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Abstract

Machine learning (ML) models are increasingly proposed to replace or augment safety-
critical information processing systems, yet their fragility to evasion attacks remains a
well-documented, open problem. This work analyzes a class of deep neural network defenses
that add a none-of-the-above (NOTA) class as an open-set-inspired, closed-set adversarial
defense. We analyze seven prominent adversarial evasion attacks developed for computer
vision classification and one attack developed for natural language processing classification,
identifying how these attacks fail in the presence of a NOTA defense. We use this knowledge
to adapt these attacks and provide empirical evidence that adding a NOTA class alone does
not solve the core challenge of defending DNNs against evasion attacks. We release our
adapted attack suite to enable more rigorous future evaluations of open-set-inspired defenses.

1 Introduction

Recent years have seen a steep increase in the number of successful applications of Deep Neural Networks
(DNNs) across the sciences, industry, and business. This technology has enabled strides forward in areas
as disparate as machine vision (Krizhevsky et al., 2012), neuroimaging analysis (McClure et al., 2019),
astronomy (Valizadegan et al., 2022), cancer diagnosis (Savage, 2020), protein folding (Callaway, 2020), and
natural language processing (NLP) (Brown et al., 2020). Despite these advances, efforts to leverage DNN
technology in safety-critical systems have been hampered by the fact that current approaches create models
that are highly susceptible to deception, particularly deception in the form of what are known as evasion
attacks or adversarial examples. This is a well-documented, open problem that persists to today (Carlini,
2024).

To address this, many defense methods have been proposed to increase the robustness of DNNs to adversarial
examples (Costa et al., 2024). The most widely implemented type of adversarial defense is adversarial training
(Szegedy et al., 2013; Goodfellow et al., 2015; Madry et al., 2017). These defenses seek to create adversarial
examples for a particular DNN from clean training examples. These adversarial examples are then labeled
with the same label as the clean training examples used to generate them and are then used to train that
DNN. This is done with the goal of making the DNN’s predictions robust to the addition of adversarial noise
to the input. This robustness, however, may not defend against adversarial examples distant in input space
from clean training examples (Costa et al., 2024).

One approach to addressing more distant adversarial attacks is to look to the open-set paradigm and create a
None-of-the-Above (NOTA) class, a new class in addition to the existing classes in a particular dataset. In
contrast to adversarial training, generated adversarial examples act as boundaries, are put into the NOTA
class, and are used as training examples. The premise is that with carefully crafted NOTA augmentation
examples, one can continuously seed the data-point-sparse space between data-dense regions of a classifier’s
input space throughout training and leverage the DNN to classify this vast space as NOTA. This approach
is suggested as a potential remedy to the “inevitability” of adversarial examples under the standard DNN
training paradigm (Shafahi et al., 2019). While covering all of the data-sparse regions of input space would
be impractical, such approaches hold it might be sufficient to cover the regions that define the boundaries
between and adjacent to classes and let the DNN generalize the remaining input space as NOTA.

Such defensive training strategies can be agnostic of the attack method or the neural network architecture.
Instead, they seek to change the structure of how the input space is partitioned by the classifier through
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training with an additional NOTA class. The method is modular and can be added to any DNN classifier
and may augment most present or future defense strategies. The entire approach has a fixed computational
cost which only occurs during training, similar to adversarial training defenses. This makes it an attractive
potential solution. Barton (2018) first demonstrated these open-set approaches to closed-set adversarial
robustness and deep neural network defense with Boundary Padding (BP), a data augmentation approach
which sought to insert a “padding class” between various classes in input space by linearly interpolating
between two images and subsequently labeling the resulting example as a padding class (i.e., NOTA). This
defense was successful against several standard evasion attacks.

However, evaluating open-set or “None-of-the-Above” adversarial defenses is held back by inadequate attack
evaluations. A long line of work–from Athalye et al. (2018) through Tramer et al. (2020) to Suya et al.
(2024)–shows that adversarial defenses judged “robust” often collapse once the attacker adapts attacks to a
given defense. Once a researcher has conceived and built a defense, it is then incumbent on them to “switch
hats,” and apply their full knowledge and effort to break the specific defense they are proposing, by altering
attacks as necessary (Carlini et al., 2019). Adapted attacks have been proposed for many defenses, but
attacks adapted to defeat NOTA defenses have not been well-studied.

In this paper, we analyze seven prominent adversarial evasion attacks developed for computer vision classifi-
cation and one attack developed for NLP classification, identifying how these attacks fail in the presence of a
NOTA defense. We use this knowledge to adapt these attacks and provide empirical evidence that adding a
NOTA class alone does not solve the core challenge of defending DNNs against evasion attacks. We release
our adapted attack suite to enable more rigorous future evaluations of open-set-inspired defenses.

2 Background

Before analyzing NOTA-adapted attack strategies, it is necessary to discuss deep neural network models,
evasion attacks, adversarial training, and NOTA defenses.

2.1 Deep Neural Network Classifiers

Adversarial attacks are most commonly executed against DNN models. In general, a DNN classifier can be
described as a function f(x) : Rd → Rc. Where the input is x ∈ Rd, and the output is in Rc, and is often
called the logits. In the image classification domain, input x is an h ∗w ∗ l pixel image such that x ∈ [0, 1]hwl

and c is the number of classes. In the text classification domain, an input text is a sequence of n tokens,
where each token is an element of {0, ..., v − 1}, where v is the vocabulary size. Each token is mapped to an
embedding vector ei ∈ Rm, where i is the token number and m is the dimensionality of the embedding. The
input, x, to the classification function, f , is then a sequence of n embedding vectors. Classes are denoted by
integer codes ranging from 0 to c− 1. The prediction of the DNN for an input x is given by the equation
y = argmax(f(x)).

2.2 Evasion Attacks

Evasion attacks imperceptibly modify the input to a model to produce a change in classification from the
clean (i.e. originally intended) class to some other, untrue class (Chakraborty et al., 2018). This modified
input is called an adversarial example. Adversarial examples are crafted such that given a classifier f ,
identifying c distinct classes of objects y0, y1...yc−1, and a clean input x, belonging to the class ytrue, an input
x′ can be crafted such that argmax(f(x′)) = ypred where ypred ≠ ytrue. This is accomplished by adding some
perturbation δx to x such that x + δx = x′, where δx corresponds to only a small change in x (Goodfellow
et al., 2015). This small change can be defined differently for different input modalities and methods (Madry
et al., 2017; Guo et al., 2021).

Our evasion attack threat model assumes the adversary’s attack occurs after training and system deployment,
(i.e., the adversary cannot manipulate training data). The adversary is assumed to be able to do one of
two things. One, they can change the actual artifact in the real world. Examples of this approach would
be donning anti-facial-recognition glasses to defeat identification systems (Sharif et al., 2016), applying an
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AI-camouflage pattern to a ship or tank to evade wide area motion imagery detection, or simply applying
tape to precise positions on a stop sign to fool a self-driving car’s image classification system into missing the
sign (Eykholt et al., 2018). Two, an adversary with insider access to the data stream can change the direct
input to the model by, for instance, altering pixels by imperceptible amounts to fool a classification system
into misclassifying the pictured object (Goodfellow et al., 2015; Madry et al., 2017; Carlini & Wagner, 2017).
In our threat model, the modifications to an input needed to change the predicted class of a model can be
found using complete information of the classifier being attacked (i.e., a whitebox scenario).

2.3 Relevant Adversarial Defense Paradigms

Given the extensive literature that has accumulated regarding new methods to find effective, fast, and cheap
evasion attacks, significant effort has likewise been expended pursuing effective measures to mitigate or
eliminate these threats. Here we describe two DNN defense paradigms which, although near-complements of
one another, have significantly different implications, strengths, and weaknesses. These include the well-known
and ubiquitous adversarial training and the less well-exercised open-set approaches, like NOTA-training
paradigms. The former’s success at defending against existing state-of-the-art attacks is used as a baseline
for evaluating the latter’s robustness to original and adapted versions of the same attacks.

2.3.1 Adversarial Training Data Augmentation

The best known method for increasing DNN robustness remains adversarial training (Goodfellow et al., 2015;
Szegedy et al., 2013). This is a data augmentation technique which adds adversarial examples to the true
label class. The most common form, particularly for images, uses PGD, which, in many cases, leads to
significantly improved adversarial robustness (Madry et al., 2017). Related gradient-based adversarial attacks
have likewise been successfully employed to defend against adversarial attacks on NLP tasks.

Attacking to Training (A2T) is an adversarial training regime designed to defend LLM-based tools from
adversarial attacks (Yoo & Qi, 2021). A2T introduces a gradient-based word-importance ranking derived
from the gradient of the loss with respect to the embedding produced for each token in the input. It uses this
basis to select the most impactful words to swap out and replace in order to achieve a successful attack (a
change in classification). Once the attack is successful, the new example is added to the training dataset with
a label that matches the original input’s ground truth label. These examples are created on the fly during
training as in other forms of adversarial training.

2.3.2 NOTA Defenses

In contrast to adversarial training, NOTA defenses generate adversarial examples or other data points in
order to create training examples for the NOTA class. The premise is that adding carefully crafted NOTA
augmentation examples to training updates can continuously sow the data-poor regions of input space with
NOTA examples. This is particularly useful for using NOTA examples to separate data-rich regions of input
space which correspond to different classes. The DNN then learns to classify this space along with the
adversarial examples which are perturbed into it, as NOTA.

Shafahi et al. (2019) showed mathematically that if a class occupies less than or equal to 1/2 of the input space,
then a random point from that class is, with high probability, either already misclassified or within a small ϵ
distance of an input region classified as another class. They suggest that having a classifier assign a large
portion of input space to an “I don’t know” class could circumvent the “inevitability” of adversarial examples.
In particular, surrounding regions belonging to standard classes with regions corresponding to NOTA could
make adversarial attacks return NOTA-classified examples. Shafahi et al. (2019) doesn’t guarantee that every
attack will result in a NOTA example, but it does offer a theoretical rationale to support the idea that a
NOTA buffer could absorb adversarial attacks.
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(a) No Defense (b) NOTA

Figure 1: A conceptual illustration of a linear classifier for a binary classification task without (a) and with
(b) a NOTA defense.

2.3.2.1 NOTA, Open-Set, and Out-of-Distribution Methods

Although NOTA defenses leverage the open-set concept, their goal differs from most open-set constructs in
the literature. The “I don’t know” category is not generally used as a defense, but rather as a method to
identify novel classes of data not already defined. Shao et al. (2020) characterize a research problem they
call Open-Set Adversarial Defense (OSAD), where adversarial attacks are studied under open-set settings. In
their framing, the goal is to both identify open-set samples (representing new classes) and defend against
adversarial evasion attacks. They demonstrate that open-set classifiers were readily fooled using existing
closed-set attack methods.

A related method is out-of-distribution defenses using thresholds, but this has been shown to be ineffective
against simple adapted attacks. Enevoldsen et al. (2025) demonstrate that open-set recognition models that
use thresholds of maximum softmax probability or maximum logit score to identify novel classes are also easily
deceived using simple adaptations to existing adversarial attacks. Also, Grosse et al. (2018) show the ease
with which adversarial attacks can achieve high confidence and low uncertainty adversarial examples which
are misclassified by ML models, but not detected by an out-of-distribution threshold approach. Additionally,
they demonstrate that such examples successfully transfer between different Bayesian models and approaches.
Thus, their research implies that confidence and uncertainty alone cannot be used as a basis for defense
against adversarial examples.

NOTA-type defenses are different in that they leverage the open-set concept to provide closed-set adversarial
defense. NOTA defenses, therefore, do not facilitate or enable the identification of novel categories, nor do
they use logit or uncertainty thresholds to identify adversarial examples. Rather, NOTA defenses leverage an
additional none-of-the-above class to serve as the label for all adversarial examples, their derivatives, and
open-set examples, relying on the DNN to generalize and identify adversarial examples as the NOTA class.

2.3.2.2 Boundary Padding

BP was conceived after preceding research showed that various methods of creating NOTA class examples—
such as using linear interpolation in the input space, or mixing methods in latent lower dimensional space
using auto-encoders—showed promise at defending DNNs against adversarial examples produced by the CW
attack suite using confidences of 20 or higher (Barton, 2018; Barton et al., 2021). However these methods
struggled to perform against low-confidence Carlini Wagner Lp attacks.

Another influence for BP resulted from Zhang et al. (2020), they introduce Mixup, an algorithm for instantiating
linear behavior between training examples and increasing regularization and resistance to adversarial attack.
Although BP discards the label-mixing aspect, it uses the simple mixing expression, λ · x1 + (1− λ) · x2 for
the image data as well as randomization of λ in a new way to create its NOTA class examples. BP then is
an attempt to more closely surround correctly labeled regions of input space with NOTA class examples.
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However, instead of “mixing” two separate training examples, as well as their labels, and training as that
label combination, as is done in mixup, BP “mixes” a single training set example x1 with an adversarial
example, x′

1, derived using the PGD attack. The resulting BP image is labeled as the pure NOTA class and
added to training on the fly. Note that no mixing of the labels occurs, all produced examples are instead
labeled as the NOTA class and trained as such. This can lead to NOTA becoming a “padding” class that
separates data from other classes (Figure 1).

In BP two variations of NOTA are produced on the fly and added to the training batch before batch-training
commences, mean BP and uniform BP. In mean BP, λ is set to 0.5 and limited gaussian noise is added to
the resulting image. In uniform BP, λ is set to a random number between 0.05 and 0.95 and a weighted
average of the clean and adversarial example is performed. The resulting NOTA to clean data ratio is two to
one, making it by far the largest class in the dataset. This large representation of NOTA vs. any other class
reflects the intuition that, regardless of the number of finite classes that are defined, the vast majority of
possible inputs in the input space do not correspond to any of the specified classes and, thus, should instead
be assigned to the NOTA class.

3 Methods

3.1 Novel NOTA Defenses

In this paper, we not only evaluate NOTA-adapted attacks against BP, but also against two novel NOTA
defenses, one that builds on BP and one that extends NOTA defenses to LLM-based classifiers.

3.2 Adversarial NOTA Envelopment

Given BP’s existing loss formulations, as NOTA regions are planted and reinforced over the course of training
epochs, it is likely that new NOTA examples will be planted in nearly the same input space locations epoch
after epoch. Each new NOTA example then results in a steeper gradient to that portion of the input space,
which in turn, will result in higher likelihood that future NOTA data augmentation will be created in close to
the same place. This can have a reinforcing effect creating essentially a funnel or entrapment zone. As a
result, NOTA regions clump near but not surrounding a class’s partition space. Instead, the desired behavior
of a NOTA defense should be to surround or envelop homogenously-classed datapoint-dense regions of input
space with NOTA, while also populating data-sparse regions between them with NOTA.

Toward this end, the ANE defense retains all previous characteristics of BP, except it switches between two
different losses in creating its NOTA data. One PGD loss maximizes the cross entropy (CE) with respect to
the true label class as in BP. The second loss maximizes the cross entropy loss with respect to the NOTA
class. This strategy is elegant in its simplicity, alternating between pushing away from the true label class to
plant NOTA, and pushing away from existing NOTA partition to plant NOTA examples where they do not
already exist. This leads to an attack loss of

L(x, ytrue; f) =
{

CE(ytrue, softmax(f(x))) when β ≤ 0.5
CE(yNOT A, softmax(f(x))) otherwise,

(1)

where β ∼ U(0, 1). β is used to randomly choose between pushing an adversarial example away from the true
class and pushing the adversarial example away from the NOTA class.

3.3 NOTA A2T

To create NOTA examples for LLM-based models, we used a modified version of A2T (Yoo & Qi, 2021).
Specifically, we labeled successful adversarial examples created by A2T (see Section 2.3.1) as the NOTA class,
instead of the ground truth label. As in standard A2T, these examples are then used to augment the original
training dataset during training.
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3.4 NOTA-Adapted Attacks

In this paper, we analyze and adapt seven computer vision evasion attacks, CW L2 and CW L∞ (Carlini &
Wagner, 2017), AutoPGD with CE and AutoPGD with difference logits ratio (DLR) (Croce & Hein, 2020b),
DeepFool (Moosavi-Dezfooli et al., 2016), Square Attack (Andriushchenko et al., 2020), and AutoAttack
Croce & Hein (2020b), and one evasion attack for LLM-based classifiers, Gradient-based Distributional Attack
(GBDA) (Guo et al., 2021).

3.4.1 Adversarial Attack Success for NOTA-Defended Models

When attacking a NOTA-defended DNN classifier, f , with an input x′, an attack is successful only if the
prediction is neither the true class, ytrue, nor the NOTA class, yNOT A. In other words, argmax(f(x′)) ̸=
ytrue ∧ argmax(f(x′)) ̸= yNOT A. For every attack, it is important to evaluate whether the stopping criteria
needs to be modified to use this NOTA-aware definition of a successful attack.

3.4.2 Projected Gradient Descent (PGD) and AutoPGD (APGD)

Projected gradient descent is a straight-forward attack that leverages the same optimization that makes DNNs
possible in the first place. In untargeted PGD, adversarial examples, x′ are discovered through gradient ascent
and backpropagation (Madry et al., 2017). We let L(x, y; f) represent any loss function whose minimum
results in argmax(f(x)) = ytrue. Gradient ascent is then employed to iteratively update x′ such that the loss,
L maximally increases and the resulting image leads to argmax(f(x′)) ̸= ytrue.1

After each gradient update, x′ is projected to be within an Lp-bound, ϵ, of x and be in the set [0, 1]hwl, when
dealing with images. The most common Lp-norms used in PGD and AutoPGD, and most other evasion
attacks, are L2 and L∞. L2(x, x′) is the magnitude of the adversarial noise and L∞(x, x′) is the maximum of
the absolute adversarial noise.

For L2, x′ is updated using

x′
t+1 = x′

t + α
∇xL(x′, y; f))
||∇xL(x′, y; f))||2

. (2)

For L∞, x′ is updated using
x′

t+1 = x′
t + α sign(∇xL(x′, y; f)). (3)

Here, the gradient vector ∇xL(x′, y, f) is the rate of change of the loss, L, with respect to the input, x, and
α is the learning rate. This procedure produces a perturbation for x that pushes the DNN’s prediction away
from the true class, ytrue. AutoPGD (Croce & Hein, 2020b) modifies the gradient-based update by using
momentum and an adaptive learning rate.

In AutoPGD, two losses are commonly used: (1) CE and (2) DLR.

3.4.2.1 Cross Entropy (CE)

When performing untargeted PGD and AutoPGD with a CE loss, the probability of the true class, ytrue, is
minimized, as done in APGD-CE. The corresponding loss is

LCE(x′, ytrue; f) = CE(ytrue, softmax(f(x′))). (4)

When no NOTA defense is present, making any non-true class have the highest predicted probability by
perturbing the input will lead to a successful adversarial example. However, this is not the case when a
NOTA class is present. Making NOTA the highest probability class does not result in a successful adversarial
example. We investigated using a linear combination of the cross entropy loss for the true class and the NOTA
class in order to create an example that is not classified as either the true or NOTA class. However, we found

1This is equivalent to gradient decent on the negative loss.
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that just maximizing the CE loss for the NOTA class led to a stronger attack, which we call Anti-NOTA
(AN). This results in the AN loss being

LAN(x′, yNOTA; f) = CE(yNOT A, softmax(f(x′))). (5)

3.4.2.2 Difference Logits Ratio (DLR)

CE is a shift-invariant loss, meaning the order of logits does not alter the output. Croce & Hein (2020b)
introduces DLR, which is both shift and scale invariant. Scale invariance implies that rescaling the logits by
a non-zero constant will not change the loss value. This ensures that the learning process—and by extension
attacks seeking adversarial examples using gradient descent—will not be sensitive to or affected by the scale
of the logits.

The DLR loss is defined as:

LDLR(x, ytrue; f) = −
fytrue(x′)− max

i̸=ytrue
fi(x′)

fπ1(x′)− fπ3(x′) , (6)

where the elements of f(x′) are the logits output by the model for x′, fytrue(x′) is the logit of the true class,
and π is the ordering of the components of f(x′) in decreasing order. DLR has been reported to be sometimes
better-performing than CE with respect to attack success and more stable than Carlini-Wagner loss (Croce
& Hein, 2020b).

When attacking a NOTA-defended model, DLR runs into a “target selection” issue. That is, the loss
can actively incentivize making the logit for the NOTA class the largest logit. This occurs when the
NOTA logit is the second-highest logit, after the true class logit. In the DLR loss, this issue arises when
maxi̸=ytruefi(x′) = fNOTA(x′). Making NOTA the most likely predicted class can be problematic given the
definition of attack success in the presence of NOTA. To address these issues, we modified the DLR loss to

LNOTA-DLR(x, ytrue; f) = −

fytrue(x′)− max
i̸=ytrue

i̸=yNOTA

fi(x′)

fπ1(x′)− fπ3(x′) . (7)

This adaptation seeks to prevent the loss from seeking to maximize the logit of the NOTA class.

3.4.3 Carlini-Wagner Attacks

Carlini-Wagner (CW) attacks (Carlini & Wagner, 2017) are a suite of attacks that use optimization methods
to find successful adversarial examples that are created using the smallest possible perturbations, according
to some metric D(x, x′). The two most common CW attacks use L2 or L∞ metrics. CW attacks use the
optimization loss of

LCW (x, x′, ytrue; f) = D(x, x′) + λc · ℓCW(x′, ytrue; f) (8)

The CW constraint term, ℓCW, for untargeted attacks often takes the form of the margin loss

ℓCW(x′, ytrue; f) = max
(

fytrue(x′)− max
i̸=ytrue

fi(x′) + κ, 0
)

, (9)

where κ is the “confidence” and controls how much the highest non-true logit, maxi̸=ytruefi(x′), exceeds the
logit for the true class, fytrue(x′). As in PGD, Carlini & Wagner (2017) add a box constraint that ensures
x′ ∈ [0, 1]hwl for images. The constant λc is obtained through binary search and is used to increment or
decrement the weight of the margin loss.
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Like DLR, CW attacks suffer from a “target selection” issue when maxi̸=ytruefi(x′) = fNOTA(x′). To address
this, the margin loss was adapted to

ℓNOTA-CW(x′, ytrue; f) = max
(

fytrue(x′)− max
i̸=ytrue

i̸=yNOTA

fi(x′) + κ, 0
)

. (10)

This prevents the loss from incentivizing increasing the NOTA logit.

3.4.4 DeepFool

Algorithm 1: DeepFool: Multi-Class (Moosavi-Dezfooli et al., 2016)
1 input: Image x, classifier f ;
2 output: Perturbation δ̂ ;
3 ypred(x) = argmax(f(x)) ;
4 Initialize x′

0 ← x, i← 0;
5 while ypred(x′

i) = ypred(x′
0) do

6 for y ̸= ypred(x′
0) do

7 w′
y ← ∇fy(x′

i)−∇fypred(x0)(x′
i);

8 f ′
y ← fy(x′

i)− fypred(x′
0)(x′

i);

9 l̂← argminy ̸=ypred(x′
0)
|f ′

y|
||w′

y||2
;

10 δi ←
|f ′

l̂
|

||w′
l̂
||22

w′
l̂
;

11 x′
i+1 ← x′

i + δi;
12 i← i + 1;
13 return: δ̂ =

∑
i δi

The DeepFool attack (Moosavi-Dezfooli et al., 2016) can be seen as a gradient descent approach that sets the
learning rate using the estimated minimum L2 distance to a desired decision boundary. In the linear case,
this method is optimal. However, that is not guaranteed for non-linear models. In practice, DeepFool often
generates successful adversarial examples. The pseudocode is shown in Algorithm 1.

Two modifications are made to DeepFool to adapt it for NOTA, changing the stopping criteria to account
for NOTA and changing the target selection to not select NOTA. To adapt the stopping criteria, the logical
statement in Line 5 of Algorithm 1 is modified to ypred(x′

i) = ypred(′x0) ∨ ypred(x′
i) = yNOTA. This means

that the attack will continue until the model classifies the adversarial example as a class that is neither the
initially predicted class nor the NOTA class, unless a maximum number of iterations is used. To adapt the
target selection, the logical statement in Line 6 of Algorithm 1 is changed to y ≠ ypred(x′

i)∧ y ≠ yNOTA. This
prevents DeepFool from intentionally creating adversarial noise that would drive the input into a NOTA
region.

3.4.5 Square Attack

Square attack is a score-based black-box L2 and L∞ adversarial attack that does not use local gradient
information and thus is immune to gradient masking (Andriushchenko et al., 2020). It uses a randomized
search scheme and perturbations are introduced such that they lie on the boundary of the ϵ L2-hypersphere
or ϵ L∞-hypercube before x′ is projected back inside the box constraint (i.e., x′ ∈ [0, 1]lwh) for images. First,
a side-length for the square that will be perturbed is chosen, according to a decreasing schedule. Next, a δ
is chosen. If, on applying the δ, the loss decreases, it is accepted. If not, it is rejected. If the new image
classifies in a non-true class, the image is accepted. If not, the algorithm continues, repeating until it is either
successful or the max number of iterations has been completed. Square attack seeks to minimize
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LSA(x′, ytrue; f) = fytrue(x′)− max
i̸=ytrue

fi(x′) (11)

We adapted the attack by first preventing the NOTA class from being chosen as the initially correct label in
the event the true labels were not provided. We altered the stopping criteria so that the attack was only
successful if it resulted in a classification other than the true class and the NOTA class. We investigated
modifying the loss to not incentivize increasing the NOTA logit, but, counterintuitively, found that doing so
slightly weakened the attack.

3.4.6 AutoAttack

AutoAttack (Croce & Hein, 2020b) is considered the state-of-the-art adversarial evasion attack for computer
vision. It is a highly effective ensemble of parameter-free attacks, combining the CE version of AutoPGD,
the DLR version of AutoPGD, SquareAttack and the Fast Adaptive Boundary Attack (FAB) (Croce &
Hein, 2020a). These separate attacks are used in sequence and until argmax(f(x′)) ̸= ytrue. The adversarial
robustness (ART) library (Nicolae et al., 2018), which we use in our computer vision evaluations, substitutes
the DeepFool attack in for the FAB Attack. FAB is very similar to DeepFool, except that it uses additional
iterative procedures to generate adversarial examples closer the decision boundary. However, a weakness of
untargeted FAB is its extensive computational cost as dataset complexity and the number of classes increase
(Croce & Hein, 2020a). For ease of testing and standardization, the hyperparameters for each attack in
AutoAttack are constant across models, datasets, and measurement norms. Given its extensive strength
and effectiveness, untargeted AutoAttack is a standardized benchmark used by the adversarial robustness
community to compare model defense robustness to adversarial evasion attacks (Croce et al., 2020).

As AutoAttack leverages four separate subordinate attacks, it is necessary to ensure that the adapted
NOTA version of AutoAttack calls the most effective adapted versions of each of these subordinate attacks.
Additionally, the stopping criteria evaluated after each subordinate attack must be adjusted to exclude
the prediction of NOTA as a successful outcome for the attack. We test both a NOTA-aware version of
AutoAttack with NOTA-Aware APGD-CE and a NOTA-aware version of AutoAttack that replaces APGD-CE
with APGD-AN.

3.4.7 Gradient-Based Distributional Attack

GBDA is an adversarial evasion attack that targets transformers used in LLM-based text classification, seeking
to produce fluent and semantically similar adversarial examples (Guo et al., 2021). A major challenge in
this approach is overcoming the non-differentiable nature of the mapping from the input text token numbers
to embeddings vectors. GBDA seeks to address this challenge by using the Gumbel softmax to create a
differentiable method for linking token numbers with an embedding.

The GBDA loss function is a linear combination of three components: (1) a CW margin loss (Equation 9),
(2) a fluency constraint that preserves natural language flow, and (3) a semantic similarity constraint that
preserves meaning. This results in GBDA minimizing

LGBDA(Θ, y, f) = Eπ̄∼PΘ

[
ℓCW(e(π̄), ytrue; f)︸ ︷︷ ︸

margin loss

+ λlmNLLg(π̄)︸ ︷︷ ︸
fluency

+ λsimρg(x, π̄)︸ ︷︷ ︸ ]
semantic similarity

.
(12)

In GBDA’s objective function, PΘ is the learned adversarial Gumbel-softmax distribution for a particular
input. π̄ is a sampled probability distribution from PΘ over the vocabulary for each token in the input.
e is a function that computes the expected embedding vectors according to π̄. NLLg(π̄) is the perplexity
(an analog of fluency) of the expected embeddings according to the language model g, which in this case is
GPT-2 (Radford et al., 2019). ρg is the BERTScore (Zhang et al., 2019) (semantic similarity term) computed
using g. λlm, λsim > 0, are hyper-parameters that adjust fluency and semantic similarity with attack strength.
At each gradient-based update step, the attack draws multiple soft samples, π̄, from PΘ, calculates the loss
LGBDA, and then calculates the gradients to update Θ. After Θ has been learned, the attack samples text
inputs using PΘ until a successful adversarial text is generated or the maximum number of samples has been
reached.
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Two modifications were made to adapt GBDA for NOTA, modifying the margin loss target selection and
changing the stopping criteria when sampling potential adversarial text examples. As in CW attacks, the
NOTA class must be eliminated from consideration when selecting a target for the margin loss. This was
accomplished by setting the margin loss to ℓNOTA-CW(e(π̄), ytrue; f), where ℓNOTA-CW is defined in Equation
10. After learning the adversarial Gumbel softmax distribution for an input example, GBDA samples from
this distribution until a successful adversarial example is found or the maximum number of samples is reached.
In the adapted attack, the stopping criterion for this procedure was modified so that a successful adversarial
example is defined to be one that is both not classified as the ground truth class and not classified as NOTA.

4 Experiments and Results

In this section, we discuss the evaluation of NOTA-adapted attacks against NOTA-defended models in both
the computer vision and natural language processing domains. In the computer vision domain, we compare
the effectiveness of adapted versions of seven benchmark evasion attacks against NOTA-defended models
to the effectiveness of the original attacks against NOTA-defended models, adversarial-trained models, and
undefended models. In the NLP domain, we compare the effectiveness of a NOTA-adapted version of a
prominent NLP classification attack, GBDA, to the effectiveness of the original GBDA attack against both
undefended and NOTA-defend LLM-based classifiers.

4.1 Experimental Setup

4.1.1 CIFAR-10 and CIFAR-100

We performed computer vision experiments using the CIFAR-10 and CIFAR-100 datasets. Our datasets are
split before training such that 4% of the former training set are quarantined as a validation set to enable
early-stopping model selection, based on a combination of best validation accuracy and best validation
adversarial robustness. In very close models, we slightly favored best validation accuracy over validation
adversarial robustness. The test set is strictly reserved for testing a specific model that has been previously
selected using only ASR and accuracy performance from the validation set. In testing, accuracy was calculated
from the full test set.

For CIFAR-10 and CIFAR-100, we used standard Wide Residual Networks (WRNs) with dropout and batch
normalization, configured as suggested by Zagoruyko & Komodakis (2016). Dropout is set to 30% drop
probability during training. For all models, we used a WRN-12-6 (i.e. 12-unit deep and 6-unit wide WRN), a
common setup for these datasets. For each model, we used an ADAM (adaptive moment estimation) optimizer
with default settings, b1 = 0.9 and b2 = 0.999 (Kingma & Ba, 2017) with sharpness-aware minimization
(SAM) (Foret et al., 2021). ADAM assisted the model in efficiently converging on a solution, whereas SAM,
by seeking out minima of the training loss landscape and minimizing loss curvature, smooths the boundaries
between partitions expressed in input space. When performing mini-batch gradient descent training, two
separate batches of 32 were drawn from the training set for each training cycle. The first used standard
dataset augmentation, a random up to 10% shift up or down, and left or right, as well as random horizontal
flipping and a random, up to a 15 degree rotation clockwise or counter clockwise. The second batch was a
“clean” batch drawn from a separate iterator without data augmentation. Each batch was used both as a
benign training batch and also to create NOTA examples based on each training example.

Every 150 batches during training, the same 30 examples were used (previously separated from the validation
set) to create 30 untargeted, zero-confidence CW L2 adversarial examples with a maximum of 10 iterations.
These adversarial examples were then used to calculate a validation attack success rate (ASR), which is used
in model selection. ASR was calculated by determining the number of adversarial examples that successfully
drove the model to classify the image as a class other than the NOTA class or the true label. The process
detailed here was the same for all model training and model selection, whether NOTA, adversarial training,
or undefended models.

Test set ASR is calculated on the selected model using adversarial examples created using sufficient test
set samples to ensure reasonably small confidence intervals. We state our findings along with their 95%
binomial confidence intervals. We test against CW L2, CW L∞, AutoPGD-CE, AutoPGD-DLR, DeepFool,
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Table 1: Clean Model Test Accuracies

CIFAR-10
Model Accuracy
No Defense 92.31%
Adversarial Training 90.71%
Boundary Padding 90.93%
Adversarial NOTA Envelopment 92.20%

CIFAR-100
No Defense 70.53%
Adversarial Training 66.47%
Boundary Padding 68.13%
Adversarial NOTA Envelopment 69.89%
All models were WRN-12-6, with dropout of 30% and batch normalization.

Square Attack, and AutoAttack. We adapt each of these attacks to counter the NOTA defense, and add an
additional variant of AutoPGD, AutoPGD-AN. In parameterized attacks, we set max iterations to 100, i.e.,
CW Lp attacks, square attack and DeepFool (L2). All AutoPGD attacks, Square Attack, and AutoAttack are
performed in both L2 with max epsilon of 0.5 (maximum distance between x and x′ by specified Lp metric)
and L∞ with max epsilon of 8/255, the distances specified for each by Robust Bench (Croce et al., 2020).
Finally, DeepFool is tested in default L2 with the standard max ϵ = 0.5.

4.1.2 IMDB

We performed NLP experiments using the IMDB binary sentiment classification dataset (Maas et al., 2011).
We used the same training and test sets as in Guo et al. (2021). We trained and evaluated a model that
consists of BERT (Devlin et al., 2019) to create text embeddings, followed by a dropout layer with p = 0.1, a
linear layer, and, finally, a softmax operation, as done in Morris et al. (2020); Guo et al. (2021). We fine-tuned
this model for 5 epochs uisng AdamW (Loshchilov & Hutter, 2017) with a batch size of 16, a learning rate of
2e-05, a weight decay of 0.01, and a maximum sequence length of 512.

The NOTA defense and the attack evaluated also required several hyperparameters to be set. When creating
NOTA examples during training, we used similar hyperparameters to those used for adversarial training by
Geisler et al. (2024). Namely, we started generating adversarial examples for the NOTA class after the model
had been trained for one epoch and created a number of successful adversarial examples equal to 20% of
the training dataset each epoch afterwards. For original and NOTA-adapted GBDA, we closely followed the
hyperparameters used by Guo et al. (2021). Specifically, we used a learning rate of 0.3, a CW confidence of 5,
a perplexity coefficient of 1, a similarity coefficient of 20, and 100 Gumbel samples.

4.2 Results

4.2.1 CIFAR-10 and CIFAR-100

In Tables 2 and 3, attack success rates (ASR) are reported for original attacks against both undefended and
defended models (adversarial training models, boundary padding models, and adversarial NOTA envelopment
models, respectively).

4.2.1.1 Unadapted Attacks vs. Defenses

With unadapted attacks, we find that both BP and ANE appear highly robust, as can be seen in Tables 2
and 3. Even strong baselines like AutoAttack show low ASR at or below natural error, and several other
attacks show substantial reductions as well. Overall, considering the substantially successful defense against
these benchmark attacks, NOTA defenses would seem an impressive advance in favor of increased adversarial
robustness in classification systems. However, these results stem from unadapted attacks treating NOTA as a
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Table 2: Attack Success Rates (ASRs), with 95% binomial confidence intervals, for Original and NOTA
Attacks for CIFAR-10.

Models C&W Suite APGD CE APGD AN APGD DLR Square Attk DF AA, Untrgtd AA-AN, Untrgtd

L2,
Conf:0

L∞,
Conf:0

L2,
ϵ:0.5

L∞,
ϵ:0.031

L2,
ϵ:0.5

L∞,
ϵ:0.031

L2,
ϵ:0.5

L∞,
ϵ:0.031

L2,
ϵ:0.5

L∞,
ϵ:0.031

L2,
ϵ:0.5

L2,
ϵ:0.5

L∞,
ϵ:0.031

L2,
ϵ:0.5

L∞,
ϵ:0.031

No Defense vs.
Orig. Attacks

99.0%,
±2.0%

100.0%,
±0.0%

99.5%,
±1.0%

100.0%,
±0.0%

— — 85.5%,
±4.9%

95.0%,
±4.3%

12.0%,
±6.4%

56.0%,
±9.7%

98.0%,
±2.7%

100.0%,
±0.0%

100.0%,
±0.0%

— —

Adv. Train vs.
Orig. Attacks

94.6%,
±2.0%

100%,
±0.0%

53.2%,
±4.4%

96.6%,
±1.6%

— — 49.4%,
±4.4%

87.8%,
±2.9%

12.4%,
±2.9%

35.6%,
±4.2%

92.4%,
±2.3%

53.4%,
±4.4%

96.8%,
±1.5%

— —

BP vs. Orig.
Attacks

16.0%,
±7.2%

1.0%,
±2.0%

6.0%,
±4.7%

6.0%,
±4.7%

— — 42.0%,
±9.7%

55.0%,
±9.8%

14.0%,
±6.8%

64.0%,
±9.4%

9.0%,
±5.6%

6.0%,
±4.7%

6.0%,
±4.7%

— —

ANE vs. Orig.
Attacks

12.0%,
±6.4%

0.0%,
±0.0%

5.0%,
±4.3%

5.0%,
±4.3%

— — 15.0%,
±7.0%

39.0%,
±9.6%

5.0%,
±4.3%

40.0%,
±9.6%

5.0%,
±4.3%

5.0%,
±4.3%

5.0%,
±4.3%

— —

BP vs. NOTA
Attacks

99.0%,
±2.0%

1.0%,
±2.0%

9.0%,
±2.5%

9.2%,
±2.5%

18.8%,
±3.4%

91.8%,
±2.4%

91.0%,
±5.6%

100.0%,
±0.0%

15.0%,
±7.0%

63.0%,
±9.5%

13.0%,
±6.6%

93.4%,
±2.2%

99.6%,
±0.6%

92.8%,
±2.3%

99.6%,
±0.6%

ANE vs. NOTA
Attacks

9.0%,
±5.6%

5.0%,
±4.3%

8.6%,
±2.5%

9.4%,
±2.6%

46.8%,
±4.4%

74.4%,
±3.8%

55.0%,
±9.8%

91.0%,
±5.6%

5.0%,
±4.3%

37.0%,
±9.5%

9.0%,
±5.6%

52.6%,
±3.4%

95.4%,
±1.8%

54.0%,
±4.4%

95.0%,
±1.9%

The blanks represent original attacks, for which ANTI-NOTA (AN) loss does not exist as it is inherently adapted for NOTA.

Table 3: Attack Success Rates (ASRs), with 95% binomial confidence intervals, for Original and NOTA
Attacks for CIFAR-100.

Models C&W Suite APGD CE APGD AN APGD DLR Square Attk DF AA, Untrgtd AA-AN, Untrgtd

L2,
Conf:0

L∞,
Conf:0

L2,
ϵ:0.5

L∞,
ϵ:0.031

L2,
ϵ:0.5

L∞,
ϵ:0.031

L2,
ϵ:0.5

L∞,
ϵ:0.031

L2,
ϵ:0.5

L∞,
ϵ:0.031

L2,
ϵ:0.5

L2,
ϵ:0.5

L∞,
ϵ:0.031

L2,
ϵ:0.5

L∞,
ϵ:0.031

No Defense 98.3%,
±1.0%

100.0%,
±0.0%

98.8%,
±0.3%

100.0%,
±0.0%

— — 99.7%,
±0.5%

100.0%,
±0.0%

41.3%,
±3.9%

87.3%,
±2.7%

83.5%,
±3.0%

99.8%,
±0.3%

100%,
±0.0%

— —

Adv. Train vs.
Orig. Attacks

95.6%,
±1.8%

100%,
±0.0%

78.6%,
±3.6%

97.2%,
±1.5%

— — 77.0%,
±3.7%

96.0%,
±1.7%

32.4%,
±4.1%

62.2%,
±4.3%

89.0%,
±2.7%

78.8%,
±3.6%

97.2%,
±1.5%

— —

BP vs. Orig.
Attacks

51.8%,
±4.4%

2.2%,
±1.3%

33.2%,
±4.1%

33.2%,
±4.1%

— — 78.4%,
±3.6%

69.4%,
±4.0%

47.6%,
±4.4%

36.8%,
±4.2%

24.2%,
±3.8%

33.2%,
±4.1%

33.2%,
±4.1%

— —

ANE vs. Orig.
Attacks

40.2%
±4.3%

0%
±0.0%

31.2%
±4.1%

31.2%
±4.1%

— — 51.8%
±4.4%

54.6%
±4.4%

31.2%
±4.1%

66.0%
±4.2%

16%
±3.2%

31.2%
±4.1%

31.2%
±4.1%

— —

BP vs. NOTA
Attacks

54.4%,
±4.4%

34.6%,
±4.2%

33.2%,
±4.1%

33.2%,
±4.1%

58.2%,
±4.3%

98%,
±1.2%

99.6%,
±0.6%

99.4%,
±0.7%

48.2%,
±4.4%

49.2%,
±4.4%

32.8%,
±4.1%

97.8%,
±1.3%

98.8%,
±1.0%

98.4%,
±1.1%

99.4%,
±0.7%

ANE vs. NOTA
Attacks

49.4%,
±4.4%

30.3%,
±3.7%

31.2%,
±4.1%

31.2%,
±4.1%

83.4%,
±2.6%

96.6%,
±1.6%

89.8%,
±2.7%

90.4%,
±2.6%

31.3%,
±3.7%

68.0%,
±4.1%

20.6%,
±3.0%

89.2%,
±2.7%

96.6%,
±1.6%

94.6%,
±2.0%

98.6%,
±1.0%

The blanks represent original attacks, for which ANTI-NOTA (AN) loss does not exist as it is inherently adapted for NOTA.

regular class, meaning that they often stop once they cross the true class boundary–even if they result in a
NOTA classification. This also explains the apparent anomaly of how Square Attack appears more effective
on its own than AutoAttack (which includes Square Attack as a component). Once an earlier component
attack reaches NOTA, the attack pipeline stops rather than continuing to a non-NOTA misclassification. To
sum up, these unadapted results overstate robustness.

4.2.1.2 NOTA-Aware Adaptive Attacks vs. Defenses

Adapting attacks to the NOTA paradigm largely restore high ASR against both NOTA-defended models
(Tables 2 and 3). The main exceptions are APGD-CE, CW L∞, and DeepFool, where robustness remains
closer to the unadapted baseline. By contrast, APGD-DLR and our APGD-AN consistently drive ASR up,
demostrating the PGD-based NOTA training may not protect against other PGD-based attacks that use a
different loss function. Importantly, no evaluated attack version becomes weaker after being adapted.

For BP, NOTA-aware adaptations produce large ASR jumps, especially for APGD-DLR and AutoAttack.
CW L∞ and APGD-CE show limited gains–consistent with BP’s CE-driven training–while SquareAttack
and DeepFool change little. BP’s apparent robustness under unadapted evaluation evaporates once target
selection and stopping criteria exclude the NOTA “honeypot”.

ANE looks strong against unadapted attacks, but is similarly vulnerable under NOTA-aware evaluation. On
both CIFAR-10 and CIFAR-100, APGD-DLR, APGD-AN, and AutoAttack regain high ASR. CW L2 is a
partial exception (weaker on CIFAR-10, stronger on CIFAR-100). As with BP, SquareAttack and DeepFool
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remain close to their original behavior. Notably, ANE retains some CE-specific resilience, which makes sense
due to CE being used to generate NOTA examples during training.

4.2.1.3 Comparing Adversarial Training with Adversarial NOTA Envelopment

With the advent of effective adapted attacks against the best NOTA defenses, a far more balanced comparison
can be made between the standard for adversarial defense, adversarial training, and this complement of
its defense paradigm, NOTA. First and foremost, our testing confirms that neither is a solution to the
problem of adversarial attacks alone. Nevertheless, the comparison apparent in tables 2 and 3 are still of
interest. Overall, there are some mixed performances reported here, with most, though not all, resulting
in adversarial training (AT) providing less robustness against standard attacks than ANE provides against
NOTA-aware adapted versions of those attacks. All results considered, ANE would appear to confer modestly
more general robustness to a model than adversarial training, however, considering the results from the
adapted NOTA-Aware attacks, both collapse and fail to defend models from evasion attacks overall, with
several attacks achieving 90% or greater attack success rates on both.

4.2.2 IMDB

In Table 4, the clean accuracies and ASRs for the LLM-based classifier with and without the NOTA A2T
defense are reported. While the NOTA defense does decrease clean test set accuracy from 93.66% to 87.75%,
it even more dramatically reduces the ASR of GBDA from 98.40% to 31.79%. 31.79% demonstrates a very
effective defense, considering that the natural error rate of the NOTA-defended model is 12.25%. When
GBDA is adapted for NOTA, however, the ASR becomes 100.00%, demonstrating that NOTA-defended,
LLM-based classifiers are still vulnerable to appropriately adapted adversarial evasion attacks.

Table 4: Test Clean Accuracies and Attack Success Rates (ASRs), with 95% binomial confidence intervals,
for IMDB.

IMBD
Model Clean Accuracy GBDA ASR NOTA GBDA ASR
No Defense 93.66% 98.40% ± 1.10% —
NOTA A2T 87.75% 31.79% ± 4.08% 100.00% ± 0.00%

5 Discussion

In this paper, we begin by discussing and evaluating a group of open-set adversarial defense approaches which
employ a none-of-the-above class to defend deep neural networks against evasion attacks. In investigating
why this genre of defense, on its surface, is effective against many attacks, we discover common attack failure
modes. Particularly, we find that attacks often fail because: (1) they consider an adversarial attack that
changes the predicted label to NOTA as a success and (2) they can incentivize making the NOTA class have
the highest predicted probability. We solved (1) by defining a successful adversarial attack as one that leads
to a predicted class that is neither the true class nor NOTA. This failure often occurs when defining stopping
criteria. To address (2), we adjusted attacks that use “target selection” to not select the NOTA class. If
“target selection” is not used, we investigated changing the loss. Using these, we modified eight prominent
and highly effective benchmark attacks. In many cases, this largely recovered attack potency against NOTA
defenses for both computer vision and NLP tasks.

We observe that our adapted attacks clearly show that present NOTA defenses are not sufficient to solve the
core challenge of defending DNNs against evasion attacks. However, NOTA defenses can confer some small
residual resilience to some adapted attacks that at least rivals adversarial training for the analyzed computer
vision datasets. With several adapted attacks recovering ASRs back to 90% and above for both the evaluated
computer vision and NLP tasks, we advise that future evaluations of NOTA-type or open-set-inspired defenses
must begin by testing with NOTA-aware attacks. To this end, we make the NOTA-Aware adaptations to
attacks created in this paper available for public use. Finally, if a NOTA-aware version of an attack is not
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available, the common failures and adaptations discussed in this paper could help practitioners adapt new
attacks.
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