threshold G, and an improvement in dependence on &
in (8). However, a larger p would also imply a smaller failure probability d;, which will eventually
cause our overall bound to get scaled linearly by p, since J; fortunately appears inside a logarithm.
Due to the latter fact, up to constant factors, making p large does not degrade our final bound.

Challenges and Technical Novelty in the Proof of Theorem 4. In addition to the proof challenges
for Theorem 2 we discussed earlier, the modified threshold G; introduces various new subtleties
and technical challenges in the proof, which precludes the use of standard concentration tools used
typically in the analysis of RL algorithms. Like before, to exploit the martingale structure of the
noise term that shows up in our analysis, we need a uniform bound on ||@Q;||~,. While this bound
was O(1) previously, in light of the new threshold, it now becomes on the order of O(7T?). Using
this new upper bound with the standard Azuma-Hoeffding inequality will lead to a vacuously large
rate that does not reflect the “typical" behavior of the algorithm. Thus, we need a much more
intricate analysis than before. Our key observation is that the iterate sequence {Q);} generated by
Robust Async-RAQ exhibits an interesting structure: they are bounded by a crude O(T?) term
deterministically, and a finer O(1) term with high-probability. This observation does not immediately
resolve our problem since we now need a finer version of Azuma-Hoeffding that can exploit the
structure identified above. In this regard, some common variants of Azuma-Hoeffding for discrete
probability spaces [20] and martingale differences with sub-Gaussian tails [21] are inadequate for
our purpose, since the martingale difference in our setting neither belongs to a discrete space nor
is sub-Gaussian. Fortunately, we are able to leverage an elegant result from [22] on martingale
differences that admit a coarse bound deterministically, and a finer bound with high-probability. This
refined variant of Azuma-Hoeffding is the key new tool in our analysis, and, as far as we are aware,
has not appeared before in prior finite-time analysis of RL algorithms. Thus, the proof of Robust
Async-Q requires considerable innovation relative to prior work; we defer the details to Appendix E.

4.1 Extension to Markovian Sampling

We now explain how our developments can be extended to account for single-trajectory Markovian
data. Previously, we assumed that at each time-step ¢, s; is sampled in an i.i.d. manner from the station-
ary distribution 7 of the Markov chain induced by the behavior policy p. We now relax this assump-
tion, and let s, be the state of this Markov chain at time ¢. It is easy to verify that Z; = (s, at, St41)
is also a Markov chain, and that this chain is ergodic based on Assumption 1 [52]. Using this fact,
we now propose a simple modification to Robust Async-RAQ that ignores certain data points. To
explain this modification, let €2 represent the state space for the Markov chain {Z;}, and let p be
its stationary distribution. Following [23], define d,i(t) := supcq Drv (P(Z: € |2y = 2), p) ,
where D7y is used to represent the total variation distance between probability measures. We now
define the mixing time as 7 := inf{¢|d;;.(t) < 1/4}. Finally, we define a “block” parameter
T := |47], where ¢ = [log(2T/d)/log2]. The only modification to Robust Async-RAQ is that
the agent now uses every 7-th sample, and drops the rest. For this variant (described formally in
Appendix F), we have the following result.

Theorem 5. Suppose Assumption 1 holds, and Zy ~ p. Then, given any 6 € (0, 1), for suitably
chosen a and large enough T, the following bound holds with probability at least 1 — §:

- 51+1/2p -
ldr||oe < Mollee 4 o [ & Z ;’gT log (L”A‘T) +0 <“\/g_ ) ()
T (1—9)2 22 JT J Amin(1 =)

Main Takeaway. Comparing Theorems 4 and 5, we note that despite Markov sampling, we are able
to essentially preserve the same bounds as in the i.i.d. case up to an inflation by a factor of /7, where
T captures the mixing time of the Markov chain (up to logarithmic factors). Such an inflation by the
mixing time shows up for vanilla Q-learning as well [18]. The assumption that Zy ~ p is only made
to simplify some of the algebra as in prior RL work [43, 23]. Overall, Theorem 5 establishes the
first robustness guarantees for Q-learning with single-trajectory Markovian data.
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: All claims made in the Abstract and Introduction are supported by concrete
theoretical statements and proofs.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: In lines 313-316 of the paper, we explicitly point out that our lower bound right
now does not capture the effect of asynchronous sampling, and clarify the right dependence
on the minimum state visitation probability. This is an interesting issue that is left open by
our work.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: In the statements of all theorems, we state the assumptions/conditions they
rely on. Detailed proofs of all results are provided in the supplementary material.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [NA]
Justification: The paper does not include any experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]
Justification: The paper does not include any experiments.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]
Justification: The paper does not include any experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]
Justification: The paper does not include any experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]
Justification: The paper does not include any experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We cannot think of any way in which the code of ethics is violated by our
paper.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: We cannot think of any direct societal impacts of this work.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: We are not releasing any data, so there is no risk of misuse.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: Our paper does not use any existing assets.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: Our paper does not release any new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: Our paper does not involve any crowdsourcing research.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our paper neither involves any crowdsourcing, nor research with human
subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.
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* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: Our paper does not use LLMs.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Additional Literature Survey and Standard Results

In this section, we provide a more detailed discussion of the relevant threads of literature.

1. Q-Learning. The Q-learning algorithm was first introduced by Watkins and Dayan in [1].
There is a long line of work that has explored the asymptotic performance of Q-learning
algorithms in the limit of infinite samples; see, for instance, [53, 39, 40], using ideas from
stochastic approximation theory [53, 54]. A more recent strand of literature has focused on
the non-asymptotic analysis of Q-learning and its variants [55, 44, 18, 19], accounting also
for function approximation [52]. While we build on some of the techniques in these papers,
our work departs from this line of literature by considering the robustness of Q-learning to
adversarial perturbations - a topic that has not been explored in the papers mentioned above.
For a detailed literature review on Q-learning, we refer the reader to [19].

2. Stochastic Approximation. Our work is broadly related to the area of stochastic ap-
proximation algorithms in reinforcement learning, which includes Q-learning [1] and TD
learning [11] as special cases. As mentioned earlier, the asymptotic theory of such algo-
rithms is rich [42]. Finite-time results, however, are much more recent. Initial finite-time
results under the i.i.d. sampling model (that we also consider in this work) were provided
in [13, 16, 14, 15, 56]. The extension to the Markov setting was first derived in [43] for a
projected TD learning algorithm. The assumption of the projection step was later removed
in [57] and [58].

3. Reward Contamination in Multi-Armed Bandits. A large body of work has explored the
effects of reward contamination on the performance of stochastic bandit problems, both for
the unstructured multi-armed bandit (MAB) setting [4, 6, 8, 5, 7], and also for structured
linear bandits [26, 27, 25, 28]. The basic premise in these papers is that an adversary
can modify the true stochastic reward/feedback on certain rounds; a corruption budget C
captures the total corruption injected by the adversary over the horizon T'. In particular, the
authors in [8] study a Huber-contaminated reward model like us, where in each round, with
probability 7 (independently of the other rounds), the attacker can bias the reward seen by
the learner. A fundamental lower bound of 2(n7") on the regret is also established in [8].
While our reward contamination model is directly inspired by the above line of work, we
emphasize that the stochastic approximation setting we study here fundamentally differs
from the bandit problem. As such, our algorithms and proof techniques are also different
from the bandit literature.

4. Robust Statistics. The study of computing different statistics (e.g., mean, variance, etc.)
of a data set in the presence of outliers was pioneered by Huber [2, 3]. Since then, the
field of robust statistics has significantly advanced, with more recent work focusing on
computationally tractable algorithms in the high-dimensional setting [49, 48, 59, 50, 12, 51].
Our paper builds on this rich line of work and uses it in the context of RL.

A.1 Useful Facts and Results

In this section, we compile a few useful results that will be used by us throughout the proofs. We start
by listing some properties of the Bellman optimality operator 7 : RIS!XIAl — RISIXIAl given by:

(TQ) (57 (1) = R(Sa a) + rY]ES'NPHs,a) |:¢I;,I’123§ Q(Sla a/):| . (10)

It turns out that the optimal state-action value function Q* is a fixed point of 7, i.e., TQ* = Q*.
Furthermore, 7 is contractive in the co-norm, a fact that we will exploit in all our main convergence
proofs. Formally, the Bellman optimality operator satisfies the following contraction property
VQ1, Qs € RIS

1TQ1 — TQ2llee <7||Q1 — Q2|c- (11)

We also state some useful concentration tools for future use.
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Lemma 2. (Bernstein’s Inequality) If X1, Xo, ..., Xy are independent random variables with
P(|X;| < ¢) = 1 and common mean p, then for any ¢ > 0:

Ne?

2ce ’

P(| Xy —pl >¢e) <2exp{ —————
202—&-?

(12)

where Xy = %Zjvzl X; and 0% = %Zil Var(X;).

Lemma 3. (Azuma-Hoeffding) Let 7, Z5, Zs, . . . be a martingale difference sequence with | Z;| <
¢c; for all i € N, where each c; is a positive real. Then, for all A > 0:

'

n

>z

=1
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B Analysis of the Trimmed Mean Estimator under Huber Contamination

Algorithm 2 Univariate Trimmed-Mean Estimator from [12] (trimSC)

Require: Corrupted Dataset D= {X1,Xo,..., Xp} =D1@Ds, such that [ D] ;e g1 0y = M/2;
corruption fraction €; confidence level §.
I Set ¢ = 8c 424"/,
2: Let X7 < X5 < - < Xy, /2 Tepresent a non-decreasing arrangement of D;. Compute

quantiles: a = X7y, 8= X(l—()M'
3: Define the function ¢, g(x) as

B ifx>p
Papx) =<z ifzx € |a,p]
a ifr<a

4: Compute the trimmed mean: ix = (2/M)>_ . . ¢a,5(X;).

We start by briefly recalling the strong-contamination data model studied in [12]. Consider a data
set D comprising of M i.i.d. samples of a scalar random variable X with mean px and variance
0% . An adversary arbitrarily perturbs up to e M of the samples within D to produce a corrupted data
set D; here, ¢ € [0,1/2) is the fraction of corrupted data. Using D, the corruption fraction ¢, and a
confidence parameter § as inputs, the trimmed mean estimator from [12] produces a robust estimate
fix of the mean px in the following way. The data set D is divided into two equal parts of M /2
samples each. The first part is used to compute empirical quantiles for filtering out extreme values.
The estimate fix is then simply an average of only those data samples in the second part that fall
within the computed quantiles. Let ix = trimSC[D, ¢, §] be used to succinctly represent the output
of the trimmed mean estimator described above, and outlined in Algorithm 2; here, the subscript ‘SC’
is used to represent the strong contamination attack model considered in [12]. For this setting, we
have the following guarantee from [12].

Theorem 6. [12, Theorem 1] Let 6 € (0,1) be such that 6 > 4e=M/2 and suppose [ix =
trimSC[D, €, §]. Then, there exists an universal constant ¢, such that with probability at least 1 — 0,

lfix — px| < cox <ﬁ+ lg(ﬂj/‘”> . (13)

Our goal in this section is to show how the same result can be extended to account for the Huber
contamination model of interest to us, where each data sample in D is arbitrarily corrupted with
probability . For future reference, we will call the Huber-contaminated data set D’. As we will show,
all that needs to happen is that Algorithm 2 needs to be invoked with a slightly larger corruption
fraction that will follow from our subsequent analysis.

Step 1. Bounding the number of corrupted samples. We begin with a dataset D consisting of
M samples, where each sample is independently corrupted with probability e, as specified in the
corruption model described in Section 2. Our first objective is to bound the total number of corrupted
samples in this dataset (with high probability). To this end, we define an event VWV, where the number
of corrupted samples does not exceed 3¢’ M /2, where ¢’ is chosen as follows:

P oy 32 4
e_a+3Mlog<6). (14)

Our goal is to provide an upper bound on the probability of the complementary event WC. We
start by choosing Y; as an indicator random variable such that Y; = 1 if the i sample is corrupted,
and Y; = 0 otherwise. Under the Huber contamination model, we have E[Y;] = ¢ for all i € [M].
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. . M
Furthermore, the average variance satisfies Zi:l Var(Y;)/M < . Now observe:

- {yr=)

:{Lém—of—s} (15)

1 M <
— {mXv-e=3}
1=

where in the last step, we used the fact that &’ > ¢. Applying Bernstein’s inequality outlined in
Lemma 2 yields the following high-probability bound on the event WW¢:

/

3e' M
PWS) <2 3 < g (16)

where the last inequality follows from the definition of the inflated corruption fraction &’ in (14).

Step 2. Proof of Theorem 1. To repurpose Algorithm 2 to account for the Huber contamination
model, we simply invoke Algorithm 2 with an inflated corruption fraction and a deflated failure
probability. Specifically, let ix = TRIM[D', ¢, 0] := trimSC[D’, £, /2], where & := 25’. In simple
words, our modified estimation algorithm for the Huber contaminated setting, denoted by TRIM, takes
as input the Huber-contaminated data set D’, the contamination probability €, and failure probability
0. It then invokes Algorithm 2 with the same data set, but with an inflated corruption fraction &, and

a deflated failure probability §/2. To analyze the performance of jix, let us define an event ) as
follows:

log (%)
V=1 |pix — px| > cox VE+ - ) (17

where c is the universal constant in Theorem 6. We now decompose the event V as V = {V N W} U
{V N W°}, which immediately implies the following:

PV) =PV NW) +PVNW®) <P(YNW) +PW°)
<PVW) - PW) +P(W°)
<PV|W) +PW°).
() (#%)

(18)

From (16), we already know that (xx) < ¢/2. Furthermore, conditioned on the event W, we
know that there are at most £M corrupted samples in the data set D’. Thus, invoking Theorem 6
immediately yields that (x) < §/2. We conclude that with probability at least 1 —

log(? log
liix — pux| <cox | VE+ - \/

(19)

(o0) IOg (7)
< Cox [ve+ g

M )

where C > ¢ is some suitably large universal constant. In (e), we substituted the value of &, while

in (ee), we substituted ¢’ from Eq. (14), and applied the elementary inequality v/a + b < v/a + /b,
that holds for all positive scalars a, b. The rest follows from simple algebra. We have thus provided a
proof for Theorem 1.
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C Proof of Theorem 2

The proof of Theorem 2 follows a careful sequence of arguments that we proceed to outline next. We
begin by decomposing the proposed update rule to isolate the key sources of error arising from both
adversarial and non-adversarial components. This is followed by establishing ¢, -error bounds for the
non-adversarial noise in Lemmas [4,5], and for the adversarial corruption in Lemmas [6, 7]. Finally,
we complete the proof of Theorem 2 by assembling these results through a simple yet meticulously
crafted inductive argument.

Error Decomposition Step. First, using the Bellman optimality operator in Eq. (10), the proposed
robust Q-Learning update in Eq. (5) is decomposed as follows:

Qi+1(st,at) = (1 — @)Qu(se, ar) + T Qi(se, ar) + ane(se, ar). (20)

Here, 1 (s, a;) is a perturbation that captures the combined effect of noise and adversarial corruption.
Specifically, 7;(s¢, a) is as follows:

0t (8¢, at) 2 ’Yf}}gﬁ Qi(st41,a") — VEsy g1 ~P( [50,00) [ar{lgﬁ@t(stﬂa a’)] + 7¢(s¢, 1) — R(st, a).

21
To aid the analysis, we further re-define the following two terms which add up to 7; (s, a;) in
Eq. (21):

Nea(se, ar) = v max Qi(st41,a") = VEq,, p(|51,a0) hngﬁ Qt(st+1, a/)} ; 22)

Ne2(Se, ar) = T(se, ar) — R(s¢, ar).

Discussion on the Error Terms. The term 7 (s¢, a;) defined in Equation (21) captures the deviation
between the actual and ideal updates for the sampled state-action pair (s, a;) at the t*" time step.
Under adversarial reward corruption, this deviation naturally decomposes into two components.
The first term 7, 1 (s¢, a¢) captures the gap between the noisy Bellman update and the true Bellman
update in (10), excluding the reward term. The second term 7, 2 (s, a;) accounts for the difference
between the proposed reward proxy and the expected reward. Note that in the absence of corruption,
Tt(8t,ar) = 1¢(8¢, ar), such that E[r(s¢, ar)] = R(st,a¢). In this case, the entire term 7 (s, at)
reduces to the difference between the noisy Bellman update and the true Bellman update.

Final Error Decomposition and Matrix Formulation. For aiding our analysis, we now write
Eq. (20) in a compact matrix form, by introducing a time-dependent sparse, diagonal matrix
[Dt]|sp2.1412 £ D, , whose only non-zero entry corresponds to the sampled state-action pair
(s,a) = (s4,a;) at the ¢ iterations, and equals to 1. This allows us to represent the Q-value
update for the current state-action pair using matrix notation:

Qi1 = (I —aDy)Qy + aDy(TQ:) + any(ss, ap) 1y, (23)

where 1, is a |S|.|.A| dimensional indicator vector, which has the value 1 at the position corresponding
to (s¢, a¢) and 0 elsewhere. Since, we are concerned with the asynchronous sampling scheme, D; is a
random matrix. As a result, we introduce a new collective error term to account for this randomness,
defined as follows:

G & m(se,a0) e — (Dy — D) (Qr — TQy), (24)
where
Est’\“ﬂvat"‘#("st)[‘Dt] =D, and (25)
)\(81, al) 0 0 tee 0
0 . 0 0
D = 0 0 A(siya;) =m(s;) - p(sila;) -+ 0 . (26)
0 0 0 o A(s1s)5a14])

The definition of ¢; in Eq. (24) accounts for the collective vectorized error, which includes the
discrepancy described in Eq. (21) as well as the error arising from the asynchronous sampling nature
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of the algorithm, captured by the difference (D, — D). With the introduction of the collective error
term in Eq. (24), Eq. (23) can be rewritten as follows:

Qi1 = (I —aD)Q: +aD(TQ:) + ag;. 27

Now, Q* is the fixed point of the Bellman optimality operator 7T, as defined in Equation (10), i.e.,
TQ* = Q*. We can leverage this property to construct the error iterates (Q; — Q*) as follows:

Qi1 —Q = —aD)(Q: — Q) +aD(TQ: — TQ™) + ag;. (28)

Unrolling the above recursion over ¢ + 1 iterations, we get:
t
Qi1 — Q"= —aD)"(Qo— Q") +aD 3 (I —aD) " (TQr - TQ") + Ar,  (29)
k=0
where A; is defined as follows:

t
A2 a > (I-aD) ¢, (30)
k=0

Notably, in the presence of adversaries, A, is not a standard Martingale Difference Sequence (M.D.S)
candidate, since adversarial corruptions introduce a new bias term. To isolate the contributions of
stochastic noise and adversarial perturbations, we further decompose A; into two components, Ay ;
and A 2, such that:

¢ t
Ap=ad (I- aD)t_ka’l, Ap=ad (- aD)t_ka,g, where 31
k=0 k=0

the noisy (;,; and adversarial (; » components which contribute to ; are defined as follows:

Ct,l £ 77t,1(5t, at)]lt - (Dt - D)(Qt - TQt), Ct,2 £ 77t,2(5t7at)]lt- (32)

Also, the (s, a) — th component of the drift parameters in Eq. (31) is denoted as:

Apa(s,a) 2 ad (1 —aX(s,a) " (s,a), Ava(s,a) = ad (1—ad(s,a)) " a(s,a).

k=0 k=0

(33)
Step 1: Bounding the Non-Adversarial Noisy Error A, ;. To begin analyzing the overall error,
we first consider the contribution from the cumulative non-adversarial noise term A, ;, described in
Eq. (31). We first argue that {Cx,1 } ke[ admits a standard martingale difference sequence (M.D.S).
We show this by proving two key properties: uniform boundedness, established in Lemma 4, and
the fact that it has a zero conditional expectation, as shown in first part of Lemma 5. In the latter
part of Lemma 5, we use the standard Azuma-Hoeffding inequality from Lemma 3 to bound the
cumulative error term A, ; arising from the non-adversarial noise. We now proceed to prove the
uniform boundedness property in the next result.

Lemma 4. (Bounding Iterates for Robust Async-{) The following bounds hold deterministically
forallt € [T):

6CG 12C6
1_77 ”Ct,l”oo S 1_77

0,1 (56, a¢)] < (34)

where C is the universal constant that appears in (4).

Proof. To establish the claimed bounds, our first step is to argue that the iterates generated by Robust
Async-Q remain uniformly bounded. We will prove the fact via induction. In particular, we claim
that forall s € S, a € A, and t € [T, the following is true:

3Co

Qu(s.a)| < -
where C is the universal constant in Eq. (4). The base case of induction at ¢ = 0 holds trivially
since Qo(s,a) = 0 for all (s, a). Now suppose the bound in (35) holds up to time ¢. To show that

it also applies to time ¢ + 1, notice that for a state-action pair (s, a) # (s¢, a;), Qi+1(s, a) remains
unchanged from time ¢ to time ¢ + 1, and thus, the induction claim trivially applies to all state-action

(35)
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pairs that are not sampled at time ¢. Next, for the sampled state-action pair (s;, a;) at time ¢, applying
the triangle inequality to the asynchronous @-learning update equation in Eq. (5) yields:

|Qet1(5¢,ae)] < (1 — ) |Qe(st,ae)| +

)

Fe(Se,a0) +y max Qi(s41,0a")
(36)

< (1= )@l + o (s a0+ max s, ).

To proceed, we note from the thresholding operation in lines [6-9] of Algorithm 1 that: |7 (s, a;)| <
Gy, Vt > 0. Moreover, from the definition of G; in Eq. (4), we observe that G; = O forall ¢t < T.
Also, for all ¢ > T, we further have that G; < 2C5 + ¢ < 3Cd, where we used the fact that
C > 1, and the definition of 7" in Eq. (3). We thus conclude that in light of the thresholding step in
Algorithm 1, the following holds deterministically at all time-steps: |7 (s¢, a;)| < 3C&. Plugging this
bound into Eq. (36), and using the induction hypothesis, we obtain the following for the sampled
state-action pair (s, a;) at the t** instant:
3Co

Qey1(sp,ae)] < (1 —a) - 5 —
3Co

1—« « ~
- (1—7+ﬁ)3c"§ 1—7'

+a (30& t- f’i) ,

We have thus shown that the induction claim in Eq. (35) holds for all state-action pairs (s, a) € S X A,
and V¢ € [T']. With a deterministic bound on the iterates, we now proceed to bound the non-adversarial
deviation term defined in Eq. (22):

\m,1(5t7at)| = "Y g}gﬁ Qi(st11, a’) - ’YEst+1~]P>(~\st,at) {g}gﬁ Qt(5t+17a/)] ‘ )

)

/
[g{leaﬁ Qt(5t+1a a )]

<7 ‘51235 Qt(st41.0")| + VB, ~B(|sr,a0)

< 7 max |Qt(st41,0")| +VEs, ~P(-|51,a0) Ln?gﬁ Q¢ (St41, a’)]’ )

<~ 6Co < 6Co

1—7 1—v

where the final inequality uses the bound in Eq. (35). Finally, consider the combined deviation term
in Eq. (32). For this term, we have

(¢ lloo < Mt (sesae)| + Dt — Dlloo (1Q¢]l0o + [T Qtlloo)
(a) 6Co
< 1o+ (1Qlse + 1T Q)

(<b) 12C5

)

In the above steps, for (a), we used the previously established bound on |7, 1 (s¢, at)|, along with the
fact that || D; — D||o < 1. For (b), we used (35) to deduce that || Q|| and || 7 Q¢|| oo are both upper-

bounded by lgf—: In particular, the bound on ||7°Q; || also uses the fact that |R(s,a)| < R < 5.

This completes the proof of Lemma 4, establishing deterministic uniform bounds on the non-
adversarial noisy sequences {11 }rep> and {Cx,1 }rep- O

With the above result in hand, we now proceed to prove Lemma 5, which provides an ¢.,-norm bound
on Ay .

Lemma 5. (Bounding the Noise effect in Robust Async-{) With probability at least 1 — g, the

Sollowing bound holds simultaneously Vt € [T):
1206 [ a 4|S|| AT
=1, \/2Am log ( 5 ) 37

oo

t
> ol —aD)
k=0

where (i, 1 is as defined in Eq. (32).
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Proof. For a fixed state-action pair (s,a) € S x A, we claim that the process {a(l —
aX(s,a))™%C,1(s,a)} ey also admits a martingale difference sequence (M.D.S) with respect
to an appropriate filtration. To formally verify this property, we choose a filtration F;_; denoted
by the o-algebra generated by the observation history up to time k& — 1, that is, Fr_1 := o(0O; :
0 <i<k-—1),where O; :={s;,a;,5i+1,yi(8i,a;) }. Let us also define an augmented o-algebra
Gr = o(Fp—1, (Sk,ar)), such that F,_1 C Gi. In Lemma 4, we have established the uniform
boundedness of (i 1(s,a) forall (s,a) € S x A, and for all k € [t]. To conclude that (. 1(s, a) is
indeed a M.D. S, it remains to show that E[(x 1 (s, a)|Fr—1] = 0.

Conditional Zero-Expectation Property for M.D.S. To proceed, we start evaluating E[(y, 1| Fr—1]
as follows:

E[Ck,1]|F—1] = E[(le,l(%ak)lk = (Dr = D)(Qk — TQk)) ‘ﬂ-@

© E[nk 1(8k, ak lk‘fk 1] - E[(Dk —D)(Qk — TQk)’fkq] (38)

() E[E[nk,l(sbak)]lk|gk]‘}—kfl} = [0]|s/x |-

In (e), we invoke the linearity property of conditional expectation: for integrable random variables
A and B, and a filtration F, the following E[A + B|F] = E[A|F] + E[B|F] holds almost surely.
In (ee), we observe that @)y is Fj_1-adapted and that the sampling at time & is independent of
the past, under the i.i.d. sampling model. Also, E[Dy] = D, as explained in Equation (25), it
follows that E[(Dy, — D)(Qx — T Qr)|Fr—1] = 0. We also apply the tower property of conditional
expectation, which states that for nested o-algebras By C Bs, we have E[E[X |Bs]|B;1] = E[X |B4]
almost surely. Using this property, we note E[nx 1 (s, ax)1x|Gx] = 0. Hence, we conclude that
E[Ck,1|Fk—1] = [0];s]x|.4]- Consequently, it follows that E[Cx,1(s,a)|Fr_1] = 0 for all (s,a) €
S x A. Combined with the uniform boundedness of (j 1(s, a) established in Lemma 4, we conclude
that {Cx,1(s, @) } ey is indeed a uniformly bounded martingale difference sequence (M.D.S).

Establishing the Final Bound on A, ;. The boundedness and zero conditional expectation of the
noise sequence {Cx,1}xe[y- as established in Lemma 4 and Eq. (38), respectively, allow us to invoke
the Azuma—Hoeffding inequality described in Lemma 3 to control the deviation of the accumulated
noise term. Specifically, we aim to bound ||A¢ 1 ||o described in Eq. (31) with high probability. To
achieve this, we analyze each component A, (s, a) of the vector A, and notice that based on
Azuma-Hoeffding, for a fixed (s,a) € S x A and time-step ¢ € [T], the following high-probability
concentration bound holds with probability at least 1 — d1:

t

(a) _
|[As1(s, a) Z (1 —a)(s,a))"™ kckl(s a)
k=0

(39)
where T is as defined in Lemma 4. We use the standard Azuma-Hoeffding inequality in (a). In (b),
we substituted the sum of even powers by a dominating infinite sum of natural powers. In (c), we
have used the fact that \(s,a) > Ain for all (s,a) € S x A. Now, union bounding over all such
good events for all state-action pairs (s,a) € S x A, and time-steps ¢ € [T], we note that the bound
derived above holds simultaneously for all state-action pairs and all time-steps with probability at
least 1 — 01|S||A|T.

Next, in order to simplify, we substitute §; = §/(2|S||A|T), and T = 12C5 /(1 — +). We then obtain
that the following also holds for all ¢ € [T] with probability at least 1 — g:

t

> a(l —aD)* ¢,
k=0 ~

t
a(l — al(s, a))tikavl (s,a)
=0 (40)

12C5 a 4|$HA\T) A~
< = .
=1 —v\/mm 1°g< 5 At
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This completes the proof. O

Step 2: Bounding the Adversarial Term A, 5. Before discussing the bound on the adversarial
noise term A; > under the asynchronous sampling model, we first fix some notations that will be used
frequently in Lemmas 6 and 7. Denote by N;(s, a) a random variable which represents the count of
the number of times the state-action pair (s, a) has been visited up to (and including) time ¢ . Here,
11 (s, a) denotes the indicator variable that takes the value 1 if the state-action pair (sk,a) at iteration
k is equal to (s, a), and O otherwise. Thus, we observe the fact that NV;(s, a) Zke 1x(s,a).
Under the i.i.d. sampling model, the probability of visiting a particular (s, a) pair at each tlme step is
given by A(s,a) = 7(s)u(als). As aresult, the following is true:

E [Ni(s,a)] = A(s, a)t. 41)

Building on the above fact, we now construct a “good event" of sufficient measure on which, after a
burn-in time, the number of visits to each state-action pair will concentrate around its mean value. To
that end, we have the following simple application of Bernstein’s inequality.

Lemma 6. (Constructing Good Event) There exists an event K of measure at least 1 — %, on which,
the following holds simultaneously ¥(s,a) € S x A, Vt > T:

./\[t(S, a) 2 g)\min : t7

1104 8|$HA\T) W
where T = ’73)\1711"" log ( 5 .

Proof. We start by writing Vi(s,a) = Zkem 14(s,a), and observing the following basic facts:
E[1x(s,a)] = A(s,a), and Var[l,(s,a))] < A(s,a). For a fixed (s,a) € S x A and fixedt € T,
the probability of the following event K$(s, a,t) = {N;(s,a) < %)\(s, a)t} can be bounded using
Bernstein’s inequality:

P(K5(s,a,t))

I
=
—

{./\/'t(s, a) < Z)\(S, a)t})

SP({‘M“v“) —E[Ni(s, a)] ‘ > EA( )t}) <2.(- ToA(.a)t) “42)

Let us set 26( 104’\(9 a)t) < 0. Thus, for a fixed state-action pair (s,a) € S X A, and a fixed ¢t € T

104 2 —
P(Ky(s,a,t)) >1—6, provided ¢ > B o ( ) 2 7(s,a).

Union-bounding over all state-action pairs (s,a) € S x A and all time-steps t >
max(s q)esx.a 1(s,a), we conclude that there exists an event K of measure at least 1 — 6|S||A|T,
on which the following holds simultaneously for all state-action pairs (s,a) € S x A:

M(S,CL) 2 %)\(S,G/)t Z %Amint’

provided ¢ > T, with T as defined in the statement of the lemma with 6 = &; /4|S||.A|T. This
concludes the proof. O

Lemma 7. (Bounding Adversarial Corruption in Robust Async-§) With probability at least 1 — —,
the following bound holds simultaneously Vit € [T):

: )
< 10aC5 <\/AT log <32|5(|;4|T>> N Acif_f\@ 43)
o0

t

Z (I —aD)™ .o

where (. o is defined in Eq. (32).
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Proof. We will split our analysis into two separate cases.
Case I: When t < T, the term on the left-hand side of Eq. (43) deterministically simplifies to:

¢ B () (k) 104T 8|S||AIT
Z a([—aD)t ka,Q < aRT < ac- \/3)\mm 1Og( | !1 | )7

k=0 0o (44)
(k)
= 6aC&-\/ T log(S‘SHAlT).
A o1

min

In Eq. (44), we leveraged the threshold function described in Eq. (4) to derive the subsequent bound
for the case where k£ < T. It is evident that | — aDl/o < 1 and [|(x2]lcc < R < &, since

7+(s,a) = 0 using Eq. (4) for ¢ € [T]. Hence, the bound in (*) is satisfied. In (xx), we used
T <VTVT. Finally, we substitute the value of T from Eq. (3) to arrive at the final form.'

Case II: Next, consider the case when ¢ > T. We start out by considering the following events &y,
and & ; forafixed k € [T+ 1,T7:

&y £ |Fk(8k7 ak) — R(sk,ak)| <Co 45)

Er1 = < |Tr(sk, ar) — R(sg, ax)| < C&

Ni(sk, ar) Ve ' (46)

Next, let us borrow the good event X from Lemma 6, and decompose the complement of the event &y,
described in Eq. (45) as follows:

{E5 = {EH N{K UK} = {EF NK}U{EE N KEY. (47)
This immediately implies the following:
P& =P(EFNK) +P(EENKE),
<P(&NK) +P(K°).
From Lemma 6, on the good event XC, we know that for ¢ > T, the following holds: NV; (s,a) > %\mint

for all state-action pairs (s,a) € S x A. Next, we establish a bound on P(Ef N K) in Eq. (48) as
follows:

(48)

k
PENK) = > P(ENKN{Nk(sk a) =3}),
k
< >0 P(EEN{Nk(sk,ax) = j})

k
< > P(EHN(sk,ar) = j}) - P ({Ni(sk, ar) = j})

—3,
_7—4>\m1nk (49)
(®) k c ) .
< >0 P& HNk(sky ar) = j}) - P ({Ne(sk, ar) = j})
=3 Asak
(e0) k ‘
< 01+ P ({Nk(sk,ar) = j}),
=3 Asak
(o00) k )
< 01 D P ({Nk(sk, ax) = j}) = 61
§=0
"For simplicity, we assume T = ;\L%log (S‘Sgﬂ) instead of using the exact value T =
104 8|S||A|T . L o .
[T‘mlo ( 5 )-‘ This approximation has no significant impact on our analysis.
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In (o), for any fixed k € [T+ 1,T] and j € E)\mink, k} , the deviation bound specified by the event

&y in Eq. (45) is looser than that in & ; in Eq. (46) conditioned on Ni(sk,ar) = j. Specifically, the
following is true:

{E8 Wi (s, ar) = 3} = {&F 1 INi(sk, ax) = j}. (50)

In (ee), by conditioning on N (sk, ax), we eliminate the randomness associated with asynchronous

sampling. Since j > Z)\mink:, and k > T > Tyjm = [3)\8 log (;)—‘ in Case II, it implies that
min 1

j> g)\minj—iim > 2log (;) Hence, when we fix Ny (sg,ar) =7 € Ex\mink, k}, we can leverage
1

the robust mean guarantee in Theorem 1 as follows:
P (&5 1 Nk (sk, ar) = j}) < 61. (51)

Lastly, in (eee), we used the fact that 2520 P ({Nk(sk,ar) = j}) = 1. With Eq. (49), we can
further simplify our decomposition in Eq. (48) as follows:
P(&F) = P(ECNK) +P(KE),

()

51 (52)
<6+ 7S 207.

In step (), we applied the upper bound on the probability of the good event K established in Lemma
6. Combining these results, we conclude that the following holds for a fixed k € [T+ 1, T:

P(&) > 1 —26;. (53)
Union-bounding over all time-steps k € [T + 1,7, we conclude that there exists an event [J

of measure at least 1 — 26,7, on which, the following holds simultaneously for all time steps
kelT+1,T):

(54)

(55)

where we used |R(s, ar)| < R < &, and the definition of the threshold G, from (4). We conclude
that on event 7, the thresholding step in line 7 of Algorithm 1 will get bypassed, ensuring that
Tr(Sk, ar) = Tr(sk,ax), Yk > T. Crucially, based on (54), this implies that on the event 7, the
following deviation bound on the reward proxy applies simultaneously for all time steps k €
[T+1,T):

(56)

Now, we substitute §; = §/47T, ensuring that the event 7 takes place with probability at least 1 — g

Before moving forward, we pause to note that the aforementioned arguments have already established
Lemma [ in the main text.
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In the remainder of the proof, we will condition on the good event 7 on which (56) holds. On this
event, it is easy to see that for k > T,

¢k 2llo0 = H [Tr(sk, ar) — R(sk, ar)] MHOO

g (%) el (57)

= |fk(sk,ak) — R(sk,ak)\ <Co

[SCR N

Invoking Eq. (57), the following then holds on event J:

gt: oI —aD) ¢ o

k=T+1

t
< X all - aD)|5F - k2]l
00 k=T+1

t
)+ X all—ad)iCaVE (58)

k=T+1

4
(%) log (E) t 1 Co
R N e
= ato Amin k:T+1 \/E + )\min\/g
(*2*)2 c 4 T1 (i) +c&\[
- a 3)\min Og 61 Am:‘m &

Using the bound ||] —aD||oc < (1 —Apin) and the deviation bound on ¢y, » from event .7, we obtain
. . . . . 1
step (). The resulting summation is then separated into two terms—one involving T and another

involving a constant /. The first term is further upper bounded via an integral approximation (xx),
while the second term is bounded using the geometric sum of the decaying factor (1 — a\pin )t =%,
which sums to at most 1/(a\yi,). Finally, evaluating the integral and using the upper bound 7" on
the total number of iterations yields the bound in step (x * ).

Next, to obtain the final bound for Case II, we leverage the bound from Case I to obtain the following
(onevent ) forall t > T

t T !

S a(l—aD) G| <|[Sall —aD) T Go|| | 3 al - aD) G,

k=0 k=0 oo IIk=T+1 >~
(1 - T 8|S||A|IT - 4 T 16T Cé
= faco \/ 108 (P55 ) + 200 (55 es () ) + VR
(1) 2 4 A

D 1 oocs <\/AT log (WD + B ELA,,

(59)

In (}), we used the bounds obtained for Case I and Case II.In (}f), we simply used the mono-
tonicity of logarithms and substituted §; = ¢§/47". Lastly, combining our separate analyses for Case
I and Case ITI leads to the claim of the lemma. O

Finite-Time Rates for Robust Async-Q (Proof of Theorem 2): Having established Lemmas 4, 5, 6,
and 7, we are now ready to proceed with the proof of the bound stated in Theorem 2. First, to
build intuition for the nature of the final bound, let us consider Eq. (27) in the absence of any
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contributions from noise or adversaries. In this case, the recursion simplifies to the idealized update
rule: Q¢+1 = (I — aD)Q; + aD(TQ;). Subtracting the fixed point Q*, which satisfies Q* = T Q*,
we obtain the error recursion Q411 — Q* = (I — aD)(Q, — Q*) + aD(TQ; — TQ*). Defining
di(s,a) :=|Q:(s,a)—Q* (s, a)|, and applying the contractiveness of the Bellman optimality operator
under the co-norm, we can then obtain the following for each state-action pair (s,a) € S x A:

dis1(s,) < (1 — aX(s,a))ds(s, @) + ayA(s, ) [di]| oo

(60)
< (1= admin(1 =) lldt]l oo
Since this upper bound holds uniformly over all (s,a) € S x A, we conclude:
[dis1lloc < (1= aAmin(1 = 7)) [lde]oc- (61)
Unrolling this recursion yields the following for all ¢ € [T]:
ldelloe < (1 = @Amin(1 =) |dolloc- (62)

The goal is to now establish a similar recursion for our setting, while accounting for noise and
adversarial corruption. To do so, we note that based on Lemma 5 and Lemma 7, there exists an event
- say )V - of measure at least 1 — 4, on which, [|A¢ 1 [[oc+[|Ar2lloc < A1+ Ay £ AVE € [T,
where A; 1 and A, o are as defined in Eq. (31), At 1 is as defined in Eq. (40), and At 5 is as defined
in Eq. (59) As our induction hypothesis, suppose that on the event Y, the following bound holds for
allt € [T7:

A
[dilloo < (1 — @Anin(1 — 7))t ldol|oo + 11— (63)

For ¢t = 0, it is trivially true. Suppose the above bound holds for all time-steps up to time-step . To
show that it also applies to time-step ¢ + 1, let us revisit Eq. (29) and analyze it component-wise.
In order to simplify the notation for algebraic decompositions in the subsequent steps, for two
given functions {Q1, @2} and their corresponding mappings {7 Q1, 7 Q2} under the influence of
the Bellman operator, we denote their component-wise difference as:

[Ql - Q2](S?a) =S Ql (Saa) - Q2(57 CL)
[TQ1 — TQ2(s,a) 2 TQ1(s,a) — TQa(s,a).

Similarly, we denote the (s, a)-th component of A; defined in Eq. (31), as A¢(s, a). Now, we proceed
component wise, where the (s, a)-th component of Eq. (29) gives us the following:

[Qiy1 — Q*](s,a) = (1 — a(s,a)) ™ [Qo — Q*)(s, a)
t 65
+ a(s,a) D (1 — al(s, a)) R TQr — TQ(s,a) + As(s, a). (63)
k=0
Taking absolute values on both sides of Eq. (65), and substituting d; (s, a) = |[Qt - Q*](s,a)
get the following form:

(64)

, We

t

div1(s,a) < (1 —a)(s,a))™dy(s,a) + ayA(s,a) Z(l — al(s, a))t7k||dk.HC><> + |As(s,a)l.

k=0
~ _ (66)
NOW, substituting \At(s, a)| S |At71 (S, CL)‘ + |At)2(8, a)| SHAt,l ||00+HA25,2 ||oo S At,l +At72 =A
and the claim from Eq. (63) into Eq. (66), we get:
t

di+1(s,a0) < (1= aX(s,a)) ' do(s,a) + ayA(s,a) 3 (1= aA(s,a)' ™ (1 = adasa(l = 7)) [do]lo

k=0
(o)
L A
+ ay)(s,a) Z(l —aX(s,a))t” k —|—A
k=0
(o0)
a) 00
2 (1~ adasa(1 = 1) oo+ +ayA(s,0) (1~ @A, @) 122+ 4,
r=0

A

< (1= adain(1 = 7)) dofloo + 7=

(67)
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In (a), for bounding (e), we used the following argument:

t

— OAmin - k
(0) < |(1 - aA(s,a)™*! + arA(s,a)(L - aX(s,a)" 3 (Feel=0)) ] ol
k=0 ’

= [(1 = aX(s,a)"™™ +ayA(s,a) (1=

(1 — ) Apin)? Tt — (1 — aX(s,a))tH! d
a(A(s,a) — (1 —¥)Anin) H OHOO’ (68)

1— ol —Y)Anin)ttt — (1 — a)(s,a))t?!
< [0 ara) = anags ) I O gy

< (1= admin(1 =) || doloc-
For (ee), we have upper bounded the finite-sum by an infinite-sum as follows:

t—k A

1_7+A,

(e0) = ayA(s,a) Xt: 1—aX(s,a))

o (69)

< ayA(s,a) i 1—aX(s,a))” %—&-Agm

This settles our claim made in Eq. (63). As a result, we conclude that the following holds on event V:
ldzlloo < (1 = 0Xasa(L = )7 do oo + 72

< e*Ot)‘min(l*'\/)THdO”oo + %

(70)

logT
)\minT(l - 'Y)
at least 1 — J, we conclude that the following holds with probability 1 — §:

~ 2 ~
ldz oo < |do||oo Lo o logT (32|5|A|T>+ ENG . 71
(1-2 \2 yT ) Aain(1 =)

This completes our proof.

Substituting o = in the above display, simplifying, and using the fact that )V has measure
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D Proof of Theorem 3

In this section, we prove the lower bound stated in Theorem 3. The proof is based on constructing
two carefully designed observation models under a simple synchronous Huber contamination setting
outlined in [45-47], where at each round the learner receives corrupted or clean rewards for all
state-action pairs simultaneously. We begin by outlining the core intuition before delving into the
technical details. We carefully construct two MDPs that satisfy two crucial properties: (i) the optimal
state-action value functions corresponding to the constructed MDPs differ by Q(+/¢), and (ii) under
the Huber contamination model, the observed reward distributions are identical across the two MDPs.
This setup ensures that no estimator can reliably distinguish between the two MDPs based on the
contaminated observations alone, thereby forcing any estimator to incur an error of at least Q(+/2) in
the worst case. We now proceed to construct this adversarial instance and formalize the argument.

Step 1 (MDP Construction). To construct the lower bound instance, we consider two MDPs that
have a single common state s and a single common action a, such that the only source of randomness
arises from the observed reward for the state-action pair (s, a). Slightly departing from the notation
introduced earlier in the prelude to Theorem 3, we use indices ¢ = 1 and ¢ = 2 to represent objects
associated with MDP 1 and MDP 2, respectively. The true noisy reward distributions R (s, a) and
Ra(s,a) associated with MDPs 1 and 2 are as follows:

7 with prob - ~ % with prob. -
Rils@) =9 0% nprob, 1 e Relma =4 Ve e
with prob. 09 with prob. T

where & > 0 is a fixed constant. Let the expected rewards under distributions R (s, a) and Rz (s, a)
be denoted by R; and Ro, respectively. It is straightforward to check that:

oy NG
Ry = 4(1—¢)’ Ry = T4l-e) (73)

Additionally, if 1 (s,a) ~ Ri(s,a) and r2(s,a) ~ Ra(s,a), then the variances of these random
variables are as follows:
Var(ri(s,a)) = Var(ra(s,a)) < A < 0.56> (74)
1= AU =" a1 - a(1—e) T

where we have used the assumption that ¢ < 0.5. Thus, each reward model has a finite variance
uniformly bounded above by 2. Since there is only one state-action pair, the optimal Q-value in
each MDP is given by:

Qi (s,a) = 111’ ie{1,2}. (75)

Step 2 (Construction of Corrupted Observation Models.) We now construct adversarial reward
contaminations following the Huber contamination model. For each MDP i € {1, 2}, the observed
reward at the state-action pair (s,a) is drawn with probability 1 — ¢ from the true underlying
distribution R;(s, @), and with probability ¢ from the adversarial distribution Q;. The distributions
Q;,1 € {1, 2}, represent the corruption distributions, as defined below in Eq. (76) and Eq. (77). Now
subject to corruption based on these adversarial distributions, let the resulting reward distributions for
MDPs 1 and 2 be denoted by R; and Ra, respectively, where R; = (1 — €)R;(s,a) +£Q;,i = 1,2.
These resulting distributions can be easily computed, and are shown in Eq. (76) and Eq. (77).
Adversarial and Resulting Distributions for MDP 1.

a . o o . e, €
= with probability 0.5 ] 7 with probability 5
Q=10 with probability 0.25 , R =<0 with probability 1 — ¢ (76)
o . e o . e, €
NG with probability 0.25. 7 with probability 5>
Adversarial and Resulting Distributions for MDP 2.
o . N o . e, €
7 with probability 0.25 ) 7 with probab111ty§
Qa=140 with probability 0.25, Ra =0 with probability 1 — ¢ a7
g . . g . e, €
G with probability 0.5. NG with probability 5>
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Crucially, note that based on our construction above, R; = Ro. As a result, a learner cannot
distinguish between the corrupted reward distributions of the two MDPs. However, as established in
Step 1, the true (uncorrupted) expected rewards under these MDPs differ. Thus, the corresponding
true optimal Q*-values also differ, with the following bound:

Q- @y = el L ovE . _ovE (78)

I—v 20 -e)(1—7) — 21 -7)’

where we will henceforth use the simpler notation Q} (s,a) £ Q fori € {1, 2} in light of the fact
that there is only one state-action pair. We now proceed to establish that any estimator of the optimal

Ve
1=2)
Step 3 (Lower Bound on Estimation Error.) Fori = 1,..., T, let (X;,Y;) be independent pairs
of random observations satisfying:

P(X; =Y, =-5/Ve) = %»

state-action value function must suffer an error of 2 ( > on at least one of the two MDPs.

]P(Xi:Yi:0):1—5,]P’(Xi:}/;:5/\/g):§

Let us note that X; is distributed as per Ry, and Y; as per R». Clearly, the following is true:

P ({Xi}iepr) = {Yi}ierr)) = 1. Now, suppose Ry and Q7 are estimators for the mean rewards and
optimal state-action value functions, respectively, in the two MDPs. As we shall see, establishing a

fundamental limit on the performance of Ry is sufficient to establish a limit on the performance of
Q. To see this, start by noting that

wx {2 (1Re (06 ier) — Bl > (755 ) P (1hr(Bhem) - Fal > 2255 )

2 %P ({lﬁ?T({Xi}iem) — Ry| > 85‘5) } U {RT({Yi}iE[T]) — Ry| > 8(?&) }) (79)

> P (RT({Xi}ie[T]) = RT({Yi}ie[T]))
(.g) %P ({Xitiern = {Yitiem) = %

In step (o), we use the inequality max{P(A),P(B)} > %]P’(A U B) that holds for all events A and

B. Step (ee) follows by substituting the expressions for { R; };c(1,2} as defined in Eq. (73), which
ensures that any estimator outputting the same value on both datasets must incur a certain error on at
least one. Finally, for step (e @ ), we used P ({X;}ier) = {Yitieim) = 1.

Using 1/(1 — €) > 1, we then conclude that:

o (P (|Rr((diem) — 7| > 25) B ([Re(@idicm) - o] > ) = .

In light of Eq. (80), we claim that

A * g€ A % 2V5 1
wa (P (10r(Xherm) — @11 > 755 ) B (1r (i) - @31 > 525 = 5
81
The claim essentially follows from the simple observation that if an optimal state-action value-
function estimator QT can accurately estimate both Q)7 and )5, then one can use such an estimator
to construct accurate estimates of both R; and R, thereby violating Eq. (80). Formally, to see that

Eq. (80) implies Eq. (81), suppose there exists an estimator ()7 such that

max {P (|QT({Xi}ie[T]) - Q1> s(if\_ﬁv)> , P <QT({Yi}iE[T]) - Q3] > 8(?{57))} < %
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Using Qr, construct a reward estimator Rr = (1- 'y)QT. From Eq. (75), we then immediately
have:

max {P (‘RT<{XZ}ZE[T]) — R1’ > 0\8/E> 5 P ORT({YZ}ZE[T]) — R2’ > 0\8E>} < %
(83)

This completes the claim and the proof.
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E Proof of Theorem 4

The finite-time performance of Robust Async-RAQ is established in Theorem 4. The first step in
the proof of this result is an error-decomposition that mirrors Eq. (29) in Section C. The structure
of the rest of the proof is similar to that of Theorem 2 in Appendix C. However, there will be some
departures that arise from the use of a reward-agnostic threshold function in Eq. (7). We will highlight
these points of departure in our subsequent analysis.

Step 1: Bound on the Adversarial Term A; ;. We begin by analyzing the contribution of the
adversarial corruption term, before turning to the non-adversarial noisy component. The latter
necessitates a more refined and intricate analysis, as will become evident in the sequel.

Lemma 8. (Bounding Adversarial Corruption in Robust Async-RA) Suppose 51 < 6/4T. Then,
with probability at least 1 — 0/2, the following bound holds simultaneously for all t € [T):

< O(as) <~”2p\7+\/mm g(SUsMD*O(imf)

where (. o is defined in Eq. (32).

t

S a(I - aD) ¢,

k=0

Proof. Like in our proof of Lemma 7, we divide the analysis into two cases based on the value of
t. Since the threshold function defined in Eq. (7) is agnostic to the underlying reward statistics, we
introduce an auxiliary time-step 7" := max {5'/?, T'}, where T was previously defined in Eq. (3),
and recall that p is the parameter in the function m(t) = ¢ that appears in the modified threshold (7).

Case I: Consider first the case where ¢ < T'. We further split up this case into two sub-cases: one
where 7' = T, and the other where T' = /7. We separately analyze these sub-cases below.

« Suppose T' = T', which implies ¢ < T'. Then, by the definition of the threshold function in
Eq. (7), we have Tt(st, a;) = 0. Consequently, just like in Case 1 of Lemma 7, in this case
we have [|(;.2][co < G-

¢ Next, when T =5/ P andt € [T , T] we can use the reward-agnostic threshold function
. To see how, start by noting that the following is always
true determmlstlcally |74 (s¢, at)| < Gy, ¥t > 0. Using m(t) = t* in Eq. (7), and the fact
that t > T, we note that for ¢ € [T, T}, the following is true: G < 3CtP < 3CT? = 3C5,
where in the last step, we used that in this case T = Gl/p, Thus, for ¢t € [T, T], we have
[7e(se,ae)| < 3Co. As aresult, we have ||(y2loco = |Fe(se, ar) — R(se,ai)] <3C6+ R <
4Cé, since C > 1,and R < 6.

From our analysis of the two sub-cases above, we conclude that for ¢t < T, ¢t 2]loo < 4CH. Next,
we bound the adversarial corruption term A o in the co-norm for all ¢ € [T'] as follows:

t
1A 2lle < || 3°(1 —aD) ™ G
k=0

(oo}

—
N
I
-

*

< a0l aD) M - Gkl
k=0

(84)

(%) .
< 4CaoT.

In (x), we apply the triangle inequality, followed by the sub-multiplicative property of the co-norm.
In (%), we use the fact that || (I — aD)!~*||,, < 1, and that ||(r 2||ec < 4C5, as established earlier

= B =

for Case I. This completes the analysis for Case 1.

Case II: We now consider the case when ¢t > T. Since T := max {51/ P, T}, it follows that

t > T =t > T. Now recall from the analysis of Lemma 7 that there exists an event [ of measure
at least 1 — 20;7 > 1 — 6/2, on which, the following holds simultaneously for all time steps
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€T +1,T):

|7:t(5t7 at) — R(St, at)\ S C& (85)

On this event, we further have that for ¢ > T |7,(s¢, a;)| < Gy, where Gy is the original threshold
defined in (4). While this condition was enough to prevent any thresholding on event J for ¢t > T for
Robust Async-Q, it does not immediately imply that thresholding will not take place for Robust
Async-RAQ. The reason for this stems from the fact that in the new algorithm, the modified threshold
G, in (7) can be an under-approx1mat10n of G during the period [T T] However, for t > T, we
have m(t) = tP > TP > &, since T = max{al/p,T}. As a result, for t > T, we have G; < G;.
Consequently, on the event 7, we have that for all ¢ > T, |7e(se,at)] < Gy < G,. Thus, the
thresholding operation in line 7 will get bypassed, ensuring that 7;(s;, a;) = 7¢(s¢, a¢), and, as a
result, we conclude based on (85) that on event 7, for all ¢ > T, the following is true:

(51)+\£ . (86)

Based on the above bound, we can proceed to control the adversarial term A, o as follows:

t 7 .
ST a(l —aD) 7 Gl <Y a(I —aD) G| +| S o —aD)"FG.||
F=0 o k=0 00 k=T+1 0

< 4Ca6T + O(Cad) 1%54& Lo (C;f) 7

<4CadVT VT + 0(Cad) [T 1 o (C;ﬁ> 7

_ 1
<0(Cad) (alﬂpﬁ + \/ T log ('S'““'T)> +0 (C&ﬂ 2 A,
)\min 61 )‘min B
87)

For the first step, we stitched together the bounds for Cases I and II, and followed a similar reasoning

as in the proof of Lemma 7. Under the assumption T" > T, we further used T < ﬁ VT. Finally,
we leveraged the definition T = max {T, gl/r }, which implies T <T+ "7, and plugged in the
expression for T' from (3), followed by simplifications. Combining the bounds obtained in Case I
and Case II, we conclude the proof of Lemma 8. O

Step 2: Bound the Non-Adversarial Noise Term A; ;. We now proceed to the more delicate
part of the analysis that involves controlling the effect of noise. Like before, to control the noise
effect using a martingale-based argument, we will derive uniform bounds on the iterates generated
by Robust Async-RAQ. However, as a departure from the analysis in Appendix C, we will derive
two sets of bounds: crude bounds that hold deterministically, and finer bounds that hold with high
probability. The rationale for this will become clearer soon. We start with the cruder bounds.

Lemma 9. (Coarse Deterministic Bounds on lIterates for Robust Async-RA{) The following
bounds hold deterministically for all t € [T):

6CTP 1207
(st a)l < 7= Ceallee < 5= o

(88)

where C is the universal constant that appears in (4).
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Proof. The proof is nearly identical to that of Lemma 4, with the only difference arising from the
modified threshold function. Let us start by noting that the following is always true deterministically:

|7t (st,a¢)| < G,,Vt > 0. Now based on the definition of the modified threshold G; in (7) and

T in (3), we have that G, = 0,Vt < T, and Gy < 3Ct? < 3CTP,¥t > T. As a result, in
Robust Async-RAQ, the reward proxy 7 (s¢, a;) is deterministically bounded at each time step as

|7t (st at)| < G, < 3CTP,Vt € [T]. Using this fact, and the exact same inductive reasoning as in the
proof of Lemma 4, we can show that:

scTP
1Q¢lloe < T ~. V20, (89)

Following the same arguments as in Lemma 4, one can then also show that

6CT
6.1 (51, a0)| < = Vt > 0. (90)

Now fix any state-action pair (s, a), and observe that
|TQ¢(s,a)| = |R(s,a) + VEsp(.|s,a) [glgﬁ@t(s’, a)]|
< lR(S7 a)| + IVES’N'P(-\s,a) Hg}gﬁ Qt(8l7 GI)H

(@) _ 3yCTP
<oJ+ - 1)

(b)

< 3CT? +

_3cTP

=1
For (a), we used |R(s,a)| < & and Eq. (89). For (b), we used the fact that T > T — TP >

(TY > 6 > |R(s a)|. As aresult, |R(s,a)| < 3CTP. Since our analysis above holds for any
state-action pair, we conclude that ||7Q|lsc < 3CT?/(1 — ). With these developments, we can
proceed to bound (;,; as follows:

1Ctalloe < Imea(se, ae)| + |1De = Dlloo (1Qelloc + 1T Qtllo0)
) 6CTP
15 T (1Q¢lleo + T Q¢ <)
(<b) 12¢TP
S 9
where (a) follows from (90) and (b) from (89) and the bound we derived on || 7 Q¢|| o This concludes
the proof. O

3yCT?P
1—

)

At this stage, it is instructive to compare the bound on ||, 1| oo from Lemma 4 with that in Lemma 9
above. While in the former, this bound is on the order of O(1), it is on the order of O(T?) in the latter.
As aresult, if one were to directly use the bound from Lemma 9 in the standard Azuma Hoeffding
inequality (much like what we do in Lemma 5), the resulting final bounds would be vacuous. This
calls for a more intricate analysis. In this context, our next result provides a finer bound on [|(;,1 ||oc;
however, the price of this finer bound is that it now only holds with high probability.

Lemma 10. (Finer Probabilistic Bounds on Iterates for Robust Async-RA{) The following bounds
hold with probability at least 1 — 201T forall t € [T):

6Co

12C6
T Ml <

1—x’

10,1 (50, a¢)] < 92)

where C is the universal constant that appears in (4).

Proof. Let us start by revisiting the bounds on the reward proxy 7+ (s, a;) established in Lemma 8.
In the proof of Lemma 8, we established that for t < T, |F4(st,a:)| < 3CG deterministically.
Furthermore, we also showed that for ¢ > T, the following are true with probability at least
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1 —26T: () 71(s,ar) = Fe(se,ar), and (ii) |[F(sg,ae)] < Gy, where Gy is as in (4). Since
G: < 3Ca,Vt > T, we conclude that there exists an event of measure at least 1 — 2§71, on which,
|7t (st,a¢)| < 3C,Vt > 0. Restricted to this good event, one can now perform the exact same
analysis as in the proof of Lemma 4 to establish the claim of this lemma. O

Based on the previous two results, we now have a martingale difference which exhibits a crude
deterministic upper bound, and a finer bound that holds with a fixed high probability. We are in need
of a refined version of the Azuma Hoeffding inequality that can exploit this structure. Thankfully,
[22, Theorem 7] provides us with precisely the right tool. Our next result is a slight adaptation of this
theorem; we provide its proof for completeness.

Theorem 7. Probabilistic Azuma-Hoeffding Inequality [22] Let Xy, ..., X,, be a martingale with
Xo constant, such that:

(i) With probability > 1 —r, | X; 11 — X;| < ¢; for 0<i<n.

(ii) | X;41 — Xi| < b;, deterministically.

1
Assume b; - 12 < ¢;. Then, the following holds:

n n—1
P ||X, — Xo| > (32;@) log (g) + g by - /2| < 6+ 2nrt/2, 93)
Proof. Let F; denote the event | X; 1 — X;| > ¢;. Define a new martingale {Y,Y7,...,Y,} where

Yo = Xo. Additionally, let p = P(F;| X;). We consider two cases:

1
(A) If p > r2, terminate the martingale by setting Y; = Y] for all j € [i, n].

1
(B) If p < r2, and the martingale has not been previously terminated, define:

o _[X  iF
1T X4 otherwise.

Then, ~ ~
E[Xit1|Xi] = E[Xip1|Xi] + E[Xi41 — X[ X].
Define Ai £ E[X'H-l - X’H—l‘Xi]' Then:

A; =E[X; 11 — Xi1|Xs, Fi] - P(F|X5).
1
Using the crude bound |X;4+1 — X;| < b; and p = P(F;|X;) < r2, we obtain:
1
Ai < bi -T2,

Define the new martingale {Y;, },,>1, Yo = Xj as:

Yipr =Yi+ (Xiy1 — Xi — 4y),
which satisfies: )
[Yig1 = Yi| < i+ b -2 < 2¢;.
Since E[Y; 41 — Y;|Y;] = 0, {Y,, }»>1 is a martingale. For the event {G} (where neither case (A) nor
JF; occurs), it follows from the construction:
n—1
Y, =X, - Z AL
i=0
Therefore, we get the following deterministic bound for the event {G}:

n—1
> A
=0

1 n—1

S T§ Z bz
1=0

|Yn - Xn| =
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For the complementary event {~ G}, we have:

= <{U]~"}U{U]P’]—"|X)>r2})

1
< +PUP(F|X;) >r2
(.)El Fi) + P(UP(F] X5) > )1 1 ©4)
< > P( +Z]P’ (Fil X;) > r2] <nr+nr2
=1
1
< 2nr2

To bound the complementary event {~ G}, we start by expressing it as {U;F; } | J{U;P(F;|X;) >
71/2}. In (), we used the following inequality P(U; A;) < U;P(A;). Combining these, we obtain
P(~ G) < nr + nr'/?, which simplifies to P(~ G) < 2nr'/? since 7 < /2 for r < 1. Now, we
can finally arrive at the following bound:

S| N

X, — Xo| > (32 3 c§> log (
=1

n—1

n—1
)‘i’gb,T ]
+

’I’
2

95)

) n
<P ||Xp = Vol + [V, — Yo| > (322c§> 1og(§
=1

)+ X b
(%) "
<P {|X Y|>sz rt U{Y Yo|>\l<3220Z

s ()

(k%) n
< P(~G)+P ||V, - Yol > (322c§> log (%)
i=1
1
< 2nr2 4+ 4.

In step (*), we apply the triangle inequality, which states that | X,, — Xo| < |X,, — ¥,,| +|Y,, — Yo,
allowing us to bound the original probability by replacing | X,, — Xo| with | X,, — Y,,| +|Y,, — Yg!|. In
step (), we use the union bound, which ensures that P(A+ B > Q) < P(A > Q1) + P(B > Qa),
where Q1 + Qo = Q. Finally, in step (x * %), we use the bound P(~ G) < 2nr1/2 for the first term,
as | X, — Y, | is controlled by the good event G, and the second term is bounded by § due to properties
of Y,,. With this, our proof is complete. O

Armed with the previous result, we are now in a position to control the noise term in Robust
Async-RAQ.

Lemma 11. (Bounding Non-Adversarial Noise in Robust Async-RA{) Suppose 61 <
52 /128|S|2|A|*T?+3. Then, with probability at least 1 — § /2, the following bound holds simultane-

ously for all t € [T):
<0(55) iz e () vo (525). - o0

o0

t

ST a(I —aD) ¢,

k=0
where (i, 1 is defined in Eq. (32).

Proof. We now return to bounding the non-adversarial noise term in Robust Async-RAQ using the
probabilistic variant of the Azuma—Hoeffding inequality outlined in Theorem 7. In our setting, we
define the following quantities to be directly substituted into Eq. (93) of Theorem 7:

12C5 o 12¢TP
¢ =1—-a(l—a)7, bi:lf’}"

‘ Nt—i _
i =1 a(l—a)™", r=25T. (97)

To satisfy the condition b; - 71/2 < ¢; that is required to apply Theorem 7, it suffices to ensure:

(26, T)Y/2 . TP < 6. (98)
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Since ¢ > 1, the above condition can be ensured by requiring
(26, T)Y/2 . TP < 1, (99)

which ensures the applicability of the refined concentration bound. Now, Eq. (99) imposes the
following condition on the failure probability: §; < 1/(27%*!). Assuming that requirement in
Eq. (99) holds, then for a fixed (s,a) € S x A and t € [T], Theorem 7, when applied with the
parameter choices in Eq. (97), implies that with probability at least 1 — § — 2T(251T)1/ 2 the
following holds:

t

> a1l —aX(s, a))t_kaJ(S? a)

k=0

<O <1fy> . )\::in log (%) +0 (alTi’:l ) (2§1T)1/2) .
(100)

As an immediate next step, applying an union bound over all (s,a) € S x A and ¢ € [T, the bound
in Eq. (100) holds simultaneously for all state-action pairs and time steps with probability at least

1— |S||A|T6 — 2|S||A|T?(26,T)/2. (101)
(o) (o0)

Next, we impose the following additional conditions on the failure probability ; to control the second
term in Eq. (100), and to ensure that Eq. (100) holds with probability at least 1 — §/2:

(26, T)Y/2 . TP <1, 2|S||A|T?(26,T)Y? < §/4. (102)
(o0)

Combining all the constraints on §; from Eq. (99) and Eq. (102), we arrive at the final condition on
the failure probability &; as follows:

1
(26:7)2 < 6/(8[S||AITPH) = 61 < 6/(128|S]*|APPT?*?). (103)

Now by ensuring that term (e) < §/4 and applying the final requirement on the failure probability
from Eq. (103), we conclude that the following bound holds for all state-action pairs (s,a) € S x A,
and ¢t € [T'] with probability at least 1 — §/2:

<0 (122) e () o (12)-

Hence, given &; < §/(128|S|?|.A|>*T?P*3), the following also holds with probability at least 1 — g:

t

Z a(l — aA(s,a))tkakJ(s,a)

k=0

t

S a(l —aD)" ¢,

i a(l — a(s, a))tikaJ(Sa a)
k=0 (105)

<o(:%)- \/Ajin log (PAT) + 0 () 2 A

= max
(s,a)eSxA

k=0

O

Finite-Time Rates for Robust Async-RAQ (Proof of Theorem 4). Having established bounds on
the non-adversarial and adversarial terms via Lemma 11 and Lemma 8, respectively, we proceed by
adopting the exact same argument strategy as in Section C for the proof of Theorem 2. Keeping the
notation same, in Robust Async-RAQ, we define the total perturbation term as A = A; 1 + A o,
and mimic the inductive proof of Theorem 2 to establish that the exact same bound as in (63) holds

with probability at least 1 — 4. Finally, substituting o = %, and simplifying, we arrive at
the following bound with probability at least 1 — 4:
doloo F1H1/2p NogT S||AIT 5
ldr oo < ! 07',' +o |52 1og(' ”5' )+A,“\f_ : (106)
(1—7)2 )2 VT min ( )

min

With this, we complete the proof of the finite-time convergence rate for Robust Async-RAQ.
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F Extension to the Markov Setting and Proof of Theorem 5

Algorithm 3 Robust Asynchronous Q-Learning Algorithm (Robust Async-RAQ-M)

1: Input: Step-size «, corruption fraction &, confidence level §, mixing time 7, iteration count 7.
2: Initialize datasets Dy (s,a) = (), for all (s,a) € S x A, and Q-table Qo = 0.

3: Set block size 7 = |[log(27/6)/log 2] - 7|

4: for iterationt =0,...,7 — 1 do

5 Observe data tuple {s¢, at, st.41}, and reward y; (s¢, az).

6: if ¢ mod 7 =0 then > Update on every 7-th subsample
7 Append y:(st, at) to Di(s¢, ar), and compute 74 (S, az) < TRIM[Dy (s, at), €, d1].

8

if |7;(s;,a¢)| > Gy in Eq. (7) then

9: Set 74 (8t7 at) +~0
10: else
11: Setft(st,at) <—Ft(st,at)
12: end if
13: Update Q41 using Eq. (5).
14: else
15: Continue > Go to Line 4.
16: end if
17: end for

The goal of this section is to extend our analysis of Robust Async-RAQ from the asynchronous i.i.d.
sampling setting to the Markov data setting. To keep the paper self-contained, we first present the
essential background on the Markovian setting, drawing primarily on [23].

e Background. Let {Z;} be an ergodic time-homogeneous Markov chain over a finite-state space {2
with stationary distribution p. Define

Aimia(t) = sup Drv (P(Ze € - | Zo = Z),p) - (107)

Then, d,,;,(t) is a non-increasing function of ¢. We define the mixing time as
T = 1inf{t | dmniz(t) < 1/4}. (108)

Intuitively, the mixing time measures how fast the state distribution approaches stationarity. We then
have the following key fact [23]:

dmiz(07) < 27¢ VL EN. (109)

With the notations specified above, we then introduce the following theorem that will play a crucial
role in our extension to the Markov setting.

Theorem 8 (Coupling). Let Zy,Z1,--- be a stationary finite-state Markov chain with sta-
tionary distribution p, and let K,n € N. Then, we can couple (Zy, Zy,- - ,Z(n_l)K) and

(ZOaZK; e ,Z(n_l)K) € p®n, such that
P ({20, Zic, s Zinyich # 120 21+ Zinvyic}) < (0= Dimia(K). (110)

The proof of this theorem can be found in [24]. Intuitively, Theorem 8 states that if we subsample
a sequence from an ergodic Markov chain with sufficiently large sampling interval, then with high
probability, the sub-sampled sequence is identical to its i.i.d. counterpart sampled from the stationary
distribution of that Markov chain. Let us now see how these ideas can be exploited for our setting.

Extension to the Markov Setting. Recall that y is the behavior policy that generates data in our
problem. Let the trajectory generated by this policy be {sg, ao, $1, a1, - }. Note that {Z;} :=
{(s¢,at, $++1)} is also a Markov chain, and that it is ergodic in light of Assumption 1; see [52].
Suppose this chain is initialized from its stationary distribution p. Let 7 be the mixing time of this
Markov chain.
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We now propose a simple modification to Robust Async-RAQ that is based on dropping certain
data points. To see how this can be done, we define a “block” parameter 7 := [{7], where
¢ = [log(27T'/6)/1log 2]. The only modification to Robust Async-RAQ is that the agent now uses
every T-th sample, and drops the rest; this variant is formally described in Algorithm 3.

To analyze Algorithm 3, we note that it essentially runs on n. = T'/7 samples; for simplicity, we
assume that n is an integer. Specifically, the learner only uses the data set { Zo, Z7,- -+ , Z(n—1)7 }.

Let {ZO, /A Z(n_l)T} ~ p®" be i.i.d. samples drawn from the stationary distribution p. From
the coupling theorem, namely Theorem 8, given any ¢ € (0, 1), we then have

P ({ZO,ZT, Ly} F {(Zo, Zy, -+ 72(77,71)7'}) < iz (T)

< i (1£7))
.9t

-2

N

IN

(111)

—L
2T

IN

IA
AR B B N

)

where we used the key fact (109), the definition of ¢, and the fact that d,,;.(t) is non-increasing in ¢.

Thus, there exists a “good event”, say 3, of measure at least 1 — §/2, on which

{207 Z—,—, T 7Z(n—1)7'} = {207 Z‘ra t aZ(n—l)T}~ (112)

Equation (112) states that on the good event B, the sub-sampled Markovian data is identical to its
1.i.d. counterpart. To see how this result can be exploited, let us recall the guarantee from Theorem 4
when Robust Async-RAQisrunonn = (T/7) i.i.d. samples with

TlogT

T > maX{TT, TlOg(T)/()\min(l — ’7))} and o = m

In this setting, the following holds with probability 1 — §/2:

dol|so G120 logT S||AIT 5
ldalloo < 100y ¢, (a P 18T [ og ('(S)> +e (%) (113)
RN

NG
where ¢; and ¢ are suitable universal constants.

Now consider running Algorithm 3 on the n Markov samples {Zy, Z;, - - - , Z(n,l)r}, with Zy ~ p.
Let the output of the algorithm be (), in this case. Keeping everything else the same, let the output of

Algorithm 3 be @Q),, when it is run on the i.i.d. dataset {Zo, Z,,- - - , Z(n,l)T}. From our definition
of the event 3, we clearly have Q,, = Q,, on event B. Based on this, observe

P{[I@n = Q"lloc > ¥}) = P{[[Qn — @"[loc > ¥} N B) + P({[|[Qn — @"[loc > ¥} N B°)
< P({ll@n — Q%o > ¥} N B) +P(B)

(@) .
< P{lI@n — Q7lloc > ¥} N B) + P(B°)

(b) -
E PG — Q[ > ) +6/2

c

—
N

J.

IN

~ (114)
In the above steps, for (a), we used the fact that @),, = @,, on event B. For (b), we appealed to (111),
and for (c), we used (113). Thus, via the coupling argument above, we have established that with
probability at least 1 — 4, the following is true:

[Qn — Q"[lc <,

with W as in (113). This is precisely what was needed to be shown to establish Theorem 5.
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