
 

 

Combining Foundation Models and Symbolic AI for 

Automated Detection and Mitigation of Code Vulnerabilities 

Ramesh Bharadwaj,1 Ilya Parker2 

US Naval Research Laboratory1  

ramesh.bharadwaj@nrl.navy.mil1   

Arcfield2 
ilya.parker@arcfield.com2 

 

Abstract 

With the increasing reliance on collaborative and cloud-
based systems, there is a drastic increase in attack surfaces 
and code vulnerabilities. Automation is key for fielding and 
defending software systems at scale. Researchers in Sym-
bolic AI have had considerable success in finding flaws in 
human-created code. Also, run-time testing methods such as 
fuzzing do uncover numerous bugs. However, the major de-
ficiency of both approaches is the inability of the methods to 
fix the discovered errors. They also do not scale and defy au-
tomation. Static analysis methods also suffer from the false 
positive problem – an overwhelming number of reported 
flaws are not real bugs. This brings up an interesting conun-
drum: Symbolic approaches actually have a detrimental im-
pact on programmer productivity, and therefore do not nec-
essarily contribute to improved code quality. What is needed 
is a combination of automation of code generation using large 
language models (LLMs), with scalable defect elimination 
methods using symbolic AI, to create an environment for the 
automated generation of defect-free code. 

 Background   

The term “Software Crisis” was first mentioned in the pro-

ceedings of the first NATO Software Engineering Confer-

ence in 1968 (Randell, B. 1969), and yet is still acknowl-

edged as a crisis more than half a century later. In spite of 

spectacular advances in computing hardware, software re-

mains brittle, expensive, and delivered with a number of la-

tent flaws. This is particularly dangerous for Cyber-Physical 

Systems (CPSs), whose incorrect or deficient operation may 

lead to loss of lives and property. However, this “deploy and 

patch” attitude persists in industrial software development, 

even for software controlling weapons systems, with the po-

tential for catastrophic accidents and spectacular failures. 

Recent advances in Machine Learning (ML), with their Data 

Centric, vs Human-Centric underpinning, provide some 

hope of mitigating this crisis. A. Karpathy, former Senior 

                                                 
Copyright © 2023, Association for the Advancement of Artificial Intelli-
gence (www.aaai.org). All rights reserved. 

Director of Research of AI at Tesla, has gone so far as to call 

this process of code being generated by computers, rather 

than written by humans, Software 2.0. Yet, Software 2.0 is 

no panacea. Systems built using this approach have unin-

tended functions, and are sensitive to adversarial perturba-

tions, leading to surprising failure modes when fielded. 

 

Introduction 

Transformer Models have emerged as a general-purpose ar-

chitecture for machine learning, beating the state of the art 

in many domains such as generative models for realistic im-

age and natural language text creation, including automatic 

code generation. Initially proposed by Vaswani, A. et al. 

2017, they perform sequential transformations, e.g., from 

natural language queries as inputs to generative answers as 

outputs. They may be broadly categorized as: (1) Encoder-

only Models (EoMs), for tasks such as language understand-

ing (2) Decoder-only Models (DoMs), for tasks such as text 

generation, and (3) Encoder-Decoder Models (EDMs), for 

tasks such as language translation and summarization, or for 

automatic code generation (Chen, M. et al. 2021). 

 Transformer models are also known as foundation mod-

els, a term first popularized by the Stanford Institute for Hu-

man-Centered Artificial Intelligence (Bommasani, R. et al. 

2021). These models are trained in a self-supervised manner 

on a broad set of unlabeled data, and can be used for differ-

ent tasks with minimal fine-tuning, using supervised transfer 

learning and a small corpus of human-annotated data sets. 

More recently, transformer models such as ChatGPT, which 

use self-supervised model pretraining and Reinforcement 

Learning with Human Feedback (RLHF) for their fine-tun-

ing (Christiano, P. et al. 2017), have garnered wide attention 

in the popular press and have taken the world by storm. 

 



 

 

 Early examples of foundation models, such as BERT and 

T5 from Google, or GPT1-3 and DALL-E (2) from OpenAI, 

have shown what is possible in image and natural language 

processing. By processing a short prompt, these models can 

generate an entire essay, or a complex image, even when the 

model was not trained on how to interpret the prompt, nor 

provided details of how to generate an image or sentence in 

a specific manner. 

 More recently, in the past couple of years, models such as 

OpenAI’s CODEX (Thompson, C. 2022), built along simi-

lar lines as Decoder-only Models (DoMs), have demon-

strated the ability to write code from natural language “spec-

ifications,” providing developers the ability to create 

low/no-code platforms, in a process we call Software 3.0 

(Friedman, I. 2022). This may indeed prove to be central to 

the future of software-intensive systems development and is 

poised to reshape the software industry. However, trans-

former models are also deeply flawed, leading many to spec-

ulate that software created by these tools could riddle the 

internet with even more bugs. This is of special concern to 

safety-critical systems because soon programmers will use 

these models for their development. Finally, these models 

are extremely expensive to build, given billions of weights 

that need optimization during their training. 

Related Work 

Formal Methods have never been applied to code generated 

by Foundation Models. No current approach offers auto-

mated vulnerability detection and remediation, especially 

for yet-to-be encountered novel defects. The DARPA As-

sured Micropatching (AMP) program (Bratus, H. 2022) 

comes close, but their approach is based on traditional soft-

ware engineering. Also, the novel vulnerabilities AMP de-

tected during its evaluation were shown to be previously 

known to AMP developers. The goal of the HACMS pro-

gram (Fischer, K. et al. 2017) was to use formal methods for 

the elimination of exploitable bugs in an open source mi-

crokernel (seL4) (VanVossen, R. et al. 2019). However, this 

process was extremely human-intensive, requiring more 

than 20 human-years of effort, and therefore not feasible or 

scalable for practical applications. 

Problem Definition 

Transformer Models, also known as Large Language Mod-

els currently fall under two distinct categories: 1. Starting 

with a generalized pre-trained transformer model, they are 

fine-tuned using code from open source repositories, in 

models such as CODEX. 2. A reward model (RM) is ini-

tially trained on a dataset labeled with comparisons by hu-

mans from two model outputs. Using the RM as a reward 

function, the pre-trained transformer’s policy (e.g., GPT-3) 

is fine-tuned to maximize this reward using a proximal pol-

icy optimization (PPO) algorithm. Nevertheless, our initial 

experiments indicate that the two models generate almost 

identical code and have comparable capabilities. For exam-

ple, in response to the prompt “Write a function in Python 

that opens a pdf document and returns the text,” both CO-

DEX and ChatGPT responded with an almost identical Py-

thon function show in Listing 1. 

 

Due to the vintage of the data used to train CODEX and 

ChatGPT, a number of run-time errors were detected by the 

Python interpreter in the generated code: 

1. The following methods in PyPDF2 are deprecated: 

PDFFileReader, getNumPages, getPage 

and extractText. These had to be replaced man-

ually by their modern equivalents, after a tedious 

process of perusing the PyPDF2 documentation. 

2. A call to extract_text_from_pdf() had to be manu-

ally inserted in order to test the function. 

 

The resulting (hand crafted) function is shown in Listing 2. 

 

Listing 2: Hand-crafted run-time error free version 

import PyPDF2 

 

def extract_text_from_pdf(filepath): 

    with open(filepath, 'rb') as file: 

        reader = PyPDF2.PdfReader(file) 

        text = '' 

        for i in range(len(reader.pages)): 

            page = reader.pages[i] 

            text += page.extract_text() 

        return text 

 

text = extract_text_from_pdf('test.pdf') 

print(text) 

Listing 1: Python function generated by ChatGPT 

import PyPDF2 

 

def extract_text_from_pdf(filepath): 

    with open(filepath, 'rb') as file: 

    reader = PyPDF2.PdfFileReader(file) 

    text = '' 

    for i in range(reader.getNumPages()): 

        page = reader.getPage(i) 

        text += page.extractText() 

    return text 



 

 

A common error in code generated by Transformer Models 

is the “off-by-one error;” an example of such an error in 

code generated by CODEX is illustrated in Listing 3. 

 

 

This was remedied by harnessing chatGPT to identify and 

fix the error in the CODEX generated code as illustrated in 

Listing 4, using the prompt “Propose code that will fix the 

issue,” something even seasoned Python programmers were 

unable to identify and remedy by static analysis alone (i.e., 

without having to “debug” the program by running it). 

 

Automated Software Factory 

Our position is that researchers need to study the science be-

hind automatic code generated by Foundation Models, using 

symbolic-AI based tools to uncover flaws in the AI-gener-

ated code. Each such instance will serve as data for retrain-

ing the Foundation Model to eliminate this class of latent 

vulnerabilities. This will enable us as a community to foster 

another research innovation: the use of Foundation Models 

themselves for code rewriting, which will automate defect 

elimination, thereby tremendously scaling the process of de-

fect-free software creation. The proposed approach there-

fore offers the intriguing possibility of moving towards the 

holy grail of automated software development. 

 

Proposed Technical Approach 

Static Source-code Analysis: As opposed to conventional 

formal methods, which attempt to prove that a system or 

software satisfies its requirements, i.e., application-specific 

properties, static code analysis tools instead attempt to es-

tablish relatively simple application-independent properties, 

such as lack of buffer overflow or divide by zero errors, on 

repositories with billions of lines of code (Sadowski, C. et 

al. 2018). However, their high cost to developers is tolerat-

ing false positives and dealing with false negatives. Addi-

tionally, they provide no hint as to how detected errors may 

be fixed, leading to further frustration among developers.  

 Matching and Rewriting Infrastructure using Abstract 

Syntax Trees (ASTs): ASTs are data structures for repre-

senting and manipulating code within a compiler in a lan-

guage-neutral manner. A parse-tree or a concrete syntax tree 

represents the structure of a phrase in the language in ac-

cordance with its grammar. ASTs are more compact than the 

corresponding parse trees for the same language construct.  

 

The process of AST manipulation within a language-inde-

pendent compiler is illustrated in Figure 1. 

 

 

Figure 1: The role of ASTs within a compiler 

 

ASTs are amenable to analysis and rewriting using Applica-

tion Program Interfaces (APIs) available within an Inte-

grated Development Environment (IDE) or a language pro-

cessor such as the LLVM Compiler Infrastructure (The 

LLVM Project, 2007). An example sequence of API calls 

for generating and printing the AST for “onePLUStwo = 

1 + 2” is shown in Listing 5. 

 

 

 

 

Listing 3: “Off-by-one” error in CODEX created code 

def bubble_sort(arr): 

    for i in range(len(arr)): 

        for j in range(len(arr)): 

            if arr[j] > arr[j+1]: 

                arr[j], arr[j+1] =  

                arr[j+1], arr[j] 

    return arr 

 

arr = [4, 5, 7, 8, 1, 3] 

print(bubble_sort(arr)) 

Listing 5: API calls for creating and printing AST 

import ast 

 

code = “onePLUStwo = 1 + 2”; 

tree = ast.parse(code); 

ast.dump(tree, indent 4); 

Listing 4: Defect-free code generated by ChatGPT 

def bubble_sort(arr): 

    for i in range(len(arr)): 

        for j in range(len(arr)-1): 

            if arr[j] > arr[j+1]: 

                arr[j], arr[j+1] =  

                arr[j+1], arr[j] 

    return arr 

 

arr = [4, 5, 7, 8, 1, 3] 

print(bubble_sort(arr)) 



 

 

 

 

The generated AST printout is illustrated in Listing 6. 

 

 

Finally, the AST for the expression 

 

“7 + 3 * (10 / (12 / (3+1) - 1))” 
 

rendered by the program DOT is illustrated in Figure 2. 

 

 

 

Figure 2: DOT rendered Abstract Syntax Tree 

 

The proposed approach may be summarized as follows: 

1. Understand and catalog errors introduced by extant Foun-

dation Models such as CODEX. 

2. Design and develop Symbolic AI based analysis and mit-

igation tool using the following techniques: 

a. Generic (language independent) representation of code as 

Abstract Syntax Trees 

b. Analysis methods for ASTs for detection of critical errors 

c. Error mitigation by rewriting ASTs to fix critical errors 

d. Code generation from ASTs in many popular languages 

3. Experiment with software relevant error detection, analy-

sis, and remediation, i.e., repeat steps 1 and 2 above with 

custom Foundation Model trained on legacy code. 

4. Investigate Foundation Models’ ability to find and fix 

critical errors in codebases (human generated as well as au-

tomated). Measure effectiveness of error-freedom by scruti-

nizing generated code with hand-crafted Symbolic AI-based 

tools, and evaluate results. 

 The process we envision for generation of correct-by-

construction code is as follows: Our initial experiments will 

use OpenAI’s CODEX, which is pre-trained on a corpus of 

open-source code from Microsoft’s GitHub. The “specifica-

tion” of a code fragment or function to be generated will be 

provided as input, and the model’s output will be analyzed 

using conventional static analysis tools – with their plethora 

of false positives and false negatives. After a painstaking ex-

ercise in understanding common errors found in the gener-

ated code, we shall create a catalog of the most frequent and 

egregious ones. A prototype tool to automate the analysis of 

code to detect classes of errors in the catalog, and a scripting 

tool to rewrite the code to mitigate these errors, will afford 

the possibility of writing out the corrected version of the 

generated code. This custom environment will find and fix 

errors in the code using the Application Program Interface 

(API) for AST manipulation and rewriting. This environ-

ment will be fine-tuned to look for specific classes of errors 

in the code. Subsequently, as our scientific understanding of 

code generation by Foundation Models progresses, we will 

create and train a custom Foundation Model on legacy code, 

which will include C++ and Python code for Machine 

Learning (ML) applications. Finally, we will experiment 

with the ability of CODEX and our custom Foundation 

Model to find and fix coding errors seamlessly and automat-

ically. Their performance will be graded based on the num-

ber of latent errors detected by running the hand-crafted 

scalable Symbolic AI-based code analysis tool on the “cor-

rect-by-construction” code generated by our Foundation 

Model Factory. The innovation of the proposed research is 

to assess the ability of foundation models to find and fix 

common classes of errors and comparing their performance 

with hand-crafted Symbolic AI-based tool. 

Listing 6: AST printout generated by code in Listing 5 

Module( 

 Body [ 

  Assign( 

   Targets [ 

    Name(id ‘onePLUStwo’, ctx Store())], 

         value BinOp( 

     left Constant(value 1), 

     op Add(), 

     right Constant(value 2)))], 

 type_ignores []) 

 

code = “onePLUStwo = 1 + 2”; 



 

 

Conclusion 

Foundation Models have the potential to mitigate the soft-

ware crisis by creating an automatic code generation/code 

patching framework, thereby addressing most deficiencies 

of current bug detection and mitigation methods. If we suc-

ceed in this endeavor, this will prove to be a game-changer 

for software-intensive systems development and sustain-

ment. Moreover, by constantly scanning code bases for vul-

nerabilities, and fixing them automatically, we also mitigate 

the cyber-defense problem for software systems. Lastly, an 

investigation into the use of Symbolic AI for defect and vul-

nerability detection, and Foundation Models for their elimi-

nation, will provide software developers tools based on 

Generalist System Theory for safety-critical applications. 

 

Ethical Statement 

The ability of LLMs to generate code may help individuals 

and organizations develop software more effectively and ef-

ficiently, saving time and resources, makes this method of 

code creation likely even if discouraged by organizations 

such as the FAA or the DoD. In this paper we have consid-

ered strategies to mitigate poor code quality and improve 

safety. However, code generated by LLMs also has the po-

tential to raise concerns related to intellectual property, bias, 

accountability, and job displacement, among other issues. 

Each of these issues is worthy of study but are outside the 

scope of this paper. Their omittance is in no way intended 

to imply tacit agreement or approval, they are simply outside 

the scope of consideration herein.  To mitigate these con-

cerns, it is important for users to be aware of the limitations 

of LLMs and their responsible and ethical usage for auto-

mated code generation, especially in safety-critical systems. 

However, the precise meaning remains unclear; please con-

sider this paper as a call for action for other kinds of inquiry 

into aspects of ethical AI beyond safety and robustness con-

cerns. We want, as a community, to consider all the potential 

ethical implications of using LLMs and to help all parties 

take steps to ensure that benefits of AI technologies are max-

imized while minimizing their potential negative impacts. 

 

Acknowledgments 

Mr. Joseph Mathews deserves great credit for his unrelent-

ing passion for improving clarity of exposition in this very 

important research area. Dr. David Aha, Branch Head of the 

Navy Center for Applied Research in Artificial Intelligence, 

was instrumental in attaining scientific rigor with insightful 

comments and constant encouragement. Dr. Peter Klein, 

Assistant Superintendent of NRL Information Technology 

Division, was instrumental in getting this research funded. 

 

References 

Randell, B. 1969. Software Engineering: As it was in 1968. 

In Proc. 4th International Conference on Software Engi-

neering, Munich, Germany, pp 1-10. 

 

Vaswani, A. et al. 2017. Attention is All You Need. Proc. 

31st Conference on Neural Information Processing Systems 

(NIPS 2017). 

 

Chen, M. et al. 2021. Evaluating large language models 

trained on code. arXiv:2107.03374v2. 

 

Bommasani, R. et al. 2021. On the opportunities and risks 

of foundation models. arXiv:2108.07258. 

 

Christiano, P. et al. 2017. Deep reinforcement learning from 

human preferences. arXiv:1706.03741. 

 

Thompson, C. 2022. It’s Like GPT-3 but for Code—Fun, 

Fast, and Full of Flaws. Wired Magazine Backchannel. 

https://www.wired.com/story/openai-copilot-autocomplete-

for-code/. 

 

Friedman, I. 2022. Software 3.0 – the Era of Intelligent Soft-

ware Development. https://medium.com/@itamar_f/soft-

ware-3-0-the-era-of-intelligent-software-development-

acd3cafe6cd7. 

 

Bratus, S. 2022. DARPA Assured Micropatching (AMP). 

https://www.darpa.mil/program/assured-micropatching. 

 

Fischer, K. et al. 2017. The HACMS Program: Using For-

mal Methods to Eliminate Exploitable Bugs. Phil. Trans. R. 

Soc. A 375: 2015040. 

 

VanVossen, R. et al. 2019. The seL4 Microkernel – A Ro-

bust, Resilient, and Open-Source Foundation for Ground 

Vehicle Electronics Architecture. 2019 NDIA Ground Vehi-

cle Systems Engineering and Technology Symposium. 

 

Sadowski, C. et al. 2018. Lessons from Building Static 

Analysis Tools at Google. CACM, 61(4) pp 59-66. 

 

The LLVM Project, 2007. The LLVM Compiler Infrastruc-

ture. https://llvm.org/. 


