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Abstract

Machine learning (ML) models are increasingly proposed to replace or augment safety-critical
sensor processing systems, yet their fragility to evasion attacks remains a well-documented
open problem. This work analyzes a class of deep neural network defenses that add a none-of-
the-above (NOTA) class as an open-set-inspired closed-set adversarial defense. We show that
such approaches often appear far more robust than they are because standard adversarial
attacks lack explicit handling for large auxiliary classes like NOTA–causing stopping criteria,
target-selection, and objective function behaviors that mask true vulnerabilities. We formalize
these issues in a taxonomy of evaluation pitfalls, adapt seven prominent adversarial attacks to
eliminate them, and show that adding a NOTA class alone, does not solve the core challenge
of defending DNNs against evasion attacks. We release our adapted attack suite to enable
more rigorous future evaluations of open-set-inspired defenses.

1 Introduction

Recent years have seen a steep increase in the number of successful applications of Deep Neural Networks
(DNNs) across the sciences, industry, and business. This technology has enabled strides forward in areas
as disparate as machine vision (Krizhevsky et al., 2012), neuroimaging analysis (McClure et al., 2019),
astronomy (Valizadegan et al., 2022), cancer diagnosis (Savage, 2020), protein folding (Callaway, 2020), and
natural language processing (Brown et al., 2020). Despite these advances, efforts to leverage DNN technology
in safety-critical systems have been hampered by the fact that current approaches create models that are
highly susceptible to deception, particularly deception in the form of what are known as evasion attacks or
adversarial examples. This is a well-documented open problem that persists to today (Carlini, 2024).

To address this, many defense methods have been proposed to increase the robustness of DNNs to adversarial
examples (Costa et al., 2024). The most widely implemented type of adversarial defense is adversarial training
(Szegedy et al., 2013; Goodfellow et al., 2015; Madry et al., 2017). These defenses seek to create adversarial
examples for a particular DNN from clean training examples. These adversarial examples are then labeled
with the same label as the clean training examples used to generate them and are then used to train that
DNN. This is done with the goal of making the addition of adversarial noise not change the DNN’s predicted
label for an example. This robustness, however, may not defend against adversarial examples distant in input
space from clean training examples (Costa et al., 2024).

One approach to addressing more distant adversarial attacks is to look to the open-set paradigm and create a
None-of-the-Above (NOTA) class, a new class in addition to the existing classes in a particular dataset. In
contrast to adversarial training, generated adversarial examples act as boundaries, are put into the NOTA
class, and are used as training examples. The premise is that with carefully crafted NOTA augmentation
examples, one can continuously seed the data-point-sparse space between data-dense regions of a classifier’s
input space throughout training and leverage the DNN to classify this vast space as NOTA. This approach
is suggested as a potential remedy to the “inevitability” of adversarial examples under the standard DNN
training paradigm (Shafahi et al., 2019). While covering all of the data-sparse regions of input space would
be impractical, such approaches hold it might be sufficient to cover the regions that define the boundaries
between and adjacent to classes and let the DNN generalize the remaining input space as NOTA.

Such defensive training strategies can be agnostic of the attack method or the neural network architecture.
Instead, they seek to change the structure of how the input space is partitioned by the classifier through
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training with an additional NOTA class. The approach is modular and can be added to any DNN classifier
and may augment most present or future defense strategies. The entire approach has a fixed computational
cost which only occurs during training, similar to adversarial training defenses, thus making it an attractive
potential solution. Barton (2018) first demonstrated these open-set approaches to closed-set adversarial
robustness and deep neural network defense with Boundary Padding (BP), a data augmentation approach
which sought to insert a “padding class” between various classes in input space by linearly interpolating
between two images and subsequently labeling the resulting example as a padding class (i.e., NOTA). This
defense was successful against several standard evasion attacks.

In this paper, we investigate, test, and evaluate this category of deep neural network defense by analyzing
and testing boundary padding as well as a illustrative defense called Adversarial NOTA Envelopment (ANE),
which seeks to additionally envelop data-dense regions of input space by creating NOTA examples in regions
not already classified as NOTA. When evaluating an adversarial defense, it is critical that the evaluation
does not lead to overconfidence in the effectiveness of a defense. To support this goal, leading researchers in
machine learning security have put forward a number of best practices in evaluating deep neural network
adversarial robustness. Evaluating potential DNN defenses against attacks that are not specifically adapted
to maximally combat or thwart those defenses is of minimal value. Once a researcher has conceived and
built a defense, it is then incumbent on them to “switch hats,” and apply their full knowledge and effort
to break the specific defense they are proposing, by altering attacks as necessary (Carlini et al., 2019). In
keeping with this ethos, we analyze the mechanisms and interactions between many adversarial attacks and
two NOTA defense approaches. As a result of this analysis, we provide the following contributions:

• Taxonomy of three recurring evaluation pitfalls for NOTA or open-set approaches to adversarial
defense.

• Evaluation attack suite of seven NOTA-aware attack variants (code released).

• Case Study demonstrating that existing defenses–including a novel open-set approach that improves
on previous methods–fail under proper evaluation.

Progress on open-set or “None-of-the-Above” approaches to adversarial defense is held back less by a lack of
defensive ideas than by misaligned attack evaluations. A long line of work–from Athalye et al. (2018) through
Tramer et al. (2020) to Suya et al. (2024)—shows that adversarial defenses judged “robust” often collapse
once the attacker is allowed to (i) target the correct class subset, (ii) run until truly optimal distortion is
reached, and/or (iii) optimize the defense’s actual objective function. Without a standardized, defense-aware
attack suite, researchers risk re-learning this lesson for every new defense modification or approach, burning
GPU cycles on fixes that merely plug ad-hoc evaluation holes. By providing this taxonomy and a drop-in set
of NOTA-aware attack variants, our work aims to raise the default evaluation bar: future NOTA defenses that
survive this suite, or other attacks modified according to this taxonomy, will have demonstrated robustness
to the three failure modes we identify, giving practitioners a higher-confidence starting point and allowing the
community to focus on genuinely new vulnerabilities rather than repeating past mistakes.

2 Background

The DNN defenses we evaluate can be applied to many architectures. With respect to evasion attack
adaptations, we introduce general concepts that can be applied to any existing attacks to prevent or mitigate
NOTA-paradigm defense successes. Before introducing our adapted attack strategies, it is necessary to outline
the evaluated models, defenses, and standard attacks.

2.1 Deep Neural Network Classifiers

Adversarial attacks are most commonly executed against DNN models. In general, a DNN classifier can be
described as a function f(x) : Rd− > Rc. Where the input is x ∈ Rd, and the output is in Rc, and is often
called the logits. In the image classification domain, input x is an h ∗w ∗ l pixel image such that x ∈ [0, 1]hwl
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and c is the number of object classes for the image. Object classes are denoted by integer codes ranging from
0 to c− 1. The prediction of the DNN for an input x is given by the equation y = argmax(f(x)).

2.2 Evasion Attacks

Evasion attacks imperceptibly modify the input to a model to produce a change in classification from the
clean (i.e. originally intended) class to some other, untrue class (Chakraborty et al., 2018). From this point
forward, we refer to these simply as adversarial attacks (Goodfellow et al., 2015).

The general form of evasion attacks is as follows. Adversarial examples are crafted such that given a classifier f ,
identifying c distinct classes of objects y1, y2, y3...ym, and a clean input x, belonging to the class yx, an input
x′ can be crafted such that f(x′) = yz and yx ̸= yz. This is accomplished by adding some perturbation δx to
x such that x + δx = x′, yet x′ is still recognized by humans as belonging to the original class yx (Goodfellow
et al., 2015). When attacking a NOTA-defended DNN classifier f with an image x′, an attack is successful only
if the prediction is not the original class yx or the NOTA class yN . In other words, f(x′) ̸= yx ∧ f(x′) ̸= yN

for a successful attack. The specific original attack algorithms used and modified in this work are described
in detail below.

2.2.1 Threat Model

Our threat model assumes the adversary’s attack occurs after training and system deployment, (i.e., the
adversary cannot manipulate training data). The adversary is assumed to be able to do one of two things.
One, they can change the actual artifact in the real world. Examples of this approach would be donning
anti-facial-recognition glasses to defeat identification systems (Sharif et al., 2016), applying an AI-camouflage
pattern to a ship or tank to evade wide area motion imagery detection, or simply applying tape to precise
positions on a stop sign to fool a self-driving car’s image classification system into missing the sign (Eykholt
et al., 2018). Two, an adversary with insider access to the data stream can change the direct input to
the model by, for instance, altering pixels by imperceptible amounts to fool a classification system into
misclassifying the pictured object (Goodfellow et al., 2015; Madry et al., 2017; Carlini & Wagner, 2017).

2.2.2 Projected Gradient Descent (PGD)

Projected gradient descent is a straight-forward attack that leverages the same optimization that makes DNNs
possible in the first place. In untargeted PGD, adversarial examples, x′ are discovered through gradient ascent
and backpropagation (Madry et al., 2017). We let L(f(x), yx) represent any loss function whose minimum
results in f(x) = yx. Gradient ascent is then employed to iteratively adjust pixels in x such that the loss, L
maximally increases and the resulting image f(x′) ̸= yx.1 For each iterative step, x is adjusted thus:

x′ = x + α sign(∇xL(f(x), yx)),

where the gradient vector ∇xL(f(x), yx) is the rate of change of the loss, L, and α is the learning rate. This
procedure produces a perturbation for x that pushes the DNN’s prediction away from the true class, yx.

After each gradient update, x′ is projected to be within an Lp-bound, ϵ, of x and be in the set [0, 1]hwl.
The most common Lp-norms used in PGD, and most other evasion attacks, are L2 and L∞. L2(δx) is the
magnitude of the adversarial noise and L∞(δx) is the maximum of the absolute adversarial noise.

2.2.3 AutoPGD (APGD)

Noting that PGD is a frequently-used, computationally-cheap method to test adversarial robustness in
DNN classifiers, Croce & Hein (2020b) identify two failure modes that can arise and give false assurance of
robustness. These are: 1) using a fixed step size and 2) limiting the loss function to cross entropy (CE). To
improve attack performance, they automate a process to identify a maximally effective step-size for PGD
among other variables, as well as provide a new alternative loss function they named Difference Logits Ratio
(DLR). Whereas the loss most often used in PGD is cross entropy, a shift-invariant loss, meaning the order of

1This is equivalent to gradient decent on the negative loss.
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logits does not alter the output, AutoPGD introduces DLR, which is both shift and scale invariant. Scale
invariant implies that rescaling its inputs by a non-zero constant will not change the loss value. This ensures
that the learning process—and by extension attacks seeking adversarial examples using gradient descent—will
not be sensitive to or affected by the scale of the input data. The DLR loss is defined as:

LDLR(f(x), y) = −
zy −max(zi)

i̸=y

zπ1 − zπ3

,

where each z is an individual logit from the output of f(x), π is the ordering of the components of z in
decreasing order. DLR has been reported to be sometimes better-performing than CE with respect to attack
success and more stable than Carlini-Wagner loss, detailed below (Croce & Hein, 2020b).

2.2.4 Carlini-Wagner Attacks

Carlini-Wagner (CW) attacks (Carlini & Wagner, 2017) are a suite of attacks that use various optimization
methods to find a minimum perturbation adversarial example according to some metric D(x− x′), usually
L2 or L∞, subject to the perturbation leading to a successful adversarial example. This results in the
optimization objective of

minimize D(x, x′) + λc · CCW(x′)
s.t. x′ ∈ [0, 1]n.

The CW constraint, CCW, term often takes the form

CCW(x, y) = ReLU
(
zy −max(zi)

i ̸=y

+ γ
)
,

where γ is the “confidence” and controls how much the logit of the highest non-clean logit, max(zi), exceeds
the logit for the clean class (zy). Carlini and Wagner add the additional requirement of the box constraint (in
order that x′ be considered a valid image, all pixels must be in the range [0, 1]). As a further requirement,
f(x′) is minimized, where f is an objective function producing a minimal value when f(x′) = yt – i.e., when
the target class is reached and the attack succeeds. The constant λc is obtained through binary search and is
used to increment or decrement the weight of f . The attack can be targeted where a desired non-true class is
provided or untargeted in which case the non-true class with the highest predicted logit zi output is selected
as the target class. Additionally, the attacker may choose a “confidence” level in the targeted version of the
attack as well, denoted above as γ, which controls the margin by which an example target class logit must be
driven to exceed the true class’s logit.

2.2.5 Deepfool Attacks

Researchers Moosavi-Dezfooli, Fawzi and Frossard introduced a novel attack in 2016, called DeepFool (Moosavi-
Dezfooli et al., 2016). The attack is originally conceived and implemented as an L2-based attack, but can be
adapted to any Lp metric. The DeepFool algorithm is a greedy algorithm that attempts to approximate the
minimum distance to the nearest decision boundary then cross it and produce an adversarial example. The
approach does not purport to guarantee the smallest possible perturbation, but has been found in practice to
yield very small perturbations. The authors believe these perturbations to be good approximations of the
minimum. It is not a targeted attack, instead seeking to find the closest region of input space producing a
different classification. The algorithm is described by the authors as a gradient descent algorithm using an
adaptive step size which it determines at each iteration. In simple terms, DeepFool uses Newton’s iterative
method to compute an approximation of the vectored minimum distance to the boundary of the complement
of the input space partition recognized by the model as the correct class. It then perturbs the image by
adding that vector.
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2.2.6 Square Attack

The square attack is a score-based black-box L2 and L∞ adversarial attack that does not use local gradient
information and thus is immune to gradient masking (Andriushchenko et al., 2020). It uses a randomized
search scheme and perturbations are introduced such that they lie on the boundary of the L2-hypersphere
or L∞-hypercube before their projection back inside the box constraint ([0, 1]d). First, a side-length for
the square that will be perturbed is chosen, according to a decreasing schedule. Next, a δ is chosen, if, on
applying the δ, the loss decreases, it is accepted. If not, it is rejected. If the new image classifies in a non-true
class, the image is accepted. If not, the algorithm continues, repeating until either successful or the max
number of iterations has been completed. The optimization problem this attack seeks a solution for is

min
x̂∈[0,1]d

L(f(x′), y), s.t.||x′ − x||p ≤ ϵ,

where x′ is an adversarial example (i.e., f(x′) ̸= y) that is created from x, and y is the true label.

2.2.7 AutoAttack

AutoAttack is considered the state-of-the-art adversarial evasion attack. It is a highly effective ensemble of
parameter-free attacks, combining the cross-entropy-based version of AutoPGD, difference-logits-ratio-based
version of AutoPGD, SquareAttack and, finally, the Fast Adaptive Boundary Attack (FAB) (Croce & Hein,
2020a). These separate attacks are used in sequence and until argmax(fxi

) ̸= ytrue. The adversarial robustness
library (ART) (Nicolae et al., 2018), which we use in our testing, substitutes the DeepFool attack in for the
FAB Attack. FAB is distinct in that it extrapolates the hyperplane more precisely than DeepFool. The
authors explain, “it would be similar to DeepFool except that our projection operator is exact whereas they
project onto the hyperplane and then clip to [0, 1]d.” FAB authors Croce et al, however point out that a
weakness of untargeted FAB is its extensive computational cost as dataset complexity increases and the
number of classes increases.

For ease of testing and standardization, the hyperparameters for each attack in AutoAttack are constant
across models, datasets, and measurement norms. Given its extensive strength and effectiveness, untargeted
AutoAttack is a standardized benchmark used by the adversarial robustness community to compare model
defense robustness to adversarial evasion attacks in general (Croce et al., 2020).

2.3 Relevant Adversarial Defense Paradigms

Given the extensive literature that has accumulated regarding new methods to find effective, fast, and cheap
evasion attacks, significant effort has likewise been expended pursuing effective measures to mitigate or
eliminate these threats. Here we describe two DNN defense paradigms which, although near-complements of
one another, have significantly different implications, strengths, and weaknesses. These include the well-known
and ubiquitous adversarial training and the less well-exercised open-set approaches, like NOTA-training
paradigms. The former’s success at defending against existing state-of-the-art attacks is used as a baseline
for evaluating the latter’s robustness to original and adapted versions of the same attacks.

2.3.1 Adversarial Training Data Augmentation

The best known method for increasing DNN robustness remains adversarial training (Goodfellow et al.,
2015; Szegedy et al., 2013). This is a data augmentation technique which adds adversarial examples to the
true label class. The most common form uses PGD, which, in many cases, leads to significantly improved
adversarial robustness (Madry et al., 2017).

2.3.2 NOTA Defenses

In contrast to adversarial training, NOTA defenses generate adversarial examples or other data points to
populate the NOTA class with and use as training examples. The premise is that with carefully crafted
NOTA augmentation examples, during training, one can continuously sow the data-poor regions of input
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space with NOTA, particularly using NOTA to separate data-rich regions of input space with differing classes.
The DNN then learns to classify this space along with the adversarial examples which are perturbed into it,
as NOTA.

Shafahi et al. showed mathematically using isoperimetric inequalities that if the partition of each class
corresponds to a partition that takes up less than half the input space, then by their proofs, every example in
any class will necessarily be within an extremely small Lp distance from an adversarial example (Shafahi
et al., 2019). We conceive then, that one goal of a NOTA approach would be to coax the DNN model into
designating more than half of the input space as NOTA. This then, should bring every example in any other
class into a, according to Shafahi et al., calculably very close proximity of the NOTA-class partition (Shafahi
et al., 2019). Though, the result cannot be said to rule out the possibility of adversarial examples from other
classes, it, at a minimum, begins to crowd out the space of opportunity for other classes, especially in the
presence of NOTA examples specifically chosen to surround the true label class partition tightly.

2.3.2.1 NOTA, Open-Set, and Out-of-Distribution Methods

Although NOTA defenses leverage the open-set concept, their goal differs from most open-set constructs in
the literature. The "I don’t know category" is not generally used as a defense, but rather as a method to
identify novel classes of data not already defined. Shao et al. (2020) characterize a research problem they
call Open-Set Adversarial Defense (OSAD), where adversarial attacks are studied under open-set settings. In
their framing, the goal is to both identify open-set samples (representing new classes) and defend against
adversarial evasion attacks. They demonstrate that open-set classifiers were readily fooled using existing
closed set attack methods.

A related method is out-of-distribution defenses using thresholds, but this has been shown to be ineffective
against simple adapted attacks. Enevoldsen et al. (2025) demonstrate that open-set recognition models
that use thresholds of maximum softmax probability or maximum logit score to identify novel classes, are
also easily deceived using simple adaptations to existing adversarial attacks to create false novelty or false
familiarity results. Also, Grosse et al. (2018) show the ease with which adversarial attacks can achieve high
confidence and low uncertainty adversarial examples which are misclassified by ML models, but not detected
by an out-of-distribution threshold approach. Additionally, they demonstrate that such examples successfully
transfer between different Bayesian models and approaches. Thus, their research implies that confidence and
uncertainty alone cannot be used as a basis for defense against adversarial examples.

NOTA-type defenses are different in that they leverage the open-set concept to provide closed-set adversarial
defense. NOTA defenses, therefore, do not facilitate or enable the identification of novel categories, nor do
they use logit or uncertainty thresholds to identify adversarial examples. Rather, NOTA defenses leverage an
additional none-of-the-above class to serve as the label for all adversarial examples, their derivatives, and
open-set examples, relying on the DNN to generalize and identify adversarial examples as the NOTA class.

2.3.2.2 Boundary Padding

BP was conceived after preceding research showed that various methods of creating NOTA class examples—
such as using linear interpolation in the input space, or mixing methods in latent lower dimensional space
using auto-encoders—showed promise at defending DNNs against adversarial examples produced by the CW
attack suite using confidences of 20 or higher (Barton, 2018; Barton et al., 2021). However these methods
struggled to perform against low-confidence Carlini Wagner Lp attacks.

Another influence for BP resulted from Zhang et al. (2020), they introduce Mixup, an algorithm for instantiating
linear behavior between training examples and increasing regularization and resistance to adversarial attack.
Although BP discards the label-mixing aspect, it uses the simple mixing expression, λ · x1 + (1− λ) · x2 for
the image data as well as randomization of λ in a new way to create its NOTA class examples. BP then is
an attempt to more closely surround correctly labeled regions of input space with NOTA class examples.
However, instead of ‘mixing’ two separate training examples, as well as their labels, and training as that label
combination, as is done in mixup, BP ‘mixes’ a single training set example x1 with an adversarial example,
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x′
1, derived using the PGD attack. The resulting BP image is labeled as the pure NOTA class and added to

training on the fly. Note that no mixing of the labels occurs, all produced examples are instead labeled as the
NOTA class and trained as such.

No Defense Boundary Padding (NOTA examples in teal)

Figure 1: tSNE plots of MNIST digits data

In BP two variations of NOTA are produced on the fly and added to the training batch before batch-training
commences, mean BP and uniform BP. In mean BP, λ is set to 0.5 and limited gaussian noise is added to
the resulting image. In uniform BP, λ is set to a random number between 0.05 and 0.95 and a weighted
average of the clean and adversarial example is performed. The resulting NOTA to clean data ratio is two to
one, making it by far the largest class in the dataset. This large representation of NOTA vs any other class
reflects the intuition that, regardless of the number of finite classes that are defined, the vast majority of
possible inputs in the input space do not correspond to any of the specified classes and, thus, should instead
be assigned to the NOTA class.

3 Methods

We study open-set enabled closed-set adversarial defenses that add a none-of-the-above (NOTA) class to a
DNN classifier and show that their reported robustness is often overstated because standard attacks lack
explicit handling for large auxiliary classes like NOTA. We present a three-part taxonomy of evaluation
pitfalls and an attack-adaptation template we then apply across seven prominent benchmark attacks. Finally
we introduce Adversarial NOTA Envelopment (ANE), a NOTA defense variant designed to eliminate an
observed weakness in previous NOTA defenses, i.e. NOTA “clumping.”

3.1 Taxonomy of Attack Failure Modes for NOTA Defenses

During our evaluations we found that attacking NOTA-defenses, both BP and ANE, with unadapted attacks
often resulted in stark, overwhelming defense successes against a broad range of attacks. On close inspection
of attack code however, we realized that most attacks shared common mechanisms which lacked necessary
specification to handle an open-set defense incorporating a large all-encompassing class like NOTA.2 We
found that one or a combination of the following common mechanisms often resulted in a less-than-thorough
search of the input space for a potentially successful adversarial example: the subject attack’s target selection,
its stopping criteria, and/or its objective function. By adapting the failing attack mechanisms according
to our NOTA template, we expect attacks to get substantially closer to a more accurate assessment of the

2That is, NOTA is a class which is intended to encompass all adversarial examples from every other class as well as intermediate
input space between classes and surrounding the data manifold.
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Failure mode Mechanism (typical) Effect in NOTA setting Fix (attack-agnostic)

F1. Target Selection Choose target from any
non-true class (or predicted
label)

NOTA becomes an (easy)
target or predicted “clean”
label

Exclude yNOT A from can-
didate targets and from
any label inference.

F2. Stopping Criteria Success declared when
arg max f(x′) ̸= ytrue

Early termination on
NOTA predictions

Require arg max f(x′) ̸=
{ytrue, yNOT A}; continue
otherwise.

F3. Objective Function* Loss encourages movement
toward nearest non-true
partition

Optimization steers into
NOTA “honeypot”

Modify objective to avoid
using NOTA logits as at-
tractors, or explicitly re-
pulse from yNOT A (e.g.,
anti-NOTA term).

Table 1: Taxonomy of evaluation pitfalls for NOTA-style defenses and attack-agnostic fixes. *Note: Out of
these three the objective function alone is optional. It is not always possible and should be implemented only
if all else fails or proves insufficient.

adversarial robustness of these NOTA models as well as future models of the NOTA and/or open-set defense
genre.

NOTA Attack-adaptation Template

For each baseline attack we apply, in order:

1. Target Selection: remove yNOT A from any target set or possible initial label prediction;

2. Stopping Criteria: adopt NOTA-aware stopping criteria;

3. Objective Function: (Optional) If applicable and necessary, adjust losses that implicitly steer into
NOTA (or add or replace with anti-NOTA repulsion term).

3.1.1 Target Selection

In many attacks, if a particular target class is not provided (i.e., a desired false class to perturb the image
into), the attack chooses a ‘best,’ random, or otherwise determined class that is not the true label. If present,
such a mechanism must be altered to additionally exclude the NOTA class as a potential target. This was
discovered to be true in CW attacks (Carlini & Wagner, 2017), DeepFool (Moosavi-Dezfooli et al., 2016), as
well as targeted AutoPGD and targeted AutoAttack (Croce & Hein, 2020b). Closely related is the issue when
true labels are not provided into an attack. The attack must use the model to predict what the initial true
label is and perturb the image out of that class. If NOTA is the initial predicted true label, the attack may
perturb the image into the true class. Again the solution is to exclude NOTA as a potential true label class
as well.

3.1.2 Stopping Criteria

Stopping criteria are the predetermined circumstances under which attack code will presume success and
cease exploring the input space by continuing to modify the adversarial example. It is no longer the case
under the NOTA paradigm that just any class other than the true class will results in a successful evasion
attack. In fact, the most abundant class, the one that is most likely to represent the closest decision boundary
or next highest probability or logit, is likely to no longer correspond to a successful attack, as the goal of
NOTA approaches is that such criteria will result instead in the NOTA class. For instance, some untargeted
attacks set one condition for success to be to change the predicted class such that argmax(f(x′)) ̸= yT rue.
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Properly restated in a NOTA paradigm this should be changed to the following:

(argmax(f(x′)) ̸= yNOT A) ∧ (argmax(f(x′)) ̸= yT rue)

This prevents attacks from immediately stopping when NOTA is the predicted class.

3.1.3 Objective Function

In some cases, an objective function which does not account for the presence or abundance of a NOTA
class can result in driving perturbations directly into the NOTA class, rather than through it or away
from it. As the non-true class with the closest data points to every training example, NOTA frequently
has the steepest gradient away from the correct class and can act as a local minimum, or honeypot. This
may require adjustment to the objective function. This is true in CW attacks and can be applied to other
gradient-descent-based attacks, such as AutoPGD (Croce & Hein, 2020b).

3.2 Adversarial NOTA Envelopment

Given BP’s existing loss formulations, as NOTA regions are planted and reinforced over the course of training
epochs, it is likely that new NOTA examples will be planted in nearly the same input space locations epoch
after epoch. Each new NOTA example then results in a steeper gradient to that portion of the input space,
which in turn, will result in higher likelihood that future NOTA data augmentation will be created in close to
the same place. This can have a reinforcing effect creating essentially a funnel or entrapment zone. As a
result, NOTA regions clump near but not surrounding a class’s partition space. Instead, the desired behavior
of a NOTA defense should be to surround or envelop homogenously-classed datapoint-dense regions of input
space with NOTA, while also populating data-sparse regions between them with NOTA.

Toward this end, the ANE defense retains all previous characteristics of BP, except it switches between two
different losses in creating its NOTA data. One PGD loss maximizes the cross entropy (CE) with respect to
the true label class as in BP. The second loss maximizes the cross entropy loss with respect to the NOTA
class. This strategy is elegant in its simplicity, alternating between pushing away from the true label class to
plant NOTA, and pushing away from existing NOTA partition to plant NOTA examples where it does not
already exist.

L(ytrue, f(x)) =
{

CE(ytrue, softmax(f(x))) when β ≤ 0.5
CE(yNOT A, softmax(f(x))) otherwise

where β ∼ U(0, 1).

3.3 Applying the Taxonomy: per-attack NOTA adaptations

Below we summarize how each baseline attack triggers the taxonomy and the minimal changes we implement
in the Adversarial Robustness Toolbox (Nicolae et al., 2018) implementations of each. Code is released with
the paper. A summary table of all of these changes is provided in the appendix.

3.3.1 NOTA Adapted Carlini-Wagner L∞ and L2

For a description of Carlini and Wagner’s attacks see Section 2.2.4 (Carlini & Wagner, 2017). Each Lp version
of this attack requires an adjustment of the code it uses to select a target class (F1). When the target logit
is selected, the NOTA class must be eliminated from consideration, since this logit represents the class that
the attack perturbs the image into. Additionally, the attack’s stopping criterion (F2) must be modified so
that the attack is not registered as successful until the target logit is greater than the highest of either the
logit of the true label class plus the input confidence score or the logit of the NOTA class plus the input
confidence score.

3.3.2 NOTA Adapted Deep Fool

DeepFool is described in detail in Section 2.2.5 (Moosavi-Dezfooli et al., 2016). This attack required both an
adjustment regarding code for target selection (F1)and an adjustment to the attack’s stopping criteria (F2).
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We first removed NOTA as an option when the algorithm ranks potential targets in its selection process. We
also ensure that the attack will not stop in the case where NOTA is the predicted class after perturbation,
unless it has reached the maximum iterations without finding a successful adversarial example.

3.3.3 NOTA Adapted Square Attack

In analyzing Square Attack (Andriushchenko et al., 2020), we first prevented the NOTA class from being
chosen as the initially correct label (F1), in the event the true labels are not provided. Next, we evaluated
the stopping criteria (F2). We altered the criteria so that the attack was only successful if it resulted in a
classification other than the clean class and the NOTA class. We investigated changes to the loss function
(F3) to incorporate a term that incentivized increased loss between the adversarial example and the NOTA
class in addition to the clean class, but this resulted in less effective attacks against NOTA defenses. We
believe this was due to the fact that the loss was used as a litmus test to determine if a change was an
improvement or not and the two separate terms rarely reinforced and, more often, destructively interfered
with one another resulting in no applied alterations. The strongest attack resulted from eliminating NOTA
as a legitimate stopping class in the stopping criteria and eliminating it as a possible clean class.

3.3.4 NOTA Adapted Auto Projected Gradient Decent (APGD) CE, and DLR

Both the CE and DLR versions of the APGD attack (Croce & Hein, 2020b) are described in Section 2.2.3.
In both versions of the APGD attack, it is necessary to ensure that if the labels are not provided, that
the model does not predict the NOTA class as the clean example’s class in creating the labels (F1). More
importantly, the stopping criteria must be adjusted such that the attack will not stop when the NOTA class
is predicted (F2), but instead keep iterating toward a successful attack. For the CE version of APGD it was
worth investigating an adjustment to the loss function considering the introduction of a massive class like
NOTA. We adjusted the loss to maximize a combination of the clean label class loss and the NOTA label
class loss by taking their mean. We investigated this and other combinations to try and find a more effective
implementation of the APGD-CE attack. These combination strategies were no more potent in the end, so
we retained the original loss term for adapted NOTA APGD-CE. For APGD-DLR, we ensure that the NOTA
class is not designated as any of the three logits that are used to calculate the difference logits ratio loss (F3).

3.3.5 NOTA Adapted APGD-AN

However, the process above did inspire the investigation of using the same NOTA-Aware APGD mechanism
(F1/F2) with a new loss term, which exclusively maximizes the categorical cross-entropy between the DNN’s
prediction for an adversarial example and the NOTA label (F3). We call this loss term Anti-NOTA (AN).
Our intuition is that, after training, the NOTA class examples have largely enveloped the entire manifold on
which the dataset exists. Therefore, maximizing the cross-entropy loss with the NOTA label should push the
input toward explicitly non-NOTA, off-manifold regions of input space, within the ϵ-bound, where there is a
better chance of encountering an adversarial example that will not classify as NOTA.

3.3.6 NOTA Adapted AutoAttack

As AutoAttack (Croce & Hein, 2020a) leverages four separate parameter-free subordinate attacks, as described
in Section 2.2.7, it is necessary to ensure that the adapted NOTA version of AutoAttack calls the most effective
adapted versions of each of these subordinate attacks. Additional changes are required in the AutoAttack
procedure which wraps the subordinate attacks. As in other attacks, the stopping criteria (F2) evaluated after
each subordinate attack is completed must be adjusted to exclude the prediction of NOTA as a successful
outcome for the attack. We test both a NOTA-aware version of AutoAttack with NOTA-Aware APGD-CE
and a NOTA-aware version of AutoAttack with NOTA-aware APGD-AN, substituted into APGD-CE’s place.

4 Experiments and Results

In this section we evaluate the effectiveness of our NOTA-adapted attacks against NOTA-defended models
trained separately on CIFAR-10 and CIFAR-100 (Krizhevsky, 2009). Specifically, we compare the resulting
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effectiveness of these attacks on NOTA-defended models to the effectiveness of the original attacks against
NOTA-defended models, adversarial training-defended models and fully undefended models. We first evaluate
all defenses and models against seven prominent highly effective unmodified attacks. We then implement
NOTA adaptations on all seven attacks as identified and discussed in Section 3.3, evaluating the effectiveness
of these attacks at mitigating or eliminating NOTA defenses and reporting all results in tables 3 and 4.

4.1 Experimental Setup

We use standard Wide Residual Networks (WRN) with dropout and batch normalization, configured as
suggested by Zagoruyko & Komodakis (2016) as the base model architecture for our experiments. Dropout
is set to 30% drop probability during training. For all models, we use a wide resnet, 12 units deep and 6
units wide, i.e., WRN-12-6, a common setup for these datasets. For each model we use an ADAM (adaptive
moment estimation) optimizer with default settings, b1 = 0.9 and b2 = 0.999 (Kingma & Ba, 2017) with
sharpness-aware minimization (SAM) (Foret et al., 2021). ADAM assists the model in efficiently converging
on a solution, whereas SAM, by seeking out minima of the training loss landscape and minimizing loss
curvature, smooths the boundaries between partitions expressed in input space. When performing mini-batch
gradient descent training, two separate batches of 32 are drawn from the training set for each training cycle.
The first uses standard dataset augmentation, a random up to 10% shift up or down, and left or right, as
well as random horizontal flipping and a random, up to a 15 degree rotation clockwise or counter clockwise.
The second batch is a ‘clean’ batch drawn from a separate iterator without data augmentation. Each batch is
used both as a benign training batch and also to create NOTA examples based on each training example.

We perform experiments using the CIFAR-10 and CIFAR-100 datasets. Our datasets are split before training
such that 4% of the former training set are quarantined as a validation set to enable early-stopping model
selection, based on a combination of best validation accuracy and best validation adversarial robustness. In
very close models, we slightly favor best validation accuracy over validation adversarial robustness. Every
150 batches during training, the same 30 examples are used (previously separated from the validation set) to
create 30 untargeted, zero-confidence CWL2 adversarial examples with a maximum of 10 iterations. These
adversarial examples are then used to calculate a validation ‘attack success rate’ (ASR), which is used in
model selection. ASR is calculated by determining the number of adversarial examples that successfully
drove the model to classify the image as a class other than the NOTA class or the true label. The number of
successful adversarial examples divided by the total number of attempted adversarial examples results in the
ASR. The process detailed here is precisely the same for all model training and model selection, whether
NOTA, adversarial training, or undefended models.

Table 2: Clean Model Test Accuracies

CIFAR-10
Model Accuracy
No Defense 92.31%
Adversarial Training 90.71%
Boundary Padding 90.93%
Adversarial NOTA Envelopment 92.20%

CIFAR-100
No Defense 70.53%
Adversarial Training 66.47%
Boundary Padding 68.13%
Adversarial NOTA Envelopment 69.89%

All models were WRN-12-6, with dropout of 30% and batch normalization.

The test set is strictly reserved for testing a specific model that has been previously selected using only
ASR and accuracy performance from the validation set. In testing, accuracy is calculated from the full test
set. ASR is calculated on the preselected model using adversarial examples created using sufficient test set
samples to ensure reasonably small confidence intervals.

11



Under review as submission to TMLR

We state our findings along with their 95% binomial confidence intervals. We test against Carlini Wagner L2,
L∞ (Carlini & Wagner, 2017), AutoPGD-CE, AutoPGD-DLR (Croce & Hein, 2020b), DeepFool (Moosavi-
Dezfooli et al., 2016), Square Attack (Andriushchenko et al., 2020), and AutoAttack (Croce & Hein, 2020a).
We adapt each of these attacks to counter the NOTA defense, and add an additional variant of AutoPGD,
AutoPGD-AN, all as specifically described in sections 3.3.1—3.3.6. In parameterized attacks, we set max
iterations to 100, i.e., CW Lp attacks, square attack and DeepFool (L2). All AutoPGD attacks, Square
Attack, and AutoAttack are performed in both L2 with max epsilon of 0.5 (maximum distance between x
and x′ by specified Lp metric) and L∞ with max epsilon of 8/255, the distances specified for each by Robust
Bench (Croce et al., 2020). Finally, DeepFool is tested in default L2 with the standard max ϵ = 0.5.

4.2 Results

In tables 3 and 4 attack success rates (ASR) are reported for original attacks against both undefended and
defended models (adversarial training models, boundary padding models, and adversarial NOTA envelopment
models, respectively).

Table 3: Attack Success Rates (ASRs) for Original and Adaptive NOTA Attacks for CIFAR-10

Models C&W Suite APGD CE APGD AN APGD DLR Square Attk DF AA, Untrgtd AA-AN, Untrgtd

L2,
Conf:0

L∞,
Conf:0

L2,
ϵ:0.5

L∞,
ϵ:0.031

L2,
ϵ:0.5

L∞,
ϵ:0.031

L2,
ϵ:0.5

L∞,
ϵ:0.031

L2,
ϵ:0.5

L∞,
ϵ:0.031

L2,
ϵ:0.5

L2,
ϵ:0.5

L∞,
ϵ:0.031

L2,
ϵ:0.5

L∞,
ϵ:0.031

No Defense vs.
Orig. Attacks

99.0%,
±2.0%

100.0%,
±0.0%

99.5%,
±1.0%

100.0%,
±0.0%

— — 85.5%,
±4.9%

95.0%,
±4.3%

12.0%,
±6.4%

56.0%,
±9.7%

98.0%,
±2.7%

100.0%,
±0.0%

100.0%,
±0.0%

— —

Adv. Train vs.
Orig. Attacks

94.6%,
±2.0%

100%,
±0.0%

53.2%,
±4.4%

96.6%,
±1.6%

— — 49.4%,
±4.4%

87.8%,
±2.9%

12.4%,
±2.9%

35.6%,
±4.2%

92.4%,
±2.3%

53.4%,
±4.4%

96.8%,
±1.5%

— —

BP vs. Orig.
Attacks

16.0%,
±7.2%

1.0%,
±2.0%

6.0%,
±4.7%

6.0%,
±4.7%

— — 42.0%,
±9.7%

55.0%,
±9.8%

14.0%,
±6.8%

64.0%,
±9.4%

9.0%,
±5.6%

6.0%,
±4.7%

6.0%,
±4.7%

— —

ANE vs. Orig.
Attacks

12.0%,
±6.4%

0.0%,
±0.0%

5.0%,
±4.3%

5.0%,
±4.3%

— — 15.0%,
±7.0%

39.0%,
±9.6%

5.0%,
±4.3%

40.0%,
±9.6%

5.0%,
±4.3%

5.0%,
±4.3%

5.0%,
±4.3%

— —

BP vs. NOTA
Attacks

99.0%,
±2.0%

1.0%,
±2.0%

9.0%,
±2.5%

9.2%,
±2.5%

18.8%,
±3.4%

91.8%,
±2.4%

91.0%,
±5.6%

100.0%,
±0.0%

15.0%,
±7.0%

63.0%,
±9.5%

13.0%,
±6.6%

93.4%,
±2.2%

99.6%,
±0.6%

92.8%,
±2.3%

99.6%,
±0.6%

ANE vs. NOTA
Attacks

9.0%,
±5.6%

5.0%,
±4.3%

8.6%,
±2.5%

9.4%,
±2.6%

46.8%,
±4.4%

74.4%,
±3.8%

55.0%,
±9.8%

91.0%,
±5.6%

5.0%,
±4.3%

37.0%,
±9.5%

9.0%,
±5.6%

52.6%,
±3.4%

95.4%,
±1.8%

54.0%,
±4.4%

95.0%,
±1.9%

The blanks represent original attacks, for which ANTI-NOTA (AN) loss does not exist as it is novel to this paper and its attacks.

Table 4: Attack Success Rates (ASRs) for Original and Adaptive NOTA Attacks for CIFAR-100

Models C&W Suite APGD CE APGD AN APGD DLR Square Attk DF AA, Untrgtd AA-AN, Untrgtd

L2,
Conf:0

L∞,
Conf:0

L2,
ϵ:0.5

L∞,
ϵ:0.031

L2,
ϵ:0.5

L∞,
ϵ:0.031

L2,
ϵ:0.5

L∞,
ϵ:0.031

L2,
ϵ:0.5

L∞,
ϵ:0.031

L2,
ϵ:0.5

L2,
ϵ:0.5

L∞,
ϵ:0.031

L2,
ϵ:0.5

L∞,
ϵ:0.031

No Defense 98.3%,
±1.0%

100.0%,
±0.0%

98.8%,
±0.3%

100.0%,
±0.0%

— — 99.7%,
±0.5%

100.0%,
±0.0%

41.3%,
±3.9%

87.3%,
±2.7%

83.5%,
±3.0%

99.8%,
±0.3%

100%,
±0.0%

— —

Adv. Train vs.
Orig. Attacks

95.6%,
±1.8%

100%,
±0.0%

78.6%,
±3.6%

97.2%,
±1.5%

— — 77.0%,
±3.7%

96.0%,
±1.7%

32.4%,
±4.1%

62.2%,
±4.3%

89.0%,
±2.7%

78.8%,
±3.6%

97.2%,
±1.5%

— —

BP vs. Orig.
Attacks

51.8%,
±4.4%

2.2%,
±1.3%

33.2%,
±4.1%

33.2%,
±4.1%

— — 78.4%,
±3.6%

69.4%,
±4.0%

47.6%,
±4.4%

36.8%,
±4.2%

24.2%,
±3.8%

33.2%,
±4.1%

33.2%,
±4.1%

— —

ANE vs. Orig.
Attacks

40.2%
±4.3%

0%
±0.0%

31.2%
±4.1%

31.2%
±4.1%

— — 51.8%
±4.4%

54.6%
±4.4%

31.2%
±4.1%

66.0%
±4.2%

16%
±3.2%

31.2%
±4.1%

31.2%
±4.1%

— —

BP vs. NOTA
Attacks

54.4%,
±4.4%

34.6%,
±4.2%

33.2%,
±4.1%

33.2%,
±4.1%

58.2%,
±4.3%

98%,
±1.2%

99.6%,
±0.6%

99.4%,
±0.7%

48.2%,
±4.4%

49.2%,
±4.4%

32.8%,
±4.1%

97.8%,
±1.3%

98.8%,
±1.0%

98.4%,
±1.1%

99.4%,
±0.7%

ANE vs. NOTA
Attacks

49.4%,
±4.4%

30.3%,
±3.7%

31.2%,
±4.1%

31.2%,
±4.1%

83.4%,
±2.6%

96.6%,
±1.6%

89.8%,
±2.7%

90.4%,
±2.6%

31.3%,
±3.7%

68.0%,
±4.1%

20.6%,
±3.0%

89.2%,
±2.7%

96.6%,
±1.6%

94.6%,
±2.0%

98.6%,
±1.0%

The blanks represent original attacks, for which ANTI-NOTA (AN) loss does not exist as it is novel to this paper and its attacks.

4.2.1 Unmodified Attacks vs. Defenses

As recorded in the middle two rows of Tables 3 and 4, BP and ANE result in a stunning and ostensibly
noteworthy performance in defending against a broad cross-section of the unmodified attacks. Unmodified
AutoAttack results in an astoundingly low L2 and L∞ ASR of 6% and 6% for the CIFAR-10 dataset. This is
in comparison to 100% and 100% against the undefended model, and 53.4% and 96.8% against the adversarial
training defended model. Likewise, in Table 4, unmodified AutoAttack is only able to manage an L2 and L∞
ASR of 33.2% and 33.2% respectively against the BP defense, each of which is within the confidence interval
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of the model’s natural error rate. Contrast this with the undefended model’s 99.8% and 100% ASRs, and
the adversarial training defended model’s 78.8% and 97.2% ASRs against the same attack. With respect
to other mainstream attacks, BP and ANE record substantial reductions to ASRs for nearly all attacks
across both data sets, with ANE consistently out-defending or statistically matching adversarial training with
respect to each attack. For the L2-bounded Square Attack in the CIFAR-10 dataset, there is no significant
statistical difference between the adversarial-trained defense, and the best NOTA defended model, ANE. The
unmodified L∞-bounded Square Attack ASR is likewise a statistical tie between adversarial training and
ANE defenses. Overall, considering the substantially successful defense against these benchmark attacks,
NOTA defenses would seem an impressive advance in favor of increased adversarial robustness in classification
systems.

Further analysis of the resilience of these defenses to the unmodified attacks reveals some curious observations,
however. First, Square Attack remains largely effective against naive BP and, yet, AutoAttack, which
leverages square attack as one of its components, does not register a commensurate ASR, or even above the
model’s natural error rate in either data set. One key to understanding how this can occur is that NOTA
defense approaches, in general, rest on a fundamental change to the existing training paradigm, i.e., they add
a NOTA class to the model and assert that inputs which are predicted in that class are to be considered
adversarial examples. Thus, simply driving an input into a class other than its true label is no longer a
sufficient strategy for an attack, it must also exclude the NOTA label as a successful result. This explains
AutoAttack’s lower ASR, even though Square Attack is one of its component attacks, those adversarial
examples that are deemed successful with earlier component attacks are not altered further, so an example
that results in a NOTA class with an earlier attack will not be further iterated with a potentially more
successful later subordinate attack. This and other similar insights described in section 3.1 provided ample
opportunity to adapt each attack to maximize its ASR.

4.2.2 NOTA-Aware Adaptive Attacks vs. Defenses

As is evident in Tables 3 and 4, adapting the selected adversarial evasion attacks to the NOTA paradigm
results in substantial increases in attack success rate for most attacks against both NOTA-defended models.
However, some exceptions do arise, such as APGD-CE, CW L∞, and DeepFool, where, significant robustness
is retained in the NOTA defenses, showing either non-statistically different results with the original attack
or only a slightly higher ASR. In the case of APGD-CE, the same code (with different loss, however) is
used in executing APGD-DLR and our newly introduced APGD-AN, both of which show strong increases
in ASR against NOTA defenses in each dataset. This, therefore, validates the shared mechanism in the
three attacks and reveals that the defenses do have a particular strength against standard gradient-based
cross-entropy attacks. This finding is no surprise as both NOTA defenses tested use variations on gradient-
based cross-entropy to create NOTA training examples. Overall, the fact that a majority of these attacks
substantially increase ASR, at times achieving 99% ASR, and that no attack performs statistically poorer
with the implemented changes to stopping criteria, target selection, or objective function, validates the attack
adaptations against both NOTA defenses.

4.2.2.1 Adapted Attacks vs. BP

Observing BP’s defense of CIFAR-10, NOTA-Aware APGD-DLR increased the ASR by 49% in L2 to 91% and
by 45% in the L∞ norm to 100%. NOTA-Aware AutoAttack, likewise, increased the ASR, by 94% in both
L2 and L∞. NOTA-Aware CW L2 increased ASR by 84%. The lack of substantial increase in CW L∞ and
APGD-CE ASR can be attributed to the fact that the NOTA class is created from modified cross-entropy-
based PGD. BP’s defense of CIFAR-100 showed very similar results with some variation. NOTA-Aware CW
L2 is a statistical tie with the original attack at just above 50% ASR. NOTA-Aware CW L∞ does however
show an improvement over the original attack of greater than 30%. NOTA-Aware APGD-DLR is restored to
above 99% ASR for both L2 and L∞, an increase of 21% and 30% ASR respectively. NOTA-Aware Square
attack resulted again with statistically insignificant results compared with the original attack. DeepFool saw
a greater than 8% increase in ASR, but still no greater than natural error. NOTA-Aware AutoAttack saw an
increase greater than 64% in both norms, to about 98% ASR.
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4.2.2.2 Adapted Attacks vs. ANE

ANE, though initially promising and more effective against unadapted attacks, collapses once the evaluation
pitfalls are fixed. With respect to the CIFAR-10 dataset, although ANE does recover some general robustness
when compared to BP in defending against NOTA-aware attacks, overall, the majority of the attacks are
still substantially or even fully potent. NOTA-aware AutoPGD-DLR results in an ASR of 55% in the L2
and 91% in the L∞ bounds. Likewise, untargeted NOTA-Aware AutoAttack achieves 53% L2 and 95% L∞
ASR. NOTA-Aware Carlini and Wagner L2 was not as successful against ANE as it was against BP, with its
ASR reduced from 99% to just 9%, or roughly natural error. NOTA-Aware C&W L∞ remained ineffective,
likely for the same reasons described in section 4.2.2.1. NOTA-Aware Square attack and Deep Fool again
remain roughly statistically equivalent to the original attack versions against ANE, indicating that whatever
robustness is conferred by the defense against these attacks is not due to the failure modes for stopping
criteria and target selection that we identify and correct in their code. However, as revealed by NOTA-Aware
versions of APGD-DLR, APGD-AN, Square Attack, and Auto Attack (AA and AA-AN), adversarial examples
for CIFAR-10 nevertheless exist in abundance and are readily discovered by these adapted attacks.

ANE reveals much the same story in its performance defending against NOTA-Aware attacks for the CIFAR-
100 dataset.3 One notable difference in CIFAR-100 is the improved performance of NOTA-Aware C&W L2,
which in this dataset achieved 49.4% ASR against ANE, approximately 20% above natural error in the model.
Again, APGD-CE ASR was only commensurate with natural error, however, APGD-AN and APGD-DLR,
which use the same code only leveraging different losses, each substantially defeat the defense. APGD-AN
results in ASRs of 83% in L2 and 97% in L∞, whereas APGD-DLR achieves 90% in L2 and 90% in L∞. The
Anti-NOTA APGD-AN variation showed that it alone among the adapted NOTA-Aware attacks was more
successful against ANE than BP (only in the L2 bound), with BP showing a still significantly compromised
ASR of 58%, but against ANE an ASR of 83%. NOTA-Aware Square Attack and Deep Fool show little or no
statistically significant difference with their original versions against CIFAR-100. Finally, both AutoAttack
with APGD-CE and AutoAttack with APGD-AN are extremely effective with ASRs near or above 90% in
both bounds.

4.2.3 Comparing Adversarial Training with Adversarial NOTA Envelopment

With the advent of effective adapted attacks against the best NOTA defenses, a far more balanced comparison
can be made between the standard for adversarial defense, adversarial training, and this complement of its
defense paradigm, NOTA. First and foremost, our testing confirms that neither is a solution to the problem
of adversarial attacks alone. Nevertheless, the comparison apparent in tables 3 and 4 are still of interest.
Overall, there are some mixed performances reported here, with most, though not all, resulting in adversarial
training (AT) providing less robustness against standard attacks than ANE provides against NOTA-Aware
adapted versions of those attacks.

Looking first at CIFAR-10 results, the adversarial trained (AT) model is less robust when compared to ANE
in C&W L2 (AT: 95%, ANE: 9%), C&W L∞ (AT: 100%, ANE: 5%), APGD-CE L2 (AT: 53%, ANE: 9%),
APGD-CE L∞ (AT:97%, ANE: 9%), and DeepFool (AT: 92%, ANE: 9%). AT and ANE have statistically
nonsignificant differences in results for attacks APGD-DLR L2 (AT: 49%, ANE: 55%), APGD-DLR L∞
(AT: 88%, ANE: 91%), SquareAttack L2 (AT: 12%, ANE: 5%), SquareAttack L∞ (AT: 36%, ANE: 37%),
AutoAttack L2 (AT: 53%, ANE: 53%), and AutoAttack L∞ (AT: 97%, ANE: 95%). One would need to
compare ANE’s results for NOTA-Aware APGD-AN to AT’s results for APGD-CE for a fair comparison of
the anti-NOTA loss version of APGD, in which case ANE shows modest improvement (where significant)
over AT, L2 (AT: 53%, ANE: 47%), and L∞ (AT: 97%, ANE: 74%).

Turning to CIFAR-100 for a comparison of robustness between adversarial training and adversarial NOTA
envelopment, we have very similar results. AT is less robust when compared to ANE in C&W L2 (AT:
96%, ANE: 49%), C&W L∞ (AT: 100%, ANE: 30.3%), APGD-CE L2 (AT: 79%, ANE: 31%), APGD-CE
L∞ (AT:97%, ANE: 31%), APGD-DLR L∞ (AT: 96%, ANE: 90%), and DeepFool (AT: 89%, ANE: 21%).
However, AT shows greater robustness compared to ANE in APGD-DLR L2 (AT: 77%, ANE: 90%) and

3The WRN-12-6 C100 models for each of undefended, Adversarial Training, BP, and ANE, all have natural error rates that
hover at 30% to 33%, see Table 2 for specific model accuracies (natural error = 1 - accuracy).
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AutoAttack L2 (AT: 79%, ANE: 89%). There are no statistically significant differences noted for SquareAttack
L2 and L∞, or AutoAttack L∞. Again, one needs to compare ANE’s results for NOTA-Aware APGD-AN
to AT’s results for APGD-CE for a fair comparison of the anti-NOTA loss version of APGD, in which case
for CIFAR-100, there is no statistically significant difference in performance between the two, L2 (AT: 79%,
ANE: 83%), and L∞ (AT: 97%, ANE: 97%).

All results considered, ANE would appear to confer greater and more general robustness to a model than
adversarial training, however, considering the results from the adapted NOTA-Aware attacks, both collapse
and fail to defend models from evasion attacks, with many attack options available to get 90% or greater
attack success rates.

5 Conclusion

In this paper we begin by discussing and evaluating a group of open-set adversarial defense approaches which
employ a none-of-the-above class to defend against evasion attacks on deep neural networks. In investigating
why this genre of defense, on its surface, is effective against many attacks, we discover and provide a simple
taxonomy for several common attack failure modes. Finally, we modify seven prominent and highly effective
benchmark attacks, eliminating the identified failure modes and allowing us to largely recover attack potency
against NOTA defenses. We then evaluate the effectiveness of the adapted attacks against NOTA defenses
and compare the results to the effectiveness of standard attacks against adversarial training.

We observe that although our adapted attacks clearly show that present NOTA defenses are not sufficient to
defend against attacks adapted as outlined in this paper, NOTA defenses in general do appear to confer some
small residual resilience to even these adapted attacks that at least rivals adversarial training. The attack
adaptations identified in this paper can be applied to any existing or future attack to increase its effectiveness
against open-set approaches to adversarial defense.

With several adapted attacks recovering ASRs back to 90% and above in both datasets, we advise that future
evaluations of NOTA-type or open-set enabled defenses must begin by testing with NOTA-aware attacks.
To this end we make the NOTA-Aware adaptations to attacks created in this paper available as a library
for public use. Finally, if a NOTA-aware version of an attack is not available, the practitioner will find the
taxonomy in this paper instructive in how to adapt any new attack to eliminate the three identified pitfalls.
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Algorithm 1: DeepFool: multi-class case (Moosavi-Dezfooli et al., 2016)
input: Image x, classifier f ;
output: Perturbation r̂ ;
ypred(x) = argmax(f(x)) ;
Initialize x0 ← x, i← 0;
while ypred(xi) = ypred(x0) do

for y ̸= ypred(x0) do
w′

y ← ∇fy(xi)−∇fypred(x0)(xi);
f ′

y ← fy(xi)− fypred(x0)(xi);

l̂← argminy ̸=ypred(x0)
|f ′

y|
||w′

y||2
;

ri ←
|f ′

l̂
|

||w′
l̂
||22

w′
l̂
;

xi+1 ← xi + ri;
i← i + 1;

return: r̂ =
∑

i ri

Algorithm 2: Square Attack via random search (Andriushchenko et al., 2020)
input: classifier f , point x ∈ Rd, image size w, number of color channels c, lp-radius ϵ, label
y ∈ [1, ..., K], number of iterations N ;

output: approximate minimizer x′ ∈ Rd of the problem stated in the equation under Square Attack ;
x′ ← init(x), l∗ ← L(f(x), y), i← 1;
while i ≤ N and x′ is not adversarial do

h(i) ← side length of the square to modify (according to a schedule);
δ P (ϵ, h(i), w, c, x′, x) (see paper for sampling distributions.);
x′

new ← Project x′ + δ onto {z ∈ Rd : ||z − x||p ≤ ϵ} ∩ [0, 1]d;
lnew ← L(f(x′

new), y);
if lnew < l∗ then

x′ ← x′
new;

l∗ ← lnew;
i← i + 1

return: x′
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A Amplifying Algorithms for some attacks

A.1 DeepFool

A.2 Square Attack

B Summary of Adapted Attack Changes

Summary of Attack Changes

• NOTA Adapted Carlini-Wagner L2 and L∞

– Triggers: F1, F2
– Changes: (i) exclude yNOT A from target selection; (ii) no NOTA termination, decision rule

compares target logit against max of {zytrue
, zyNOT A

} (plus confidence margin), preventing
perturbations that beat the true class but still sit below NOTA.

• NOTA Adapted Deep Fool

– Triggers: F1, F2.
– Changes: (i) exclude yNOT A from the potential classes used to form the closest hyperplane; (ii)

no NOTA termination.

• NOTA Adapted Square Attack

– Triggers: F1, F2.
– Changes: (i) exclude yNOT A from possible clean label prediction; (ii) no NOTA termination.
– Note: adding an explicit NOTA-repulsion term to the score criterion hurt attack success rates.

• AutoPGD-CE

– Triggers: F1, F2.
– Changes: (i) exclude yNOT A from possible clean label prediction; (ii) no NOTA termination.

• AutoPGD-DLR

– Triggers: F1, F2, F3.
– Changes: as in CE for F1 and F2, additionally exclude yNOT A from the three logits that define

DLR.

• AutoPGD-AN (ours)

– Triggers: F1, F2, F3.
– Changes: as in CE for F1 and F2 (same attack call mechanisms) but change of loss to Anti-NOTA.
– Loss: maximize CE(yNOT A, softmax(f(x))), which minimizes p(yNOT A|x′) and drives the

perturbation away from NOTA regions within the ϵ-bound.

• AutoAttack (wrapper)

– Triggers: F2, F1/F3 (via subattacks)
– Changes: (i) no NOTA termination after each subattack’s completion; (ii) replace APGD-CE

with either NOTA-aware APGD-CE or APGD-AN; (iii) substitute NOTA-aware subattacks
throughout.
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Future in Open-Set Enabled Closed-Set Defenses?

The authors note that our findings beg the question, “...what then can really be gained in open-set-enabled
closed-set evasion defenses like NOTA that we don’t already have elsewhere?” We speculate that the
complement-set structure afforded in NOTA approaches can still offer an opportunity in future research.
The ideas motivating these defenses did not depend on tricking attacks by circumventing their stopping
criteria, target selection, or objective functions, although they have to this point benefited from them, as
this work makes clear. Rather, the complement set offers an opportunity to leverage the DNN’s strengths in
generalization to create a buffer between all classes. Considering the mathematical arguments of Shafahi
et al. (2019), and the observed persistent resistance to APGD-CE and C&W L∞, there are good reasons to
think this structure holds promise.

Some recommendations for those pursuing these defense ends would be to investigate how to bias models
toward the NOTA class so that data-sparse regions of input space default to NOTA classification. In
deterministic models, this could be achieved by increasing the ratio of NOTA to clean samples or perhaps
logit manipulation. Alternatively (or in combination), one could look to bayesian neural networks to leverage
an ensemble of related DNNs which would presumably agree on partitions of datadense input space but differ
on datasparse regions.
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