
Corruption-Tolerant Asynchronous Q-Learning with
Near-Optimal Rates

Sreejeet Maity
Electrical and Computer Engineering

North Carolina State University
Raleigh, NC 27606
smaity2@ncsu.edu

Aritra Mitra
Electrical and Computer Engineering

North Carolina State University
Raleigh, NC 27606
amitra2@ncsu.edu

Abstract

We study the problem of learning the optimal policy in a discounted, infinite-
horizon reinforcement learning (RL) setting in the presence of adversarially cor-
rupted rewards. To address this problem, we develop a novel robust variant of the
Q-learning algorithm and analyze it under the challenging asynchronous sampling
model with time-correlated data. Despite corruption, we prove that the finite-time
guarantees of our approach match existing bounds, up to an additive term that
scales with the fraction of corrupted samples. We also establish an information-
theoretic lower bound, revealing that our guarantees are near-optimal. Notably,
our algorithm is agnostic to the underlying reward distribution and provides the
first finite-time robustness guarantees for asynchronous Q-learning. A key element
of our analysis is a refined Azuma-Hoeffding inequality for almost-martingales,
which may have broader applicability in the study of RL algorithms.

1 Introduction

In a typical reinforcement learning (RL) problem, a learning agent interacts sequentially with an
environment modeled as a Markov Decision Process (MDP). Each interaction involves the agent
playing an action and receiving feedback in the form of a reward for the action taken. Using such
feedback, the agent gains a better understanding of the quality of the actions, allowing it to eventually
learn an optimal decision-making policy. The formalism described above finds use in a variety of
practical applications, spanning finance, medicine, recommendation systems, autonomous driving,
robotics, and most recently, training large language models using human feedback. In each of these
applications, the effectiveness of the learned policy depends crucially on the quality of the feedback
data (rewards) used to train the policy. In real-world applications, however, data can be noisy and
can contain outliers: human feedback can be biased and have malicious intent, recommendation
systems can be skewed by fake users, and sensor data in an autonomous vehicle can be prone to
measurement errors and be corrupted by an adversary. If precautions are not taken to contend with
“bad data", then the consequences can be dire, especially for safety-critical applications. Motivated by
this concern, we revisit the classical RL problem from the perspective of adversarial robustness and
study a scenario where a portion of the rewards observed by the learner can be corrupted arbitrarily.
For this scenario, we wish to understand to what extent one can hope to still learn a (near)-optimal
policy. Surprisingly, despite the popularity of the RL paradigm, a complete theoretical understanding
of this question seems to be lacking in the current literature, especially for the scenario where data
are collected in an online, sequential manner. Our work in this paper contributes to filling this gap.

We consider an infinite-horizon discounted RL problem, where an agent collects data from the
environment based on a behavior/sampling policy, as is done with popular RL algorithms such as
Q-learning [1]. We depart from the standard RL observation model by allowing the rewards to be
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corrupted based on a fixed corruption probability ε ∈ [0, 1/2): at each time-step, with probability
1− ε, the learner (agent) observes a reward sampled from the true reward distribution associated with
the current state and action, and with probability ε, it observes a sample from an arbitrary adversarial
distribution. Importantly, we put no restrictions at all on the adversarial distribution, allowing for
potentially unbounded attack signals. Furthermore, we allow the true reward distributions to be
heavy-tailed, requiring them to admit no more than a finite second moment. It should be noted
here that our way of modeling corruption is inspired directly by the Huber model from robust
statistics [2, 3]. Furthermore, similar corruption models have been extensively studied for the simpler
bandits setting [4–9], and more recently in offline RL with human feedback [10]. However, when it
comes to learning an optimal policy in the infinite-horizon discounted setting we consider here with
online, sequential data, the effect of such an attack model remains completely unexplored. Since an
optimal policy can be extracted by learning the optimal state-action value function [11], we ask two
concrete questions: Subject to our corruption model: (i) Can one still reliably estimate the optimal
state-action value function? (ii) What is a fundamental lower bound on estimation accuracy in this
setting? Our contributions described below comprehensively address these questions.

• Novel Robust Q-Learning Algorithm. In Section 3, we start by considering a setting where
bounds on the first and second moments of the true reward distributions are known to the learner.
For this setting, we propose a new algorithm called Robust Async-Q that comprises two main
ingredients. The first idea is to leverage the recent univariate trimmed mean estimator from [12] to
maintain running estimates of the mean rewards for each state-action pair of the MDP, using historical
data for such pairs. However, this idea is not enough on its own since the guarantees associated
with robust mean estimation are probabilistic in nature, and, as such, may not hold on rare, extreme
events. To control the errors introduced by adversarial contamination on such rare events, we employ
a second layer of safety that involves keeping track of “typical" regions that contain the reward mean
estimates; estimates that fall outside the typical regions are rejected. The size of these typical regions
- as captured by an adaptive threshold - shrinks as the learner acquires more samples.

For the case where bounds on the reward statistics are unknown a priori, constructing the adaptive
threshold accurately becomes much trickier. In Section 4, we propose a simple modification to
Robust Async-Q that addresses this challenge by using a “slowly growing" function of time as a
proxy for such bounds. Overall, we prescribe a framework for constructing robust empirical estimates
of the Bellman optimality operator using noisy, corrupted data collected online.

• Finite-Time Rates under I.I.D. Sampling. To build intuition, we start by analyzing Robust
Async-Q under a simplified i.i.d. sampling model, commonly used in previous RL works [13–16]. In
Theorems 2 and 4, we provide high-probability finite time rates for Robust Async-Q with known
and unknown reward statistics, respectively. Given T samples, in each case, our bounds match the
known optimal rate [17–19] of Õ(1/

√
T ), up to a small additive term on the order of O(

√
ε), where

ε is the probability of corruption. Interestingly, our bounds also reveal how the effect of asynchronous
sampling can inflate the corruption-induced term. To our knowledge, Theorems 2 and 4 provide the
first formal guarantees of adversarial robustness for asynchronous Q-learning.

• Fundamental Lower Bound. One might ask whether the O(
√
ε) term in our upper-bound is

unavoidable. In Theorem 3, we settle this question by providing an information-theoretic fundamental
lower bound, revealing that an Ω(

√
ε) error in the estimation of the optimal state-action value function

is unavoidable. Collectively, our results are significant in that they reveal that Robust Async-Q
achieves near-optimal finite-time guarantees for Q-learning under adversarial corruption.

• Finite-Time Rates under Markov Sampling. In Section 4.1, we study our setting in full generality
by considering the challenging single-trajectory Markovian sampling model with time-correlated
data. In Theorem 5, we prove that one can nearly recover the same bounds as in the i.i.d. setting,
up to an inflation in the Õ(1/

√
T ) term caused by the mixing time of the underlying Markov chain;

notably this inflation is consistent with prior bounds in the absence of corruption [18].

• Novel Proof Techniques. Arriving at our results involves several new proof ingredients. Even
with i.i.d. sampling and known reward statistics, some work is needed to account for the fact that
under the asynchronous sampling model, the number of times each state-action pair has been sampled
(up to a given time-step) is a random variable, precluding the direct use of robust mean estimation
bounds. To overcome this issue, we use Bernstein’s inequality to control the number of visits to
each state-action pair. A key new step in our analysis is to argue that after a certain burn-in time,
no estimates will be rejected (due to thresholding) on a good event of sufficient measure. When
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the reward statistics are unknown a priori, the use of slowly growing functions of time as their
proxies introduces significant new challenges. In particular, as we explain in Section 4, using the
standard version of the Azuma-Hoeffding inequality - which is what is done in existing Q-learning
analyses [18] - will unfortunately lead to vacuous bounds in our setting. Furthermore, relatively
well-known variants of the Azuma-Hoeffding inequality for discrete probability spaces [20], and
sub-Gaussian martingale differences [21] also prove to be inadequate for our purposes. To overcome
this challenge, we show how a refined variant of the Azuma-Hoeffding inequality from [22] can
be carefully exploited to preserve near-optimal bounds; we are unaware of the use of this new tool
in any prior RL work, and believe that it might be more broadly applicable. Finally, to handle the
challenging single-trajectory Markovian data setting, we combine the aforementioned ideas with a
coupling technique that is inspired by recent work [23, 24].

Summary. To sum up, we provide the first principled and comprehensive study of adversarial
robustness in RL for the infinite-horizon, discounted setting with asynchronous Markovian data. Our
new algorithms and analysis techniques, complemented by nearly matching upper and lower-bounds,
paint a fairly complete picture for this setting.

Related Work. We now discuss the most relevant works on corruption-robust RL here, and relegate
a more detailed survey to Appendix A. The topic of reward corruption has been explored in several
papers on bandits [4–7, 25–27, 8, 28, 9]. In the context of MDPs, data corruption in online, finite-
horizon episodic RL problems is studied in [29–32], where performance is measured by cumulative
regret and the algorithms are variants of either Upper-Confidence-Based (UCB) or Action-Elimination
strategies. The infinite-horizon discounted setting we study here differs fundamentally in terms of
the notion of performance (sample-complexity), and also in terms of the algorithm design principle,
which is rooted in stochastic approximation theory. Corruption-robust algorithms in the offline setting
or with access to a generative model/simulator are considered in [33, 34, 10, 35], where batched data
tuples are collected offline in an i.i.d. manner. In sharp contrast, we need to contend with a much more
challenging observation model, where heavy-tailed and corrupted data arrives in an online, sequential
manner as part of a single trajectory, and the state-action pairs are visited asynchronously, creating
the problem of partial observability. Finally, we note that the issue of handling just heavy-tailed
rewards (without adversarial corruption) has been studied in problem settings different from ours: for
offline RL in [36], for episodic RL in [37], and for policy evaluation in [38].

2 Background and Problem Formulation

We start by providing the basic background on RL, and then proceed to describe our problem
of interest. We consider a γ-discounted infinite-horizon Markov Decision Process (MDP)M =
(S,A,P, R, γ), where S is a finite state space, A is a finite action space, P is a set of state transition
kernels, R is a reward function, and γ ∈ (0, 1) is a discount factor. When in state s ∈ S the learner
plays an action a ∈ A, it observes a new state s′ drawn from P(·|s, a), and a stochastic reward
sample r(s, a) drawn from a reward distributionR(s, a). The noisy reward r(s, a) is unbiased with
mean equal to the true expected reward R(s, a) for state-action pair (s, a), and variance σ2(s, a),
i.e., E[r(s, a)] = R(s, a), and E[(r(s, a)−R(s, a))2] = σ2(s, a). We assume that the mean rewards
and variances are uniformly bounded, i.e., there exist R̄, σ̄ ≥ 1 such that |R(s, a)| ≤ R̄ and
σ2(s, a) ≤ σ̄2,∀(s, a) ∈ S ×A. A policy µ : S → ∆(A) is a mapping from the states to a space of
probability distributions over actions, denoted by ∆(A). The quality of a policy µ is captured by an
expected discounted infinite-horizon cumulative reward known as the value function V µ, defined as

V µ(s) = E

[
∞∑
t=0

γtR(st, at)

∣∣∣∣ s0 = s, µ

]
, (1)

where st and at are the state and action at time t, respectively, under the action of the policy µ on the
MDPM. The goal of the learner is to find a policy µ that maximizes the value function V µ for all
states, without knowledge of the transition kernels P and reward functions R of the underlying MDP.
To explain how this is done, we will need to introduce the notion of a state-action value function Qµ

for a policy µ, defined as Qµ(s, a) = E
[∑∞

t=0
γtR(st, at)

∣∣∣∣ (s0, a0) = (s, a), µ

]
. The celebrated

Q-learning algorithm [1] uses data collected by a suitable behavior/sampling policy µ to iteratively
maintain an estimate of the optimal state-action value function, denoted by Q∗. It turns out that Q∗ is
the fixed point of a contractive operator known as the Bellman optimality operator [11]. Using this
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contraction property, classical asymptotic results [39, 40] established that the sequence of iterates
generated by Q-learning converges to Q∗ almost surely (under suitable assumptions on µ). More
recently, finite-time rates have been established [17–19], revealing that when run for T iterations, the
final iterate of Q-learning converges to Q∗ at a rate of Õ(1/

√
T ), with high probability. Once Q∗ is

known, an optimal policy can be determined by playing actions greedily with respect to Q∗ [41].

Adversarially Corrupted Reward Model. Our formulation departs from the standard setting
described above in two main ways. First, classical results on Q-learning either assume deterministic
rewards or “light-tailed" noisy rewards with sub-Gaussian reward distributions. In contrast, our
formulation requires the reward distributionsR(s, a) to admit only up to a finite second moment, and
nothing more. Thus, the true reward distributions are allowed to be heavy-tailed. More importantly,
we allow a portion of the reward data to be corrupted arbitrarily by an adversary. To explain the
corruption model precisely, suppose that data are collected based on a stochastic behavior policy µ,
such that µ(a|s) > 0,∀s ∈ S,∀a ∈ A. Upon interacting with the MDPM, the policy µ induces a
Markov chain. Let st be the state of this Markov chain at time t. Then, in the standard Q-learning
setting, at each time-step t, the learner observes the data tuple (st, at, st+1), and noisy reward
rt(st, at), where at ∼ µ(·|st), st+1 ∼ P(·|st, at), and rt(st, at) ∼ R(st, at). Here, we assume
that the noise process {R(st, at) − rt(st, at)} is independent over time and of all other sources
of randomness. In our setting, the learner still observes (st, at, st+1), but now receives a Huber-
contaminated reward yt(st, at) generated as follows. At time t, a biased coin with probability of
heads 1− ε is tossed independently of the past, and all other sources of randomness in the problem;
here ε ∈ [0, 1/2) is a fixed probability that captures the fraction of corrupted samples. If the coin
lands heads, yt(st, at) is drawn from the true reward distributionR(st, at). If it lands tails, yt(st, at)
is drawn from an unconstrained and arbitrary adversarial distribution Q that can depend on history,
and be time and state-action pair dependent. In other words, if yt(st, at) is drawn from Q, it can be
arbitrary (and hence, potentially unbounded). Concretely, we write yt(st, at) ∼ (1−ε)R(st, at)+εQ,
where the notation (1− ε)P1 + εP2 is used to represent the mixture of two distributions P1 and P2.

Problem 1. Given T samples (st, at, st+1, yt(st, at)), t = 0, . . . , T − 1 from the adversarially
corrupted reward model described above, and a prescribed failure probability δ ∈ (0, 1), our goal
is to generate a robust estimate QT of the optimal value function Q∗, and quantify a bound on the
ℓ∞-error ∥QT −Q∗∥∞ that holds with probability at least 1− δ.

Specifically, we ask: (i) Can one still hope to (nearly) preserve the optimal Õ(1/
√
T ) rate of vanilla

Q-learning? (ii) What are the fundamental limits on performance imposed by the reward-corrupted
attack model? As far as we are aware, despite the popularity of Q-learning, answers to neither of
these basic questions are available in the literature. The main contribution of our work is to close this
gap by developing an algorithm that achieves near-optimal guarantees for the posed problem.

Challenges. There are several unique technical challenges in our problem. First, the heavy-tailed
nature of the true reward distribution makes it harder for the learner to distinguish between true
samples drawn from the tails of such distributions and adversarial outliers. This uncertainty is further
exacerbated when the learner has no knowledge at all about the statistics of the reward distributions -
a setting we analyze in Section 4. Second, data in our setting are collected in an online, asynchronous
manner, where only a single state-action pair is visited at each time-step. Even in the absence of
corruption, such a setting is non-trivial to analyze in the non-asymptotic regime. Third, the data is
generated based on a time-correlated Markov chain, making it hard to directly apply standard results
from robust statistics that deal with i.i.d. data collected offline. As we will discuss throughout the
paper, overcoming these challenges requires significant algorithmic and technical innovations.

Before we introduce our proposed approach, let us state an assumption that is standard in the analysis
of RL algorithms [39, 42, 43, 18, 19].
Assumption 1. The Markov chain induced by the behavior policy µ is aperiodic and irreducible.

If π is the stationary distribution of the Markov chain induced by µ, then the above assumption
ensures that π(s) > 0,∀s ∈ S. At stationarity, note that the visitation probability of a particular state-
action pair (s, a) is given by λ(s, a) := π(s)µ(a|s), which is non-zero, based on our assumptions
on the behavior policy. For later use, we further define the minimum visitation probability as
λmin = min(s,a)∈S×A λ(s, a). To clearly explain our main ideas, we will assume in Sections 3 and 4
that at each time-step t, the state st is sampled independently from its stationary distribution π. Later,
in Section 4.1, we will relax this i.i.d. assumption, and consider single-trajectory Markov data.
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3 Robust Asynchronous Q-Learning Algorithm (Robust Async-Q)

In this section, we develop a robust variant of the Q-learning algorithm that accounts for asyn-
chronously sampled data, and adversarially corrupted rewards. Our algorithm, titled Robust
Async-Q, is formally described in Algorithm 1. We start by providing an overview of Robust
Async-Q, and then flesh out the details. Our approach has two core components: (i) Robust Reward
Estimation. The first main idea is to use the history of reward observations for each state-action
pair (s, a) to generate a robust estimate of the mean reward R(s, a); for this purpose, we exploit
the univariate trimmed mean estimator from [12]. (ii) Adaptive Thresholding. To account for rare
events where robust estimation guarantees may not hold, we carefully design an adaptive thresholding
mechanism to discard extreme estimates and ensure that the iterates of Robust Async-Q remain
uniformly bounded. We will show later that by carefully stitching together these ideas, Robust
Async-Q is able to achieve near-optimal convergence rates. We now supply the details.

• Idea 1: Reward Filtering Mechanism. We start by briefly describing the robust univariate trimmed
mean estimator from [12] that we will employ for estimating reward functions. Consider a data set
D comprising of M i.i.d. samples of a scalar random variable X with mean µX and variance σ2

X .
An adversary arbitrarily perturbs up to εM of the samples within D to produce a corrupted data set
D̃; here, ε ∈ [0 , 1/2) is the fraction of corrupted data. Using D̃, the corruption fraction ε, and a
confidence parameter δ as inputs, the trimmed mean estimator from [12] produces a robust estimate
µ̂X of the mean µX in the following way. The data set D̃ is divided into two equal parts of M/2
samples each. The first part is used to compute empirical quantiles for filtering out extreme values.
The estimate µ̂X is then simply an average of only those data samples in the second part that fall
within the computed quantiles. To apply the estimator from [12] in our context, we need to make
minor modifications to the algorithm and the analysis in [12] to account for the Huber contamination
model introduced in Section 2. The details of these modifications, along with the manner in which the
quantiles are computed, are provided in Appendix B. Let µ̂X = TRIM[D̃, ε, δ] be used to succinctly
represent the output of the trimmed mean estimator described above. The following result, adapted
from [12], will be of use to us in the sequel.
Theorem 1. Given any δ ∈ (0, 1), the following holds with probability at least 1− δ,

|µ̂X − µX | ≤ CσX

(
√
ε+

√
log(8/δ)

M

)
, (2)

where C ≥ 1 is a universal constant.

To make use of the estimator explained above, our algorithm maintains a reward history for each
state-action pair (s, a) ∈ S ×A via a dynamic array Dt(s, a) that is initialized from the empty set,
i.e., D0(s, a) = ∅,∀(s, a). Now, under the asynchronous i.i.d. sampling model, at each time-step t,
the learner observes a fresh state-action pair sampled as st ∼ π and at ∼ µ(·|st). If (s, a) = (st, at),
the observed reward yt(st, at) is appended to the corresponding array Dt(st, at). If (s, a) ̸= (st, at),
then the corresponding array remains unchanged from before. Using the dynamic data set Dt(st, at),
the corruption fraction ε, and a confidence level δ1 = δ/4T , a robust estimate r̄t(st, at) of the true
expected reward R(st, at) is computed as follows: r̄t(st, at) = TRIM[Dt(st, at), ε, δ1]. Here, note
that if we wish the overall output of Robust Async-Q to be accurate with a prescribed probability
of at least 1− δ, then the failure probability δ1 = δ/(4T ) that needs to be fed to the trimmed mean
estimator needs to be much finer. The operations above are described in lines 4-6 of Algorithm 1.

• Idea 2: Adaptive Thresholding. There are two main obstacles that prevent us from directly using
r̄t(st, at) (as estimated above) as a proxy for the true mean R(st, at). First, during the initial phases
of our algorithm, one may simply not have visited a particular state-action pair enough times for
the robust estimation guarantee to be meaningful. Thus, we need to wait long enough to acquire
adequate observations for every state-action pair. Second, even when each state-action pair has been
visited several times, the guarantees associated with the mean estimator from [12] only hold with
high-probability, not deterministically (as is evident from Theorem 1). As a result, one cannot rule out
extreme events, where the output of the trimmed mean estimator can deviate arbitrarily from the true
mean. On such events, using r̄t(st, at) directly can lead to uncontrolled errors. The above discussion
suggests that robust estimation is insufficient on its own. To overcome the two issues described above,
we introduce the idea of an adaptive threshold that dynamically keeps track of the “typical region"
where we expect the output of the trimmed mean estimator to lie within. If the estimate r̄t(st, at)
falls outside this region, we deem it to be “extreme" and simply discard it by thresholding it to 0.
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Algorithm 1 Robust Asynchronous Q-Learning Algorithm (Robust Async-Q)

1: Input: Step-size α, corruption fraction ε, confidence level δ, iteration count T .
2: Initialize datasets D0(s, a) = ∅, for all (s, a) ∈ S ×A, and Q-table Q0 = 0.
3: for iteration t = 0, . . . , T − 1 do
4: Observe data tuple {st, at, st+1}, and reward yt(st, at).
5: Append yt(st, at) to Dt(st, at), and compute r̄t(st, at)← TRIM[Dt(st, at), ε, δ1].
6: if |r̄t(st, at)| > Gt then
7: Set r̃t(st, at)← 0
8: else
9: Set r̃t(st, at)← r̄t(st, at)

10: end if
11: Update Qt+1 using Eq. (5).
12: end for

To formally introduce the adaptive threshold, we first define a burn-in time T̄ as follows:

T̄ =
⌈

104

3λmin
log
(
8|S||A|T

δ1

)⌉
, (3)

where recall from Section 2 that λmin > 0 is the minimum state-action visitation probability. Our
analysis will reveal that for ∀t ≥ T̄ , the number of visits to each state-action pair (s, a) up to time t
is well concentrated around its mean value λ(s, a)t with high probability; this is needed to address
the first issue of acquiring enough data. We now define our adaptive threshold Gt as follows:

Gt =


0, if t ≤ T̄ ,

Cσ̃
(√

4 log(8/δ1)

3λmint
+
√
ε

)
+ σ̃, if t > T̄ ,

(4)

where C is the universal constant from Theorem 1, and σ̃ = max{R̄, σ̄}; here, note that we implicitly
assume σ̃ is known, an assumption we will relax later in Section 4. With the threshold Gt in hand,
we account for extreme events as follows: if |r̄t(st, at)| > Gt, then we discard the estimate by
thresholding it to 0. Else, we accept the output of the trimmed mean estimator as is. This operation is
described in lines 7-11 of Algorithm 1, where the output of the thresholding scheme is denoted by
r̃t(st, at). We emphasize here that the design of the adaptive threshold is the most innovative part
of our algorithm and needs to be done “just right" to achieve near-optimal guarantees: if the
threshold is too tight, then we will reject estimates unnecessarily; if it is too loose, we might end up
accepting extreme estimates. Either of these scenarios can lead to vacuous bounds.

• Proposed Robust Q-Update. We can now formally state the update rule of Robust Async-Q
which uses r̃t(st, at) - as generated above - as a proxy for the true reward mean R(st, at) in the
Q-learning rule of Watkins [1]:

Qt+1(s, a) =

(1− α)Qt(s, a) + α

[
r̃t(s, a) + γmax

a′∈A
Qt(st+1, a

′)

]
, if (s, a) = (st, at),

Qt(s, a), if (s, a) ̸= (st, at).
(5)

The update rule above ensures that only robust and bounded reward estimates influence the learning
dynamics. In the next section, we will see that the combination of robust filtering and thresholding
yields finite-time error bounds for Robust Async-Q that gracefully degrade with the corruption level
ε, while matching the classical Q-learning rate in the absence of corruption.

3.1 Main Results for Robust Async-Q

In this section, we provide our first set of results for Robust Async-Q with known bounds on reward
means and variances. To that end, define dt := Qt −Q∗,∀t ≥ 0. We then have the following result.
Theorem 2. Suppose Assumption 1 holds, and T satisfies: T > max{T̄ , log(T )/(λmin(1 − γ))}.
Given any given δ ∈ (0, 1), the output of Algorithm 1 with step-size α =

log T

λmin(1− γ)T
then satisfies

the following bound with probability at least 1− δ:

∥dT ∥∞ ≤
∥d0∥∞

T
+O

(
σ̃

(1− γ)
5
2

log T

λ
3
2
min

√
T

√
log
( |S||A|T

δ

))
+O

(
σ̃
√
ε

λmin(1− γ)

)
. (6)
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Discussion of Theorem 2. To parse the result from Theorem 2, suppose for the moment that there is
no corruption, i.e., ε = 0. The dominant convergence rate from Eq. (6) is then Õ(1/((1−γ)2.5

√
T )),

which matches the recent finite-time rates for Q-learning obtained in [44, 18]. Up to polynomial
factors in 1/(1− γ), this rate is known to be minimax optimal [19]. When ε ̸= 0, our bound features
an additive O(

√
ε) term that depends only on the small corruption fraction ε, but crucially is not

affected by the magnitude of the injected attacks, highlighting the effectiveness of Algorithm 1 in
mitigating adversarial influences. The corruption-induced term is inflated by the noise variance (as
one might expect), and by the inverse of the smallest visitation probability λmin. Intuitively, poisoning
the data for the least-visited state-action pair can make it harder for the learner to reliably estimate the
mean reward for this pair. This intuition is formalized by our upper-bound. The main takeaway from
Theorem 2 is that despite corruption, Robust Async-Q is able to nearly recover the performance
of vanilla Q-learning, up to a small O(

√
ε) term. To our knowledge, this is the first result on the

adversarial robustness of Q-learning under asynchronous sampling.

Fundamental Lower Bound. One might ask: Is the additive O(
√
ε) term in (6) unavoidable for our

problem of interest? We now show that this is indeed the case by establishing an information-theoretic
lower bound. To do so, it suffices to consider a simpler synchronous observation model [45–47]
for the learner, where it gets to observe data for every state-action pair (s, a) ∈ S × A at each
time-step t. More precisely, in each iteration t, we toss a biased coin with probability of heads 1− ε,
independently of the past. If the coin lands heads, for each (s, a) ∈ S × A, the learner observes
yt(s, a) ∼ R(s, a). If it lands tails, for each (s, a) ∈ S × A, yt(s, a) ∼ Q, where recall that Q is
an arbitrary adversarial distribution. Let us use H(ε, σ̄,Q) to collectively represent the set of all
MDPs and observation models with finite state and action spaces, where the true underlying reward
distributions have bounded mean rewards and variance at most σ̄2, and the observed rewards are
generated based on the synchronous Huber contamination model described above. With a slight
abuse of notation, we will use Q∗ ∈ H(ε, σ̄,Q) to imply that Q∗ is the optimal value function of an
MDP consistent with the class of MDPs contained inH. Now, suppose the learner is presented with
T independent data sets D̃1, . . . , D̃T , where D̃t = {yt(s, a)}(s,a)∈S×A. An estimator Q̂T of Q∗ is
some measurable function of these T sets. We then have the following fundamental lower bound.

Theorem 3. (Lower Bound) There exists a universal constant c̃ > 0 such that

inf
Q̂T

sup
Q∗∈H(ε,σ̄,Q)

P
(
∥Q̂T −Q∗∥∞ ≥

c̃σ̄
√
ε

(1− γ)

)
≥ 1

2
.

Main Takeaway. From the above result, we infer that the additive corruption term in (6) is tight in its
dependence on the corruption fraction ε, the discount factor γ, and the noise variance σ̄. Interestingly,
these dependencies persist even when the learner is presented with a more favorable observation
model where it gets to observe rewards for all the state-action pairs simultaneously at each time-step.
We note that similar additive corruption terms have been proven to be unavoidable in prior works on
robust mean estimation [48–51], and multi-armed bandits with reward corruptions [5, 7, 8]. Our work
is the first to show that such a term is also unavoidable for Q-learning. Collectively, Theorems 2
and 3 establish the near-optimality of our proposed approach, and paint a fairly complete
picture for the theme of adversarial robustness in Q-learning. To complete this picture, one
would need to establish a lower bound that also clarifies the dependence on the minimum visitation
probability λmin. We conjecture that some dependence on λmin is likely unavoidable; however,
verifying this formally is left for future work.

Having established the near-optimality of our approach, the next two sections of the paper are devoted
to further generalizing our results to scenarios where bounds on the reward means and variances are
unknown (Section 4), and when the data is sampled in a Markovian manner (Section 4.1). Before
jumping into these sections, we provide brief proof sketches for Theorems 2 and 3.

Proof Sketch of Theorem 2. Using the update rule in (5), we start by writing down a recursion
for the error dt = Qt − Q∗ that features two main terms: a noise term that exhibits a martingale
difference structure, and a term that captures the effect of adversarial corruption. The main challenge
in the analysis arises from the fact that these two terms are coupled; notably, this difficulty does not
arise when one analyzes the standard Q-learning algorithm. The coupling is a consequence of the fact
that the noise term involves the iterate Qt which, in turn, is affected by the adversarially corrupted
reward observations. Our proof strategy is to first control the effect of adversarial corruption via the
following lemma, which is the key new tool in our overall analysis.
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Lemma 1. (Bounding Adversarial Effects) Suppose Assumption 1 holds. With probability at least
1− δ/2, the following items are true for all t > T̄ : (i) r̃t(st, at) = r̄t(st, at), and

(ii) |r̃t(st, at)−R(st, at)| ≤ O

(
σ̃

(√
log(8/δ1)

λmint
+
√
ε

))
.

Lemma 1 tells us that after the burn-in time T̄ is passed, with high-probability, no thresholding will
take place, i.e., r̃t(st, at) = r̄t(st, at), and the reward proxies that we plug into our update rule (5)
will be sufficiently accurate estimates of the true reward functions. The main difficulty in establishing
Lemma 1 is that the number of times each state-action pair has been visited up to any time-step t is
a random variable. As such, we first use Bernstein’s inequality to create a “good event" on which,
after time T̄ , each state-action pair is sufficiently visited. We then carefully condition on this event to
exploit the bound in (2). Lemma 1 helps us control the effect of adversarial corruption. To control
the noise term, we first use the adaptive thresholding idea and an inductive argument to establish
that the iterate sequence {Qt} generated by Robust Aysnc-Q is uniformly bounded, and then apply
Azuma-Hoeffding. The complete details of the proof are deferred to Appendix C.

Proof Sketch of Theorem 3. The proof of this result relies on carefully constructing two different
MDPs and associated attack distributions, such that (i) the optimal Q-functions in the two MDPs
differ in magnitude by Ω(σ̄

√
ε/(1− γ)); and (ii) the distributions of the observed reward samples in

the two MDPs are indistinguishable to a learner. The details are provided in Appendix D.

4 Reward-Agnostic Robust Asynchronous Q-Learning (Robust Async-RAQ)

In the previous section, we developed a robust variant of the asynchronous Q-learning algorithm
(Robust Async-Q) that achieves near-optimal guarantees under reward corruption, while assuming
access to upper bounds on just the first two moments of the true reward distributions. These
assumptions enabled us to precisely design the adaptive threshold Gt in Eq. (4) to safeguard against
adversarial outliers. We now ask: Is it possible to preserve the same rates as before while assuming
no prior knowledge at all about the reward statistics? This is a challenging question motivated by
real-world applications where precise bounds on the moments of the reward distributions may not be
available to the learner. The lack of knowledge of the parameter σ̃ = max{R̄, σ̄}, which previously
played a central role in designing the threshold function Gt, now creates more uncertainty for the
learner to contend with. Nonetheless, we establish that one continue to enjoy the same bounds as
before with two simple modifications to Algorithm 1 that we now describe.

Modification 1 (Reward Agnostic Threshold). Our key idea is to use a polynomial function of
time, denoted by m(t) = tp, as a proxy for the unknown upper-bound σ̃. Any positive integer p ≥ 1
will suffice for our purpose; we will comment on the choice of p shortly. The new threshold is

G̃t = 0 if t ≤ T̄ ; G̃t = Cm(t)

(√
4 log(8/δ1)

3λmint
+
√
ε

)
+m(t) if t > T̄ , (7)

where the universal constant C and the burn-in time T̄ are defined as before in Section 3. The intuition
for this proxy is quite simple: since σ̃ is a constant, any growing function of time will eventually
dominate σ̃, after which point, the new threshold G̃t will serve as an upper-bound for the threshold
Gt that we designed earlier in (4). Lemma 1 will kick in at this point.

Modification 2 (Failure Probability Modification). To make the analysis go through, we will
require the failure probability parameter δ1 that is fed as input to the TRIM function, finer than before:
we set δ1 = δ2/

(
512 |S|2|A|2T 2p+3

)
, where p is the same parameter that appears in m(t). Thus,

the overall change to Algorithm 1 involves the new choice of δ1 in line 5, and the replacement of Gt

by G̃t in line 6. We call this new reward-agnostic variant Robust Async-RAQ.

Our main finite-time result for Robust Async-RAQ is as follows.
Theorem 4. Suppose the conditions in Theorem 2 hold. Then, given any δ ∈ (0, 1), the output of
Robust Async-RAQ satisfies the following bound with probability at least 1− δ:

∥dT ∥∞ ≤
∥d0∥∞

T
+O

(
σ̃1+1/2p

(1− γ)
5
2

log T

λ
3
2
min

√
T

√
log
( |S||A|T

δ

))
+O

(
σ̃
√
ε

λmin(1− γ)

)
. (8)
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Main Takeaway. Comparing equations (8) and (6), we note that even with no prior knowledge of
the reward statistics, Robust Async-RAQ is able to remarkably preserve the same near-optimal rates
we established before, up to a slight inflation in the dependence on σ̃ in the dominant term. This
goes on to show the flexibility of our overall framework in accommodating asynchronous sampling,
adversarial corruptions, and completely unknown reward statistics. Now, let us comment on the
choice of p in the function m(t). Making p larger would lead to a shorter wait time before the
modified threshold G̃t dominates the true threshold Gt, and an improvement in dependence on σ̃
in (8). However, a larger p would also imply a smaller failure probability δ1, which will eventually
cause our overall bound to get scaled linearly by p, since δ1 fortunately appears inside a logarithm.
Due to the latter fact, up to constant factors, making p large does not degrade our final bound.

Challenges and Technical Novelty in the Proof of Theorem 4. In addition to the proof challenges
for Theorem 2 we discussed earlier, the modified threshold G̃t introduces various new subtleties
and technical challenges in the proof, which precludes the use of standard concentration tools used
typically in the analysis of RL algorithms. Like before, to exploit the martingale structure of the
noise term that shows up in our analysis, we need a uniform bound on ∥Qt∥∞. While this bound
was O(1) previously, in light of the new threshold, it now becomes on the order of O(T p). Using
this new upper bound with the standard Azuma-Hoeffding inequality will lead to a vacuously large
rate that does not reflect the “typical" behavior of the algorithm. Thus, we need a much more
intricate analysis than before. Our key observation is that the iterate sequence {Qt} generated by
Robust Async-RAQ exhibits an interesting structure: they are bounded by a crude O(T p) term
deterministically, and a finer O(1) term with high-probability. This observation does not immediately
resolve our problem since we now need a finer version of Azuma-Hoeffding that can exploit the
structure identified above. In this regard, some common variants of Azuma-Hoeffding for discrete
probability spaces [20] and martingale differences with sub-Gaussian tails [21] are inadequate for
our purpose, since the martingale difference in our setting neither belongs to a discrete space nor
is sub-Gaussian. Fortunately, we are able to leverage an elegant result from [22] on martingale
differences that admit a coarse bound deterministically, and a finer bound with high-probability. This
refined variant of Azuma-Hoeffding is the key new tool in our analysis, and, as far as we are aware,
has not appeared before in prior finite-time analysis of RL algorithms. Thus, the proof of Robust
Async-Q requires considerable innovation relative to prior work; we defer the details to Appendix E.

4.1 Extension to Markovian Sampling

We now explain how our developments can be extended to account for single-trajectory Markovian
data. Previously, we assumed that at each time-step t, st is sampled in an i.i.d. manner from the station-
ary distribution π of the Markov chain induced by the behavior policy µ. We now relax this assump-
tion, and let st be the state of this Markov chain at time t. It is easy to verify that Zt = (st, at, st+1)
is also a Markov chain, and that this chain is ergodic based on Assumption 1 [52]. Using this fact,
we now propose a simple modification to Robust Async-RAQ that ignores certain data points. To
explain this modification, let Ω represent the state space for the Markov chain {Zt}, and let ρ be
its stationary distribution. Following [23], define dmix(t) := supZ∈Ω DTV (P(Zt ∈ ·|Z0 = Z), ρ) ,
where DTV is used to represent the total variation distance between probability measures. We now
define the mixing time as τ̄ := inf{t|dmix(t) ≤ 1/4}. Finally, we define a “block” parameter
τ := ⌊ℓτ̄⌋, where ℓ = ⌈log(2T/δ)/ log 2⌉. The only modification to Robust Async-RAQ is that
the agent now uses every τ -th sample, and drops the rest. For this variant (described formally in
Appendix F), we have the following result.
Theorem 5. Suppose Assumption 1 holds, and Z0 ∼ ρ. Then, given any δ ∈ (0, 1), for suitably
chosen α and large enough T , the following bound holds with probability at least 1− δ:

∥dT ∥∞ ≤
∥d0∥∞

T
+O

(
σ̃1+1/2p

(1− γ)
5
2

log T

λ
3
2
min

√
T

√
τ log

( |S||A|T
δ

))
+O

(
σ̃
√
ε

λmin(1− γ)

)
. (9)

Main Takeaway. Comparing Theorems 4 and 5, we note that despite Markov sampling, we are able
to essentially preserve the same bounds as in the i.i.d. case up to an inflation by a factor of

√
τ , where

τ captures the mixing time of the Markov chain (up to logarithmic factors). Such an inflation by the
mixing time shows up for vanilla Q-learning as well [18]. The assumption that Z0 ∼ ρ is only made
to simplify some of the algebra as in prior RL work [43, 23]. Overall, Theorem 5 establishes the
first robustness guarantees for Q-learning with single-trajectory Markovian data.
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: All claims made in the Abstract and Introduction are supported by concrete
theoretical statements and proofs.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: In lines 313-316 of the paper, we explicitly point out that our lower bound right
now does not capture the effect of asynchronous sampling, and clarify the right dependence
on the minimum state visitation probability. This is an interesting issue that is left open by
our work.
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• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.
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• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.
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Guidelines:
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• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility
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• If the contribution is a dataset and/or model, the authors should describe the steps taken
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dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
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A Additional Literature Survey and Standard Results

In this section, we provide a more detailed discussion of the relevant threads of literature.

1. Q-Learning. The Q-learning algorithm was first introduced by Watkins and Dayan in [1].
There is a long line of work that has explored the asymptotic performance of Q-learning
algorithms in the limit of infinite samples; see, for instance, [53, 39, 40], using ideas from
stochastic approximation theory [53, 54]. A more recent strand of literature has focused on
the non-asymptotic analysis of Q-learning and its variants [55, 44, 18, 19], accounting also
for function approximation [52]. While we build on some of the techniques in these papers,
our work departs from this line of literature by considering the robustness of Q-learning to
adversarial perturbations - a topic that has not been explored in the papers mentioned above.
For a detailed literature review on Q-learning, we refer the reader to [19].

2. Stochastic Approximation. Our work is broadly related to the area of stochastic ap-
proximation algorithms in reinforcement learning, which includes Q-learning [1] and TD
learning [11] as special cases. As mentioned earlier, the asymptotic theory of such algo-
rithms is rich [42]. Finite-time results, however, are much more recent. Initial finite-time
results under the i.i.d. sampling model (that we also consider in this work) were provided
in [13, 16, 14, 15, 56]. The extension to the Markov setting was first derived in [43] for a
projected TD learning algorithm. The assumption of the projection step was later removed
in [57] and [58].

3. Reward Contamination in Multi-Armed Bandits. A large body of work has explored the
effects of reward contamination on the performance of stochastic bandit problems, both for
the unstructured multi-armed bandit (MAB) setting [4, 6, 8, 5, 7], and also for structured
linear bandits [26, 27, 25, 28]. The basic premise in these papers is that an adversary
can modify the true stochastic reward/feedback on certain rounds; a corruption budget C
captures the total corruption injected by the adversary over the horizon T . In particular, the
authors in [8] study a Huber-contaminated reward model like us, where in each round, with
probability η (independently of the other rounds), the attacker can bias the reward seen by
the learner. A fundamental lower bound of Ω(ηT ) on the regret is also established in [8].
While our reward contamination model is directly inspired by the above line of work, we
emphasize that the stochastic approximation setting we study here fundamentally differs
from the bandit problem. As such, our algorithms and proof techniques are also different
from the bandit literature.

4. Robust Statistics. The study of computing different statistics (e.g., mean, variance, etc.)
of a data set in the presence of outliers was pioneered by Huber [2, 3]. Since then, the
field of robust statistics has significantly advanced, with more recent work focusing on
computationally tractable algorithms in the high-dimensional setting [49, 48, 59, 50, 12, 51].
Our paper builds on this rich line of work and uses it in the context of RL.

A.1 Useful Facts and Results

In this section, we compile a few useful results that will be used by us throughout the proofs. We start
by listing some properties of the Bellman optimality operator T : R|S|×|A| → R|S|×|A| given by:

(T Q)(s, a) = R(s, a) + γEs′∼P(·|s,a)

[
max
a′∈A

Q(s′, a′)

]
. (10)

It turns out that the optimal state-action value function Q∗ is a fixed point of T , i.e., T Q∗ = Q∗.
Furthermore, T is contractive in the∞-norm, a fact that we will exploit in all our main convergence
proofs. Formally, the Bellman optimality operator satisfies the following contraction property
∀Q1, Q2 ∈ R|S|×|A|:

∥T Q1 − T Q2∥∞ ≤ γ∥Q1 −Q2∥∞. (11)

We also state some useful concentration tools for future use.
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Lemma 2. (Bernstein’s Inequality) If X1, X2, . . . , XN are independent random variables with
P(|Xi| ≤ c) = 1 and common mean µ, then for any ε > 0:

P(|X̄N − µ| > ε) ≤ 2 exp

− Nε2

2σ2 +
2cε

3

 , (12)

where X̄N =
1

N

∑N

i=1
Xi and σ2 =

1

N

∑N

i=1
Var(Xi).

Lemma 3. (Azuma-Hoeffding) Let Z1, Z2, Z3, . . . be a martingale difference sequence with |Zi| ≤
ci for all i ∈ N, where each ci is a positive real. Then, for all λ ≥ 0:

P

(∣∣∣∣∣ n∑
i=1

Zi

∣∣∣∣∣ ≥ λ

)
≤ 2e

− λ2

2
∑n

i=1 c2i .
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B Analysis of the Trimmed Mean Estimator under Huber Contamination

Algorithm 2 Univariate Trimmed-Mean Estimator from [12] (trimSC)

Require: Corrupted Dataset D̃ = {X1, X2, . . . , XM} =D1⊕D2, such that |Di|i∈{1,2} = M/2;
corruption fraction ε; confidence level δ.

1: Set ζ = 8ε+ 24
log(4/δ)

M
.

2: Let X∗
1 ≤ X∗

2 ≤ · · · ≤ X∗
M/2 represent a non-decreasing arrangement of D1. Compute

quantiles: α = X∗
ζM , β = X∗

(1−ζ)M .

3: Define the function ϕα,β(x) as

ϕα,β(x) =


β if x > β

x if x ∈ [α, β]

α if x < α

4: Compute the trimmed mean: µ̂X = (2/M)
∑

Xi∈D2
ϕα,β(Xi).

We start by briefly recalling the strong-contamination data model studied in [12]. Consider a data
set D comprising of M i.i.d. samples of a scalar random variable X with mean µX and variance
σ2
X . An adversary arbitrarily perturbs up to εM of the samples within D to produce a corrupted data

set D̃; here, ε ∈ [0 , 1/2) is the fraction of corrupted data. Using D̃, the corruption fraction ε, and a
confidence parameter δ as inputs, the trimmed mean estimator from [12] produces a robust estimate
µ̂X of the mean µX in the following way. The data set D̃ is divided into two equal parts of M/2
samples each. The first part is used to compute empirical quantiles for filtering out extreme values.
The estimate µ̂X is then simply an average of only those data samples in the second part that fall
within the computed quantiles. Let µ̂X = trimSC[D̃, ε, δ] be used to succinctly represent the output
of the trimmed mean estimator described above, and outlined in Algorithm 2; here, the subscript ‘SC’
is used to represent the strong contamination attack model considered in [12]. For this setting, we
have the following guarantee from [12].

Theorem 6. [12, Theorem 1] Let δ ∈ (0, 1) be such that δ ≥ 4e−M/2, and suppose µ̂X =

trimSC[D̃, ε, δ]. Then, there exists an universal constant c, such that with probability at least 1− δ,

|µ̂X − µX | ≤ cσX

(
√
ε+

√
log(4/δ)

M

)
. (13)

Our goal in this section is to show how the same result can be extended to account for the Huber
contamination model of interest to us, where each data sample in D is arbitrarily corrupted with
probability ε. For future reference, we will call the Huber-contaminated data set D′. As we will show,
all that needs to happen is that Algorithm 2 needs to be invoked with a slightly larger corruption
fraction that will follow from our subsequent analysis.

Step 1. Bounding the number of corrupted samples. We begin with a dataset D consisting of
M samples, where each sample is independently corrupted with probability ε, as specified in the
corruption model described in Section 2. Our first objective is to bound the total number of corrupted
samples in this dataset (with high probability). To this end, we define an eventW , where the number
of corrupted samples does not exceed 3ε′M/2, where ε′ is chosen as follows:

ε′ = ε+
32

3M
log
(
4

δ

)
. (14)

Our goal is to provide an upper bound on the probability of the complementary event WC. We
start by choosing Yi as an indicator random variable such that Yi = 1 if the ith sample is corrupted,
and Yi = 0 otherwise. Under the Huber contamination model, we have E[Yi] = ε for all i ∈ [M ].
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Furthermore, the average variance satisfies
∑M

i=1
Var(Yi)/M ≤ ε. Now observe:

WC :=
{ M∑
i=1

Yi ≥
3ε′M

2

}
=
{

1

M

M∑
i=1

Yi − ε ≥ 3ε′

2
− ε
}

=⇒
{

1

M

M∑
i=1

Yi − ε ≥ ε′

2

}
,

(15)

where in the last step, we used the fact that ε′ > ε. Applying Bernstein’s inequality outlined in
Lemma 2 yields the following high-probability bound on the eventWC:

P
(
WC) ≤ 2e−

3ε′M
32 ≤ δ

2
, (16)

where the last inequality follows from the definition of the inflated corruption fraction ε′ in (14).

Step 2. Proof of Theorem 1. To repurpose Algorithm 2 to account for the Huber contamination
model, we simply invoke Algorithm 2 with an inflated corruption fraction and a deflated failure
probability. Specifically, let µ̂X = TRIM[D′, ε, δ] := trimSC[D′, ε̄, δ/2], where ε̄ :=

3

2
ε′. In simple

words, our modified estimation algorithm for the Huber contaminated setting, denoted by TRIM, takes
as input the Huber-contaminated data set D′, the contamination probability ε, and failure probability
δ. It then invokes Algorithm 2 with the same data set, but with an inflated corruption fraction ε̄, and
a deflated failure probability δ/2. To analyze the performance of µ̂X , let us define an event V as
follows:

V :=

|µ̂X − µX | > cσX

√ε̄+
√√√√ log

(
8

δ

)
M


 , (17)

where c is the universal constant in Theorem 6. We now decompose the event V as V = {V ∩W} ∪
{V ∩WC}, which immediately implies the following:

P(V) = P(V ∩W) + P(V ∩WC) ≤ P(V ∩W) + P(WC)

≤ P(V|W) · P(W) + P(WC)

≤ P(V|W)︸ ︷︷ ︸
(∗)

+P(WC)︸ ︷︷ ︸
(∗∗)

.
(18)

From (16), we already know that (∗∗) ≤ δ/2. Furthermore, conditioned on the event W , we
know that there are at most ε̄M corrupted samples in the data set D′. Thus, invoking Theorem 6
immediately yields that (∗) ≤ δ/2. We conclude that with probability at least 1− δ,

|µ̂X − µX | ≤ cσX

√ε̄+
√√√√ log

(
8

δ

)
M

 (•)
≤ cσX


√

3

2
ε′ +

√√√√ log

(
8

δ

)
M


(••)
≤ CσX

√ε+
√√√√ log

(
8

δ

)
M

 ,

(19)

where C > c is some suitably large universal constant. In (•), we substituted the value of ε̄, while
in (••), we substituted ε′ from Eq. (14), and applied the elementary inequality

√
a+ b ≤

√
a+
√
b,

that holds for all positive scalars a, b. The rest follows from simple algebra. We have thus provided a
proof for Theorem 1.
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C Proof of Theorem 2

The proof of Theorem 2 follows a careful sequence of arguments that we proceed to outline next. We
begin by decomposing the proposed update rule to isolate the key sources of error arising from both
adversarial and non-adversarial components. This is followed by establishing ℓ∞-error bounds for the
non-adversarial noise in Lemmas [4,5], and for the adversarial corruption in Lemmas [6, 7]. Finally,
we complete the proof of Theorem 2 by assembling these results through a simple yet meticulously
crafted inductive argument.

Error Decomposition Step. First, using the Bellman optimality operator in Eq. (10), the proposed
robust Q-Learning update in Eq. (5) is decomposed as follows:

Qt+1(st, at) = (1− α)Qt(st, at) + αT Qt(st, at) + αηt(st, at). (20)

Here, ηt(st, at) is a perturbation that captures the combined effect of noise and adversarial corruption.
Specifically, ηt(st, at) is as follows:

ηt(st, at) ≜ γmax
a′∈A

Qt(st+1, a
′)− γEst+1∼P(.|st,at)

[
max
a′∈A

Qt(st+1, a
′)

]
+ r̃t(st, at)−R(st, at).

(21)
To aid the analysis, we further re-define the following two terms which add up to ηt(st, at) in
Eq. (21):

ηt,1(st, at) = γmax
a′∈A

Qt(st+1, a
′)− γEst+1∼P(.|st,at)

[
max
a′∈A

Qt(st+1, a
′)

]
,

ηt,2(st, at) = r̃t(st, at)−R(st, at).

(22)

Discussion on the Error Terms. The term ηt(st, at) defined in Equation (21) captures the deviation
between the actual and ideal updates for the sampled state-action pair (st, at) at the tth time step.
Under adversarial reward corruption, this deviation naturally decomposes into two components.
The first term ηt,1(st, at) captures the gap between the noisy Bellman update and the true Bellman
update in (10), excluding the reward term. The second term ηt,2(st, at) accounts for the difference
between the proposed reward proxy and the expected reward. Note that in the absence of corruption,
r̃t(st, at) = rt(st, at), such that E[rt(st, at)] = R(st, at). In this case, the entire term ηt(st, at)
reduces to the difference between the noisy Bellman update and the true Bellman update.

Final Error Decomposition and Matrix Formulation. For aiding our analysis, we now write
Eq. (20) in a compact matrix form, by introducing a time-dependent sparse, diagonal matrix
[Dt]|S|2.|A|2 ≜ Dt , whose only non-zero entry corresponds to the sampled state-action pair
(s, a) = (st, at) at the tth iterations, and equals to 1. This allows us to represent the Q-value
update for the current state-action pair using matrix notation:

Qt+1 = (I − αDt)Qt + αDt(T Qt) + αηt(st, at)1t, (23)

where 1t is a |S|.|A| dimensional indicator vector, which has the value 1 at the position corresponding
to (st, at) and 0 elsewhere. Since, we are concerned with the asynchronous sampling scheme, Dt is a
random matrix. As a result, we introduce a new collective error term to account for this randomness,
defined as follows:

ζt ≜ ηt(st, at)1t − (Dt −D)(Qt − T Qt), (24)

where
Est∼π,at∼µ(·|st)[Dt] = D, and (25)

D =


λ(s1, a1) 0 0 · · · 0

0
. . . 0 · · · 0

0 0 λ(si, ai) = π(si) · µ(si|ai) · · · 0
...

...
...

. . .
...

0 0 0 · · · λ(s|S|, a|A|)

 . (26)

The definition of ζt in Eq. (24) accounts for the collective vectorized error, which includes the
discrepancy described in Eq. (21) as well as the error arising from the asynchronous sampling nature
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of the algorithm, captured by the difference (Dt −D). With the introduction of the collective error
term in Eq. (24), Eq. (23) can be rewritten as follows:

Qt+1 = (I − αD)Qt + αD(T Qt) + αζt. (27)

Now, Q∗ is the fixed point of the Bellman optimality operator T , as defined in Equation (10), i.e.,
T Q∗ = Q∗. We can leverage this property to construct the error iterates (Qt −Q∗) as follows:

Qt+1 −Q∗ = (I − αD)(Qt −Q∗) + αD(T Qt − T Q∗) + αζt. (28)

Unrolling the above recursion over t+ 1 iterations, we get:

Qt+1 −Q∗ = (I − αD)t+1(Q0 −Q∗) + αD
t∑

k=0

(I − αD)t−k(T Qk − T Q∗) + ∆t, (29)

where ∆t is defined as follows:

∆t ≜ α
t∑

k=0

(I − αD)t−kζk. (30)

Notably, in the presence of adversaries, ∆t is not a standard Martingale Difference Sequence (M.D.S)
candidate, since adversarial corruptions introduce a new bias term. To isolate the contributions of
stochastic noise and adversarial perturbations, we further decompose ∆t into two components, ∆t,1

and ∆t,2, such that:

∆t,1 = α
t∑

k=0

(I − αD)t−kζk,1, ∆t,2 = α
t∑

k=0

(I − αD)t−kζk,2, where (31)

the noisy ζt,1 and adversarial ζt,2 components which contribute to ζt are defined as follows:

ζt,1 ≜ ηt,1(st, at)1t − (Dt −D)(Qt − T Qt), ζt,2 ≜ ηt,2(st, at)1t. (32)

Also, the (s, a)− th component of the drift parameters in Eq. (31) is denoted as:

∆t,1(s, a) ≜ α
t∑

k=0

(1− αλ(s, a))t−kζk,1(s, a), ∆t,2(s, a) ≜ α
t∑

k=0

(1− αλ(s, a))t−kζk,2(s, a).

(33)
Step 1: Bounding the Non-Adversarial Noisy Error ∆t,1. To begin analyzing the overall error,
we first consider the contribution from the cumulative non-adversarial noise term ∆t,1, described in
Eq. (31). We first argue that {ζk,1}k∈[t] admits a standard martingale difference sequence (M.D.S).
We show this by proving two key properties: uniform boundedness, established in Lemma 4, and
the fact that it has a zero conditional expectation, as shown in first part of Lemma 5. In the latter
part of Lemma 5, we use the standard Azuma-Hoeffding inequality from Lemma 3 to bound the
cumulative error term ∆t,1 arising from the non-adversarial noise. We now proceed to prove the
uniform boundedness property in the next result.
Lemma 4. (Bounding Iterates for Robust Async-Q) The following bounds hold deterministically
for all t ∈ [T ]:

|ηt,1(st, at)| ≤
6Cσ̃
1− γ

, ∥ζt,1∥∞ ≤
12Cσ̃
1− γ

, (34)

where C is the universal constant that appears in (4).

Proof. To establish the claimed bounds, our first step is to argue that the iterates generated by Robust
Async-Q remain uniformly bounded. We will prove the fact via induction. In particular, we claim
that for all s ∈ S, a ∈ A, and t ∈ [T ], the following is true:

|Qt(s, a)| ≤
3Cσ̃
1− γ

, (35)

where C is the universal constant in Eq. (4). The base case of induction at t = 0 holds trivially
since Q0(s, a) = 0 for all (s, a). Now suppose the bound in (35) holds up to time t. To show that
it also applies to time t+ 1, notice that for a state-action pair (s, a) ̸= (st, at), Qt+1(s, a) remains
unchanged from time t to time t+ 1, and thus, the induction claim trivially applies to all state-action
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pairs that are not sampled at time t. Next, for the sampled state-action pair (st, at) at time t, applying
the triangle inequality to the asynchronous Q-learning update equation in Eq. (5) yields:

|Qt+1(st, at)| ≤ (1− α) |Qt(st, at)|+ α

∣∣∣∣r̃t(st, at) + γmax
a′∈A

Qt(st+1, a
′)

∣∣∣∣ ,
≤ (1− α) |Qt(st, at)|+ α

(
|r̃t(st, at)|+ γmax

a′∈A
|Qt(st+1, a

′)|
)
.

(36)

To proceed, we note from the thresholding operation in lines [6-9] of Algorithm 1 that: |r̃t(st, at)| ≤
Gt,∀t ≥ 0. Moreover, from the definition of Gt in Eq. (4), we observe that Gt = 0 for all t ≤ T̄ .
Also, for all t > T̄ , we further have that Gt ≤ 2Cσ̃ + σ̃ ≤ 3Cσ̃, where we used the fact that
C ≥ 1, and the definition of T̄ in Eq. (3). We thus conclude that in light of the thresholding step in
Algorithm 1, the following holds deterministically at all time-steps: |r̃t(st, at)| ≤ 3Cσ̃. Plugging this
bound into Eq. (36), and using the induction hypothesis, we obtain the following for the sampled
state-action pair (st, at) at the tth instant:

|Qt+1(st, at)| ≤ (1− α) · 3Cσ̃
1− γ

+ α
(
3Cσ̃ + γ · 3Cσ̃

1− γ

)
,

=
(
1− α

1− γ
+

α

1− γ

)
3Cσ̃ ≤ 3Cσ̃

1− γ
.

We have thus shown that the induction claim in Eq. (35) holds for all state-action pairs (s, a) ∈ S×A,
and ∀t ∈ [T ]. With a deterministic bound on the iterates, we now proceed to bound the non-adversarial
deviation term defined in Eq. (22):

|ηt,1(st, at)| =
∣∣∣∣γmax

a′∈A
Qt(st+1, a

′)− γEst+1∼P(·|st,at)

[
max
a′∈A

Qt(st+1, a
′)

]∣∣∣∣ ,
≤ γ

∣∣∣∣max
a′∈A

Qt(st+1, a
′)

∣∣∣∣+ γEst+1∼P(·|st,at)

∣∣∣∣[max
a′∈A

Qt(st+1, a
′)

]∣∣∣∣ ,
≤ γmax

a′∈A
|Qt(st+1, a

′)|+ γEst+1∼P(·|st,at)

[
max
a′∈A

|Qt(st+1, a
′)]

∣∣∣∣ ,
≤ γ

6Cσ̃
1− γ

≤ 6Cσ̃
1− γ

,

where the final inequality uses the bound in Eq. (35). Finally, consider the combined deviation term
in Eq. (32). For this term, we have

∥ζt,1∥∞ ≤ |ηt,1(st, at)|+ ∥Dt −D∥∞ (∥Qt∥∞ + ∥T Qt∥∞)

(a)

≤ 6Cσ̃
1− γ

+ (∥Qt∥∞ + ∥T Qt∥∞)

(b)

≤ 12Cσ̃
1− γ

≜ Γ̄.

In the above steps, for (a), we used the previously established bound on |ηt,1(st, at)|, along with the
fact that ∥Dt−D∥∞ ≤ 1. For (b), we used (35) to deduce that ∥Qt∥∞ and ∥T Qt∥∞ are both upper-
bounded by

3Cσ̃
1− γ

. In particular, the bound on ∥T Qt∥∞ also uses the fact that |R(s, a)| ≤ R̄ ≤ σ̃.

This completes the proof of Lemma 4, establishing deterministic uniform bounds on the non-
adversarial noisy sequences {ηk,1}k∈[t], and {ζk,1}k∈[t].

With the above result in hand, we now proceed to prove Lemma 5, which provides an ℓ∞-norm bound
on ∆t,1.

Lemma 5. (Bounding the Noise effect in Robust Async-Q) With probability at least 1− δ

2
, the

following bound holds simultaneously ∀t ∈ [T ]:∥∥∥∥∥ t∑
k=0

α(I − αD)t−kζk,1

∥∥∥∥∥
∞

≤ 12Cσ̃
1− γ

√
α

2λmin
log
(
4|S||A|T

δ

)
, (37)

where ζk,1 is as defined in Eq. (32).
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Proof. For a fixed state-action pair (s, a) ∈ S × A, we claim that the process {α(1 −
αλ(s, a))t−kζk,1(s, a)}k∈[t] also admits a martingale difference sequence (M.D.S) with respect
to an appropriate filtration. To formally verify this property, we choose a filtration Fk−1 denoted
by the σ-algebra generated by the observation history up to time k − 1, that is, Fk−1 := σ(Oi :
0 ≤ i ≤ k − 1), where Oi := {si, ai, si+1, yi(si, ai)}. Let us also define an augmented σ-algebra
Gk := σ(Fk−1, (sk, ak)), such that Fk−1 ⊆ Gk. In Lemma 4, we have established the uniform
boundedness of ζk,1(s, a) for all (s, a) ∈ S × A, and for all k ∈ [t]. To conclude that ζk,1(s, a) is
indeed a M.D.S, it remains to show that E[ζk,1(s, a)|Fk−1] = 0.

Conditional Zero-Expectation Property for M.D.S. To proceed, we start evaluating E[ζk,1|Fk−1]
as follows:

E[ζk,1|Fk−1] = E
[(

ηk,1(sk, ak)1k − (Dk −D)(Qk − T Qk)
)∣∣∣Fk−1

]
(•)
= E

[
ηk,1(sk, ak)1k

∣∣∣Fk−1

]
− E

[
(Dk −D)(Qk − T Qk)

∣∣∣Fk−1

]
(••)
= E

[
E[ηk,1(sk, ak)1k|Gk]

∣∣∣Fk−1

]
= [0]|S|×|A|.

(38)

In (•), we invoke the linearity property of conditional expectation: for integrable random variables
A and B, and a filtration F , the following E[A + B|F ] = E[A|F ] + E[B|F ] holds almost surely.
In (••), we observe that Qk is Fk−1-adapted and that the sampling at time k is independent of
the past, under the i.i.d. sampling model. Also, E[Dk] = D, as explained in Equation (25), it
follows that E

[
(Dk −D)(Qk − T Qk)|Fk−1

]
= 0. We also apply the tower property of conditional

expectation, which states that for nested σ-algebras B1 ⊆ B2, we have E[E[X|B2]|B1] = E[X|B1]
almost surely. Using this property, we note E[ηk,1(sk, ak)1k|Gk] = 0. Hence, we conclude that
E[ζk,1|Fk−1] = [0]|S|×|A|. Consequently, it follows that E[ζk,1(s, a)|Fk−1] = 0 for all (s, a) ∈
S ×A. Combined with the uniform boundedness of ζk,1(s, a) established in Lemma 4, we conclude
that {ζk,1(s, a)}k∈[t] is indeed a uniformly bounded martingale difference sequence (M.D.S).

Establishing the Final Bound on ∆t,1. The boundedness and zero conditional expectation of the
noise sequence {ζk,1}k∈[t], as established in Lemma 4 and Eq. (38), respectively, allow us to invoke
the Azuma–Hoeffding inequality described in Lemma 3 to control the deviation of the accumulated
noise term. Specifically, we aim to bound ∥∆t,1∥∞ described in Eq. (31) with high probability. To
achieve this, we analyze each component ∆t,1(s, a) of the vector ∆t,1 and notice that based on
Azuma-Hoeffding, for a fixed (s, a) ∈ S ×A and time-step t ∈ [T ], the following high-probability
concentration bound holds with probability at least 1− δ̄1:

|∆t,1(s, a)| =
∣∣∣∣ t∑
k=0

α(1− αλ(s, a))t−kζk,1(s, a)

∣∣∣∣ (a)≤ Γ̄

√
α2

2
log
(

2

δ̄1

) t∑
k=0

(1− αλ(s, a))2(t−k),

(b)

≤ Γ̄

√
α2

2
log
(

2

δ̄1

) ∞∑
r=0

(1− αλ(s, a))r,

(c)

≤ Γ̄

√
α

2λmin
log
(

2

δ̄1

)
,

(39)
where Γ̄ is as defined in Lemma 4. We use the standard Azuma-Hoeffding inequality in (a). In (b),
we substituted the sum of even powers by a dominating infinite sum of natural powers. In (c), we
have used the fact that λ(s, a) ≥ λmin for all (s, a) ∈ S × A. Now, union bounding over all such
good events for all state-action pairs (s, a) ∈ S ×A, and time-steps t ∈ [T ], we note that the bound
derived above holds simultaneously for all state-action pairs and all time-steps with probability at
least 1− δ̄1|S||A|T .

Next, in order to simplify, we substitute δ̄1 = δ/(2|S||A|T ), and Γ̄ = 12Cσ̃/(1− γ). We then obtain

that the following also holds for all t ∈ [T ] with probability at least 1− δ

2
:∥∥∥∥∥ t∑

k=0

α(I − αD)t−kζk,1

∥∥∥∥∥
∞

= max
(s,a)∈S×A

∣∣∣∣ t∑
k=0

α(1− αλ(s, a))t−kζk,1(s, a)

∣∣∣∣
≤ 12Cσ̃

1− γ

√
α

2λmin
log
(
4|S||A|T

δ

)
≜ ∆̄t,1.

(40)
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This completes the proof.

Step 2: Bounding the Adversarial Term ∆t,2. Before discussing the bound on the adversarial
noise term ∆t,2 under the asynchronous sampling model, we first fix some notations that will be used
frequently in Lemmas 6 and 7. Denote by Nt(s, a) a random variable which represents the count of
the number of times the state-action pair (s, a) has been visited up to (and including) time t . Here,
1k(s, a) denotes the indicator variable that takes the value 1 if the state-action pair (sk, ak) at iteration
k is equal to (s, a), and 0 otherwise. Thus, we observe the fact that Nt(s, a) =

∑
k∈[t]

1k(s, a).
Under the i.i.d. sampling model, the probability of visiting a particular (s, a) pair at each time-step is
given by λ(s, a) = π(s)µ(a|s). As a result, the following is true:

E [Nt(s, a)] = λ(s, a)t. (41)

Building on the above fact, we now construct a “good event" of sufficient measure on which, after a
burn-in time, the number of visits to each state-action pair will concentrate around its mean value. To
that end, we have the following simple application of Bernstein’s inequality.

Lemma 6. (Constructing Good Event) There exists an event K of measure at least 1− δ1

4
, on which,

the following holds simultaneously ∀(s, a) ∈ S ×A, ∀t ≥ T̄ :

Nt(s, a) ≥
3

4
λmin · t,

where T̄ =
⌈

104

3λmin
log
(
8|S||A|T

δ1

)⌉
.

Proof. We start by writing Nt(s, a) =
∑

k∈[t]
1k(s, a), and observing the following basic facts:

E[1k(s, a)] = λ(s, a), and Var[1k(s, a))] ≤ λ(s, a). For a fixed (s, a) ∈ S × A and fixed t ∈ T ,
the probability of the following event KC

1(s, a, t) = {Nt(s, a) ≤
3

4
λ(s, a)t} can be bounded using

Bernstein’s inequality:

P(KC
1(s, a, t)) = P

({
Nt(s, a) ≤

3

4
λ(s, a)t

})
≤ P

({∣∣∣Nt(s, a)− E [Nt(s, a)]
∣∣∣ ≥ 1

4
λ(s, a)t

})
≤ 2e

(
− 3

104λ(s,a)t
)
.

(42)

Let us set 2e
(
− 3

104λ(s,a)t
)
≤ δ̂. Thus, for a fixed state-action pair (s, a) ∈ S ×A, and a fixed t ∈ T :

P(K1(s, a, t)) ≥ 1− δ̂, provided t ≥ 104

3λ(s, a)
log
(
2

δ̂

)
≜ T̄ (s, a).

Union-bounding over all state-action pairs (s, a) ∈ S × A and all time-steps t ≥
max(s,a)∈S×A T̄ (s, a), we conclude that there exists an event K of measure at least 1− δ̂|S||A|T ,
on which the following holds simultaneously for all state-action pairs (s, a) ∈ S ×A:

Nt(s, a) ≥
3

4
λ(s, a)t ≥ 3

4
λmint,

provided t ≥ T̄ , with T̄ as defined in the statement of the lemma with δ̂ = δ1/4|S||A|T . This
concludes the proof.

Lemma 7. (Bounding Adversarial Corruption in Robust Async-Q) With probability at least 1− δ

2
,

the following bound holds simultaneously ∀t ∈ [T ]:∥∥∥∥∥ t∑
k=0

α(I − αD)t−kζk,2

∥∥∥∥∥
∞

≤ 10αCσ̃

(√
T

λmin
log

(
32|S||A|T 2

δ

))
+

Cσ̃
λmin

√
ε, (43)

where ζk,2 is defined in Eq. (32).
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Proof. We will split our analysis into two separate cases.
Case I: When t ≤ T̄ , the term on the left-hand side of Eq. (43) deterministically simplifies to:∥∥∥∥∥ t∑

k=0

α(I − αD)t−kζk,2

∥∥∥∥∥
∞

(∗)
≤ αR̄T̄

(∗∗)
≤ ασ̃ ·

√
104T

3λmin
log
(
8|S||A|T

δ1

)
,

(∗∗∗)
≤ 6αCσ̃ ·

√
T

λmin
log
(
8|S||A|T

δ1

)
.

(44)

In Eq. (44), we leveraged the threshold function described in Eq. (4) to derive the subsequent bound
for the case where k ≤ T̄ . It is evident that ∥I − αD∥∞ ≤ 1 and ∥ζk,2∥∞ ≤ R̄ ≤ σ̃, since
r̃t(s, a) = 0 using Eq. (4) for t ∈ [T̄ ]. Hence, the bound in (∗) is satisfied. In (∗∗), we used
T̄ ≤

√
T̄
√
T . Finally, we substitute the value of T̄ from Eq. (3) to arrive at the final form.1

Case II: Next, consider the case when t > T̄ . We start out by considering the following events Ek,
and Ek,1 for a fixed k ∈ [T̄ + 1, T ]:

Ek ≜

|r̄k(sk, ak)−R(sk, ak)| ≤ Cσ̃


√√√√4

3

log

(
4

δ1

)
λmink

+
√
ε


 . (45)

Ek,1 ≜

|r̄k(sk, ak)−R(sk, ak)| ≤ Cσ̃


√√√√ log

(
4

δ1

)
Nk(sk, ak)

+
√
ε


 . (46)

Next, let us borrow the good event K from Lemma 6, and decompose the complement of the event Ek
described in Eq. (45) as follows:

{ECk} := {ECk} ∩ {K ∪ KC} = {ECk ∩ K} ∪ {ECk ∩ KC}. (47)
This immediately implies the following:

P(ECk) = P(ECk ∩ K) + P(ECk ∩ KC),

≤ P(ECk ∩ K) + P(KC).
(48)

From Lemma 6, on the good eventK, we know that for t ≥ T̄ , the following holds: Nt(s, a) ≥
3

4
λmint

for all state-action pairs (s, a) ∈ S × A. Next, we establish a bound on P(ECk ∩ K) in Eq. (48) as
follows:

P(ECk ∩ K) =
k∑

j=
3
4λmink

P
(
ECk ∩ K ∩ {Nk(sk, ak) = j}

)
,

≤
k∑

j=
3
4λmink

P
(
ECk ∩ {Nk(sk, ak) = j}

)
,

≤
k∑

j=
3
4λmink

P
(
ECk |{Nk(sk, ak) = j}

)
· P ({Nk(sk, ak) = j}) ,

(•)
≤

k∑
j=

3
4λmink

P
(
ECk,1|{Nk(sk, ak) = j}

)
· P ({Nk(sk, ak) = j}) ,

(••)
≤ δ1 ·

k∑
j=

3
4λmink

P ({Nk(sk, ak) = j}) ,

(•••)
≤ δ1 ·

k∑
j=0

P ({Nk(sk, ak) = j}) = δ1.

(49)

1For simplicity, we assume T̄ =
104

3λmin
log

(
8|S||A|T

δ1

)
instead of using the exact value T̄ =⌈

104

3λmin
log

(
8|S||A|T

δ1

)⌉
. This approximation has no significant impact on our analysis.
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In (•), for any fixed k ∈ [T̄ + 1, T ] and j ∈
[
3

4
λmink, k

]
, the deviation bound specified by the event

Ek in Eq. (45) is looser than that in Ek,1 in Eq. (46) conditioned on Nk(sk, ak) = j. Specifically, the
following is true:

{ECk |Nk(sk, ak) = j} =⇒ {ECk,1|Nk(sk, ak) = j}. (50)

In (••), by conditioning on Nk(sk, ak), we eliminate the randomness associated with asynchronous
sampling. Since j ≥ 3

4
λmink, and k ≥ T̄ ≥ Tlim =

⌈
8

3λmin
log
(

4

δ1

)⌉
in Case II, it implies that

j ≥ 3

4
λminTlim ≥ 2 log

(
4

δ1

)
. Hence, when we fix Nk(sk, ak) = j ∈

[
3

4
λmink, k

]
, we can leverage

the robust mean guarantee in Theorem 1 as follows:

P
(
ECk,1|{Nk(sk, ak) = j}

)
≤ δ1. (51)

Lastly, in (•••), we used the fact that
∑k

j=0
P ({Nk(sk, ak) = j}) = 1. With Eq. (49), we can

further simplify our decomposition in Eq. (48) as follows:

P(ECk) = P(EC ∩ K) + P(KC),

(∗)
≤ δ1 +

δ1

4
≤ 2δ1.

(52)

In step (∗), we applied the upper bound on the probability of the good event K established in Lemma
6. Combining these results, we conclude that the following holds for a fixed k ∈ [T̄ + 1, T ]:

P(Ek) ≥ 1− 2δ1. (53)

Union-bounding over all time-steps k ∈ [T̄ + 1, T ], we conclude that there exists an event J
of measure at least 1 − 2δ1T , on which, the following holds simultaneously for all time steps
k ∈ [T̄ + 1, T ]:

|r̄k(sk, ak)−R(sk, ak)| ≤ Cσ̃


√√√√4

3
·
log

(
4

δ1

)
λmink

+
√
ε

 . (54)

Now notice that on the good event J defined as above, when k > T̄ , the following is true:

|r̄k(sk, ak)| ≤ Cσ̃


√√√√4

3
·
log

(
4

δ1

)
λmink

+
√
ε

+ |R(sk, ak)| ≤ Gk, (55)

where we used |R(sk, ak)| ≤ R̄ ≤ σ̃, and the definition of the threshold Gk from (4). We conclude
that on event J , the thresholding step in line 7 of Algorithm 1 will get bypassed, ensuring that
r̃k(sk, ak) = r̄k(sk, ak),∀k > T̄ . Crucially, based on (54), this implies that on the event J , the
following deviation bound on the reward proxy applies simultaneously for all time steps k ∈
[T̄ + 1, T ]:

|r̃k(sk, ak)−R(sk, ak)| ≤ Cσ̃


√√√√4

3
·
log

(
4

δ1

)
λmink

+
√
ε

 . (56)

Now, we substitute δ1 = δ/4T , ensuring that the event J takes place with probability at least 1− δ

2
.

Before moving forward, we pause to note that the aforementioned arguments have already established
Lemma 1 in the main text.
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In the remainder of the proof, we will condition on the good event J on which (56) holds. On this
event, it is easy to see that for k > T̄ ,

∥ζk,2∥∞ =
∥∥∥ [r̃k(sk, ak)−R(sk, ak)]1k

∥∥∥
∞

= |r̃k(sk, ak)−R(sk, ak)| ≤ Cσ̃


√√√√4

3
·
log

(
4

δ1

)
λmink

+
√
ε

 .
(57)

Invoking Eq. (57), the following then holds on event J :∥∥∥∥ t∑
k=T̄+1

α(I − αD)t−kζk,2

∥∥∥∥
∞
≤

t∑
k=T̄+1

α∥(I − αD)∥t−k
∞ · ∥ζk,2∥∞

(∗)
≤ αCσ̃

t∑
k=T̄+1

(1− αλmin)
t−k


√√√√4

3
·
log

(
4

δ1

)
λmink

+
√
ε



≤ αCσ̃


√√√√4

3

log

(
4

δ1

)
λmin

 t∑
k=T̄+1

(
1
√
k

)
+

t∑
k=T̄+1

α(1− αλmin)
t−kCσ̃

√
ε

(∗∗)
≤ αCσ̃


√√√√4

3

log

(
4

δ1

)
λmin

 ∫ t

k=T̄+1

(
1
√
k

)
+

Cσ̃
λmin

√
ε

(∗∗∗)
≤ 2αCσ̃

(√
4

3

T

λmin
log
(

4

δ1

))
+

Cσ̃
λmin

√
ε.

(58)

Using the bound ∥I−αD∥∞ ≤ (1−αλmin) and the deviation bound on ζk,2 from event J , we obtain

step (∗). The resulting summation is then separated into two terms—one involving
1
√
k

and another

involving a constant
√
ε. The first term is further upper bounded via an integral approximation (∗∗),

while the second term is bounded using the geometric sum of the decaying factor (1− αλmin)
t−k,

which sums to at most 1/(αλmin). Finally, evaluating the integral and using the upper bound T on
the total number of iterations yields the bound in step (∗ ∗ ∗).
Next, to obtain the final bound for Case II, we leverage the bound from Case I to obtain the following
(on event J ) for all t > T̄ :∥∥∥∥∥ t∑

k=0

α(I − αD)t−kζk,2

∥∥∥∥∥
∞

≤

∥∥∥∥∥ T̄∑
k=0

α(I − αD)t−kζk,2

∥∥∥∥∥
∞

+

∥∥∥∥∥ t∑
k=T̄+1

α(I − αD)t−kζk,2

∥∥∥∥∥
∞

(†)
≤ 6αCσ̃ ·

√
T

λmin
log
(
8|S||A|T

δ1

)
+ 2αCσ̃

(√
4

3

T

λmin
log
(
16T

δ

))
+

Cσ̃
λmin

√
ε

(††)
≤ 10αCσ̃

(√
T

λmin
log

(
32|S||A|T 2

δ

))
+

Cσ̃
λmin

√
ε ≜ ∆̄t,2.

(59)
In (†), we used the bounds obtained for Case I and Case II. In (††), we simply used the mono-
tonicity of logarithms and substituted δ1 = δ/4T . Lastly, combining our separate analyses for Case
I and Case II leads to the claim of the lemma.

Finite-Time Rates for Robust Async-Q (Proof of Theorem 2): Having established Lemmas 4, 5, 6,
and 7, we are now ready to proceed with the proof of the bound stated in Theorem 2. First, to
build intuition for the nature of the final bound, let us consider Eq. (27) in the absence of any
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contributions from noise or adversaries. In this case, the recursion simplifies to the idealized update
rule: Qt+1 = (I − αD)Qt + αD(T Qt). Subtracting the fixed point Q∗, which satisfies Q∗ = T Q∗,
we obtain the error recursion Qt+1 − Q∗ = (I − αD)(Qt − Q∗) + αD(T Qt − T Q∗). Defining
dt(s, a) := |Qt(s, a)−Q∗(s, a)|, and applying the contractiveness of the Bellman optimality operator
under the∞-norm, we can then obtain the following for each state-action pair (s, a) ∈ S ×A:

dt+1(s, a) ≤ (1− αλ(s, a))dt(s, a) + αγλ(s, a)∥dt∥∞,

≤ (1− αλmin(1− γ)) ∥dt∥∞
(60)

Since this upper bound holds uniformly over all (s, a) ∈ S ×A, we conclude:
∥dt+1∥∞ ≤ (1− αλmin(1− γ)) ∥dt∥∞. (61)

Unrolling this recursion yields the following for all t ∈ [T ]:

∥dt∥∞ ≤ (1− αλmin(1− γ))
t ∥d0∥∞. (62)

The goal is to now establish a similar recursion for our setting, while accounting for noise and
adversarial corruption. To do so, we note that based on Lemma 5 and Lemma 7, there exists an event
- say Y - of measure at least 1 − δ, on which, ∥∆t,1∥∞+∥∆t,2∥∞ ≤ ∆̄t,1 + ∆̄t,2 ≜ ∆,∀t ∈ [T ],
where ∆t,1 and ∆t,2 are as defined in Eq. (31), ∆̄t,1 is as defined in Eq. (40), and ∆̄t,2 is as defined
in Eq. (59). As our induction hypothesis, suppose that on the event Y , the following bound holds for
all t ∈ [T ]:

∥dt∥∞ ≤ (1− αλmin(1− γ))
t ∥d0∥∞ +

∆

1− γ
. (63)

For t = 0, it is trivially true. Suppose the above bound holds for all time-steps up to time-step t. To
show that it also applies to time-step t + 1, let us revisit Eq. (29) and analyze it component-wise.
In order to simplify the notation for algebraic decompositions in the subsequent steps, for two
given functions {Q1, Q2} and their corresponding mappings {T Q1, T Q2} under the influence of
the Bellman operator, we denote their component-wise difference as:

[Q1 −Q2](s, a) ≜ Q1(s, a)−Q2(s, a)

[T Q1 − T Q2](s, a) ≜ T Q1(s, a)− T Q2(s, a).
(64)

Similarly, we denote the (s, a)-th component of ∆t defined in Eq. (31), as ∆t(s, a). Now, we proceed
component wise, where the (s, a)-th component of Eq. (29) gives us the following:

[Qt+1 −Q∗](s, a) = (1− αλ(s, a))t+1[Q0 −Q∗](s, a)

+ αλ(s, a)
t∑

k=0

(1− αλ(s, a))t−k[T Qk − T Q∗](s, a) + ∆t(s, a).
(65)

Taking absolute values on both sides of Eq. (65), and substituting dt(s, a) =
∣∣[Qt −Q∗](s, a)

∣∣, we
get the following form:

dt+1(s, a) ≤ (1− αλ(s, a))t+1d0(s, a) + αγλ(s, a)
t∑

k=0

(1− αλ(s, a))t−k∥dk∥∞ + |∆t(s, a)|.

(66)
Now, substituting |∆t(s, a)| ≤ |∆t,1(s, a)|+ |∆t,2(s, a)| ≤∥∆t,1∥∞+∥∆t,2∥∞ ≤ ∆̄t,1+∆̄t,2 = ∆
and the claim from Eq. (63) into Eq. (66), we get:

dt+1(s, a) ≤ (1− αλ(s, a))t+1d0(s, a) + αγλ(s, a)
t∑

k=0

(1− αλ(s, a))t−k (1− αλmin(1− γ))
k ∥d0∥∞︸ ︷︷ ︸

(•)

+ αγλ(s, a)
t∑

k=0

(1− αλ(s, a))t−k ∆

1− γ
+∆︸ ︷︷ ︸

(••)

,

(a)

≤ (1− αλmin(1− γ))t+1∥d0∥∞ ++αγλ(s, a)
∞∑
r=0

(1− αλ(s, a))r
∆

1− γ
+∆,

≤ (1− αλmin(1− γ))t+1∥d0∥∞ +
∆

1− γ
.

(67)
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In (a), for bounding (•), we used the following argument:

(•) ≤

[
(1− αλ(s, a))t+1 + αγλ(s, a)(1− αλ(s, a))t

t∑
k=0

(
1− αλmin(1− γ)

1− αλ(s, a)

)k]
∥d0∥∞,

=

[
(1− αλ(s, a))t+1 + αγλ(s, a)

(1− α(1− γ)λmin)t+1 − (1− αλ(s, a))t+1

α (λ(s, a)− (1− γ)λmin)

]
∥d0∥∞,

≤
[
(1− αλ(s, a))t+1 + αγλ(s, a)

(1− α(1− γ)λmin)t+1 − (1− αλ(s, a))t+1

α (λ(s, a)− (1− γ)λ(s, a))

]
∥d0∥∞,

≤ (1− αλmin(1− γ))
t+1 ∥d0∥∞.

(68)

For (••), we have upper bounded the finite-sum by an infinite-sum as follows:

(••) = αγλ(s, a)
t∑

k=0

(1− αλ(s, a))t−k ∆

1− γ
+∆,

≤ αγλ(s, a)
∞∑
r=0

(1− αλ(s, a))r
∆

1− γ
+∆ ≤ ∆

1− γ
.

(69)

This settles our claim made in Eq. (63). As a result, we conclude that the following holds on event Y :

∥dT ∥∞ ≤ (1− αλmin(1− γ))T ∥d0∥∞ +
∆

1− γ
,

≤ e−αλmin(1−γ)T ∥d0∥∞ +
∆

1− γ
.

(70)

Substituting α =
log T

λminT (1− γ)
in the above display, simplifying, and using the fact that Y has measure

at least 1− δ, we conclude that the following holds with probability 1− δ:

∥dT ∥∞ ≤
∥d0∥∞

T
+O

(
σ̃

(1− γ)
5
2

log T

λ
3
2
min

√
T

√
log

(
32|S||A|T 2

δ

)
+

σ̃
√
ε

λmin(1− γ)

)
. (71)

This completes our proof.
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D Proof of Theorem 3

In this section, we prove the lower bound stated in Theorem 3. The proof is based on constructing
two carefully designed observation models under a simple synchronous Huber contamination setting
outlined in [45–47], where at each round the learner receives corrupted or clean rewards for all
state-action pairs simultaneously. We begin by outlining the core intuition before delving into the
technical details. We carefully construct two MDPs that satisfy two crucial properties: (i) the optimal
state-action value functions corresponding to the constructed MDPs differ by Ω(

√
ε), and (ii) under

the Huber contamination model, the observed reward distributions are identical across the two MDPs.
This setup ensures that no estimator can reliably distinguish between the two MDPs based on the
contaminated observations alone, thereby forcing any estimator to incur an error of at least Ω(

√
ε) in

the worst case. We now proceed to construct this adversarial instance and formalize the argument.

Step 1 (MDP Construction). To construct the lower bound instance, we consider two MDPs that
have a single common state s and a single common action a, such that the only source of randomness
arises from the observed reward for the state-action pair (s, a). Slightly departing from the notation
introduced earlier in the prelude to Theorem 3, we use indices i = 1 and i = 2 to represent objects
associated with MDP 1 and MDP 2, respectively. The true noisy reward distributionsR1(s, a) and
R2(s, a) associated with MDPs 1 and 2 are as follows:

R1(s, a) =


σ̄
√
ε

with prob.
ε

4(1− ε)
,

0 with prob. 1− ε

4(1− ε)

,R2(s, a) =

−
σ̄
√
ε

with prob.
ε

4(1− ε)
,

0 with prob. 1− ε

4(1− ε)

(72)

where σ̄ > 0 is a fixed constant. Let the expected rewards under distributionsR1(s, a) andR2(s, a)
be denoted by R1 and R2, respectively. It is straightforward to check that:

R1 =
σ̄
√
ε

4(1− ε)
, R2 = − σ̄

√
ε

4(1− ε)
. (73)

Additionally, if r1(s, a) ∼ R1(s, a) and r2(s, a) ∼ R2(s, a), then the variances of these random
variables are as follows:

Var(r1(s, a)) = Var(r2(s, a)) ≤
σ̄2

ε
· ε

4(1− ε)
=

σ̄2

4(1− ε)
< 0.5σ̄2, (74)

where we have used the assumption that ε < 0.5. Thus, each reward model has a finite variance
uniformly bounded above by σ̄2. Since there is only one state-action pair, the optimal Q-value in
each MDP is given by:

Q∗
i (s, a) =

Ri

1− γ
, i ∈ {1, 2}. (75)

Step 2 (Construction of Corrupted Observation Models.) We now construct adversarial reward
contaminations following the Huber contamination model. For each MDP i ∈ {1, 2}, the observed
reward at the state-action pair (s, a) is drawn with probability 1 − ε from the true underlying
distributionRi(s, a), and with probability ε from the adversarial distribution Qi. The distributions
Qi, i ∈ {1, 2}, represent the corruption distributions, as defined below in Eq. (76) and Eq. (77). Now
subject to corruption based on these adversarial distributions, let the resulting reward distributions for
MDPs 1 and 2 be denoted by R̃1 and R̃2, respectively, where R̃i = (1− ε)Ri(s, a) + εQi, i = 1, 2.
These resulting distributions can be easily computed, and are shown in Eq. (76) and Eq. (77).
Adversarial and Resulting Distributions for MDP 1.

Q1 =


− σ̄

√
ε

with probability 0.5

0 with probability 0.25
σ̄
√
ε

with probability 0.25.

, R̃1 =


− σ̄

√
ε

with probability
ε

2

0 with probability 1− ε
σ̄
√
ε

with probability
ε

2
.

(76)

Adversarial and Resulting Distributions for MDP 2.

Q2 =


− σ̄

√
ε

with probability 0.25

0 with probability 0.25
σ̄
√
ε

with probability 0.5.

, R̃2 =


− σ̄

√
ε

with probability
ε

2

0 with probability 1− ε
σ̄
√
ε

with probability
ε

2
.

(77)
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Crucially, note that based on our construction above, R̃1 = R̃2. As a result, a learner cannot
distinguish between the corrupted reward distributions of the two MDPs. However, as established in
Step 1, the true (uncorrupted) expected rewards under these MDPs differ. Thus, the corresponding
true optimal Q∗-values also differ, with the following bound:

|Q∗
1 −Q∗

2| =
|R1 −R2|

1− γ
=

σ̄
√
ε

2(1− ε)(1− γ)
≥ σ̄

√
ε

2(1− γ)
, (78)

where we will henceforth use the simpler notation Q∗
i (s, a) ≜ Q∗

i for i ∈ {1, 2} in light of the fact
that there is only one state-action pair. We now proceed to establish that any estimator of the optimal

state-action value function must suffer an error of Ω
(

σ̄
√
ε

(1− γ)

)
on at least one of the two MDPs.

Step 3 (Lower Bound on Estimation Error.) For i = 1, . . . , T , let (Xi, Yi) be independent pairs
of random observations satisfying:

P(Xi = Yi = −σ̄/
√
ε) =

ε

2
,

P(Xi = Yi = 0) = 1− ε , P(Xi = Yi = σ̄/
√
ε) =

ε

2
.

Let us note that Xi is distributed as per R̃1, and Yi as per R̃2. Clearly, the following is true:
P
(
{Xi}i∈[T ] = {Yi}i∈[T ]

)
= 1. Now, suppose R̂T and Q̂T are estimators for the mean rewards and

optimal state-action value functions, respectively, in the two MDPs. As we shall see, establishing a
fundamental limit on the performance of R̂T is sufficient to establish a limit on the performance of
Q̂T . To see this, start by noting that

max

{
P
(
|R̂T ({Xi}i∈[T ])−R1| >

σ̄
√
ε

8(1− ε)

)
,P
(
|R̂T ({Yi}i∈[T ])−R2| >

σ̄
√
ε

8(1− ε)

)}
(•)
≥ 1

2
P
({
|R̂T ({Xi}i∈[T ])−R1| >

σ̄
√
ε

8(1− ε)

}⋃{
|R̂T ({Yi}i∈[T ])−R2| >

σ̄
√
ε

8(1− ε)

})
(••)
≥ 1

2
P
(
R̂T ({Xi}i∈[T ]) = R̂T ({Yi}i∈[T ])

)
(•••)
≥ 1

2
P
(
{Xi}i∈[T ] = {Yi}i∈[T ]

)
=

1

2
.

(79)

In step (•), we use the inequality max{P(A),P(B)} ≥ 1

2
P(A ∪B) that holds for all events A and

B. Step (••) follows by substituting the expressions for {Ri}i∈{1,2} as defined in Eq. (73), which
ensures that any estimator outputting the same value on both datasets must incur a certain error on at
least one. Finally, for step (• • •), we used P

(
{Xi}i∈[T ] = {Yi}i∈[T ]

)
= 1.

Using 1/(1− ε) > 1, we then conclude that:

max

{
P
(∣∣∣R̂T ({Xi}i∈[T ])−R1

∣∣∣ > σ̄
√
ε

8

)
, P

(∣∣∣R̂T ({Yi}i∈[T ])−R2

∣∣∣ > σ̄
√
ε

8

)}
≥ 1

2
.

(80)
In light of Eq. (80), we claim that

max

{
P
(
|Q̂T ({Xi}i∈[T ])−Q∗

1| >
σ̄
√
ε

8(1− γ)

)
, P

(
|Q̂T ({Yi}i∈[T ])−Q∗

2| >
σ̄
√
ε

8(1− γ)

)}
≥ 1

2
.

(81)
The claim essentially follows from the simple observation that if an optimal state-action value-
function estimator Q̂T can accurately estimate both Q∗

1 and Q∗
2, then one can use such an estimator

to construct accurate estimates of both R1 and R2, thereby violating Eq. (80). Formally, to see that
Eq. (80) implies Eq. (81), suppose there exists an estimator Q̂T such that

max

{
P
(
|Q̂T ({Xi}i∈[T ])−Q∗

1| >
σ̄
√
ε

8(1− γ)

)
, P

(
|Q̂T ({Yi}i∈[T ])−Q∗

2| >
σ̄
√
ε

8(1− γ)

)}
<

1

2
.

(82)
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Using Q̂T , construct a reward estimator R̂T = (1 − γ)Q̂T . From Eq. (75), we then immediately
have:

max

{
P
(∣∣∣R̂T ({Xi}i∈[T ])−R1

∣∣∣ > σ̄
√
ε

8

)
, P

(∣∣∣R̂T ({Yi}i∈[T ])−R2

∣∣∣ > σ̄
√
ε

8

)}
<

1

2
.

(83)
This completes the claim and the proof.
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E Proof of Theorem 4

The finite-time performance of Robust Async-RAQ is established in Theorem 4. The first step in
the proof of this result is an error-decomposition that mirrors Eq. (29) in Section C. The structure
of the rest of the proof is similar to that of Theorem 2 in Appendix C. However, there will be some
departures that arise from the use of a reward-agnostic threshold function in Eq. (7). We will highlight
these points of departure in our subsequent analysis.
Step 1: Bound on the Adversarial Term ∆t,2. We begin by analyzing the contribution of the
adversarial corruption term, before turning to the non-adversarial noisy component. The latter
necessitates a more refined and intricate analysis, as will become evident in the sequel.

Lemma 8. (Bounding Adversarial Corruption in Robust Async-RAQ) Suppose δ1 ≤ δ/4T . Then,
with probability at least 1− δ/2, the following bound holds simultaneously for all t ∈ [T ]:∥∥∥∥∥ t∑

k=0

α(I − αD)t−kζk,2

∥∥∥∥∥
∞

≤ O(ασ̃)

(
σ̃1/2p

√
T +

√
T

λmin
log
( |S||A|T

δ1

))
+O

(
σ̃
√
ε

λmin

)
,

where ζk,2 is defined in Eq. (32).

Proof. Like in our proof of Lemma 7, we divide the analysis into two cases based on the value of
t. Since the threshold function defined in Eq. (7) is agnostic to the underlying reward statistics, we
introduce an auxiliary time-step T̃ := max

{
σ̃1/p, T̄

}
, where T̄ was previously defined in Eq. (3),

and recall that p is the parameter in the function m(t) = tp that appears in the modified threshold (7).

Case I: Consider first the case where t ≤ T̃ . We further split up this case into two sub-cases: one
where T̃ = T̄ , and the other where T̃ = σ̃1/p. We separately analyze these sub-cases below.

• Suppose T̃ = T̄ , which implies t ≤ T̄ . Then, by the definition of the threshold function in
Eq. (7), we have r̃t(st, at) = 0. Consequently, just like in Case 1 of Lemma 7, in this case
we have ∥ζt,2∥∞ ≤ σ̃.

• Next, when T̃ = σ̃1/p, and t ∈ [T̄ , T̃ ], we can use the reward-agnostic threshold function
defined in Eq. (7) to bound ∥ζt,2∥∞. To see how, start by noting that the following is always
true deterministically: |r̃t(st, at)| ≤ G̃t,∀t ≥ 0. Using m(t) = tp in Eq. (7), and the fact
that t ≥ T̄ , we note that for t ∈ [T̄ , T̃ ], the following is true: G̃t ≤ 3Ctp ≤ 3CT̃ p = 3Cσ̃,
where in the last step, we used that in this case T̃ = σ̃1/p. Thus, for t ∈ [T̄ , T̃ ], we have
|r̃t(st, at)| ≤ 3Cσ̃. As a result, we have ∥ζt,2∥∞ = |r̃t(st, at)−R(st, at)| ≤ 3Cσ̃ + R̄ ≤
4Cσ̃, since C ≥ 1, and R̄ ≤ σ̃.

From our analysis of the two sub-cases above, we conclude that for t ≤ T̃ , ∥ζt,2∥∞ ≤ 4Cσ̃. Next,
we bound the adversarial corruption term ∆t,2 in the∞-norm for all t ∈ [T̃ ] as follows:

∥∆t,2∥∞ ≤ α

∥∥∥∥∥ t∑
k=0

(I − αD)t−kζk,2

∥∥∥∥∥
∞

(∗)
≤ α

T̃−1∑
k=0

∥(I − αD)t−k∥∞ · ∥ζk,2∥∞

(∗∗)
≤ 4Cασ̃T̃ .

(84)

In (∗), we apply the triangle inequality, followed by the sub-multiplicative property of the∞-norm.
In (∗∗), we use the fact that ∥(I − αD)t−k∥∞ ≤ 1, and that ∥ζk,2∥∞ ≤ 4Cσ̃, as established earlier
for Case I. This completes the analysis for Case I.

Case II: We now consider the case when t > T̃ . Since T̃ := max
{
σ̃1/p, T̄

}
, it follows that

t > T̃ ⇒ t > T̄ . Now recall from the analysis of Lemma 7 that there exists an event J of measure
at least 1 − 2δ1T ≥ 1 − δ/2, on which, the following holds simultaneously for all time steps
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t ∈ [T̄ + 1, T ]:

|r̄t(st, at)−R(st, at)| ≤ Cσ̃


√√√√4

3
·
log

(
4

δ1

)
λmint

+
√
ε

 . (85)

On this event, we further have that for t > T̄ : |r̄t(st, at)| ≤ Gt, where Gt is the original threshold
defined in (4). While this condition was enough to prevent any thresholding on event J for t > T̄ for
Robust Async-Q, it does not immediately imply that thresholding will not take place for Robust
Async-RAQ. The reason for this stems from the fact that in the new algorithm, the modified threshold
G̃t in (7) can be an under-approximation of Gt during the period [T̄ , T̃ ]. However, for t > T̃ , we
have m(t) = tp > T̃ p ≥ σ̃, since T̃ = max{σ̃1/p, T̄}. As a result, for t > T̃ , we have Gt ≤ G̃t.

Consequently, on the event J , we have that for all t > T̃ , |r̄t(st, at)| ≤ Gt < G̃t. Thus, the
thresholding operation in line 7 will get bypassed, ensuring that r̃t(st, at) = r̄t(st, at), and, as a
result, we conclude based on (85) that on event J , for all t > T̃ , the following is true:

|r̃t(st, at)−R(st, at)| ≤ Cσ̃


√√√√4

3
·
log

(
4

δ1

)
λmint

+
√
ε

 . (86)

Based on the above bound, we can proceed to control the adversarial term ∆t,2 as follows:∥∥∥∥∥ t∑
k=0

α(I − αD)t−kζk,2

∥∥∥∥∥
∞

≤

∥∥∥∥∥ T̃∑
k=0

α(I − αD)t−kζk,2

∥∥∥∥∥
∞

+

∥∥∥∥∥ t∑
k=T̃+1

α(I − αD)t−kζk,2

∥∥∥∥∥
∞

,

≤ 4Cασ̃T̃ +O(Cασ̃)
√
T

log(4/δ1)

λmin
+O

(
Cσ̃

√
ε

λmin

)
,

≤ 4Cασ̃
√

T̃ ·
√
T +O(Cασ̃)

√
T

log(4/δ1)

λmin
+O

(
Cσ̃

√
ε

λmin

)
,

≤ 4Cασ̃
√
T̄ + σ

1
p ·
√
T +O(Cασ̃)

√
T

log(4/δ1)

λmin
+O

(
Cσ̃

√
ε

λmin

)
,

≤O(Cασ̃)

(
σ̃1/2p

√
T +

√
T

λmin
log
( |S||A|T

δ1

))
+O

(
Cσ̃

√
ε

λmin

)
≜ ∆̃t,2.

(87)

For the first step, we stitched together the bounds for Cases I and II, and followed a similar reasoning
as in the proof of Lemma 7. Under the assumption T ≥ T̃ , we further used T̃ ≤

√
T̃ ·
√
T . Finally,

we leveraged the definition T̃ = max
{
T̄ , σ̃1/p

}
, which implies T̃ ≤ T̄ + σ̃1/p, and plugged in the

expression for T̄ from (3), followed by simplifications. Combining the bounds obtained in Case I
and Case II, we conclude the proof of Lemma 8.

Step 2: Bound the Non-Adversarial Noise Term ∆t,1. We now proceed to the more delicate
part of the analysis that involves controlling the effect of noise. Like before, to control the noise
effect using a martingale-based argument, we will derive uniform bounds on the iterates generated
by Robust Async-RAQ. However, as a departure from the analysis in Appendix C, we will derive
two sets of bounds: crude bounds that hold deterministically, and finer bounds that hold with high
probability. The rationale for this will become clearer soon. We start with the cruder bounds.
Lemma 9. (Coarse Deterministic Bounds on Iterates for Robust Async-RAQ) The following
bounds hold deterministically for all t ∈ [T ]:

|ηt,1(st, at)| ≤
6CT p

1− γ
, ∥ζt,1∥∞ ≤

12CT p

1− γ
, (88)

where C is the universal constant that appears in (4).
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Proof. The proof is nearly identical to that of Lemma 4, with the only difference arising from the
modified threshold function. Let us start by noting that the following is always true deterministically:
|r̃t(st, at)| ≤ G̃t,∀t ≥ 0. Now based on the definition of the modified threshold G̃t in (7) and
T̄ in (3), we have that G̃t = 0,∀t ≤ T̄ , and G̃t ≤ 3Ctp ≤ 3CT p,∀t > T̄ . As a result, in
Robust Async-RAQ, the reward proxy r̃t(st, at) is deterministically bounded at each time step as
|r̃t(st, at)| ≤ G̃t ≤ 3CT p,∀t ∈ [T ]. Using this fact, and the exact same inductive reasoning as in the
proof of Lemma 4, we can show that:

∥Qt∥∞ ≤
3CT p

1− γ
,∀t ≥ 0. (89)

Following the same arguments as in Lemma 4, one can then also show that

|ηt,1(st, at)| ≤
6CT p

1− γ
,∀t ≥ 0. (90)

Now fix any state-action pair (s, a), and observe that

|T Qt(s, a)| = |R(s, a) + γEs′∼P(·|s,a)[max
a′∈A

Qt(s
′, a′)]|

≤ |R(s, a)|+ γEs′∼P(·|s,a)[|max
a′∈A

Qt(s
′, a′)|]

(a)

≤ σ̃ +
3γCT p

1− γ

(b)

≤ 3CT p +
3γCT p

1− γ

=
3CT p

1− γ
.

(91)

For (a), we used |R(s, a)| ≤ σ̃ and Eq. (89). For (b), we used the fact that T ≥ T̃ =⇒ T p ≥
(T̃ )p ≥ σ̃ ≥ |R(s, a)|. As a result, |R(s, a)| ≤ 3CT p. Since our analysis above holds for any
state-action pair, we conclude that ∥T Qt∥∞ ≤ 3CT p/(1 − γ). With these developments, we can
proceed to bound ζt,1 as follows:

∥ζt,1∥∞ ≤ |ηt,1(st, at)|+ ∥Dt −D∥∞ (∥Qt∥∞ + ∥T Qt∥∞)

(a)

≤ 6CT p

1− γ
+ (∥Qt∥∞ + ∥T Qt∥∞)

(b)

≤ 12CT p

1− γ
,

where (a) follows from (90) and (b) from (89) and the bound we derived on ∥T Qt∥∞. This concludes
the proof.

At this stage, it is instructive to compare the bound on ∥ζt,1∥∞ from Lemma 4 with that in Lemma 9
above. While in the former, this bound is on the order ofO(1), it is on the order ofO(T p) in the latter.
As a result, if one were to directly use the bound from Lemma 9 in the standard Azuma Hoeffding
inequality (much like what we do in Lemma 5), the resulting final bounds would be vacuous. This
calls for a more intricate analysis. In this context, our next result provides a finer bound on ∥ζt,1∥∞;
however, the price of this finer bound is that it now only holds with high probability.
Lemma 10. (Finer Probabilistic Bounds on Iterates for Robust Async-RAQ) The following bounds
hold with probability at least 1− 2δ1T for all t ∈ [T ]:

|ηt,1(st, at)| ≤
6Cσ̃
1− γ

, ∥ζt,1∥∞ ≤
12Cσ̃
1− γ

, (92)

where C is the universal constant that appears in (4).

Proof. Let us start by revisiting the bounds on the reward proxy r̃t(st, at) established in Lemma 8.
In the proof of Lemma 8, we established that for t ≤ T̃ , |r̃t(st, at)| ≤ 3Cσ̃ deterministically.
Furthermore, we also showed that for t > T̃ , the following are true with probability at least
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1 − 2δ1T : (i) r̃t(st, at) = r̄t(st, at), and (ii) |r̄t(st, at)| ≤ Gt, where Gt is as in (4). Since
Gt ≤ 3Cσ̃,∀t ≥ T̄ , we conclude that there exists an event of measure at least 1− 2δ1T , on which,
|r̃t(st, at)| ≤ 3Cσ̃,∀t ≥ 0. Restricted to this good event, one can now perform the exact same
analysis as in the proof of Lemma 4 to establish the claim of this lemma.

Based on the previous two results, we now have a martingale difference which exhibits a crude
deterministic upper bound, and a finer bound that holds with a fixed high probability. We are in need
of a refined version of the Azuma Hoeffding inequality that can exploit this structure. Thankfully,
[22, Theorem 7] provides us with precisely the right tool. Our next result is a slight adaptation of this
theorem; we provide its proof for completeness.
Theorem 7. Probabilistic Azuma-Hoeffding Inequality [22] Let X0, . . . , Xn be a martingale with
X0 constant, such that:

(i) With probability ≥ 1− r, |Xi+1 −Xi| ≤ ci for 0 ≤ i < n.

(ii) |Xi+1 −Xi| ≤ bi, deterministically.

Assume bi · r
1
2 ≤ ci. Then, the following holds:

P

|Xn −X0| >

√√√√(32 n∑
i=1

c2i

)
log
(
2

δ

)
+

n−1∑
i=0

bi · r1/2
 < δ + 2nr1/2. (93)

Proof. Let Fi denote the event |Xi+1 −Xi| > ci. Define a new martingale {Y0, Y1, . . . , Yn} where
Y0 = X0. Additionally, let p = P(Fi|Xi). We consider two cases:

(A) If p ≥ r
1
2 , terminate the martingale by setting Yj = Yi for all j ∈ [i, n].

(B) If p < r
1
2 , and the martingale has not been previously terminated, define:

X̄i+1 =

{
Xi if Fi,

Xi+1 otherwise.

Then,
E[X̄i+1|Xi] = E[Xi+1|Xi] + E[X̄i+1 −Xi+1|Xi].

Define Ai ≜ E[X̄i+1 −Xi+1|Xi]. Then:

Ai = E[X̄i+1 −Xi+1|Xi,Fi] · P(Fi|Xi).

Using the crude bound |Xi+1 −Xi| ≤ bi and p = P(Fi|Xi) < r
1
2 , we obtain:

Ai ≤ bi · r
1
2 .

Define the new martingale {Yn}n≥1, Y0 = X0 as:

Yi+1 = Yi + (X̄i+1 −Xi −Ai),

which satisfies:
|Yi+1 − Yi| ≤ ci + bi · r

1
2 ≤ 2ci.

Since E[Yi+1 − Yi|Yi] = 0, {Yn}n≥1 is a martingale. For the event {G} (where neither case (A) nor
Fi occurs), it follows from the construction:

Yn = Xn −
n−1∑
i=0

Ai.

Therefore, we get the following deterministic bound for the event {G}:

|Yn −Xn| =

∣∣∣∣∣n−1∑
i=0

Ai

∣∣∣∣∣ ≤ r
1
2

n−1∑
i=0

bi.
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For the complementary event {∼ G}, we have:

P(∼ G) = P
(
{∪iFi}

⋃
{∪iP(Fi|Xi) > r

1
2 }
)

≤ P(∪iFi) + P(∪iP(Fi|Xi) > r
1
2 )

(•)
≤

n∑
i=1

P(Fi) +
n∑

i=1

P[P(Fi|Xi) > r
1
2 ] ≤ nr + nr

1
2

≤ 2nr
1
2 .

(94)

To bound the complementary event {∼ G}, we start by expressing it as {∪iFi}
⋃
{∪iP(Fi|Xi) >

r1/2}. In (•), we used the following inequality P(∪iAi) ≤ ∪iP(Ai). Combining these, we obtain
P(∼ G) ≤ nr + nr1/2, which simplifies to P(∼ G) ≤ 2nr1/2 since r ≤ r1/2 for r ≤ 1. Now, we
can finally arrive at the following bound:

P

|Xn −X0| >

√√√√(32 n∑
i=1

c2i

)
log
(
2

δ

)
+

n−1∑
i=0

bi · r1/2


(∗)
≤ P

|Xn − Yn|+ |Yn − Y0| >

√√√√(32 n∑
i=1

c2i

)
log
(
2

δ

)
+

n−1∑
i=0

bi · r1/2


(∗∗)
≤ P

{|Xn − Yn| >
n−1∑
i=0

bi · r1/2
}
∪

{
|Yn − Y0| >

√√√√(32 n∑
i=1

c2i

)
log
(
2

δ

)}
(∗∗∗)
≤ P(∼ G) + P

|Yn − Y0| >

√√√√(32 n∑
i=1

c2i

)
log
(
2

δ

)
≤ 2nr

1
2 + δ.

(95)

In step (∗), we apply the triangle inequality, which states that |Xn −X0| ≤ |Xn − Yn|+ |Yn − Y0|,
allowing us to bound the original probability by replacing |Xn−X0| with |Xn−Yn|+ |Yn−Y0|. In
step (∗∗), we use the union bound, which ensures that P(A+ B > Q) ≤ P(A > Q1) + P(B > Q2),
where Q1 +Q2 = Q. Finally, in step (∗ ∗ ∗), we use the bound P(∼ G) ≤ 2nr1/2 for the first term,
as |Xn−Yn| is controlled by the good event G, and the second term is bounded by δ due to properties
of Yn. With this, our proof is complete.

Armed with the previous result, we are now in a position to control the noise term in Robust
Async-RAQ.
Lemma 11. (Bounding Non-Adversarial Noise in Robust Async-RAQ) Suppose δ1 ≤
δ2/128|S|2|A|2T 2p+3. Then, with probability at least 1− δ/2, the following bound holds simultane-
ously for all t ∈ [T ]:∥∥∥∥∥ t∑

k=0

α(I − αD)t−kζk,1

∥∥∥∥∥
∞

≤ O
(

σ̃

1− γ

)
·
√

α

λmin
log
(
8|S||A|T

δ

)
+O

(
α

1− γ

)
, (96)

where ζk,1 is defined in Eq. (32).

Proof. We now return to bounding the non-adversarial noise term in Robust Async-RAQ using the
probabilistic variant of the Azuma–Hoeffding inequality outlined in Theorem 7. In our setting, we
define the following quantities to be directly substituted into Eq. (93) of Theorem 7:

ci =
12Cσ̃
1− γ

· α(1− α)t−i, bi =
12CT p

1− γ
· α(1− α)t−i, r = 2δ1T. (97)

To satisfy the condition bi · r1/2 ≤ ci that is required to apply Theorem 7, it suffices to ensure:

(2δ1T )
1/2 · T p ≤ σ̃. (98)
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Since σ̃ ≥ 1, the above condition can be ensured by requiring

(2δ1T )
1/2 · T p ≤ 1, (99)

which ensures the applicability of the refined concentration bound. Now, Eq. (99) imposes the
following condition on the failure probability: δ1 ≤ 1/(2T 2p+1). Assuming that requirement in
Eq. (99) holds, then for a fixed (s, a) ∈ S × A and t ∈ [T ], Theorem 7, when applied with the
parameter choices in Eq. (97), implies that with probability at least 1 − δ̄ − 2T (2δ1T )

1/2, the
following holds:∣∣∣∣∣ t∑

k=0

α(1− αλ(s, a))t−kζk,1(s, a)

∣∣∣∣∣ ≤ O ( σ̃

1− γ

)
·
√

α

λmin
log
(
2

δ̄

)
+O

(
αT p+1

1− γ
· (2δ1T )1/2

)
.

(100)
As an immediate next step, applying an union bound over all (s, a) ∈ S ×A and t ∈ [T ], the bound
in Eq. (100) holds simultaneously for all state-action pairs and time steps with probability at least

1− |S||A|T δ̄︸ ︷︷ ︸
(•)

− 2|S||A|T 2(2δ1T )
1/2︸ ︷︷ ︸

(••)

. (101)

Next, we impose the following additional conditions on the failure probability δ1 to control the second
term in Eq. (100), and to ensure that Eq. (100) holds with probability at least 1− δ/2:

(2δ1T )
1/2 · T p+1 ≤ 1, 2|S||A|T 2(2δ1T )

1/2︸ ︷︷ ︸
(••)

≤ δ/4. (102)

Combining all the constraints on δ1 from Eq. (99) and Eq. (102), we arrive at the final condition on
the failure probability δ1 as follows:

(2δ1T )
1
2 ≤ δ/(8|S||A|T p+1) =⇒ δ1 ≤ δ/(128|S|2|A|2T 2p+3). (103)

Now by ensuring that term (•) ≤ δ/4 and applying the final requirement on the failure probability
from Eq. (103), we conclude that the following bound holds for all state-action pairs (s, a) ∈ S ×A,
and t ∈ [T ] with probability at least 1− δ/2:∣∣∣∣∣ t∑

k=0

α(1− αλ(s, a))t−kζk,1(s, a)

∣∣∣∣∣ ≤ O ( σ̃

1− γ

)
·
√

α

λmin
log
(
8|S||A|T

δ

)
+O

(
α

1− γ

)
. (104)

Hence, given δ1 ≤ δ/(128|S|2|A|2T 2p+3), the following also holds with probability at least 1− δ

2
:∥∥∥∥∥ t∑

k=0

α(I − αD)t−kζk,1

∥∥∥∥∥
∞

= max
(s,a)∈S×A

∣∣∣∣ t∑
k=0

α(1− αλ(s, a))t−kζk,1(s, a)

∣∣∣∣
≤ O

(
σ̃

1− γ

)
·
√

α

λmin
log
(
8|S||A|T

δ

)
+O

(
α

1− γ

)
≜ ∆̃t,1.

(105)

Finite-Time Rates for Robust Async-RAQ (Proof of Theorem 4). Having established bounds on
the non-adversarial and adversarial terms via Lemma 11 and Lemma 8, respectively, we proceed by
adopting the exact same argument strategy as in Section C for the proof of Theorem 2. Keeping the
notation same, in Robust Async-RAQ, we define the total perturbation term as ∆ = ∆̃t,1 + ∆̃t,2,
and mimic the inductive proof of Theorem 2 to establish that the exact same bound as in (63) holds
with probability at least 1− δ. Finally, substituting α =

log T

λminT (1− γ)
, and simplifying, we arrive at

the following bound with probability at least 1− δ:

∥dT ∥∞ ≤
∥d0∥∞

T
+O

(
σ̃1+1/2p

(1− γ)
5
2

log T

λ
3
2
min

√
T

√
log
( |S||A|T

δ

)
+

σ̃
√
ε

λmin(1− γ)

)
. (106)

With this, we complete the proof of the finite-time convergence rate for Robust Async-RAQ.
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F Extension to the Markov Setting and Proof of Theorem 5

Algorithm 3 Robust Asynchronous Q-Learning Algorithm (Robust Async-RAQ-M)

1: Input: Step-size α, corruption fraction ε, confidence level δ, mixing time τ̄ , iteration count T .
2: Initialize datasets D0(s, a) = ∅, for all (s, a) ∈ S ×A, and Q-table Q0 = 0.
3: Set block size τ = ⌊⌈log(2T/δ)/ log 2⌉ · τ̄⌋
4: for iteration t = 0, . . . , T − 1 do
5: Observe data tuple {st, at, st+1}, and reward yt(st, at).
6: if t mod τ = 0 then ▷ Update on every τ-th subsample
7: Append yt(st, at) to Dt(st, at), and compute r̄t(st, at)← TRIM[Dt(st, at), ε, δ1].

8: if |r̄t(st, at)| > G̃t in Eq. (7) then
9: Set r̃t(st, at)← 0

10: else
11: Set r̃t(st, at)← r̄t(st, at)
12: end if
13: Update Qt+1 using Eq. (5).
14: else
15: Continue ▷ Go to Line 4.
16: end if
17: end for

The goal of this section is to extend our analysis of Robust Async-RAQ from the asynchronous i.i.d.
sampling setting to the Markov data setting. To keep the paper self-contained, we first present the
essential background on the Markovian setting, drawing primarily on [23].

• Background. Let {Zt} be an ergodic time-homogeneous Markov chain over a finite-state space Ω
with stationary distribution ρ. Define

dmix(t) := sup
Z∈Ω

DTV (P(Zt ∈ · | Z0 = Z), ρ) . (107)

Then, dmix(t) is a non-increasing function of t. We define the mixing time as

τ̄ := inf{t | dmix(t) ≤ 1/4}. (108)

Intuitively, the mixing time measures how fast the state distribution approaches stationarity. We then
have the following key fact [23]:

dmix(ℓτ̄) ≤ 2−ℓ, ∀ℓ ∈ N. (109)

With the notations specified above, we then introduce the following theorem that will play a crucial
role in our extension to the Markov setting.
Theorem 8 (Coupling). Let Z0, Z1, · · · be a stationary finite-state Markov chain with sta-
tionary distribution ρ, and let K,n ∈ N. Then, we can couple (Z0, ZK , · · · , Z(n−1)K) and
(Z̃0, Z̃K , · · · , Z̃(n−1)K) ∈ ρ⊗n, such that

P
(
{Z0, ZK , · · · , Z(n−1)K} ≠ {Z̃0, Z̃K , · · · , Z̃(n−1)K}

)
≤ (n− 1)dmix(K). (110)

The proof of this theorem can be found in [24]. Intuitively, Theorem 8 states that if we subsample
a sequence from an ergodic Markov chain with sufficiently large sampling interval, then with high
probability, the sub-sampled sequence is identical to its i.i.d. counterpart sampled from the stationary
distribution of that Markov chain. Let us now see how these ideas can be exploited for our setting.

Extension to the Markov Setting. Recall that µ is the behavior policy that generates data in our
problem. Let the trajectory generated by this policy be {s0, a0, s1, a1, · · · }. Note that {Zt} :=
{(st, at, st+1)} is also a Markov chain, and that it is ergodic in light of Assumption 1; see [52].
Suppose this chain is initialized from its stationary distribution ρ. Let τ̄ be the mixing time of this
Markov chain.
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We now propose a simple modification to Robust Async-RAQ that is based on dropping certain
data points. To see how this can be done, we define a “block” parameter τ := ⌊ℓτ̄⌋, where
ℓ = ⌈log(2T/δ)/ log 2⌉. The only modification to Robust Async-RAQ is that the agent now uses
every τ -th sample, and drops the rest; this variant is formally described in Algorithm 3.

To analyze Algorithm 3, we note that it essentially runs on n = T/τ samples; for simplicity, we
assume that n is an integer. Specifically, the learner only uses the data set {Z0, Zτ , · · · , Z(n−1)τ}.
Let {Z̃0, Z̃τ , · · · , Z̃(n−1)τ} ∼ ρ⊗n be i.i.d. samples drawn from the stationary distribution ρ. From
the coupling theorem, namely Theorem 8, given any δ ∈ (0, 1), we then have

P
(
{Z0, Zτ , · · · , Z(n−1)τ} ≠ {Z̃0, Z̃τ , · · · , Z̃(n−1)τ}

)
≤ ndmix(τ)

≤ ndmix(⌊ℓτ̄⌋)

≤ T

τ
· 2−ℓ

≤ T · 2−ℓ

≤ T · δ

2T

=
δ

2
,

(111)

where we used the key fact (109), the definition of ℓ, and the fact that dmix(t) is non-increasing in t.

Thus, there exists a “good event”, say B, of measure at least 1− δ/2, on which

{Z0, Zτ , · · · , Z(n−1)τ} = {Z̃0, Z̃τ , · · · , Z̃(n−1)τ}. (112)

Equation (112) states that on the good event B, the sub-sampled Markovian data is identical to its
i.i.d. counterpart. To see how this result can be exploited, let us recall the guarantee from Theorem 4
when Robust Async-RAQ is run on n = (T/τ) i.i.d. samples with

T > max{τ T̄ , τ log(T )/(λmin(1− γ))} and α =
τ log T

λmin(1− γ)T
.

In this setting, the following holds with probability 1− δ/2:

∥dn∥∞ ≤
∥d0∥∞

T
+ c1

(
σ̃1+1/2p

(1− γ)
5
2

log T

λ
3
2
min

√
T

√
τ log

( |S||A|T
δ

))
+ c2

(
σ̃
√
ε

λmin(1− γ)

)
︸ ︷︷ ︸

Ψ

, (113)

where c1 and c2 are suitable universal constants.

Now consider running Algorithm 3 on the n Markov samples {Z0, Zτ , · · · , Z(n−1)τ}, with Z0 ∼ ρ.
Let the output of the algorithm be Qn in this case. Keeping everything else the same, let the output of
Algorithm 3 be Q̃n when it is run on the i.i.d. dataset {Z̃0, Z̃τ , · · · , Z̃(n−1)τ}. From our definition
of the event B, we clearly have Qn = Q̃n on event B. Based on this, observe

P({∥Qn −Q∗∥∞ > Ψ}) = P({∥Qn −Q∗∥∞ > Ψ} ∩ B) + P({∥Qn −Q∗∥∞ > Ψ} ∩ Bc)

≤ P({∥Qn −Q∗∥∞ > Ψ} ∩ B) + P(Bc)
(a)

≤ P({∥Q̃n −Q∗∥∞ > Ψ} ∩ B) + P(Bc)
(b)

≤ P({∥Q̃n −Q∗∥∞ > Ψ}) + δ/2

(c)

≤ δ .
(114)

In the above steps, for (a), we used the fact that Qn = Q̃n on event B. For (b), we appealed to (111),
and for (c), we used (113). Thus, via the coupling argument above, we have established that with
probability at least 1− δ, the following is true:

∥Qn −Q∗∥∞ ≤ Ψ,

with Ψ as in (113). This is precisely what was needed to be shown to establish Theorem 5.
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