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Abstract

Gloss-free Sign Language Translation (SLT)
aims to directly translate visual expressions into
spoken language, bypassing intermediate gloss
annotations. Recent studies have demonstrated
remarkable performance by leveraging Large
Language Models (LLMs) in gloss-free SLT.
However, existing approaches often fail to fully
exploit the potential of LLMs due to simplistic
prompt design. To address this gap, we pro-
pose ReSLT, a Retrieval-Augmented Genera-
tion SLT framework that utilizes pre-existing
linguistic knowledge to enable LLMs to effec-
tively comprehend sign languages. ReSLT in-
corporates a semantic prompting strategy, align-
ing video and text embeddings to construct
context-aware prompts. Additionally, the pro-
posed framework maintains a lightweight struc-
ture, allowing for easy integration with other
SLT models, thus enhancing the applicability
of LLMs in SLT. Our experiments demonstrate
that even with the simplest architecture, ReSLT
achieves performance gains in Korean Sign
Language and German Sign Language, high-
lighting its effectiveness and scalability.

1 Introduction

Sign language is a rich and structured visual lan-
guage that is essential to Deaf communities. How-
ever, it remains underexplored in natural language
processing (NLP) (Kim et al., 2024a). Its inher-
ently multimodal nature—spanning hand gestures,
facial expressions, and body posture—poses unique
challenges, as it lacks direct syntactic alignment
with spoken or written language. Gloss! annota-
tions offer a useful linguistic abstraction, but they
are labor-intensive and difficult to scale (Yin and
Read, 2020). Consequently, recent research(Zhou
et al., 2023; Chen et al., 2024; Wong et al., 2024;
Gong et al., 2024; Hwang et al., 2024; Kim et al.,

!Gloss represents sign language in writing, connecting
signs to their meanings.

2024b) has shifted toward direct Sign-to-Text trans-
lation approaches.

Large Language Models (LLMs)(Chowdhery
et al., 2023; Chung et al., 2024; Grattafiori et al.,
2024; Yang et al., 2025), pretrained on multilingual
corpora, show promise in low-resource translation
(Yang et al., 2023). Their ability to model cross-
linguistic structures allows generalization with min-
imal supervision (Brown et al., 2020; Chowdhery
et al., 2023; Touvron et al., 2023). Due to lim-
ited datasets and sparse domain coverage, sign lan-
guages are considered low-resource. This has moti-
vated recent efforts to apply LLMs to SLT via few-
shot prompting—embedding a small number of
translation examples within the prompt. However,
existing methods often ignore semantic similarity
when selecting examples, which may hinder LLM
performance (Rubin et al., 2021). In SLT, where
subtle visual variations carry semantic weight, ir-
relevant prompts can act as noise.

We introduce ReSLT, a retrieval-augmented
generation framework for gloss-free SLT that
injects semantically aligned multilingual exam-
ples into prompts. For a given sign video, ReSLT
retrieves semantically similar spoken-language
sentences and uses them as in-context transla-
tion examples. This guides decoding by grounding
unfamiliar inputs in familiar linguistic structures.
ReSLT is lightweight, adding only a retrieval mod-
ule to standard LLM-based SLT systems. Despite
its simplicity, it surpasses strong baselines on Ger-
man and Korean SLT and generalizes across do-
mains. Our results show that semantically informed
prompting improves LLMs’ ability to handle low-
resource sign languages.

2 Related Work

2.1 Core Components for Gloss-Free SLT

Gloss-free SLT systems typically consist of (1)
a visual feature extractor, (2) a modality adapter,



and (3) a language model. Feature extractors such
as (2+1)D CNNs are widely used for balancing
efficiency and temporal modeling (Zhou et al.,
2023; Cui et al., 2019). The modality adapter (e.g.,
MLP or Q-former (Zhang et al., 2024)) projects vi-
sual features into the language model’s embedding
space. We follow this standard pipeline, integrat-
ing a semantic retriever to isolate the effect of our
prompting strategy.

2.2 Representation Learning in SLT

Aligning visual and linguistic modalities is central
in SLT. Prior works(Zhou et al., 2023; Gan et al.,
2023; Ye et al., 2024; Hwang et al., 2024; Kim
et al., 2024b) uses contrastive learning to embed
videos and texts into a shared space. This not only
aids translation but also enables semantic retrieval.
We adopt this setup to support semantically guided
prompting without altering the SLT training objec-
tive.

2.3 Prompt Strategies for LLM-Based SLT

Recent SLT work incorporates LLMs via few-
shot multilingual prompts, often selected at ran-
dom (Hwang et al., 2024; Gong et al., 2024). Yet,
LLMs are sensitive to the content and order of in-
context examples (Lewis et al., 2020; Liu et al.,
2021; Batheja and Bhattacharyya, 2023; Winata
et al., 2023; Baumann et al., 2024), and poorly
chosen prompts can degrade performance (Gao
et al., 2020). This underscores the need for seman-
tically grounded prompting—especially for sign
languages, which remain largely unfamiliar to most
LLMs.

3 Method

We propose ReSLT, a retrieval-augmented gener-
ation (RAG) framework that enables LLMs to ef-
fectively interpret low-resource sign languages by
leveraging pretrained linguistic knowledge. The
overall framework is shown in Figure 1. Given
a sign video V- = ([y,Is,...,Iy) of N frames,
the goal of gloss-free SLT is to generate a spoken-
language sentence S = (W, Wa, ..., Wy) of U
tokens. ReSLT builds on a minimal framework with
a Sign Embedder and a pretrained LLM, adding
a Video-to-Text Retriever to examine the effect of
semantic prompting. The framework can be easily
integrated into existing LLM-based SLT systems.

3.1 Sign Embedder

To effectively interface sign language input with a
pretrained LLM, we first encode the visual signal
into a compact, temporally-aware representation.
We employ a frozen visual backbone (e.g., He et al.,
2016; Radford et al., 2021) to encode each frame I;
into visual features f; € R, which are stacked to
form a sequence ' = (f1, f2, ..., fn). We then ap-
ply a 1D-CNN to capture short-range temporal de-
pendencies and reduce the sequence length by a fac-
tor of 4. The resulting feature sequence is projected
via an MLP into the LLM embedding space, yield-
ing sign tokens Fy = (fs1, fs2, .-+, fonya) € RY'.

3.2 Video-Text Aligment

To enable the retrieval of semantically relevant
pairs across modalities, we align video and text
embeddings in a shared semantic space using a
symmetric contrastive loss. Given a mini-batch of
video-text pairs {(v;, tj)}‘ji‘l, we derive the sign
embedding v; = AvgPool(F;}) and text embed-
ding t; = AvgPool(E,,(Tokenizer(Y;))), where
Y is the target translation text and E), is the pre-
trained LLM’s embedding layer. The loss is:
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ature parameter. This training encourages seman-
tically matched video-text pairs to lie close in a
shared semantic space, enabling cross-modal re-

trieval for prompt construction.

3.3 Video-To-Text Retrieval

During both SLT training and inference, the aver-
aged sign embedding v is used to retrieve semanti-
cally similar sentences from a multilingual vector
database built from the training set. Each entry con-
sists of a key(target-language sentence embedding)-
metadata(target text translations in multiple lan-
guages), grouped to align with the LLM’s prior
distribution.

This multilingual knowledge helps the LLM
ground unfamiliar sign language inputs by anchor-
ing them to semantically related linguistic expres-
sions in familiar patterns. All text embeddings are
computed using the LLM’s token embedding layer
E,, with average pooling, and cosine similarity is
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Figure 1: An overview of the ReSLT framework, which consists of three parts: (1) Sign Embedder transforms sign
video into LLM-compatible token embeddings using a visual encoder and temporal projection. (2) Video-To-Text
Retrieval retrieves semantically similar multilingual examples using sign embeddings, and constructs prompts via a
prompt generator to guide LLM translation, as illustrated in the bottom figure. (3) LLM generates translations from
sign tokens using prompts and is fine-tuned with LoRA to adapt to the sign language domain.

used for retrieval. To prevent label leakage, ground-
truth sentences are excluded from retrieval during
training. At inference time, retrieval is restricted
to the training set to reflect realistic deployment
conditions.

A prompt generator formats the top-k retrieved
entries into a prompt containing a translation in-
struction and multilingual few-shot examples. This
prompt P, combined with the sign tokens Fj,
guides LLM decoding.

3.4 Large Language Model

To leverage pretrained language knowledge while
enabling domain-specific adaptation, we apply
LoRA (Low-Rank Adaptation) (Hu et al., 2022)
to the LLM. During decoding, the model receives
the constructed prompt P followed by the sign
tokens F. The objective is to minimize the cross-
entropy loss between the generated sequence ¢ and
reference translation y:

ECE = —% 23:1 lOgP(yt | Y<ts P7 FS) (2)

Our framework enables sign language translation
by incorporating semantically relevant multilingual
examples, requiring only the addition of a retrieval
module to existing LLM-based translation frame-
works. See Appendix A for implementation details.

4 Experiment

Datasets. We evaluate our method on both Korean
and German Sign Language datasets. For Korean

Sign Language (KSL), we use dataset provided
by the National Institute of Korean Language?, ap-
plied the preprocessing method proposed in the
SSL(Kim et al., 2024c). For German Sign Lan-
guage (DGS), we utilize the RWTH-PHOENIX-
Weather 2014T(Camgoz et al., 2018). A detailed
description is provided in the Appendix B.
Evaluation Metrics. We use BLEU(Papineni
et al, 2002), ROUGE-L(Lin, 2004), and
BLEURT(Sellam et al., 2020), widely used in SLT

4.1 Effects of semantic prompting

Lang type Bl11t B2t B3t B4t RT BLT?
Zero 45.62 3489 27.57 2271 4518 0.55

De Rand 44.15 3379 27.12 22.60 4344 0.5
Sim  46.08 35.30 28.07 23.20 44.73 0.57
Zero 38.77 26.05 1821 13.16 36.89 0.67

Ko Rand 3820 25.80 18.11 13.10 36.35 0.67
Sim  38.98 26.24 18.44 1335 37.06 0.67

Table 1: Evaluation results on the DGS and KSL Sign
Language datasets using three prompting strategies:
Zero (no examples), Rand (random multilingual exam-
ples), and Sim (retrieval-based examples, ours). Metrics
include BLEU-1 to BLEU-4, ROUGE-L, and BLEURT.

We evaluate the impact of semantic prompt-
ing by comparing three setups: Zero, Rand, and
Sim(Ours). Results across both DGS and KSL are
shown in Table 1. Our method consistently outper-
forms the baselines, achieving up to +0.49 BLEU-4
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and +0.02 BLEURT over Zero in DGS, and show-
ing stable gains in KSL. Notably, Rand underper-
forms Zero, indicating that irrelevant prompts de-
grade performance. These results highlight that se-
mantic relevance in few-shot prompts is crucial
for enhancing translation quality—especially in
low-resource, non-textual modalities such as sign
languages. Qualitative results are in Appendix C.

4.2 Comparison with State-of-the-Art

Lang Methods
GFSLT(Zhou et al., 2023)
FLa-LLM(Chen et al., 2024)
Sign2Gpt(Wong et al., 2024)
DE SignLLM(Gong et al., 2024)
SpaMo(Hwang et al., 2024)

Vis Mod. LM Size Bl B2 B3 B4 R
610M 4371 33.18 26.11 21.44 4249
610M 4629 3533 28.03 23.09 4527
1.7B 49.54 3596 28.83 2252 48.90
4521 3478 28.05 2340 44.49
3B 49.80 37.32 29.50 24.32 46.57
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Table 2: Comparison of methods on the DGS and KSL
datasets in terms of model size, visual modification,
and evaluation metrics. Asterisks (*) denote reproduced
results. Our results are highlighted as bold, and the best
results are underlined.

Table 2 compares our approach to recent SLT
systems. Existing work often scales LLMs to larger
sizes or modifies the visual encoder with task-
specific pretraining and architectural changes. In
contrast, we adopt lightweight yet flexible frame-
work - a frozen vision backbone, a retrieval module,
and LoRA-based adaptation of a moderately sized
LLM.

Since only two model(*) provide released code,
we reproduce baseline setups to the best of our
ability for KSL. Despite its simplicity, our method
achieves competitive performance across both DGS
and KSL. Notably, we exceed reproduced baselines
on KSL, which spans diverse domains. These re-
sults show that competitive SLT performance can
be achieved with simple integration of a semantic
prompt.

4.3 Impact of Retriever Performance

To isolate the effect of retrieval quality at inference
time, we fix the training setup with consistently
high-quality examples and vary only the retriever
checkpoint during inference (Figure 2). As retrieval
accuracy improves in DGS, BLEU-4 scores corre-
spondingly. Although the gains are modest, they
are solely attributable to improved retrieval at in-
ference—highlighting the decoder’s sensitivity to
semantic prompting. Importantly, this decoupling
between training and inference enables post hoc re-
triever upgrades—facilitating lightweight, scalable

Effect of Retrieval Performance
at inference time
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Figure 2: Impact of retrieval quality at inference time
on BLEU-4 scores in DGS.
enhancement without end-to-end retraining.

4.4 Cross-Domain Performance Comparison

Type Tourism Public Services Shopping Healthcare
Zero 15.68 12.54 13.15 7.41
Random 15.76 12.08 13.40 8.12
Sim 15.77 12.53 13.68 11.18

Table 3: BLEU-4 scores across four KSL subdo-
mains—Tourism, Public Services, Shopping, and
Healthcare—indicate that our method yields substantial
improvements in the specialized domain of Healthcare.

We evaluate domain generalization by measuring
BLEU-4 across four KSL subdomains: Tourism,
Public Services, Shopping, and Healthcare (Ta-
ble 3). In general-purpose domains, the average
performance difference among the three prompting
strategies is relatively small, about 0.22. However,
in the Healthcare domain, which is characterized
by a high density of specialized terminology (e.g.,
"glycated hemoglobin," "thyroid hormones"), Sim
method achieves a notable gain +3.06. These re-
sults indicate that semantically grounded prompt-
ing becomes valuable as domain complexity and
terminology density rise, reinforcing the impor-
tance of semantic retrieval in specialized domain.

5 Conclusion

In this work, we introduced ReSLT, designed to
address the challenges of gloss-free SLT. Unlike
prior approaches that have not placed significant
emphasis on prompt design, We leverages seman-
tic retrieval to construct prompts with semantically
aligned multilingual examples. This strategy yields
competitive results with the simple integration of
retrieval for constructing semantic prompts within
a minimalistic framework. We explored how LLMs
can be effectively utilized in SLT, opening a new
direction for maximizing their contextual capabili-
ties.



6 Limitations

While ReSLT demonstrates its effectiveness in
gloss-free SLT by achieving notable performance
gains, certain limitations remain. First, our evalua-
tion is limited to a single model per language, pri-
marily due to computational constraints and access
to extensive pretraining corpora. This choice is not
intended to imply that ReSLT is narrowly tailored
to specific LLMs, but rather to establish a baseline
framework that can be extended to broader model
configurations and language scales in future work.
Further exploration of multiple LLM architectures
with diverse training data would provide a more
comprehensive understanding of ReSLT’s robust-
ness and generalizability in SLT tasks. Addition-
ally, incorporating models with different parameter
scales could reveal how retrieval-based prompting
interacts with model capacity, further elucidating
the scalability of our approach.

Furthermore, we employ a fixed structure for
multilingual prompts, where the number and or-
der of language components are predefined based
on rule-based configurations. Despite achieving
strong results with this structure, it may not fully
capture optimal language combinations or prompt
structures for varying SLT contexts. The rigidity of
the setup could potentially limit the framework’s
adaptability to more specialized or emerging sign
languages, where linguistic patterns may differ sig-
nificantly from mainstream datasets. Investigating
more adaptive prompting strategies—considering
factors such as linguistic similarity, domain speci-
ficity, and the inclusion of diverse examples—could
further refine retrieval and translation accuracy
without compromising the fundamental simplicity
of the proposed framework.
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A Implementation Details

A.1 Framework Detail

Stage 1 Visual features were extracted from indi-
vidual frames of the sign language videos using
the pretrained CLIP ViT-L/14 model(Radford
et al., 2021), which was kept frozen to ensure
computational efficiency. To model the temporal
continuity inherent to sign language, we adopted
the Sign Adapter module introduced in GFSLT
(Zhou et al., 2023), which captures dependencies
across consecutive frames. The Sign Adapter
produces sign tokens via average pooling over
temporally aligned features. These sign tokens
serve as inputs for contrastive learning, which is
performed using the AdamW optimizer with a
learning rate=0.0001, $=(0.9,0.98), and weight
decay=0.01. Training is performed for 256 epochs
on the DGS dataset and 200 epochs on the KSL
dataset.

Stage 2 For DGS translation, we employed
Flan-T5-XL?(Chung et al., 2024), a multilingual
instruction-following model with strong capabil-
ities in translation and text generation. In the
case of KSL, we used pko-Flan-T5-Large*, which
shares the same model architecture but is pre-
trained on Korean corpora, due to Flan-T5-XL’s
limited proficiency in Korean. To preserve the pre-
trained linguistic knowledge of the language mod-
els, we applied Low-Rank Adaptation (LoRA) (Hu
et al., 2022) during training, allowing efficient
fine-tuning with minimal updates to the original
parameters. LORA parameters are set as follows:
rank = 16, a = 32, target modules = ¢, v, and
dropout = 0.1. Optimization is again conducted
using AdamW (Loshchilov and Hutter, 2017) with
the same configuration as in Stage 1. To integrate
contrastive learning into this stage, we scale the
contrastive loss by a = 0.1 and add it to the cross-
entropy loss.

A.2 Computing Environment

All experiments were conducted on a single
NVIDIA A6000 (49GB) GPU with CUDA 12.3
and PyTorch 2.0.1. For dataset-specific configura-
tions, DGS experiments used a batch size of 256
(Stage 1) and 4 (Stage 2), while KSL used 32 and
8.

3https://huggingface.co/google/flan-t5-x1
4https://huggingface.co/paust/
pko-flan-t5-large

A.3 Prompt Construction

The input fed to the LLM follows a unified struc-
ture across both DGS and KSL, formatted as a
sign tokens followed by an instruction. For each in-
stance, two translation pairs are randomly selected
from a predefined multilingual pool to construct
the retrieval-based exemplars. For DGS, the candi-
date languages are French, Spanish, and English;
for KSL, they are Chinese, Japanese, and English.
The final prompt format is structured as follows
Table 4, and example is Table 5:

[VIDEO] Instruction
Retrieved Example (Random Pair 1)
Retrieved Example (Random Pair 2)

DE/KO Translation
DE/KO Translation

Table 4: Format of LLM Input

Sign Video Input: [VIDEO]
Instruction: Translate the given sentence into German.
In Context E: st et mai les prévisions météo pour demain, jeudi 12 aolit=
und nun die wettervorhersage fiir morgen donnerstag den zwélften august
and now the weather forecast for tomorrow, Thursday the twelfth of August=
und nun die wettervorhersage fiir morgen donnerstag den zwélften august

Table 5: An example of DGS prompt used in this paper.

B Data Distribution

Dataset | Domain Train | Dev | Test | Avg. Frame | Vocab Size

DGS Weather 7,096 | 519 | 642 116 3K

KSL Total 59,846 | 7,470 | 7,466 176 4K
Healthcare 3,756 493 504 183 -
Tourism 16,540 | 2,063 | 2,009 180 -
Public Services | 22,595 | 2,694 | 2,819 175 -
Shopping 16,955 | 2,220 | 2,134 170 -

Table 6: Statistics of the datasets used in our exper-
iments. DGS comprises weather domain, while KSL
spans four domains with broader linguistic and contex-
tual diversity.

Overview We evaluate our method on both Korean
and German Sign Language datasets. Table 6
summarizes the datasets used in our experiments.
To evaluate cross-linguistic and cross-domain
generalization in gloss-free SLT, we consider two
sign language corpora: KSL and DGS.

KSL The KSL dataset is a large-scale, multi-
domain corpus released by the National Institute
of Korean Language?. It contains a total of 74,782
sentence-aligned sign videos, partitioned into
59,846 for training, 7,470 for validation, and
7,466 for testing. The dataset covers four distinct
domains—Tourism, Public Services, Shopping,
and Healthcare—providing a broad linguistic

Shttps://www.korean.go.kr/
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and contextual range for evaluating domain
generalization.

DGS For DGS, we use the RWTH-PHOENIX-
Weather 2014T dataset (Camgoz et al., 2018), a
widely used benchmark in sign language trans-
lation. This dataset consists of 8,257 video—text
pairs (7,096 training, 519 validation, 642 test), all
sourced from televised weather broadcasts.

C Qualitative Example

Golden ofo]So] k27| Ale] uhgitk 48
(The children suddenly said they needed to pee.)

Zero oJ A QA F3fo] TA 1AV} ELQ]
(Welcome. I guess it’s because it’s become a trend.)

Rand ] ofo] o] 71747] gl Lt dojA e
(Yes, the children suddenly said they wanted to break down.)

Sim  ofo|7} %] AL Fhn Ak A Q.
(A child suddenly said they wanted to go to the bathroom.)

Golden 74 ol A Flo] H5@7ta?
(Is smoking allowed in the room?)

Zero A UM Fot 7hsetrra?
(Is making a phone call allowed in the room?)

Rand o} Tef8 244 el A Welk|7} Hsairta
(Oh, really. Is speaking allowed in the room?)

sim A4 ol 4 Fdol 7Fsartar
(Is smoking allowed in the room?)

Golden FA AQA7FE FIANZF AT AFUcH
(The course takes about one hour.)

Zero  TFAambrd QAT OF3AIF & A YT
(Each place takes about three hours.)

Rand @74 £8X7he oF 1IN AR 408Ut
(On-site time takes about one hour.)

Sim A&7 £QAZHE o 1A AR AU
(Travel time to the place takes about one hour.)

Table 7: Qualitative examples grouped by reference and
similarity level in KSL.

Qualitative Examples Table 7 presents qualita-
tive examples from the KSL dataset, categorized
by reference type and retrieval similarity level.
Each block illustrates the target reference sen-
tence Golden, followed by three retrieved exam-
ples: Zero, Rand, and Sim (Ours). These exam-
ples demonstrate that semantically aligned prompts
(Sim) tend to preserve contextual and domain-
specific information closely aligned with the gold
reference. In contrast, Zero and Rand examples of-
ten diverge in topic or omit key semantic elements,
which may hinder accurate LLM-based translation.
This comparison underscores the importance of
semantic relevance in prompt design.
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