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Abstract

Understanding the performance of machine learn-
ing models across diverse data distributions is
critically important for reliable applications. Mo-
tivated by this, there is a growing focus on curat-
ing benchmark datasets that capture distribution
shifts. In this work, we present MetaShift—a col-
lection of 12,868 sets of natural images across
410 classes—to address this challenge. We lever-
age the natural heterogeneity of Visual Genome
and its annotations to construct MetaShift. The
key construction idea is to cluster images using
its metadata, which provides context for each im-
age (e.g. cats with cars or cats in bathroom) that
represent distinct data distributions. MetaShift
has two important benefits: first, it contains or-
ders of magnitude more natural data shifts than
previously available. Second, it provides explicit
explanations of what is unique about each of its
data sets and a distance score that measures the
amount of distribution shift between any two of its
data sets. Importantly, MetaShift can be readily
used to evaluate any ImageNet pre-trained vision
model, as we have matched MetaShift with Ima-
geNet hierarchy. The matched version covers 867
out of 1,000 classes in ImageNet-1k. Each class in
the ImageNet-matched MetaShift contains 2301.6
images on average, and 19.3 subsets capturing
images in different contexts. We also propose
methods to construct either binary or multiclass
classification tasks, providing access to evaluate
the model’s robustness across diverse distribution
shifts.
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Figure 1: Example subsets of natural images from MetaShift.
MetaShift leverages the natural heterogeneity within each class
(e.g., “cat”, “dog”) to provide many subsets of images. Each subset
corresponds to images in a similar context (the context is stated in
parenthesis) and represents a coherent real-world data distribution.
Here, we only show 2 out of 410 classes and 8 out of 12,868
subsets of images from MetaShift.

1. Introduction
A major challenge in machine learning (ML) is that a model
can have very different performances and behaviors when
it’s applied to different types of natural data (Koh et al.,
2020; Izzo et al., 2021; 2022). For example, if the user data
have different contexts compared to the model’s training
data (e.g. users have outdoor dog photos and the model’s
training was mostly on indoor images), then the model’s
accuracy can greatly suffer (Yao et al., 2022). A model can
have disparate performances even within different subsets
within its training and evaluation data (Daneshjou et al.,
2021; Eyuboglu et al., 2022). In order to assess the reliabil-
ity and fairness of a model, we therefore need to evaluate
its performance and training behavior across heterogeneous
types of data. However, the lack of well-structured datasets
representing diverse data distributions makes systematic
evaluation difficult.

In this work, we present MetaShift to tackle this challenge.
MetaShift is a collection of 12,868 sets of natural images
from 410 classes. Each set corresponds to images in a
similar context and represents a coherent real-world data
distribution, as shown in Figure 1. Different from and com-
plementary to other efforts to curate benchmarks for data
shifts, MetaShift pulls together data across different experi-
ments or sources. It leverages heterogeneity within the large
sets of images from the Visual Genome project (Krishna



MetaShift: A Dataset of Datasets for Evaluating Contextual Distribution Shifts

et al., 2017) by clustering the images using metadata that
describes the context of each image.

Different from ImageNet, images from Visual Genome usu-
ally contain much more than one objects, which already
poses a distribution shift. Importantly, to support evalu-
ating ImageNet trained models on MetaShift, we match
MetaShift classes with ImageNet hierarchy using Word-
Net (Miller, 1995) synsets. We thereby generate a collection
of 5,040 sets of images from 261 classes, where all the la-
bels are a subset of the ImageNet-1k (Deng et al., 2009;
Russakovsky et al., 2015). MetaShift also implements a
score that measures the distance between any two subsets,
which could study ML models’ behavior under different
carefully modulated amounts of distribution shift.

Our contributions: We present MetaShift as an important
dataset with heterogeneous contexts. We match the labels
in MetaShift to ImageNet-1k, constructing a new labeled
dataset where the labels are a subset of the 1,000 labels of
it. The matched version covers 867 out of 1,000 classes
in ImageNet-1k. Each class in the ImageNet-matched
Metashift contains 2301.6 images on average, and 19.3
subsets capturing images in different contexts. Enumerable
classification tasks can be constructed over MetaShift to
evaluate the performance of ImageNet Model across diverse
distribution shifts.

2. The MetaShift Construction Methodology
The MetaShift is a collection of subsets of data together with
an annotation graph that explains the similarity/distance
between two subsets (edge weight) as well as what is unique
about each subset (node metadata). For each class, say
“cat”, we have many subsets of cats, and we can think of
each subset as a node in the graph, as shown in Figure 2.
Each subset corresponds to “cat” in a different context: e.g.
“cat with sink” or “cat with fence”. The context of each
subset is the node metadata. The “cat with sink” subset
is more similar to “cat with faucet” subset because there
are many images that contain both sink and faucet. This
similarity is the weight of the edge; a higher weight means
the contexts of the two nodes tend to co-occur in the same
data.

Base Dataset: Visual Genome We leverage the natural
heterogeneity of Visual Genome and its annotations to con-
struct MetaShift. Visual Genome contains over 100k images
across 1,702 object classes. For each image, Visual Genome
annotates the class labels of all objects that occur in the
image. Formally, for each image x(i), we have a list of
meta-data tags m(i) = {t(i)1 , t

(i)
2 , . . . , t

(i)
nm}, each indicating

the presence of an object in the context. We denote the
vocabulary of the meta-data tags as M = {m0, . . . ,m|M|}.
MetaShift is constructed on a class-by-class basis: For each

class, say “cat”, we pull out all cat images and proceed with
the following steps.

Step 1: Generate Candidate Subsets We first generate
candidate subsets by enumerating all possible meta-data
tags. We construct |M| candidate subsets where the ith

subset contains all images of the class of interest (i.e., “cat”)
that has a meta-tag mi. We then remove subsets whose sizes
are less than a threshold (e.g., 25).

Step 2: Construct Meta-graphs Since the meta-data are
not necessarily disentangled, the candidate subsets might
contain significant overlaps (e.g., “cat with sink” and “cat
with faucet”). To capture this phenomenon, we construct a
meta-graph to model the relationships among all subsets of
each class. Specifically, for each class j ∈ Y, we construct
meta-graph, a weighted undirected graph G = (V, E) where
each node v ∈ V denotes a candidate subset, and the weight
of each edge is the overlap coefficient between two subsets:

overlap(X,Y ) =
|X ∩ Y |

min(|X|, |Y |)
, (1)

We remove the edges whose weights are less than a threshold
(e.g., 0.1) to sparsify the graph. As shown in Figure 2, the
meta-graph G captures meaningful semantics of the multi-
modal data distribution of the class of interest.

Step 3: Quantify Distances of Distribution Shifts The
geometry of meta-graphs provides a natural and systematic
way to quantify the distances of shifts across different data
distributions: Intuitively, if two subsets are far away from
each other in the MetaGraph, then the shift between them
tend to be large. Following this intuition, we leverage spec-
tral embeddings (Belkin & Niyogi, 2003; Chung & Graham,
1997) to assign an embedding for each node based on the
graph geometry.

min
X:XT 1=0,XTX=IK

∑
i,j∈V

Aij ∥Xi −Xj∥2 (2)

where Xi is the embedding for node i ∈ V and K is the
dimension of the embedding, and A is the adjacency matrix.
We denote by X the matrix of dimension n × K whose
i-th row Xi corresponds to the embedding of node i. The
constraint XT 1 = 0 forces the embedding to be centered
and XTX = IK ensures that we do not get trivial solution
like all node embeddings located at the origin (i.e., X = 0).
Denoting by L = D −A the Laplacian matrix of the graph,
we have:

tr(XTLX) =
1

2

∑
i,j∈V

Aij ∥Xi −Xj∥2 (3)

min
X:XT 1=0,XTX=IK

tr(XTLX) =

K+1∑
k=2

λk (4)



MetaShift: A Dataset of Datasets for Evaluating Contextual Distribution Shifts

Figure 2: Meta-graph—visualizing the diverse data distributions within the “cat” class. Each node represents one subset of the
cat images. Each subset corresponds to “cat” in a different context: e.g. “cat with sink” or “cat with fence”. Each edge indicates the
similarity between the two connecting subsets. Node colors indicate the communities automatically detected by graph-based algorithms.
Inter-community edges are colored and intra-community edges are grayed out for better visualization. The border color of each example
image indicates its community in the meta-graph. We have one such meta-graph for each of the 410 classes in the MetaShift. Beyond
visualization, meta-graph also provides a natural and systematic way to quantify the distance between any two subsets (i.e., nodes), which
is not available in previous benchmarks of natural data.

The minimum is reached for X equal to the matrix of eigen-
vectors of the Laplacian matrix associated with the eigenval-
ues λ2, ..., λK+1. After calculating the spectral embeddings,
we use the euclidean distance between the embeddings of
two nodes as their distance.

3. Matching MetaShift with ImageNet
Given that MetaShift is a flexible framework to generate a
large number of real-world distribution shifts that are well-
annotated and controlled, we can use it to construct a new
dataset of specific classes and subpopulations.

ImageNet is an image database organized according to the
WordNet hierarchy, in which each node of the hierarchy is
depicted by hundreds and thousands of images. The full
ImageNet contains 60,942 nodes, while the 1,000 ImageNet
classes contains only 2,155 nodes.

To generate the dataset which fits in ImageNet-1k, we need

to match the labels in MetaShift with ImageNet-1k. For
each meta-data tag of the classes and the subsets of the
context as well as the attributes, we search in the ImageNet-
1k hierarchy to find if it has the label with the same wordnet
id. The meta-data tag in MetaShift may represent a greater
domain than the leaf nodes of the ImageNet hierarchy, for
example, MetaShift has only one general “cat” class, while
the ImageNet has “domestic cat” and “wildcat” under the
“cat” hierarchy, and each kind of cat also has several different
breeds. In the matching procedure, all breeds under “cat”
hierarchy will be matched to “cat” class in MetaShift.

Originally, the MetaShift contains a collection of 12,868
sets of natural images across 410 classes. After matching,
we selected 5,040 sets of images across 261 classes, where
each tag of it can be found in the ImageNet-1k dataset.
To verify the coverage of the generated dataset over the
ImageNet-1k, we count in the following methodology: for
each meta-data of the matched version of MetaShift, we
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locate the tags in the ImageNet hierarchy. If it is a non-
leaf node, then mark all of its leaf nodes, otherwise mark
the leaf node itself. By doing so, we match 120 of 261
classes directly to the leaf nodes of ImageNet, and the other
141 classes remain to be the non-leaf nodes, which will
cover a larger scale of leaf nodes. Totally, we get 867 leaf
nodes marked, which means most of the 1,000 labels of
the ImageNet are included in the dataset we generate. The
unmatched portions of our datasets can be potentially used
for OOD (out-of-distribution) detection, and we will delay
it in future work.

4. Task Construction under the MetaShift
The 261 classes over 5,040 sets of images provide enumer-
able options for task construction. We can select two classes
of the dataset to construct binary classification task. Here we
represent a method to construct the tasks with the MetaShift:
We first filter the classes whose subsets are less than a thresh-
old. For the selected classes, we find the common parent
nodes of two classes in the ImageNet hierarchy, which can
be used to evaluate their similarities. To be specific, if we
use 5 as the subsets filtering threshold, and select the pairs
of classes who have common parent nodes in the second
hierarchy of the ImageNet, we can get 19,024 binary classi-
fication tasks as a result. The construction method is simple,
and we can change the magnitude of the similarity to make
the classification tasks more challenging.

Besides, we can also construct multiclass classification tasks
by selecting any subsets of classes of MetaShift. The con-
text can have a great impact on the classification because of
the difference between it in train and test set. In Table 1, we
select 5 classes to do evaluation on 3 pre-trained ImageNet
models: ResNet18, ResNet50 and VGG 16. The accuracy
varies drastically across different classes depending on the
distribution shifts of the class. The classification accuracy of
elephant is relatively high since the contexts of elephant im-
ages are mostly outdoor in both ImageNet and MetaShift. In
contrast, the contexts of cat images varies a lot. The subsets
contain both indoor and outdoor contexts in MetaShift, such
as toilet, grass and other heterogeneous contexts, which
poses great distribution shifts. The lower accuracy of cat
classification indicates the ImageNet models’ incapability
in handling distribution shift.

In addition to pre-trained models, we can also evaluate fine-
tuned models in terms of both (1) domain generalization
and (2) subpopulation shifts in a well-annotated (explicit
annotation of what drives the shift) and well-controlled (easy
control of the amount of distribution shift) fashion.

• In domain generalization, the train and test distributions
comprise data from related but distinct domains. To simu-
late this setting, we can sample two distinct collections of

airplane cat dog elephant horse

ResNet18 0.382 0.412 0.535 0.701 0.258
ResNet50 0.418 0.349 0.541 0.711 0.228
VGG16 0.433 0.363 0.543 0.728 0.204

Table 1: Evaluation results: We select 5 classes to evaluate 3 pre-
trained ImageNet models. The accuracy varies drastically across
different class depending on the distribution shifts of the classes.

subsets as the train domains and the test domains respec-
tively (e.g. bathroom vs. outdoor contexts).

• In subpopulation shifts, the train and test distributions are
mixtures of the same domains, but the mixture weights
change between train and test. To simulate this setting,
we can sample the training set and test set from the same
subsets but with different mixture weights.

Given the enumerable tasks and the diverse distribution
shifts across each task, we can use MetaShift as a benchmark
to evaluate the performance of models across tasks and
distribution shifts.

Summary We start from the pre-processed and cleaned
version of Visual Genome to construct MetaShift, which
contains 12,868 sets of natural images from 410 classes. The
subsets are characterized by a diverse vocabulary of 1,853
distinct contexts. Beyond 1,702 contexts defined by object
presence, the dataset also leverages the 37 distinct general
contexts and 114 object attributes from Visual Genome.
Appendix A present examples and more information of the
contexts.

To support evaluating ImageNet trained models on
MetaShift, we match MetaShift with the ImageNet hier-
archy. The matched version covers 867 out of 1,000 classes
in ImageNet-1k. Each class in the ImageNet-matched
Metashift contains 2301.6 images on average, and 19.3 sub-
sets capturing images in different contexts. We then propose
methods to construct classification tasks on the matched ver-
sion, providing access to evaluate the model’s performance
across distribution shifts.

5. Conclusion
We present MetaShift—a collection of 12,868 sets of natu-
ral images from 410 classes—as an important dataset with
heterogeneous contexts. MetaShift contains diverse natu-
ral data shifts and provides explicit explanations of what
is unique about each of its data sets and a distance score
that measures the amount of distribution shift between any
two of its data sets. To support evaluating ImageNet trained
models on MetaShift, we match MetaShift with ImageNet
hierarchy. And we present methods to construct classifica-
tion tasks over MetaShift and propose that it can evaluate
the robustness of models across distribution shifts.
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A. Additional Dataset Information
For each image class (e.g. Dogs), the MetaShift dataset contains different sets of dogs under different contexts to represent
diverse data distributions. The contexts include presence/absence of other objects (e.g. dog with frisbee). Contexts can also
reflect attributes (e.g. black dogs) and general settings (e.g. dogs in sunny weather). These concepts thus capture diverse and
real-world distribution shifts. We list the attribute and general location contexts below.

A.1. General location and attribute contexts

A.1.1. GENERAL LOCATION CONTEXTS

Dog (Bedroom)

Dog (Ocean) Dog (Street)Dog (Grass)

Dog (Cloudy) Dog (Snow)

Figure 3: Example subsets based on general contexts (the global context is stated in parenthesis). MetaShift covers global contexts
including location (e.g., indoor, outdoor) and weather (e.g., sunny, rainy).

GENERAL_CONTEXT_ONTOLOGY = {
'indoor/outdoor': ['indoors', 'outdoors'],
'weather': ['clear', 'overcast', 'cloudless', 'cloudy', 'sunny', 'foggy', 'rainy'],
'room': ['bedroom', 'kitchen', 'bathroom', 'living room'],
'place': ['road', 'sidewalk', 'field', 'beach', 'park', 'grass',

'farm', 'ocean', 'pavement',
'lake', 'street', 'train station', 'hotel room',
'church', 'restaurant', 'forest', 'path',
'display', 'store', 'river', 'yard',
'snow', 'airport', 'parking lot']

}

Figure 4: The general contexts and their ontology in MetaShift. MetaShift covers 37 general contexts including location (e.g., indoor,
outdoor, ocean, snow) and weather (e.g., couldy, sunny, rainy).
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A.1.2. ATTRIBUTE CONTEXTS

Cat (White)Dog (Sitting) Cat (Orange)Dog (Jumping)

Bench (Wooden) Bench (Metallic) Plate (Round) Plate (Square)

Figure 5: Example Subsets based on object attribute contexts (the attribute is stated in parenthesis). MetaShift covers attributes
including activity (e.g., sitting, jumping), color (e.g., orange, white), material (e.g., wooden, metallic), shape (e.g., round, square), and so
on.

ATTRIBUTE_CONTEXT_ONTOLOGY = {
'darkness': ['dark', 'bright'], 'dryness': ['wet', 'dry'],
'colorful': ['colorful', 'shiny'], 'leaf': ['leafy', 'bare'],
'emotion': ['happy', 'calm'], 'sports': ['baseball', 'tennis'],
'flatness': ['flat', 'curved'], 'lightness': ['light', 'heavy'],
'gender': ['male', 'female'], 'width': ['wide', 'narrow'],
'depth': ['deep', 'shallow'], 'hardness': ['hard', 'soft'],
'cleanliness': ['clean', 'dirty'], 'switch': ['on', 'off'],
'thickness': ['thin', 'thick'], 'openness': ['open', 'closed'],
'height': ['tall', 'short'], 'length': ['long', 'short'],
'fullness': ['full', 'empty'], 'age': ['young', 'old'],
'size': ['large', 'small'], 'pattern': ['checkered', 'striped', 'dress', 'dotted'],
'shape': ['round', 'rectangular', 'triangular', 'square'],
'activity': ['waiting', 'staring', 'drinking', 'playing', 'eating', 'cooking', 'resting',

'sleeping', 'posing', 'talking', 'looking down', 'looking up', 'driving',
'reading', 'brushing teeth', 'flying', 'surfing', 'skiing', 'hanging'],

'pose': ['walking', 'standing', 'lying', 'sitting', 'running', 'jumping', 'crouching',
'bending', 'smiling', 'grazing'],

'material': ['wood', 'plastic', 'metal', 'glass', 'leather', 'leather', 'porcelain',
'concrete', 'paper', 'stone', 'brick'],

'color': ['white', 'red', 'black', 'green', 'silver', 'gold', 'khaki', 'gray',
'dark', 'pink', 'dark blue', 'dark brown',
'blue', 'yellow', 'tan', 'brown', 'orange', 'purple', 'beige', 'blond',
'brunette', 'maroon', 'light blue', 'light brown']

}

Figure 6: The attributes and their ontology in MetaShift. MetaShift covers over 100 attributes including activity (e.g., sitting, jumping),
color (e.g., orange, white), material (e.g., wooden, metallic), shape (e.g., round, square) and so on.

B. Related Work
Existing Benchmarks for Distribution Shift Distribution shifts have been a longstanding challenge in machine learning.
Early benchmarks focus on distribution shifts induced by synthetic pixel transformations. Examples include rotated and
translated versions of MNIST and CIFAR (Worrall et al., 2017); surface variations such as texture, color, and corruptions
like blur in Colored MNIST (Gulrajani & Lopez-Paz, 2020), ImageNet-C (Hendrycks & Dietterich, 2019). Although the
synthetic pixel transformations are well-defined, they generally do not represent realistic shifts in real-world images that we
capture in MetaShift.

Other benchmarks do not rely on transformations but instead pull together data across different experiments or sources.
Office-31 (Saenko et al., 2010) and Office-home (Venkateswara et al., 2017) contain images collected from different domains
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like Amazon, clipart. These benchmarks typically have only a handful of data distributions. The benchmarks collected
in WILDS (Koh et al., 2020) combine data from different sources (e.g., medical images from different hospitals, animal
images from different camera traps). Similarly, some meta-learning benchmarks (Triantafillou et al., 2019; Guo et al., 2020)
focuses on dataset-level shift by combining different existing datasets like ImageNet, Omniglot. While valuable, they lack
systematic annotation about what is different across different shifts. (Santurkar et al., 2020; Ren et al., 2018) utilize the
hierarchical structure of ImageNet to construct training and test sets with disjoint subclasses. For example, the “tableware”
class uses “beer glass” and “plate” for training and testing respectively. Different from their work, we study the shifts
where the core object remains the same while the context changes. NICO (He et al., 2020) query different manually-curated
phrases on search engines to collect images of objects in different contexts. A key difference is the scale of MetaShift:
NICO contains 190 sets of images across 19 classes while MetaShift has 12,868 sets of natural images across 410 classes.

To sum up, the advantages of our MetaShift are:

• Existing benchmark datasets for distribution shifts typically have only a handful of data distributions. In contrast, our
MetaShift has over 12,868 data distributions, thus enabling a much more comprehensive assessment of distribution shifts.

• Distribution shifts in existing benchmarks are not annotated (i.e. we don’t know what drives the shift) and are not
well-controlled (i.e. we can’t easily adjust the magnitude of the shift). The MetaShift provides explicit annotations of the
differences between any two sub-datasets, and it quantifies the distance of the shift.


