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ABSTRACT

Procedural activity assistants potentially support humans in a variety of settings,
from our daily lives, e.g., cooking or assembling flat-pack furniture, to professional
situations, e.g., manufacturing or biological experiments. Despite its potential use
cases, the system development tailored for such an assistant is still underexplored.
In this paper, we propose a novel framework, called TAMA, a Tool-Augmented
Multimodal Agent, for procedural activity understanding. TAMA enables inter-
leaved multimodal reasoning by making use of multimedia-returning tools in a
training-free setting. Our experimental result on the multimodal procedural QA
dataset, ProMQA-Assembly, shows that our approach can improve the performance
of vision-language models, especially GPT-5 and MiMo-VL. Furthermore, our
ablation studies provide empirical support for the effectiveness of two features that
characterize our framework, multimedia-returning tools and agentic flexible tool
selection. We believe our proposed framework and experimental results facilitate
the thinking with images paradigm for video and multimodal tasks, let alone the
development of procedural activity assistants.

1 INTRODUCTION

Procedural activities are ubiquitous, spanning our daily lives and professional settings, such as
cooking (Peddi et al., 2024), assembly (Sener et al., 2022), manufacturing (Schoonbeek et al., 2024),
lab experiments (Yagi et al., 2025), and medical practice (Jang et al., 2023), among others. Assistant
systems can democratize such activities by providing supportive guidance that makes them accessible
to beginners. Advances in large language models (LLMs) and vision-language models (VLMs) have
significantly enhanced performance on existing video understanding benchmarks through improved
pretraining and posttraining. For further improvement, we combine the ideas of reasoning and agent
to enable the “thinking with images” paradigm (Su et al., 2025) as an inference-time technique for
procedural activity understanding.

Procedural activity understanding involves comprehending both the actual process, captured in the
recording, and the expected process, described in textual or visual instructions, and aligning them
to detect potential mismatches (Hasegawa et al., 2025b). This cross-modal alignment can be more
tractable by decomposing the overall process into more manageable subtasks. For instance, suppose
one asks the following question while assembling a flat-pack furniture, “Did I make any mistake
before attaching this part?” When humans approach this question, they typically examine the situation
one by one. First, check the instructions to determine when and how the part is supposed to be
attached. Next, they review the actions in the video to identify any misalignments, e.g., skipped steps
or incorrect step orders. By repeating these steps as needed, they eventually either flag an error or
conclude that no error exists and respond to the question.

One naive, yet typical approach for such video-centric multimodal tasks with VLMs is to provide
all information as one input, i.e., feed to a model the concatenation of a question, instructions, and
sampled frames from a recording, and obtain a prediction in one inference. This simple formulation
aligns well with traditional workflow approaches that predefine information processing paths, e.g.,
keyframe selection that selects only informative frames, followed by answer prediction (Ye et al.,
2025). It also works well with recent techniques, like prompt engineering (Liu et al., 2023) or reason-
ing model Jaech et al. (2024), both of which scale the inference time by outputting additional thought
tokens, preceding its answer generation. However, due to the nature of single-pass prediction, errors

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

・・・

[Input]

[Output]

[Environment]

・・・

Question Thought Tool Call Tool 
Output

Thought

Video Instruction

Vision Language Model

AnswerTool Call

Tool 
Output Text

Vision

Multimodal

CALL

RETURN

Input Model Output

Naive

Input Model Output

Reasoning

Input Model Output

Environment

Tool 
Call

Tool 
Output

w/ Text-based tool

Thought

w/ Multimodal tool (TAMA)

Input Model Output

Workflow (e.g., Keyframe)

Model

Thought Tool Call Tool 
Output

Thought Tool Call

Tool 
Output

CALL

RETURN

Figure 1: Left: Overview of existing approach. Right: Overview of our proposed approach, TAMA.
Given a question as an initial input, a VLM-based agent generates its thought, followed by a tool
call. Once a tool output is produced, the concatenation of the model output and the tool output is
appended to the previous input to form the next input. Then, the model further generates either the
next pair of a thought and tool call or an answer.

in beginning processes, e.g., frame selection, may be difficult to recover from, or managing context
with multiple frames and many thought tokens poses long-dependency challenges for models (Sun
et al., 2025).

Another growing direction is an agentic approach (Xi et al., 2025). Compared to the single-pass
approaches, which are typically implemented with a predefined, fixed-step workflow, a language
model (LM) as an agent answers a question by making use of the predefined information processes
(tools) flexibly, proactively, and iteratively. Prior studies in video-centric tasks primarily design
an agentic framework with text LLMs, which reason and decide actions, and semantic grounding
tools, which provide textual conversion of visual information through captioning or OCR (Wang
et al., 2024). In contrast, humans would perform interleaved reasoning and visual comprehension by
using perceptual exploration tools, e.g., fast-forwarding videos by time stamps, zooming into one
frame, changing camera angles, etc. While the paradigm of interleaved textual and visual reasoning,
i.e., thinking with images (OpenAI, 2025a), has been gaining attention on image-centric tasks, its
application to video-centric tasks, especially in training-free settings, is yet underexplored. Inspired
by this gap, we pose the following research question: Can VLMs make use of interleaved multimodal
reasoning by using perceptual exploration tools to better perform video-centric multimodal tasks?

In this work, we propose a novel training-free agentic framework, TAMA (Tool-Augmented
Multimodal Agent), that enables interleaved multimodal reasoning by multimedia-returning tool
use. Figure 1 illustrates the overview of our proposed framework. A VLM-based agent orchestrates
tools that return either images or text to perceptually explore the current situation with its reasoning
capability in an interleaved manner (§ 3). We experiment with our framework in a training-free
setting, where VLMs are given only task and tool information as a prompt to see if current VLMs can
make use of the tools out of the box. Our experimental results with both proprietary and open-weight
models on ProMQA-Assembly (Hasegawa et al., 2025a) reveal that our framework can further elicit
the performance for some models, i.e., GPT-5 (OpenAI, 2025b) and MiMo-VL (Xiaomi, 2025),
although the performance change varies, as sometimes performance degrades under our framework,
i.e., Qwen2.5-VL (Bai et al., 2025) and InternVL3 (Zhu et al., 2025). Yet, the result suggests that our
framework can potentially bring out the models’ capability in a zero-shot manner for video-centric
multimodal tasks, considering that, while arguable, most of the tools from our experiments are likely
to be unseen during training. As a behavioral analysis, we examined the tool-use patterns, aiming to
provide potential reasons for performance discrepancies (§ 4). Furthermore, to provide the empirical
evidence of our framework’s efficacy, we conducted the ablation studies, w.r.t the modality of tool
outputs, the flexibility of the tool selection, and the impact of frame sampling (§ 5).
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In short, our contributions are threefold: (1) We propose a training-free agentic framework for
interleaved multimodal reasoning with tools. (2) Our experiment shows that our framework can
potentially improve the performance of VLMs. (3) Our ablation studies support that multimedia-
return tools and agentic tool use are beneficial. We believe that our work stimulates research on the
thinking with images paradigm for video understanding tasks, thus, more capable procedural activity
assistants that benefit human society.

2 RELATED WORK

Our work is inspired by reasoning VLMs, video agents, and procedural activity understanding.

2.1 VISION-LANGUAGE MODEL

Vision-language models, which process visual and textual information together, have rapidly pro-
gressed over the past few years. Strong proprietary models are mostly VLMs by default (OpenAI,
2025b; Anthropic, 2025b; Google, 2025), and an increasing amount of competitive open/open-weights
models have been released in the community (Bai et al., 2025; Zhu et al., 2025; Xiaomi, 2025). On
top of the popular prompt techniques (Wei et al., 2022; Wang et al., 2023b), reasoning models are
becoming dominant in public benchmarks (Jaech et al., 2024; Guo et al., 2025). While a reasoning
paradigm is primarily on text, its variant, “thinking with images” (Su et al., 2025), has also been
gaining attention. This paradigm introduces visual information into its textual thought process in an
interleaved manner by making use of external tools (OpenAI, 2025a; Hu et al., 2024) or by using
a native multimodal model that has the capability of synthesizing images as well (Team, 2024).
Our work aligns with the former tool-driven thinking with images paradigm, specifically for video
understanding tasks.

2.2 VIDEO AGENT

In video understanding studies, a traditional workflow system (Anthropic, 2025a), where a model
processes data based on a fixed predefined order, has played a major role and is still competitive, due
to its customizability, e.g., Socratic model (Zeng et al., 2022) or keyframe selection approaches (Ye
et al., 2025; Arnab et al., 2025). In parallel to the general progress of VLMs and their agentic
capability, agentic approaches are getting more attention in video tasks as well (Xi et al., 2025). An
agent, typically a language model, flexibly and proactively selects an action based on tool descriptions
and its thought process to understand the situation and answer a question. While prior agentic systems
in video understanding tasks show their effectiveness, in most cases, their tools are for semantic
grounding, i.e., converting images into text, with only a textual thought process (Wang et al., 2024;
Tian et al., 2025). In contrast, our work features perceptual exploration tools, which help an agent to
explore visually (Wu & Xie, 2024; Zhang et al., 2025b) and form interleaved multimodal reasoning.
One concurrent work by Zhang et al. (2025a) also proposes to use frame sampling as a tool; however,
their with-training and single-tool setup differs from our training-free and multi-tool setup.

2.3 PROCEDURAL ACTIVITY UNDERSTANDING

Procedural activity exists everywhere, where assistants can support users from their ego- and exocen-
tric viewpoints by aligning observed actions in recordings with the expected actions in instructions.
Due to the ubiquitous demands, prior studies have covered diverse domains: cooking (Stein &
McKenna, 2013; Peddi et al., 2024; Lee et al., 2024), assembly (Ben-Shabat et al., 2021; Jang
et al., 2019), manufacturing (Ragusa et al., 2021; Wang et al., 2023a; Schoonbeek et al., 2024), lab
experiments (Yagi et al., 2025), and medical practice (Beyer-Berjot et al., 2016; Jang et al., 2023),
among others (Haneji et al., 2024). While classification tasks are popular in those studies, some work
explores other task formulations to facilitate the development of systems with more human-friendly
and detailed responses. For instance, the ProMQA series proposes multimodal QA datasets on
procedural activities, i.e., cooking and assembly (Hasegawa et al., 2025b;a). In this work, we adopt
ProMQA-Assembly as our evaluation dataset, considering the instruction variety, i.e., target assembly
image, in addition to both textual and image instructions (Example in Table 3). We leave it to future
work to apply our method to ProMQA(-cooking) or other datasets.
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Table 1: Our tool set.

Function Description Example

Sample frame Return sampled frames in the specified range
at equal intervals from the specified angle of the camera.

sample_frame(
start='0:10', end='0:20', angle='center'

)

Zoom in Return the specified frame’s cropped image based
on the specified normalized bounding box.

zoom_in(
frame_id=106,
bounding_box=[0.3, 0.4, 0.7, 0.8]

)

Check instruction Return an instruction in either text (DOT format1)
or image (directed acyclic graph).

check_instruction(mode='text')

Check final picture Return the target assembly image with parts. check_final_picture()

3 APPROACH

TAMA is a training-free agentic framework that enables interleaved multimodal reasoning by tool use.
Before introducing our approach, we first define our target task, followed by the existing approaches.
All approaches, including TAMA, are illustrated on Figure 1.

3.1 TASK FORMULATION

Our target task is multimodal question answering, specifically for understanding procedural activities.
The input consists of: (1) a user’s question in text, (2) a video recording of the activity up to the point
when the question is asked, and (3) instructions provided in both image and text formats, including a
target assembly image. The output is a textual answer.

3.2 EXISTING APPROACH

Naive and Reasoning One prevalent approach with VLMs feeds the concatenation of sampled
frames from a video, instructions, and a question into models (naive) (Fu et al., 2025). On top of this
naive approach, prompt techniques or reasoning models are used to further enhance the performance
(reasoning). While simple, depending on a model’s valid context length, a model may not keep
attending enough attention to initial frames in its decoding time (Sun et al., 2025).

Workflow Most traditional studies can be categorized into workflow, where processes, e.g., LLMs
and tools, follow a predefined sequential path. For instance, keyframe selection approaches can be
seen as workflow systems when you treat the first stage of keyframe selection and the second stage of
answer generation as two fixed-order processes/tools (Arnab et al., 2025). While customizable, since
the process path needs to be predefined, careful path design would be required (§ 5.2).

Agent with text-returning tool Arguably, due to the success of text LMs, this has been the major
approach for existing agentic work for video understanding tasks: An agent, i.e., a text-only LM,
devises an answer in response to a query/question by flexibly making use of tools that return text.
When a tool is invoked, it accesses the environment for a textual instruction or a video file. When
the target is text, the information is passed through the tool and returned to the agent. When the
target is visual content, a tool, typically VLMs or task-specific models, performs semantic grounding
by converting it into text, e.g., captioning, and returns it to the agent. While this approach can
benefit from the evolving agentic capability of text-only LMs, vision-to-text conversion can be an
information bottleneck, which may impair performance (§ 5.1).

3.3 OURS: TAMA

Our approach employs a VLM rather than a text-only LM as its agent and relies on multimedia-
returning tools that return information in original modalities, i.e., text remains text and images remain
images. Existing agent frameworks have proposed to integrate VLMs for video understanding tasks,
yet mainly as tools, rather than agents (Yang et al., 2023; Tian et al., 2025). Motivated by the success
of GUI agents (Zhang et al., 2024), we propose to use VLMs as agents for video understanding tasks
so that an agent can reason and call tools based on original multimodal information. To leverage the
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Table 2: Result.

Model Naive Reasoning TCoT TAMA (ours)

GPT-5 mini 58.1 56.9 58.8 63.7
GPT-5 58.7 60.0 57.9 67.0
Claude 4 Sonnet 46.4 56.8 52.0 55.6
Gemini 2.5 Flash 41.6 48.8 54.9 52.4
Qwen2.5-VL 32B 44.0 44.6 40.8 44.0
InternVL3 38B 50.5 48.2 48.5 46.3
MiMo-VL 7B 33.1 46.4 46.8 49.6

capability of VLM-based agents, we define four tools, as summarized in Table 1. sample_frame
and zoom_in enable an agent to explore a video at different granularities. check_instruction
and check_final_picture help an agent to access manuals in different modalities. Essentially,
the tools are defined so that models can explore information perceptually, rather than ground visual
information in text, to prevent any information loss during information conversion. Tools are all
implemented as Python functions that access local files. We explore this framework in a training-free
setting to investigate current VLMs’ zero-shot capability. As illustrated in Figure 1, we feed a prompt
with a question (and tool information) to a model and generate a tool call with a thought process.
Once we obtain a tool output by executing the tool locally, we append both the model output and the
tool output to the previous input, which is again fed to a model.

4 EXPERIMENT

We compare TAMA against existing approaches on a multimodal QA task to verify its effectiveness.

4.1 BASELINE APPROACH

We first compare our framework with three baseline approaches: naive, reasoning, and workflow. For
the naive and reasoning approaches, we feed the concatenation of sampled frames, an instruction
(text), a target assembly image, and a question as one input, and obtain an answer, preceded by a
thought process for the reasoning. For workflow, we experiment with Temporal Chain-of-Thought
(TCoT) (Arnab et al., 2025), a two-stage approach, where VLMs select keyframes based on each
question, and the same model answers it based on the selected frames. We chose TCoT as our
baseline because it is also a training-free approach. As for the text tool-based agentic approach, we
conduct an ablation study to compare text tools and multimedia tools in § 5.1. As all approaches,
including ours, are model-agnostic, we apply these approaches to the following models.

4.2 EXPERIMENTAL SETUP

In our experiment, we include both proprietary and open-weight models. For proprietary models, we
chose GPT-5, GPT-5 mini, Claude 4 Sonnet, and Gemini 2.5 Flash, based on their performance on
public benchmarks and costs. For open-weight models, among VLMs, we selected three models based
on their reported capabilities on agentic benchmarks and also computational demands: Qwen2.5-VL
32B, InternVL3 38B, and MiMo-VL 7B. To achieve TAMA’s interleaved thought process, we use
either reasoning mode for proprietary models and MiMo-VL 7B, or ReAct-style prompting (Yao
et al., 2023) with zero-shot CoT (Kojima et al., 2022) for Qwen2.5-VL 32B and InternVL3 38B. We
format our iterative thought-call-return process in a similar way to multi-turn conversations, where
we set minimum and maximum turns as hyperparameters. In case a model outputs an answer too
quickly or too late, we include a cut-in message to encourage the model to think more or answer in
the next turn. All experiments are done without any in-context examples, i.e., zero-shot inference.

As our evaluation dataset, we use ProMQA-Assembly, a multimodal QA dataset for procedural
activity understanding, which has a unique setting of including video recording, instructions, a target
assembly image, and a question as input. Following the prior work, we adopt the LLM-as-a-judge
for assessing the quality of predictions. A judge model outputs the score, 0 (incorrect), 1 (partially
correct), or 2 (correct), and we take the average with scaling to 0 to 100 by multiplying by 50. All
numbers are reported by a single run of experiments. More details are available in Appendix A.
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Table 3: Example with an instruction image (top left), target assembly image with parts (top right),
sampled frames from a recording (middle), and a pair of a question and ground-truth answers,
followed by GPT-5’s responses from each approach.

Question: What should I have done differently when attaching the body to the chassis?
Ground Truth: Nothing, everything is going great! / There was nothing you needed to do differently.

Naive: ✗ You should have secured the body to the chassis with a screw instead of just snapping it on.
Reasoning: ... Maybe they should have used a different orientation for the screw, ...

✗ You should have secured the body to the chassis with a screw.
TCoT: {"selected_frames": [...], "justifications": "These frames show the actual step of attaching the yellow body

onto the black chassis, including how it’s oriented and aligned. ..."}, ... The instructions clearly state to use a
screw for this step. ... the answer points towards using a screw ...
✗ Secure the body to the chassis with a screw—use the screwdriver to fasten it instead of just placing it on.

TAMA: ... I think I can call the functions to get the needed details. <tool=sample_frame> <tool_output=frames> There
could be several issues: wrong orientation, incorrect screws, or missing steps like inserting the window piece
first. ... It might be helpful to check the instructions ... <tool=check_instruction> <tool_output=instruction>
... call check_final_picture to understand the correct orientation. ...<tool=check_finale_picture>
<tool_output=image> ... The answer likely involves checking the orientation and ensuring the correct
number of screws align with the holes. ... Using zoom tools on specific frames might help clarify
things ... <tool=zoom_in> <tool_output=image> ... I’ll call for a zoom-in again ... <tool=zoom_in>
<tool_output=image> ... I want to zoom in ... I’ll request a different bounding box ...<tool=zoom_in>
<tool_output=image> ... Despite some ambiguity from the video, ... they did it correctly ...
✓ Nothing—you aligned the front body correctly on the chassis and secured it with a screw as the instructions
require.

4.3 RESULT AND DISCUSSION

Table 2 shows the experimental result. Among all the combinations, GPT-5 with our framework
exhibits the best performance. For GPT-5, GPT-5 mini, and MiMo-VL 7B, TAMA outperforms other
approaches for each model, e.g., 14.1% improvement from the naive approach to TAMA by GPT-5.
Gemini 2.5 Flash with TAMA shows superior performance over naive and reasoning approaches, but
lags behind TCoT. Claude 4 Sonnet prefers our framework over naive and TCoT, but its text-only
reasoning process shows slightly better performance than ours. For Qwen2.5-VL 32B and InternVL3
38B, neither TAMA nor TCoT outperforms the naive or reasoning approaches.
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Table 4: Analysis of TAMA.

Model #frames
(avg./median)

Tool Frequency per Question #turn

sample zoom inst. pic. total 1st ans. total

GPT-5 mini 20.8 / 20.0 1.2 0.4 1.1 1.0 3.7 3.1 8.0
GPT-5 24.2 / 21.0 1.2 1.8 1.2 1.0 5.2 4.0 8.8
Claude 4 Sonnet 31.8 / 26.0 1.9 0.9 1.6 1.1 5.4 3.2 9.0
Gemini 2.5 Flash 12.7 / 7.0 1.1 0.4 1.5 0.6 3.6 5.1 7.3
Qwen2.5-VL 32B 22.5 / 26.0 1.2 0.2 0.9 0.8 3.1 4.7 9.3
InternVL3 38B 18.0 / 14.0 1.6 0.3 1.1 1.0 3.9 4.3 9.9
MiMo-VL 7B 14.1 / 11.0 1.3 0.2 0.9 0.8 3.2 3.9 9.2
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Figure 2: Tool usage pattern.

To better understand model differences, we investigated several aspects of each model’s output:
the total number of sampled frames, tool usage frequency, and the number of turns for initial and
final answers per question (Table 4). We also examined tool usage patterns (Figure 2). Gemini
2.5 Flash sampled a substantially smaller number of frames, which can be a potential reason for
its less performant result with TAMA (See § 5.3 for our empirical support). As the Gemini API
documentation2 describes that it can specify points in a video by a timestamp, the model is expected
to be familiar with timestamps. Thus, since the model calls sampel_frame in a similar frequency
to other models, it may tend to select fewer frames, as reported in the TCoT paper. In contrast, Claude
4 Sonnet sampled the largest number of frames among all models, even though the model does not
benefit from our framework. This suggests that the number of frames itself does not correlate with
the effectiveness of our framework. GPT-5 and Claude 4 Sonnet call tools more frequently than
others, where GPT-5 notably prefers the zoom-in tool, as highlighted in the tool pattern figures. This
indicates that, in conjunction with its superior performance, GPT-5 may be specifically trained for the
thinking with images paradigm with similar tools, and the capability may be transferable to video
understanding tasks under our framework. Table 3 shows one set of example outputs from GPT-5.
The model uses zoom_in tools in the latter half of the process to be more certain of its answer.

2https://ai.google.dev/gemini-api/docs/video-understanding
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Table 5: Perf. w/ Text vs Multimedia tool.

Model Text Multi

GPT-5 mini 59.0 63.7
Gemini 2.5 Flash 48.2 52.4
Qwen2.5-VL 32B 39.0 42.1
MiMo-VL 7B 50.9 49.6

Table 6: Perf. w/ and w/o presample.

Model TAMA TAMA
w/ presample

GPT-5 mini 63.7 63.2
Gemini 2.5 Flash 52.4 55.0
Qwen2.5-VL 32B 44.0 49.0
InternVL3 38B 46.3 46.7
MiMo-VL 7B 49.6 49.1
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Figure 3: Performance of workflow vs agentic approach (TAMA). Each number represents one tool
operation in the workflow approach: “1” is the uniform sampling, “2” is the instruction check, and “3”
is the target assembly image check, and each digit sequence defines the execution order of the tools.

Qwen2.5-VL 32B and InternVL3 38B show similar characteristics to GPT-5 mini, in terms of
the number of frames and tool frequency (Figure 13 in Appendix). However, during our manual
inspection, we noticed that these open-weight models sometimes failed to follow the intended ReAct-
style prompting. While we expected an interleaved thought process, the models occasionally refused
to output any reasoning and instead produced only tool calls one after another. This suggests that
these models would require additional tuning to be applied in our framework. MiMo-VL 7B does not
show any particular uniqueness in its tool frequency or pattern, while it is the only open-weight model
that benefits from our framework. Based on the claims in the MiMo-VL paper and its result (naive <
reasoning < TAMA) in our experiment, one can guess that the capability of textual reasoning may be
related to interleaved multimodal reasoning. However, as the result of Claude 4 Sonnet may refute
(naive < TAMA ≤ reasoning), further investigation would be needed to understand what training
contributes to interleaved multimodal reasoning, and we leave it for future work.

5 ABLATION STUDY

Our proposed framework, TAMA, distinguishes itself from prior work in two aspects: multimedia-
return tools and agentic, flexible tool selections. To further understand their effects, we conducted the
two ablation studies. In addition, we experimented with one heuristic strategy, presampling, inspired
by the undersampling behavior of Gemini 2.5 Flash.

5.1 TEXT-RETURN TOOL VS MULTIMEDIA-RETURN TOOL

The first characteristic lies in tools capable of returning multimedia outputs. Given a tool call, our
tools can return either text or images, contrary to the text-returning tools. As mentioned in § 3.2,
we conducted a controlled experiment by defining a semantic-grounding version of our perceptual
exploration tools. Specifically, image-returning tools are instead returning captions of images, where
captions are obtained by prompting the same model as its agent model. To isolate the effect of agent
models, we use VLMs for both text-returning and multimedia-returning tools, instead of text LMs,
which are typical for agents with text-returning tools. GPT-5 mini, Gemini 2.5 Flash, Qwen2.5-VL
32B, and MiMo-VL 7B are used in this experiment. According to the result in Table 5, GPT-5 mini,
Gemini 2.5 Flash, and Qwen2.5-VL 32B with multimedia-returning tools outperform those with

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

text-returning tools, while MiMo-VL 7B prefers text-returning tools. One possible reason for the
MiMo-VL’s preference may stem from its video re-captioning pipeline for pretraining, where they
produced dense, fine-grained captions for each video. However, overall, our experiment shows a
positive impact of multimedia-returning tools.

5.2 WORKFLOW VS AGENTIC TOOL USE

Secondly, we investigate the effect of its proactive and flexible tool selection. Specifically, we
compared TAMA with a fixed-order workflow approach. We selected the following three tools
with fixing arguments: namely, sample_frame with uniform sampling from each recording,
check_instruction with text mode, and check_final_picture. The outputs of these
tools are fed to a model sequentially, while the model is prompted to output only its thought process
without any tool calls. Once all information is given, a model is instructed to produce an answer.
In this experiment, we included all the permutations of these three operations (6 orders in total)
using GPT-5 mini, Gemini 2.5 Flash, and MiMo-VL 7B. Figure 3 summarizes the result. We found
that all permutations of the workflow approach degraded the performance, regardless of tool orders,
except for one combination. When Gemini 2.5 Flash received information in the order of textual
instructions, sampled frames, and the target assembly image, it performed comparably to TAMA.
These results demonstrate the superior performance and cost-effectiveness of the agentic approach
compared to the workflow-based method. Although the workflow approach can be tuned to match the
agentic approach’s performance, the agentic approach demonstrates superior usability. It achieves
comparable or better performance without tuning by flexibly selecting appropriate tools and execution
orders for each question, making it more efficient and user-friendly.

5.3 PRESAMPLING

As we found in our investigation (§ 4.3), some models, i.e., Gemini 2.5 Flash and MiMo-VL 7B,
tend to select fewer frames than others. Arnab et al. (2025) addresses this point by compensating
with uniformly sampled frames in their TCoT approach. Inspired by this, we also hypothesize that
feeding additional frames may benefit those models. Specifically, we append the uniformly sampled
frames from each recording to the initial prompt, which consists of a question and task information.
This can be thought of as a hybrid approach of workflow and agentic framework. We conducted this
experiment to get a better sense of which tool selection capabilities would be beneficial to incorporate
into future training for video understanding tasks, with a specific focus on sampling. We primarily
targeted Gemini 2.5 Flash, InternVL3 38B, and MiMo-VL 7B, as they had fewer sampled frames.
We also included GPT-5 mini and Qwen2.5-VL 32B for comparison. As shown in Table 6, Gemini
2.5 Flash gains the benefit from this presampled strategy, while the performance of InternVL3 38B
and MiMo-VL 7B did not change. Contrary to our expectation, Qwen2.5-VL 32B improves its
performance with this strategy, although the number of its sampled frames is around the average
of other models. While some models have already shown their capability of making use of our
framework, this presampling experiment implies that additional training with respect to sampling
may benefit these models.

6 CONCLUSION

In this work, we propose a novel training-free agentic framework, TAMA, to enable interleaved
multimodal reasoning with tool use. Our experimental result shows that our framework for the
thinking with images paradigm improves the performance of models such as GPT-5, GPT-5 mini,
and MiMo-VL 7B. While some other models, Gemini 2.5 Flash and Qwen2.5-VL 32B, show their
potential with the hybrid approach with presampling, the other models, e.g., Claude 4 Sonnet or
InternVL3 38B, do not gain benefits, arguably because they are not familiar with an interleaved
reasoning process or zero-shot use of our tools. Yet, together with the ablation study results on
multimedia-returning tools and agentic tool selection, our work provides empirical support for our
zero-shot, agentic prompting technique in a multi-turn setting. We believe that our work can facilitate
the research on the perceptual exploration tools and interleaved multimodal reasoning for video
understanding tasks, let alone the development of procedural activity assistants that benefit human
society.
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ETHICS STATEMENT

Our work does not introduce any training data, which may introduce additional biases or harmful
content to VLMs. However, the negative contents inherent in VLMs from pretraining or posttraining
may emerge within our framework. If our framework is to be deployed for production, rigorous
evaluation against biases, fairness, privacy, jailbreak, etc, needs to be performed on top of our
performance-focused evaluation, including the thought process.

REPRODUCIBILITY STATEMENT

We provide the general description of our proposed approach in § 3.3 and the experimental setup
in § 4.2, which is further detailed in Appendix A. We also provide the prompt templates for our
experiment in Appendix B. Furthermore, we attach the anonymized code used in our experiments as
a supplemental material.
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A EXPERIMENT DETAILS

We share the further details of our experiments in this section.

A.1 TCOT IMPLEMENTATION

TCoT consists of two stages: the first stage is frame selection, and the second is answer generation.
We used the dynamic-segment TCoT, where each input video is split into a fixed number of l
segments and each segment is fed to a model that generates the indices of frames for the second
answer generation stage. Given the maximum number of frames, k, in each inference, if more than k
frames exist in one segment, k frames are sampled from each segment. Once frames are selected
from each segment, they are concatenated to form an input for answer generation. When the number
of frames in this concatenation is more than m, m frames are uniformly sampled. In addition to
the selected frames in the first stage, they add uniformly sampled u frames for temporal coverage.
Thus, the input of the second stage consists of at most m+ u frames, which is fed to a model with a
question and instructions to generate an answer. Hyperparameters are set as follows: l = 4, k = 32,
m = 48, and u = 16. Prompt templates are available in Figure 4 and 5.

A.2 TAMA IMPLEMENTATION

As described in § 4.2, we format our interleaved multimodal reasoning processes as multi-turn
conversations. To put it simply, an input consists of [system prompt, user question,
model thought, model tool call, tool output, model thought, model tool
call, tool output, ... ]. However, API specifications of any proprietary models allow this
format as is, i.e., either tool outputs cannot include images (OpenAI) or tool outputs need to be
included in user messages (Anthropic and Google). Under this restriction, we, instead, add a note
of “Asking a user to provide tool outputs.” as tool outputs and add actual tool outputs with images
in user messages. When we spot a case where a model does not generate an answer after i turns
or a case where a model generates an answer before j turns, we include a cut-in user message to
either encourage the model to answer or use more tools. We set the maximum number of turns as h,
and we stop the iteration regardless of whether or not an answer is generated. The maximum number
of frames that sample_frame returns is k, and the maximum number of frames in an input is n.
If more than k frames are selected, we pick k frames at equal intervals. If more than n images are
included in one prompt, we remove the beginning images until the total number of images is equal to
n. Figure 10 contains the detailed definition of our tools in the YAML format (Figure 11 for the text
version). At most one tool is executed, even when multiple tool calls are generated. When a model
outputs multiple tools in one output, we simply pick the first one to execute. Hyperparameters are set
as follows: i = 5, j = 2, k = 32, n = 64, h = 10, i = 8, and j = 5. Prompt templates are available
in Figure 6 and 9.

A.3 MODEL SELECTION

Our model selection is mainly based on the performance and capability of a model, under the
constraints of our cost budget and academic computational resources. The following are the reasons
for other possible models we did not include in our experiments. Gemini 2.5 Pro returns server-side
errors insufferably frequently at the time we experimented, so we ended up not using it, although
its estimated cost is around the same as GPT-5 or Claude 4 Sonnet. We did not experiment with
Claude 4/4.1 Opus due to their high costs. We did not use Qwen2.5-VL 72B due to the suspicion
of its bug related to tool use, more specifically, it outputs a strange character every time it outputs
tool calls. Following the size of Qwen2.5-VL, we used InternVL3 38B, instead of InternVL3 78B.
GLM-4.5V (Hong et al., 2025) was not included because it did not fit into the 4 A6000 GPUs.
Qwen3-VL 3 came out two days before the deadline of this submission, and we did not include it in
our experiments.

The model IDs used in our experiments are as follows: gpt-5-mini-2025-08-07 (GPT-5
mini), gpt-5-2025-08-07 (GPT-5), claude-sonnet-4-20250514 (Claude 4 Son-
net), gemini-2.5-flash (Gemini 2.5 Flash), Qwen/Qwen2.5-VL-32B-Instruct

3https://huggingface.co/Qwen/Qwen3-VL-235B-A22B-Instruct
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Table 7: API Cost (USD)

Model Naive Reasoning TCoT TAMA

GPT-5 mini 1.6 0.81 5.7 4.2
GPT-5 7.6 4.8 41 40

Claude 4 Sonnet 10 13 63 41
Gemini 2.5 Flash 0.86 2.3 11 5.1

(Qwen2.5-VL 32B), OpenGVLab/InternVL3-38B (InternVL3 38B), and
XiaomiMiMo/MiMo-VL-7B-RL-2508 (MiMo-VL 7B).

A.4 OTHER DETAILS

The naive and reasoning approaches receive 32 uniformly sampled frames in their inputs. API
services sometimes show their instability, returning server-side errors. In such cases, we run a model
one more time to see if we can obtain a result. When we do not obtain results after attempting twice,
we just include None as an answer. To access models, we use APIs for proprietary models and we run
locally for open-weight models with the server mode of the vllm library. For reasoning, we set either
“medium” or 2048 for reasoning effort/budget, and 512 as the maximum number of output tokens.
Images are all scaled to the resolution of 640 × 360, and we use the center angle for recordings,
unless specified. For Qwen2.5-VL 32B, we used our custom chat template because the original one
from the HuggingFace Hub does not contain the templates for tool use. For InternVL3 38B, we used
a previous version of its chat template because the latest one does not include the templates for tool
use. For each inference of open-weight models, we used at most 4 A6000 GPUs (48GB memory)
throughout our experiments. Table 7 shows the reference costs. Each cost represents the total cost of
one model’s experiment, i.e., obtaining answers for all questions in the evaluation dataset.

B PROMPT TEMPLATE

You will be given a question about a video, following frames from the
video.

Question: {question}
Return the frame ids which can answer the given question.
Please use the following JSON format for your output:
{

"frame_ids": [List of integer/frame IDs],
"justification": "<justification about your output>"

}

Figure 4: Prompt for frame selection in TCoT.

Frames: {frames}
Parts: {target assembly image}
Instruction: {dot}
An instruction is represented as a directed, acyclic partial graph, where

a node is a step and a relation is the order of steps.
For instance, if there is a directed edge between node A and node B (A ->

B), A needs to be done before B is performed.
You will be given a question about a video. You are provided frames from

the video, retrieved by an intelligent agent. You are also provided
with instructions and parts image.

It is crucial that you imagine the visual scene as vividly as possible to
enhance the accuracy of your response. Answer in the following

format: <answer>your answer</answer>
Question: {question}

Figure 5: Prompt for answer generation in TCoT.
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You are helping a user performing an toy assembly task by checking their
activity recording.

You have tools/functions to access the following information:
- video/recording of the activity
- instructions/manuals for the toy
- final picture image of the toy
When you get a question, call the tools to understand the user's current

situation so that you can answer the question confidently.
When you finish analyzing the given information, make sure to answer the

question in the following format:
<answer>your answer</answer>

Note:
- Each question is asked at the end timing of its recording. So make sure

to contextualize each question in the recordings.
- An answer should be one, or a few concise sentence(s).
- Tools can be called multiple times until you obtain enough evidence to

answer
the question confidently.
- After each tool call, make sure to think if the returned output is
useful/sufficient for answering the question.
- Each tool can be called multiple times, but tools can be called one at

a time.

Figure 6: System prompt for TAMA

You are helping a user perform a toy assembly task.

You have tools/functions to access the following information:
- video/recording of the activity in text/caption
- instructions/manuals for the toy in text
- final picture image of the toy in text/caption
When you get a question, call the tools to understand the user's current

situation so that you can answer the question confidently.
When you finish analyzing the given information, make sure to answer the

question in the following format:
<answer>your answer</answer>

Note:
- Each question is asked at the end timing of its recording. So make sure

to contextualize each question in the recordings.
- An answer should be one, or a few concise sentence(s).
- Tools can be called multiple times until you obtain enough evidence to

answer
the question confidently.
- After each tool call, make sure to think if the returned output is

useful/sufficient for answering the question.
- Each tool can be called multiple times, but tools can be called one at

a time.

Figure 7: System prompt for TAMA (text)

C RESULT

Figure 13 shows the remaining models’ tool-use patterns.

D LIMITATION

One limitation is in our experiment, regarding model variety. While we evaluated both proprietary
models and open-weight models, our selection may look small, considering the continuous stream
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You are helping a user who is performing a toy assembly task by checking
their activity recording.

As a starting point, you will be given a question.
Then, you will be given the following information one by one:
- video/recording of the activity
- instructions/manuals for the toy
- target assembly image of the toy
Once you receive all, make sure to answer the question in the following

format:
<answer>your answer</answer>

Note:
- Each question is asked at the end of its recording. So make sure to

contextualize each question in the recordings.
- An answer should be one or a few concise sentences.
- Make sure to think if the given information is useful/sufficient for

answering the question.

Figure 8: System prompt for our workflow approach in § 5.2.

I have been working on the task for {duration}.
I have a question. <question>{question}</question>

Figure 9: Initial user prompt for TAMA

of model releases. In fact, only a few meet our requirements under our academic computational
resources. Our framework requires a model to be a VLM that has agentic behavior/tool-use capability.
Even when the paper/blog of a model mentions the benchmark numbers on agentic tasks, they may
not always release “chat_template,” which is crucial to render input information into their specific
input format used in their training. If the templates are not available, we would need to come up with
one by educated guesses, which may underrate their capabilities. Another limitation lies in the cost
and efficiency of our framework. While we observed improved performance for some models, as
our framework involves multiple inferences for each question, inference time gets longer with more
computational cost, especially compared to the naive approach. Potential future directions to address
this point involve shorter, yet higher-quality multimodal reasoning paths or distillation to smaller
models. Additionally, the size of the evaluation data may hinder the comparison among models with
small differences.

E LLM USAGE

We used LLM-powered AI services when drafting this paper, specifically for refining phrases or
correcting grammatical errors, but not for ideation or more advanced purposes.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

- name: "sample_frame"
description: |
Function to sample frames in the video between the range with the rate.

Output consists of a list of 1 fps sampled frame filepaths.
Frame files are represented with their timestamps in second.
The maximum number of frames is 30, and if more than the maximum

number of frames are requested, the fps rate gets reduced to meet
the requirement.

args:
start_time: {type: 'string', description: "The start time of the range

to sample frames in the format of mm:ss."}
end_time: {type: 'string', description: "The end time of the range to

sample frames in the format of mm:ss."}
angle: {type: "string", description: "camera angle of the video.",

enum: ["center", "top", "right-bottom", "right-center", "right-top
", "left-bottom", "left-center", "left-top"]}

- name: "zoom_in"
description: |
Function to zoom in one frame.
You can specify where to zoom-in by a normalized bounding box in the

format of [x1,y1,x2,y2], where 0 < x1 < x2 < 1 and 0 < y1 < y2 < 1.

(x1, y1) corresponds to the top left corner, and (x2,y2) corresponds
to the bottom right coner.

args:
frame_id: {type: "integer", description: "the id of the frame to zoom-

in"}
angle: {type: 'string', description: "camera angle of the video", enum

: ["center", "top", "right-bottom", "right-center", "right-top", "
left-bottom", "left-center", "left-top"]}

bounding_box: {type: "array", description: "normalized bounding box in
the format of [x1,y1,x2,y2]", items: {type: "number"}}

- name: "check_instruction"
description: |
Function to access the instruction in text or image.
An instruction is represented as a directed, acycle partial graph,

where a node is a step and a relation is a order of steps.
For instance, if there is a directed edge between node A and node B (A

-> B), A needs to be done before B is performed.
Instructions can be checked in either text or image:
- text: instructions are represented as text in the DOT format.
- image: instructions are represented as an figure of a graph.

args:
mode: {type: "string", description: "either text or image"}

- name: "check_final_picture"
description: |
Function to access the image of the final picture and parts of the

target toy car.
The image may contain its exploded view as well.

args: null

Figure 10: TAMA’s multimedia-returning tool definitions in the YAML format.
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- name: "sample_frame"
description: |
Function that returns a detailed description of sampled frames in the

video between a specified range.
Output consists of one description, based on the sampled frames.
The default sample rate is 1 fps, and the maximum number of frames is

30.
If the specified range contains more than 30 frames, i.e., the range

exceeds 30 seconds, the fps rate gets reduced so that the number
of frames is less than or equal to 30.

args:
start_time: {type: 'string', description: "The start time of the range

to sample frames in the format of mm:ss."}
end_time: {type: 'string', description: "The end time of the range to

sample frames in the format of mm:ss."}
angle: {type: "string", description: "camera angle of the video.",

enum: ["center", "top", "right-bottom", "right-center", "right-top
", "left-bottom", "left-center", "left-top"]}

- name: "zoom_in"
description: |
Function that crops one frame and returns the detailed description of

the cropped frame.
You can specify where to zoom-in by a normalized bounding box in the

format of [x1,y1,x2,y2], where 0 < x1 < x2 < 1 and 0 < y1 < y2 < 1.

(x1, y1) corresponds to the top left corner, and (x2,y2) corresponds
to the bottom right coner.

args:
frame_id: {type: "integer", description: "the id of the frame to zoom-

in"}
angle: {type: 'string', description: "camera angle of the video", enum

: ["center", "top", "right-bottom", "right-center", "right-top", "
left-bottom", "left-center", "left-top"]}

bounding_box: {type: "array", description: "normalized bounding box in
the format of [x1,y1,x2,y2]", items: {type: "number"}}

- name: "check_instruction"
description: |
Function that returns the assembly instruction in text.
An instruction is represented as a directed, acycle partial graph,

where a node is a step and a relation is a order of steps.
For instance, if there is a directed edge between node A and node B (A

-> B), A needs to be done before B is performed.
Instructions are represented as text in the DOT format.

args: null

- name: "check_final_picture"
description: |
Function that returns the detailed description of the final picture,

parts image, and possibly with an exploded view as well.
args: null

Figure 11: TAMA’s text-returning tool definitions in the YAML format.
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## Instruction ##
This is an evaluation task.
You will be given a question, gold answer(s), and predicted answer.
Your task is to evaluate if the predicted answer matches against the gold

answer(s).

Here is/are the step(s) they have already performed in the actual order:
{previous_steps}

Give your ternary judge 0, 1, or 2:
* 0 means the predicted answer is wrong (unmatch)
* 1 means the predicted answer is partially correct/wrong (partial match)
* 2 means the predicted answer is correct (match)
When multiple gold answers are available (provided as a list), the

predicted answer is correct/partially correct if it matches/partially
matches with at least one of the gold answers.

Provide your feedback as follows:
## Feedback ##
[Rationale] (your rationale for the judge, as a text)
[Judge] (your judge, as a number, 0, 1, or 2)

## Note ##
The question is being asked by a user who is playing with a take-apart

toy.
Gold answer(s) are created by well-trained humans.
Predicted answer is created by a machine, based on the corresponding

instruction and the frames of the assemblying process recording.

## Task ##
Now, here are the question, gold answer(s), and predicted answer:
[Question]
{question}
[Gold Answer(s)]
{gold_answer}
[Predicted Answer]
{predicted_answer}

## Feedback ##
[Rationale]

Figure 12: LLM-as-a-judge prompt
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(b) Qwen2.5-VL 32B
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(c) InternVL3 38B

Figure 13: Tool usage pattern for the remaining models.
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