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Abstract001

Gloss-free Sign Language Translation (SLT)002
aims to directly translate visual expressions into003
spoken language, bypassing intermediate gloss004
annotations. Recent studies have demonstrated005
remarkable performance by leveraging Large006
Language Models (LLMs) in gloss-free SLT.007
However, existing approaches often fail to fully008
exploit the potential of LLMs due to simplistic009
prompt design. To address this gap, we pro-010
pose ReSLT, a Retrieval-Augmented Genera-011
tion SLT framework that utilizes pre-existing012
linguistic knowledge to enable LLMs to effec-013
tively comprehend sign languages. ReSLT in-014
corporates a semantic prompting strategy, align-015
ing video and text embeddings to construct016
context-aware prompts. Additionally, the pro-017
posed framework maintains a lightweight struc-018
ture, allowing for easy integration with other019
SLT models, thus enhancing the applicability020
of LLMs in SLT. Our experiments demonstrate021
that even with the simplest architecture, ReSLT022
achieves performance gains in Korean Sign023
Language and German Sign Language, high-024
lighting its effectiveness and scalability.025

1 Introduction026

Sign language is a rich and structured visual lan-027

guage that is essential to Deaf communities. How-028

ever, it remains underexplored in natural language029

processing (NLP) (Kim et al., 2024a). Its inher-030

ently multimodal nature—spanning hand gestures,031

facial expressions, and body posture—poses unique032

challenges, as it lacks direct syntactic alignment033

with spoken or written language. Gloss1 annota-034

tions offer a useful linguistic abstraction, but they035

are labor-intensive and difficult to scale (Yin and036

Read, 2020). Consequently, recent research(Zhou037

et al., 2023; Chen et al., 2024; Wong et al., 2024;038

Gong et al., 2024; Hwang et al., 2024; Kim et al.,039

1Gloss represents sign language in writing, connecting
signs to their meanings.

2024b) has shifted toward direct Sign-to-Text trans- 040

lation approaches. 041

Large Language Models (LLMs)(Chowdhery 042

et al., 2023; Chung et al., 2024; Grattafiori et al., 043

2024; Yang et al., 2025), pretrained on multilingual 044

corpora, show promise in low-resource translation 045

(Yang et al., 2023). Their ability to model cross- 046

linguistic structures allows generalization with min- 047

imal supervision (Brown et al., 2020; Chowdhery 048

et al., 2023; Touvron et al., 2023). Due to lim- 049

ited datasets and sparse domain coverage, sign lan- 050

guages are considered low-resource. This has moti- 051

vated recent efforts to apply LLMs to SLT via few- 052

shot prompting—embedding a small number of 053

translation examples within the prompt. However, 054

existing methods often ignore semantic similarity 055

when selecting examples, which may hinder LLM 056

performance (Rubin et al., 2021). In SLT, where 057

subtle visual variations carry semantic weight, ir- 058

relevant prompts can act as noise. 059

We introduce ReSLT, a retrieval-augmented 060

generation framework for gloss-free SLT that 061

injects semantically aligned multilingual exam- 062

ples into prompts. For a given sign video, ReSLT 063

retrieves semantically similar spoken-language 064

sentences and uses them as in-context transla- 065

tion examples. This guides decoding by grounding 066

unfamiliar inputs in familiar linguistic structures. 067

ReSLT is lightweight, adding only a retrieval mod- 068

ule to standard LLM-based SLT systems. Despite 069

its simplicity, it surpasses strong baselines on Ger- 070

man and Korean SLT and generalizes across do- 071

mains. Our results show that semantically informed 072

prompting improves LLMs’ ability to handle low- 073

resource sign languages. 074

2 Related Work 075

2.1 Core Components for Gloss-Free SLT 076

Gloss-free SLT systems typically consist of (1) 077

a visual feature extractor, (2) a modality adapter, 078
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and (3) a language model. Feature extractors such079

as (2+1)D CNNs are widely used for balancing080

efficiency and temporal modeling (Zhou et al.,081

2023; Cui et al., 2019). The modality adapter (e.g.,082

MLP or Q-former (Zhang et al., 2024)) projects vi-083

sual features into the language model’s embedding084

space. We follow this standard pipeline, integrat-085

ing a semantic retriever to isolate the effect of our086

prompting strategy.087

2.2 Representation Learning in SLT088

Aligning visual and linguistic modalities is central089

in SLT. Prior works(Zhou et al., 2023; Gan et al.,090

2023; Ye et al., 2024; Hwang et al., 2024; Kim091

et al., 2024b) uses contrastive learning to embed092

videos and texts into a shared space. This not only093

aids translation but also enables semantic retrieval.094

We adopt this setup to support semantically guided095

prompting without altering the SLT training objec-096

tive.097

2.3 Prompt Strategies for LLM-Based SLT098

Recent SLT work incorporates LLMs via few-099

shot multilingual prompts, often selected at ran-100

dom (Hwang et al., 2024; Gong et al., 2024). Yet,101

LLMs are sensitive to the content and order of in-102

context examples (Lewis et al., 2020; Liu et al.,103

2021; Batheja and Bhattacharyya, 2023; Winata104

et al., 2023; Baumann et al., 2024), and poorly105

chosen prompts can degrade performance (Gao106

et al., 2020). This underscores the need for seman-107

tically grounded prompting—especially for sign108

languages, which remain largely unfamiliar to most109

LLMs.110

3 Method111

We propose ReSLT, a retrieval-augmented gener-112

ation (RAG) framework that enables LLMs to ef-113

fectively interpret low-resource sign languages by114

leveraging pretrained linguistic knowledge. The115

overall framework is shown in Figure 1. Given116

a sign video V = (I1, I2, . . . , IN ) of N frames,117

the goal of gloss-free SLT is to generate a spoken-118

language sentence S = (W1,W2, . . . ,WU ) of U119

tokens. ReSLT builds on a minimal framework with120

a Sign Embedder and a pretrained LLM, adding121

a Video-to-Text Retriever to examine the effect of122

semantic prompting. The framework can be easily123

integrated into existing LLM-based SLT systems.124

3.1 Sign Embedder 125

To effectively interface sign language input with a 126

pretrained LLM, we first encode the visual signal 127

into a compact, temporally-aware representation. 128

We employ a frozen visual backbone (e.g., He et al., 129

2016; Radford et al., 2021) to encode each frame Ii 130

into visual features fi ∈ RD, which are stacked to 131

form a sequence F = (f1, f2, . . . , fN ). We then ap- 132

ply a 1D-CNN to capture short-range temporal de- 133

pendencies and reduce the sequence length by a fac- 134

tor of 4. The resulting feature sequence is projected 135

via an MLP into the LLM embedding space, yield- 136

ing sign tokens Fs = (fs1, fs2, . . . , fsN/4) ∈ RD′
. 137

3.2 Video-Text Aligment 138

To enable the retrieval of semantically relevant 139

pairs across modalities, we align video and text 140

embeddings in a shared semantic space using a 141

symmetric contrastive loss. Given a mini-batch of 142

video-text pairs {(vj , tj)}|B|
j=1, we derive the sign 143

embedding vj = AvgPool(Fs{j}) and text embed- 144

ding tj = AvgPool(Ew(Tokenizer(Yj))), where 145

Yj is the target translation text and Ew is the pre- 146

trained LLM’s embedding layer. The loss is: 147

Lcontrastive =
1

2|B|

|B|∑
j=1

[
− log

exp(sim(vj , tj)/τ)∑|B|
k=1 exp(sim(vj , tk)/τ)

− log
exp(sim(tj , vj)/τ)∑|B|
k=1 exp(sim(tj , vk)/τ)

] (1) 148

where sim(x,y) = x⊤y
∥x∥∥y∥ and τ is a temper- 149

ature parameter. This training encourages seman- 150

tically matched video-text pairs to lie close in a 151

shared semantic space, enabling cross-modal re- 152

trieval for prompt construction. 153

3.3 Video-To-Text Retrieval 154

During both SLT training and inference, the aver- 155

aged sign embedding v is used to retrieve semanti- 156

cally similar sentences from a multilingual vector 157

database built from the training set. Each entry con- 158

sists of a key(target-language sentence embedding)- 159

metadata(target text translations in multiple lan- 160

guages), grouped to align with the LLM’s prior 161

distribution. 162

This multilingual knowledge helps the LLM 163

ground unfamiliar sign language inputs by anchor- 164

ing them to semantically related linguistic expres- 165

sions in familiar patterns. All text embeddings are 166

computed using the LLM’s token embedding layer 167

Ew with average pooling, and cosine similarity is 168
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Figure 1: An overview of the ReSLT framework, which consists of three parts: (1) Sign Embedder transforms sign
video into LLM-compatible token embeddings using a visual encoder and temporal projection. (2) Video-To-Text
Retrieval retrieves semantically similar multilingual examples using sign embeddings, and constructs prompts via a
prompt generator to guide LLM translation, as illustrated in the bottom figure. (3) LLM generates translations from
sign tokens using prompts and is fine-tuned with LoRA to adapt to the sign language domain.

used for retrieval. To prevent label leakage, ground-169

truth sentences are excluded from retrieval during170

training. At inference time, retrieval is restricted171

to the training set to reflect realistic deployment172

conditions.173

A prompt generator formats the top-k retrieved174

entries into a prompt containing a translation in-175

struction and multilingual few-shot examples. This176

prompt P , combined with the sign tokens Fs,177

guides LLM decoding.178

3.4 Large Language Model179

To leverage pretrained language knowledge while180

enabling domain-specific adaptation, we apply181

LoRA (Low-Rank Adaptation) (Hu et al., 2022)182

to the LLM. During decoding, the model receives183

the constructed prompt P followed by the sign184

tokens Fs. The objective is to minimize the cross-185

entropy loss between the generated sequence ŷ and186

reference translation y:187

LCE = − 1
T

∑T
t=1 logP (yt | y<t, P, Fs) (2)188

Our framework enables sign language translation189

by incorporating semantically relevant multilingual190

examples, requiring only the addition of a retrieval191

module to existing LLM-based translation frame-192

works. See Appendix A for implementation details.193

4 Experiment194

Datasets. We evaluate our method on both Korean195

and German Sign Language datasets. For Korean196

Sign Language (KSL), we use dataset provided 197

by the National Institute of Korean Language2, ap- 198

plied the preprocessing method proposed in the 199

SSL(Kim et al., 2024c). For German Sign Lan- 200

guage (DGS), we utilize the RWTH-PHOENIX- 201

Weather 2014T(Camgoz et al., 2018). A detailed 202

description is provided in the Appendix B. 203

Evaluation Metrics. We use BLEU(Papineni 204

et al., 2002), ROUGE-L(Lin, 2004), and 205

BLEURT(Sellam et al., 2020), widely used in SLT 206

4.1 Effects of semantic prompting 207

Lang type B1 ↑ B2 ↑ B3↑ B4 ↑ R ↑ BLT ↑

De
Zero 45.62 34.89 27.57 22.71 45.18 0.55
Rand 44.15 33.79 27.12 22.60 43.44 0.55
Sim 46.08 35.30 28.07 23.20 44.73 0.57

Ko
Zero 38.77 26.05 18.21 13.16 36.89 0.67
Rand 38.20 25.80 18.11 13.10 36.35 0.67
Sim 38.98 26.24 18.44 13.35 37.06 0.67

Table 1: Evaluation results on the DGS and KSL Sign
Language datasets using three prompting strategies:
Zero (no examples), Rand (random multilingual exam-
ples), and Sim (retrieval-based examples, ours). Metrics
include BLEU-1 to BLEU-4, ROUGE-L, and BLEURT.

We evaluate the impact of semantic prompt- 208

ing by comparing three setups: Zero, Rand, and 209

Sim(Ours). Results across both DGS and KSL are 210

shown in Table 1. Our method consistently outper- 211

forms the baselines, achieving up to +0.49 BLEU-4 212

2https://www.korean.go.kr/
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and +0.02 BLEURT over Zero in DGS, and show-213

ing stable gains in KSL. Notably, Rand underper-214

forms Zero, indicating that irrelevant prompts de-215

grade performance. These results highlight that se-216

mantic relevance in few-shot prompts is crucial217

for enhancing translation quality—especially in218

low-resource, non-textual modalities such as sign219

languages. Qualitative results are in Appendix C.220

4.2 Comparison with State-of-the-Art221

Lang Methods Vis Mod. LM Size B1 B2 B3 B4 R

DE

GFSLT(Zhou et al., 2023) Y 610M 43.71 33.18 26.11 21.44 42.49
FLa-LLM(Chen et al., 2024) Y 610M 46.29 35.33 28.03 23.09 45.27
Sign2Gpt(Wong et al., 2024) Y 1.7B 49.54 35.96 28.83 22.52 48.90
SignLLM(Gong et al., 2024) Y 7B 45.21 34.78 28.05 23.40 44.49
SpaMo(Hwang et al., 2024) Y 3B 49.80 37.32 29.50 24.32 46.57
MMSLT(Kim et al., 2024b) Y 8B 48.92 38.12 30.79 25.73 47.97
ours N 3B 46.08 35.3 28.07 23.2 44.73

KO
*SLRT(Camgoz et al., 2020) N 580M 27.39 17.17 11.20 7.57 27.71
*GFSLT(Zhou et al., 2023) Y 610M 25.77 15.77 10.03 7.85 26.52
ours N 3B 38.98 26.24 18.44 13.35 37.06

Table 2: Comparison of methods on the DGS and KSL
datasets in terms of model size, visual modification,
and evaluation metrics. Asterisks (*) denote reproduced
results. Our results are highlighted as bold, and the best
results are underlined.

Table 2 compares our approach to recent SLT222

systems. Existing work often scales LLMs to larger223

sizes or modifies the visual encoder with task-224

specific pretraining and architectural changes. In225

contrast, we adopt lightweight yet flexible frame-226

work - a frozen vision backbone, a retrieval module,227

and LoRA-based adaptation of a moderately sized228

LLM.229

Since only two model(*) provide released code,230

we reproduce baseline setups to the best of our231

ability for KSL. Despite its simplicity, our method232

achieves competitive performance across both DGS233

and KSL. Notably, we exceed reproduced baselines234

on KSL, which spans diverse domains. These re-235

sults show that competitive SLT performance can236

be achieved with simple integration of a semantic237

prompt.238

4.3 Impact of Retriever Performance239

To isolate the effect of retrieval quality at inference240

time, we fix the training setup with consistently241

high-quality examples and vary only the retriever242

checkpoint during inference (Figure 2). As retrieval243

accuracy improves in DGS, BLEU-4 scores corre-244

spondingly. Although the gains are modest, they245

are solely attributable to improved retrieval at in-246

ference—highlighting the decoder’s sensitivity to247

semantic prompting. Importantly, this decoupling248

between training and inference enables post hoc re-249

triever upgrades—facilitating lightweight, scalable250

Figure 2: Impact of retrieval quality at inference time
on BLEU-4 scores in DGS.

enhancement without end-to-end retraining. 251

4.4 Cross-Domain Performance Comparison 252

Type Tourism Public Services Shopping Healthcare
Zero 15.68 12.54 13.15 7.41
Random 15.76 12.08 13.40 8.12
Sim 15.77 12.53 13.68 11.18

Table 3: BLEU-4 scores across four KSL subdo-
mains—Tourism, Public Services, Shopping, and
Healthcare—indicate that our method yields substantial
improvements in the specialized domain of Healthcare.

We evaluate domain generalization by measuring 253

BLEU-4 across four KSL subdomains: Tourism, 254

Public Services, Shopping, and Healthcare (Ta- 255

ble 3). In general-purpose domains, the average 256

performance difference among the three prompting 257

strategies is relatively small, about 0.22. However, 258

in the Healthcare domain, which is characterized 259

by a high density of specialized terminology (e.g., 260

"glycated hemoglobin," "thyroid hormones"), Sim 261

method achieves a notable gain +3.06. These re- 262

sults indicate that semantically grounded prompt- 263

ing becomes valuable as domain complexity and 264

terminology density rise, reinforcing the impor- 265

tance of semantic retrieval in specialized domain. 266

5 Conclusion 267

In this work, we introduced ReSLT, designed to 268

address the challenges of gloss-free SLT. Unlike 269

prior approaches that have not placed significant 270

emphasis on prompt design, We leverages seman- 271

tic retrieval to construct prompts with semantically 272

aligned multilingual examples. This strategy yields 273

competitive results with the simple integration of 274

retrieval for constructing semantic prompts within 275

a minimalistic framework. We explored how LLMs 276

can be effectively utilized in SLT, opening a new 277

direction for maximizing their contextual capabili- 278

ties. 279
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6 Limitations280

While ReSLT demonstrates its effectiveness in281

gloss-free SLT by achieving notable performance282

gains, certain limitations remain. First, our evalua-283

tion is limited to a single model per language, pri-284

marily due to computational constraints and access285

to extensive pretraining corpora. This choice is not286

intended to imply that ReSLT is narrowly tailored287

to specific LLMs, but rather to establish a baseline288

framework that can be extended to broader model289

configurations and language scales in future work.290

Further exploration of multiple LLM architectures291

with diverse training data would provide a more292

comprehensive understanding of ReSLT’s robust-293

ness and generalizability in SLT tasks. Addition-294

ally, incorporating models with different parameter295

scales could reveal how retrieval-based prompting296

interacts with model capacity, further elucidating297

the scalability of our approach.298

Furthermore, we employ a fixed structure for299

multilingual prompts, where the number and or-300

der of language components are predefined based301

on rule-based configurations. Despite achieving302

strong results with this structure, it may not fully303

capture optimal language combinations or prompt304

structures for varying SLT contexts. The rigidity of305

the setup could potentially limit the framework’s306

adaptability to more specialized or emerging sign307

languages, where linguistic patterns may differ sig-308

nificantly from mainstream datasets. Investigating309

more adaptive prompting strategies—considering310

factors such as linguistic similarity, domain speci-311

ficity, and the inclusion of diverse examples—could312

further refine retrieval and translation accuracy313

without compromising the fundamental simplicity314

of the proposed framework.315
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A Implementation Details496

A.1 Framework Detail497

Stage 1 Visual features were extracted from indi-498

vidual frames of the sign language videos using499

the pretrained CLIP ViT-L/14 model(Radford500

et al., 2021), which was kept frozen to ensure501

computational efficiency. To model the temporal502

continuity inherent to sign language, we adopted503

the Sign Adapter module introduced in GFSLT504

(Zhou et al., 2023), which captures dependencies505

across consecutive frames. The Sign Adapter506

produces sign tokens via average pooling over507

temporally aligned features. These sign tokens508

serve as inputs for contrastive learning, which is509

performed using the AdamW optimizer with a510

learning rate=0.0001, β=(0.9,0.98), and weight511

decay=0.01. Training is performed for 256 epochs512

on the DGS dataset and 200 epochs on the KSL513

dataset.514

515

Stage 2 For DGS translation, we employed516

Flan-T5-XL3(Chung et al., 2024), a multilingual517

instruction-following model with strong capabil-518

ities in translation and text generation. In the519

case of KSL, we used pko-Flan-T5-Large4, which520

shares the same model architecture but is pre-521

trained on Korean corpora, due to Flan-T5-XL’s522

limited proficiency in Korean. To preserve the pre-523

trained linguistic knowledge of the language mod-524

els, we applied Low-Rank Adaptation (LoRA) (Hu525

et al., 2022) during training, allowing efficient526

fine-tuning with minimal updates to the original527

parameters. LoRA parameters are set as follows:528

rank = 16, α = 32, target modules = q, v, and529

dropout = 0.1. Optimization is again conducted530

using AdamW(Loshchilov and Hutter, 2017) with531

the same configuration as in Stage 1. To integrate532

contrastive learning into this stage, we scale the533

contrastive loss by α = 0.1 and add it to the cross-534

entropy loss.535

A.2 Computing Environment536

All experiments were conducted on a single537

NVIDIA A6000 (49GB) GPU with CUDA 12.3538

and PyTorch 2.0.1. For dataset-specific configura-539

tions, DGS experiments used a batch size of 256540

(Stage 1) and 4 (Stage 2), while KSL used 32 and541

8.542

3https://huggingface.co/google/flan-t5-xl
4https://huggingface.co/paust/

pko-flan-t5-large

A.3 Prompt Construction 543

The input fed to the LLM follows a unified struc- 544

ture across both DGS and KSL, formatted as a 545

sign tokens followed by an instruction. For each in- 546

stance, two translation pairs are randomly selected 547

from a predefined multilingual pool to construct 548

the retrieval-based exemplars. For DGS, the candi- 549

date languages are French, Spanish, and English; 550

for KSL, they are Chinese, Japanese, and English. 551

The final prompt format is structured as follows 552

Table 4, and example is Table 5: 553

[VIDEO] Instruction
Retrieved Example (Random Pair 1) = DE/KO Translation
Retrieved Example (Random Pair 2) = DE/KO Translation

Table 4: Format of LLM Input

Sign Video Input: [VIDEO]
Instruction: Translate the given sentence into German.

In Context Exemplars: et maintenant les prévisions météo pour demain, jeudi 12 août=
und nun die wettervorhersage für morgen donnerstag den zwölften august
and now the weather forecast for tomorrow, Thursday the twelfth of August=
und nun die wettervorhersage für morgen donnerstag den zwölften august

Table 5: An example of DGS prompt used in this paper.

B Data Distribution 554

Dataset Domain Train Dev Test Avg. Frame Vocab Size
DGS Weather 7,096 519 642 116 3K
KSL Total 59,846 7,470 7,466 176 4K

Healthcare 3,756 493 504 183 –
Tourism 16,540 2,063 2,009 180 –
Public Services 22,595 2,694 2,819 175 –
Shopping 16,955 2,220 2,134 170 –

Table 6: Statistics of the datasets used in our exper-
iments. DGS comprises weather domain, while KSL
spans four domains with broader linguistic and contex-
tual diversity.

Overview We evaluate our method on both Korean 555

and German Sign Language datasets. Table 6 556

summarizes the datasets used in our experiments. 557

To evaluate cross-linguistic and cross-domain 558

generalization in gloss-free SLT, we consider two 559

sign language corpora: KSL and DGS. 560

561

KSL The KSL dataset is a large-scale, multi- 562

domain corpus released by the National Institute 563

of Korean Language5. It contains a total of 74,782 564

sentence-aligned sign videos, partitioned into 565

59,846 for training, 7,470 for validation, and 566

7,466 for testing. The dataset covers four distinct 567

domains—Tourism, Public Services, Shopping, 568

and Healthcare—providing a broad linguistic 569

5https://www.korean.go.kr/
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and contextual range for evaluating domain570

generalization.571

572

DGS For DGS, we use the RWTH-PHOENIX-573

Weather 2014T dataset (Camgoz et al., 2018), a574

widely used benchmark in sign language trans-575

lation. This dataset consists of 8,257 video–text576

pairs (7,096 training, 519 validation, 642 test), all577

sourced from televised weather broadcasts.578

C Qualitative Example579

Golden 아이들이갑자기소변이마렵다고해서요

(The children suddenly said they needed to pee.)

Zero 어서오십시오유행이돼서그런가봐요

(Welcome. I guess it’s because it’s become a trend.)

Rand 네아이들이갑자기고장이나고싶어서요

(Yes, the children suddenly said they wanted to break down.)

Sim 아이가갑자기화장실을가고싶다고해서요

(A child suddenly said they wanted to go to the bathroom.)

Golden 객실내에서흡연이가능한가요?
(Is smoking allowed in the room?)

Zero 객실내에서통화가가능한가요?
(Is making a phone call allowed in the room?)

Rand 아그래요객실내에서말하기가가능한가요

(Oh, really. Is speaking allowed in the room?)

Sim 객실내에서흡연이가능한가요?
(Is smoking allowed in the room?)

Golden 코스소요시간은약 1시간정도걸립니다
(The course takes about one hour.)

Zero 장소마다소요시간은약 3시간정도소요됩니다
(Each place takes about three hours.)

Rand 현장소요시간은약 1시간정도소요됩니다
(On-site time takes about one hour.)

Sim 장소까지의소요시간은약 1시간정도걸립니다
(Travel time to the place takes about one hour.)

Table 7: Qualitative examples grouped by reference and
similarity level in KSL.

Qualitative Examples Table 7 presents qualita-580

tive examples from the KSL dataset, categorized581

by reference type and retrieval similarity level.582

Each block illustrates the target reference sen-583

tence Golden, followed by three retrieved exam-584

ples: Zero, Rand, and Sim (Ours). These exam-585

ples demonstrate that semantically aligned prompts586

(Sim) tend to preserve contextual and domain-587

specific information closely aligned with the gold588

reference. In contrast, Zero and Rand examples of-589

ten diverge in topic or omit key semantic elements,590

which may hinder accurate LLM-based translation.591

This comparison underscores the importance of592

semantic relevance in prompt design.593
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