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Abstract

While recent generative models advance pixel-space video synthesis, they remain
limited in producing professional educational videos, which demand disciplinary
knowledge, precise visual structures, and coherent transitions, limiting their appli-
cability in educational scenarios. Intuitively, such requirements are better addressed
through the manipulation of a renderable environment, which can be explicitly con-
trolled via logical commands (e.g., code). In this work, we propose Code2Video,
a code-centric agent framework for generating educational videos via executable
Python code. The framework comprises three collaborative agents: (i) Planner,
which structures lecture content into temporally coherent flows and prepares cor-
responding visual assets; (ii) Coder, which converts structured instructions into
executable Python codes while incorporating scope-guided auto-fix to enhance
efficiency; and (iii) Critic, which leverages vision-language models (VLM) with
visual anchor prompts to refine spatial layout and ensure clarity. To support sys-
tematic evaluation, we build MMMC, a benchmark of professionally produced,
discipline-specific educational videos. We evaluate MMMC across diverse dimen-
sions, including VLM-as-a-Judge aesthetic scores, code efficiency, and particularly,
TeachQuiz, a novel end-to-end metric that quantifies how well a VLM, after un-
learning, can recover knowledge by watching the generated videos. Our results
demonstrate the potential of Code2Video as a scalable, interpretable, and con-
trollable approach, achieving 40% improvement over direct code generation and
producing videos comparable to human-crafted tutorials. The code and datasets
are available at https://github.com/showlab/Code2Video.

1 Introduction

“If you want to master something, teach it.” — Richard Feynman

Recent advances in natural video generation have made remarkable progress in pixel space. End-
to-end solutions, including diffusion-based [14, 49] and autoregressive architectures [48, 61], can
synthesize visually compelling videos directly from text prompts (i.e.,Text2Video), achieving fine
appearance and short-form fidelity. Yet these models struggle when the task requires long-form
reasoning or multi-entity interaction [23]. To overcome these limitations, recent works have moved
toward multi-agent pipelines, where complex video generation is decomposed into collaborative
subtasks, allowing iterative refinement, temporal structuring [62, 17, 53].

Educational videos that aim to teach subject-specific knowledge face unique challenges in the
reasoning era. Unlike short-form entertainment, educational content must integrate deep domain
expertise [6], carefully designed animations or transitions, and step-by-step reasoning [3] to support
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Figure 1: Overview of Code2Video. A code-centric paradigm for educational video generation,
where Planner ensures temporal flow, Coder bridges instructions to executable animations, and Critic
refines spatial layout. Evaluation is performed on MMMC with multi-dimensional metrics.

actual skill acquisition. This raises two fundamental challenges: (i) How to create high-quality
educational videos that maintain both temporal coherence—concepts introduced, expanded, and
reinforced in logical sequence—and spatial clarity—elements arranged legibly without occlusion;
and (ii) How to evaluate educational videos beyond appearance, ensuring that they are educationally
effective and semantically aligned with the intended learning topic. Existing video generation
pipelines rarely satisfy these requirements, leaving a critical gap for agentic methods that unify
temporal planning, spatial organization, and educational assessment.

We are motivated by the intuition that code provides a uniquely suitable substrate for educational video
generation. Unlike black-box models, code-centric pipelines are scalable, since new visualizations
and external assets can be modularly integrated; interpretable, as every sequence, layout, and
rendering decision is explicitly scripted and thus auditable; and controllable, enabling precise
temporal sequencing and spatial organization through programmatic specification.

Building on these insights, we propose Code2Video, an agentic, code-centric framework for gen-
erating high-quality educational videos. The system decomposes the task into three agents: the
Planner sequences concepts, examples, and recaps into a coherent lecture flow; the Coder translates
structured instructions into executable Manim code, yielding precise, editable visualizations with
consistent layout and timing; and the Critic leverages multimodal feedback and visual anchor prompts
to refine spatial organization and ensure alignment with learning objectives. This tri-agent design
explicitly models the temporal and spatial structure of instruction, while grounding the entire pipeline
in transparent, reproducible, and extensible code.

To evaluate this paradigm, we propose MMMC, a benchmark reflecting the distinct goal of educa-
tional videos: teaching new knowledge. It comprises professionally produced, discipline-specific
Manim tutorials across 13 domains (e.g.,topology, physics). Evaluation covers three complementary
dimensions: (i) VLM-as-a-Judge aesthetic and structural quality; (ii) code efficiency, measuring
generation time and token consumption; and (iii) TeachQuiz, a novel end-to-end knowledge-transfer
metric that enforces unlearning of the target concept in a VLM, and then measures how effectively the
generated video restores it. This multi-dimensional protocol directly probes educational efficacy and
grounds a code-centric paradigm for video generation. Our results reveal clear trends: pixel-based
models struggle with fine details and coherence, while direct code-centric generation improves
TeachQuiz by 30%. Our full Planner–Coder–Critic pipeline further delivers a stable 40% gain. In
human studies on TeachQuiz scores, agentically generated videos even outperform professional
human-made tutorials, underscoring the effectiveness of code-centric, agentic generation.

Our contributions are summarized as follows:

• A New Paradigm for Video Generation. We introduce a new code-centric paradigm for ed-
ucational video generation, positioning executable code as the unifying medium for temporal
sequencing and spatial organization.
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• Effective Designs for Visual Animation Agent. We highlight a modular agent design with three
key components: (i) Planner expands an external database for reference, enabling parallel yet
consistent storyboard; (ii) Coder ensures compilable code via automatic debugging and scope-
guided repair; (iii) Critic refines spatial layout and clarity using visual anchor prompts.

• New Benchmark with Well-designed Evaluation. We present MMMC, the first benchmark
for code-centric educational video generation with multi-dimensional evaluation of efficiency,
aesthetics, and end-to-end knowledge transfer.

2 Related Work

2.1 Video Generation

Early text-to-video generation methods (i) primarily develop end-to-end visual diffusion models into
the temporal domain, employing architectures such as space–time UNets and latent 3D VAEs [49,
15, 41, 14]. Representative works have demonstrated impressive perceptual fidelity and longer
durations [4, 57, 23, 55], yet their reliance on pixel-space synthesis poses significant challenges for
educational video creation, where precise layout and symbolic alignment are essential for effective
pedagogy. Parallel research has explored autoregressive and progressive schemes [27, 10, 45, 52]
to enable long-form video synthesis [13, 31, 67], but these approaches continue to inherit the
limitations of pixel-level control, making it difficult to achieve board-like composition and stepwise
exposition required in educational contexts [18, 23, 30]. (ii) To address the complexity of structured
content generation, recent studies leverage multi-agent collaboration, particularly within LLM
applications, to decompose tasks, coordinate tool usage, and facilitate iterative self-improvement [62,
17, 16, 53, 40]. While multi-agent frameworks have proven effective in domains such as question
answering and web interaction, their application to video generation remains limited and largely
unexplored [22, 24, 51]. (iii) Built on top of the multi-agent, our approach introduces a code–centric
animation for educational video synthesis. By elevating executable code as the generative substrate,
our method enables symbolic layout, temporal structure, and deterministic reproducibility.

2.2 Coding Agents

Recent advances in LLM-based tool-use have enabled agents to autonomously call APIs, retrieve
specifications, and verify outputs, laying the groundwork for neuro-symbolic modularity and robust
task decomposition [2, 21, 58, 39, 44]. Representative methods demonstrate that integrating code
execution and tool invocation can reliably extend language models beyond text-only reasoning, sup-
porting complex workflows and project-level code generation [36, 29, 12, 7, 66]. These developments
highlight the potential of LLM agents to coordinate external retrieval, maintain consistent memory
across parallel processes, and incorporate feedback loops for iterative refinement [26, 25, 56, 64]. In
parallel, research at the intersection of coding and visual reasoning has shown that generating and
executing programs can yield structured perception and controllable rendering [35, 11, 42, 33, 28, 8].
Visual programming and visual-to-code approaches leverage program synthesis for compositional
reasoning and spatial arrangement, as evidenced by benchmarks evaluating the translation of images
or text into executable code for charts, plots, or graphical environments [50, 65, 20, 46, 60]. These
works demonstrate the capacity of language models to bridge symbolic and visual domains, though
they primarily focus on static figures or localized visual tasks [54, 38, 47, 59, 19]. Our work pioneers
the integration of code generation and visual synthesis for dynamic educational video creation. By
employing agents to generate executable Manim code, we achieve precise, temporally structured
control over both content and layout throughout entire lectures. This approach represents an early
effort to bridge coding and video generation, enabling the production of educational material that is
both semantically rigorous and visually coherent.

3 MMMC Benchmark

3.1 Task Formulation

The task of code-centric educational video generation maps a learning query to executable Manim [32]
code whose rendering yields a tutorial video. The challenge lies in multi-step reasoning, precise
temporal sequencing, and spatial coherence, where even minor syntax errors can nullify execution.
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Figure 2: MMMC overview. (1) Left: distribution of 13 subject categories with exemplar learning
topics; ring width encodes video duration. (2) Middle: learning topic word cloud highlighting core
concepts. (3) Right: average learning topic length per category.

We adopt Manim for its fine-grained spatiotemporal control, symbolic expressivity, and demonstrated
effectiveness in expert-produced instructional videos.

3.2 Data Curation and Statistics

We construct MMMC, a benchmark for code-driven educational video generation, under two criteria:
(i) educational relevance—each learning topic is an established concept worth teaching; and (ii)
executable grounding—each concept aligns with a high-quality Manim reference, ensuring practical
realizability. We source from the complete 3Blue1Brown (3B1B) YouTube corpus, known for its
instructional impact and expert Manim craftsmanship. After filtering out non-instructional items (e.g.,
Q&A), we curate 117 long-form videos spanning 13 subject areas, including calculus, geometry,
probability, and neural networks. To enrich supervision, we segment videos using author-provided
timestamps into 339 semantically coherent sub-clips, yielding 456 units in total. An LLM then
extracts concise learning topics (avg. 6.3 words) from titles, descriptions, and metadata, producing
a clean mapping from videos to educationally grounded units (details in §A.1.5). On average, a
full-length video lasts 1014 seconds (∼16.9 minutes), while a segmented clip spans 201 seconds
(∼3.35 minutes), thus balancing long-horizon reasoning with fine-grained supervision. Figure 2
visualizes topical diversity with a hierarchical donut plot: the inner ring denotes 13 categories, while
the outer ring shows individual topics with arc width proportional to cumulative duration. This
structure highlights both the breadth of coverage and the temporal richness of MMMC, establishing
it as a challenging and representative benchmark for educational video generation.

3.3 Evaluation Metrics

Unlike conventional video generation, educational videos are valued less for visual fidelity than for
how effectively they convey knowledge. This makes standard synthesis metrics inadequate. We
therefore design a three-pronged evaluation across aesthetics, knowledge convey, and efficiency:

VLM-as-Judges. Since human judgments of video quality are inherently subjective, we adopt a
VLM-as-judges protocol (Paesth) to approximate user perception across five axes: (i) Element Layout
(EL) — clarity and spatial arrangement of visual components. (ii) Attractiveness (AT) — overall
engagement and ability to capture learners’ attention. (iii) Logic Flow (LF) — coherence in temporal
presentation of concepts. (iv) Visual Consistency (VC) — stylistic stability across frames and sections.
(v) Accuracy & Depth (AD) — correctness and richness of the presented knowledge. Each dimension
is rated on a 100-point scale.

TeachQuiz. The goal of educational video generation is not merely visual plausibility, but effective
knowledge transfer. To evaluate this, we introduce TeachQuiz, a two-stage protocol grounded in a
quiz setQ(K) = (qi, yi)

N
i=1 for a given conceptK, and Y denotes ground-truth answers. We consider

multiple teachers α, β, each producing a video Vα,Vβ . A student model ϕ is tasked with watching
the video and answering questions:

S(Vα) = 1[ϕ (Q,Vα) = Y ] (1)
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Figure 3: TeachQuiz: score gap between Learning-from-Video and Unlearning stages.

If S(Vα) > S(Vβ), then teacher α is the stronger instructor.

However, a key challenge is that many quiz items are already be learn by top-performing VLMs
(i.e.,answer correctly without watching the video). Thus, absolute accuracy alone does not measure
teaching quality. Instead, a good educational video should improve knowledge acquisition relative to
a controlled baseline. We enforce this through two steps: (i) Unlearning. Apply Punlearn to block
prior access to K, yielding a knowledge-removed baseline. (ii) Learning-from-Video. Expose the
model to V under Plearn, testing whether the video itself enables recovery of the knowledge. The final
TeachQuiz score measures relative improvement:

S̃(Vα) = S(Vα)− S(Vα|unlearn) (2)

which isolates the contribution of the video by subtracting the unlearned baseline. Higher S̃ indicates
stronger knowledge transfer induced by the generated video.
Token Cost and Generation Time. Beyond output quality, an equally important dimension is
how economically a model can generate effective videos. We measure efficiency by average code
generation time and token usage per video, reflecting scalability and feasibility in large-scale or
interactive educational settings where latency and resource costs are critical.

4 Method: Code2Video

Overview. As illustrated in Fig. 4, given a topic query Q, Code2Video output a video V , which
is consists of three stages: (i) Planner structures topics into storyboards with reference assets, (ii)
Coder translates each section into executable Manim code using parallel synthesis and an effective
debugging, and (iii) Critic refines rendered videos through a novel visual prompt and VideoLLM
feedback to ensure spatial coherence and educational clarity.

4.1 Planner: query to storyboard

Generating coherent educational videos requires careful organization of temporal structure. We
design the Planner to decompose a topicQ into two stages: outline generation for high-level ordering,
and storyboard construction for stepwise realization. This preserves logical flow while capturing
cross-section dependencies.

(i) Outline Generation. Given a topic Q, the Planner produces an outline O = o1, . . . , on, where
each oi contains a unique identifier, section title, content summary, and illustrative examples. Cru-
cially, the Planner also considers the intended audience (e.g.,trigonometric functions for middle school,
Fourier’s law for undergraduates), ensuring level-appropriate structure. Formally, O ← Poutline(Q),
where O = {o1, · · · , on} and each oi encodes the section-level metadata and educational intent. By
explicitly specifying audience and structure, the outline establishes the temporal skeleton for the
subsequent video, guiding both pacing and sequencing.

(ii) Storyboard Construction. The second stage converts the outline o into a detailed story-
board s. Each section in s includes title, lecture lines, and corresponding animations, with
si ← Pstoryboard(oi). The storyboard specifies the temporal sequence of lecture lines and paired
animations, bridging high-level planning with concrete visual content.

External Database. To enhance factual accuracy and visual fidelity, the Planner integrates an external
database D. It includes (a) reference images aligned with the topic to anchor complex concepts
and reduce hallucination, and (b) visual assets (e.g.,icons, logos) that are difficult to generate from
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# === Animation for Lecture Line 1 ===

bio_helix = VGroup(
Arc(radius=0.25, angle=TAU / 2, stroke_width=4).shift(LEFT*0.05),
Arc(radius=0.25, angle=-TAU / 2, stroke_width=4).shift(RIGHT*0.05),
Line(UP*0.19 + LEFT*0.16, DOWN*0.19 + RIGHT*0.16, stroke_width=3),
Line(UP*0.09 + LEFT*0.13, DOWN*0.09 + RIGHT*0.13, stroke_width=3),

)

# CORRECT: bio_helix.scale(0.75)
bio_helix.resize(0.75) # WRONG

econ_icon = VGroup(
Circle(radius=0.23, color=economics_c, stroke_width=4),
Text("$", font_size=25, color=BLACK),

).scale(0.9)

self.play(
self.lecture[0].animate.set_color(highlight_color),
run_time=0.6

)

"audience": "University students",
"sections": [
{

"id": "section_1",
"title": "The Classification Challenge",
"content": "Introduce the problem ...",
"example": "Visualize red and blue points ... "

"sections": [

{

"id": "section_1",

"title": "Sec1 : The Classification Challenge",

"lecture": [

"Let's start with SVM's basic ...",

],

"animations": [

"Step1: Fade in 9 red points and ...",

...

Traceback (most recent call last):
File "Section1.py", line 228, in render

scene = SceneClass()
File "Section1.py", line 241, in __init__

scene = SceneClass()
File "Section1.py", line 26, in construct

bio_helix.resize(0.75)

AttributeError: "VGroup" object has no attribute 'resize'

Figure 4: Illustration of Code2Video. Given a user inquiry, Code2Video aims to render an educa-
tional video via Manim code writing: (i) the Planner converts a learning topic into a storyboard and
retrieves visual assets; (ii) the Coder performs parallel code synthesis with scope-guided refinement
to ensure efficiency and temporal consistency; (iii) the Critic uses visual anchor prompts to iteratively
adjust spatial layout and clarity, yielding reproducible, educationally structured videos.

scratch. These assets A are automatically identified via a prompt Passet analyzing the storyboard,
ai ← Passet(si), and stored in a persistent cache Dasset. Caching enables reuse across sections,
preventing redundant generation and ensuring visual consistency. Please refer to § A.1.6 for more
details and examples about D.

4.2 Coder: Storyboards to Executable Code

The Coder G translates each section of the storyboard s and the cached assets a into executable
Manim code C = {c1, . . . , cn}, where each ci corresponds to a storyboard si.

(i) Parallel Code Generation. A central bottleneck in full-code synthesis is generation time, as
end-to-end Manim code production for a single educational video—including generation, debugging,
and rendering—can exceed two hours. To address this bottleneck, we parallelize the pipeline
by decoupling serial steps—code generation, debugging, and refinement—so that each section is
synthesized and fixed independently. Each section is conditioned on its storyboard and shared assets
A: ci = Pcoder(si,A). Notably, asset sharing across sections ensures temporal consistency while
retaining the efficiency benefits of parallelization.

(ii) Effective Debugging. Even strong LLMs rarely produce fully executable code in one pass. Naïve
strategies that concatenate all code with the full error log are costly in both time and tokens. We
propose ScopeRefine (SR), a hierarchical, scope-guided repair strategy, as illustrated in Fig.4 middle
bottom: (a) Line scope: isolate the error line plus immediate context, S1 = line± 1, attempt up to
K1 local fixes. (b) Block scope: if unresolved, expand to the lecture-line block S2 = Bi,j with up
to K2 repair attempts. (c) Global scope: as a last resort, regenerate the full section ci from si. This
progressive “Go-to style” repair minimizes token usage and latency while ensuring high reliability,
effectively bridging parallel generation with robust debugging.

4.3 Critic: Effective Visual Refinement

Even after debugging ensures executability, the generated code may still yield unsatisfactory visual
outcomes. LLMs and VLMs often fail to provide actionable feedback due to limited spatial
awareness [5, 63]. In practice, models can identify issues (e.g.,“the cat icon is misplaced”) but
struggle to provide actionable corrections. They often fail to indicate the direction or distance needed
to adjust the element, which makes text-only refinement inadequate.
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Figure 5: Illustration of visual anchor prompt (Pvis).

(i) Visual Anchor Prompt (Pvis).
We introduce Pvis, a textual
prompt that discretizes the 2D can-
vas into a 6 × 6 grid of prede-
fined anchor points. Each grid cell
is mapped to fixed Manim coor-
dinates, allowing LLM-specified
locations to be directly converted
into executable code. Place-
ment follows two granularities,
as illustrated in Figure 5: (a)
point-level, where small elements
(e.g.,symbols, short labels) occupy
a single anchor; and (b) region-
level, where larger elements are as-
signed to a bounding box spanning multiple anchors. This discretization transforms the placement
task from a continuous positioning problem into a discrete anchoring problem, serving as a visual
debugging “go-to”, which substantially reduces the difficulty for LLMs to produce valid layouts.

(ii) VideoLLM for Code Feedback. To detect violations and refine placement, the Critic inspects
the rendered video Vi alongside its section code ci. During parallel code generation, we maintain
an occupancy table that records each element’s assigned anchors (point or region), scaling factor,
and corresponding code lines. This design serves two purposes: (a) it makes all assets indexable,
allowing the Critic to quickly trace a visual issue back to its source code; and (b) it reveals available
anchors, enabling conflict-free reallocation. With this structured view, the Critic efficiently detects
three common issues: overlapping elements within a cell, lecture lines occluded by animations, and
large unused regions creating visual imbalance. These findings are incorporated into a refinement
prompt Prefine, yielding optimized code: c̃i = Prefine(ci,Vi) and final video Ṽ = Render({c̃i}ni=1).
By combining anchor-based guidance, indexable, occupancy-aware adjustment, and multimodal
feedback, the Critic overcomes the limitations of text-only debugging.

5 Experiment

5.1 Implementation Details

Baselines. We compare four types of approaches: ⋄ Human-crafted, expert-designed Manim videos
as an upper bound; ⋄ Pixel-based Diffusion, text-to-video models: OpenSora-v2 [37], Wan2.2-T2V-
A14B [43], and Veo3 [9]; ⋄ CodeLLM Generation, where an LLM directly generates Manim code
from a learning topic; ⋄ Agentic Generation (ours), a Planner–Coder–Critic pipeline. We evaluate
across diverse models: Claude Opus 4.1 [1], GPT-4o, GPT-o4 mini, GPT-4.1, GPT-5 [34], Gemini-2.5
Pro [18], with Gemini-2.5 Pro serving as Critic for refinement. Evaluation. Aesthetics are judged by
Gemini-2.5 Pro (VLM-as-a-Judge), and quantify knowledge transfer with TeachQuiz. Resources.
Reference images are retrieved from Google Images, and visual assets from Iconfinder1. All prompts
are documented in § A.2.

5.2 Main Results

Table 1 compares Code2Video with human-crafted videos, pixel-based models, and code LLM
baselines, evaluated on Efficiency, Aesthetics (AES), and knowledge transfer (TeachQuiz). Our
analysis yields several insights: (i) Pixel-based models underperform. They obtain the lowest scores
on both AES and TeachQuiz, particularly struggling with LF due to weak control over text grounding,
animation timing, and cross-frame coherence. (ii) Direct code-centric generation delivers clear
improvements. Rendering videos from LLM-produced Manim code outperforms pixel-based models,
underscoring code as an effective medium for controllable and coherent educational video generation.
(iii) Our agentic framework delivers stable and consistent improvements. Across different
backbone LLMs, Code2Video achieves significant performance boosts. For instance, with Claude
Opus 4.1, AES improves by 50% and TeachQuiz by 46%. These gains arise from distinct components:

1https://www.iconfinder.com
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Table 1: Results across Efficiency, Aesthetics, and TeachQuiz (Quiz). Efficiency: Time (avg
minutes per topic) and Token (avg token consumption per topic). Aesthetics: Element Layout (EL),
Attractiveness (AT), Logic Flow (LF), Visual Consistency (VC), Accuracy & Depth (AD).

Method Efficiency (↓) Aesthetics (↑) Quiz (↑)
Time Token (K) EL AT LF VC AD Avg

Human-made 3B1B – – 98.3 100 100 100 100 99.7 97.1

Pixel-based Diffusion
OpenSora-v2 27.6 – 0.0 5.0 0.0 0.0 13.3 3.7 0.0
Wan2.2-T2V-A14B 17.4 – 0.0 10.0 0.0 0.0 20.0 6.0 0.0
Veo3 2.3 – 0.0 15.0 0.0 5.0 25.0 9.0 2.5

Code LLM
GPT-5 1.8 1.1 27.0 28.0 28.0 54.5 26.0 32.7 36.5
GPT-4.1 2.1 1.2 30.5 34.5 39.0 42.0 24.8 34.2 37.0
Claude Opus 4.1 2.8 2.3 47.5 40.0 26.5 56.6 18.4 37.8 40.0

Code2Video Agent (Ours)
Code2Video Gemini-2.5 Pro 15.5 41.8 70.3 60.3 44.3 37.6 74.7 57.4 72.0
Code2Video GPT-4o 14.1 32.7 70.3 58.3 54.6 48.5 68.3 60.0 44.0
Code2Video GPT-o4 mini 16.8 49.2 77.0 52.8 73.0 57.2 79.0 67.8 48.5
Code2Video GPT-5 8.8 19.3 75.5 60.5 81.8 63.6 79.7 72.2 +39.5 80.0 +43.5
Code2Video GPT-4.1 15.4 30.8 82.8 65.6 95.0 68.0 83.7 79.0 +44.8 82.0 +45.0
Code2Video Claude Opus 4.1 13.8 43.1 90.6 79.7 93.3 84.2 91.9 87.9 +50.1 86.0 +46.0

example (b): Neural Network Learning and Backpropagation ( Neural Network )

example (a): Pure Fourier Series ( Physics )

Code2Video ( Ours ) Veo3

Figure 6: Qualitative comparison between Code2Video and Veo3. Our approach generates videos
with coherent logic flow, consistent semantics, and interpretable layouts.

visual anchor points drive improvements in element layout, while the Planner enhances LF and AD.
However, limitations remain in AT and VC, pointing to opportunities for refinement. (iv) Human-
made videos remain strong. Although Code2Video narrows the gap, professional videos still lead in
storytelling, nuanced sequencing, and explanatory depth. This highlights the next frontier: advancing
agentic pipelines toward professional-quality long educational videos.

Qualitative Analyses. Figure 6 illustrates that our code-driven pipeline produces videos with clear
text and formulas, stable layouts without occlusions, and stepwise alignment with lecture lines. In
contrast, the pixel-based model (Veo3) often generates blurry or corrupted text, inconsistent styles,
and drifting visuals, weakening semantic grounding. Overall, code-driven synthesis ensures better
spatial stability and clearer knowledge presentation. Additional cases are provided in § A.1.7.

5.3 Ablation Studies

Effects by Individual Components. Table 2 highlights several observations. First, TeachQuiz
is more sensitive than Aesthetics, revealing knowledge-transfer gaps even when videos still look
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visually acceptable. Second, the Planner is essential: removing it collapses both metrics (≈ 41 points),
underscoring that high-level lecture planning and temporal sequencing are the backbone of effective
teaching videos. Third, other modules provide complementary gains: the External Database improves
conceptual grounding, Visual Anchors stabilize layouts, and the Critic ensures refinement—each
modest alone, but jointly essential for robustness. These results highlight that structured visual
guidance and iterative refinement are crucial for producing visually clear videos that effectively
convey knowledge.

Table 2: Effect of different components on quality:
TeachQuiz / Aesthetics avg. score.

Method Aesthetics Quiz

Code2Video Chat-4.1 (⋄) 79.0 82.0
⋄ w/o Planner 38.1 −40.9 40.5 −41.5

⋄ w/o External Database 68.1 −10.9 52.0 −30.0

⋄ w/o Visual Anchor 69.2 −9.8 55.2 −26.8

⋄ w/o Critic 72.5 −6.5 60.7 −21.3

Table 3: Effect of efficiency components: run-
time avg. time / token consumption.

Method Time (m) Token (K)

Code2Video Chat-4.1 (⋄) 15.4 30.8
⋄ w/o parallel 86.6 5.6× 30.8
⋄ w/o SR → w. Retry 42.9 2.8× 49.8 1.6×
⋄ w/o SR → w. Debug 39.2 2.5× 42.1 1.4×
⋄ w/o parallel & SR 149.8 9.7× 52.6 1.7×

Efficiency Components. Table 3 evaluates efficiency-oriented modules. Removing parallel ex-
ecution greatly increases latency (15.4 → 86.6 minutes). Without ScopeRefine (SR), we test two
alternative debugging methods: (i) Retry, which regenerates the section upon any error; (ii) Full-code
Debug, which feeds the entire code and error log to the LLM to regenerate the section. In both
cases, error correction is costly, highlighting the importance of SR’s localized, scope-aware repair.
Removing both mechanisms produces prohibitive overheads. These results underscore that parallel
synthesis and scope-aware repair are essential for scalable, code-centric video generation.

Table 4: Human study on Aesthetics, TeachQuiz (Quiz), Completion Willingness (CW), and Average
Ranking (AR). Results align with VLM-based trends but show sharper score contrast, lower tolerance
for layout errors, and reduced engagement in longer-duration videos.

Method Duration Aesthetics (↑) Quiz (↑) CW (↑) AR (↓)
EL AT LF VC AD Avg

Human-made 3B1B 16.9 min 98.9 97.2 91.3 98.0 97.0 96.5 78.8 36.2 1.2
Pixel-based Veo3 8.0 s 12.6 4.4 1.1 24.4 1.1 8.5 8.0 46.8 5.0
Code LLM Claude Opus 4.1 0.9 min 16.1 41.1 55.6 71.1 72.2 51.2 56.6 15.0 3.9
Code2Video Gemini-2.5 Pro 1.6 min 26.7 68.3 78.1 90.2 81.0 68.9 65.3 47.4 3.1
Code2Video Claude Opus 4.1 2.0 min 60.2 89.3 84.6 92.0 83.1 81.8 80.3 64.0 1.8

Human Study Evaluation. We conduct a five-group user study (6 middle school, 2 undergraduate
volunteers per group), where each participant watches one video type and answers 5 quiz questions
for 20 learning topics. We measure Completion Willingness (CW, proportion finishing the video
before answering, max score is 100) and Average Ranking (AR, mean preference across video types,
1 is the best). Table 4 reveals four patterns: (i) Clearer separation. Human ratings follow the same
overall trends as VLM-based scores but with stronger contrast: high-quality videos are rated in the
upper range (> 90), while low-quality videos cluster near the lower bound (< 10). (ii) Sensitivity to
layout errors. Participants give lower layout scores (EL) to videos from Code2Video, as humans
are highly sensitive to even brief occlusions, whereas VideoLLMs often miss such frame-level
issues. (iii) Attention span limits. Human attention is inherently limited: to perform well on the
quiz, participants must follow the full flow of knowledge details in the video. This requires not
only strong logical coherence and engaging presentation but also a reasonable duration that allows
sustained high attention for effective knowledge absorption. (iv) Strong consistency. Aesthetics and
TeachQuiz scores are strongly correlated(r = 0.971, p = 0.0059): visually appealing videos keep
students engaged, leading to higher learning outcomes. Overall, the human study underscores that
both structural clarity and visual appeal are decisive levers for learning efficacy, complementing the
automated metrics. Future work requires agent designs that explicitly account for human attention
and patience, ensuring videos maintain fine-grained details while minimizing perceptual fatigue.
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6 Conclusion

We have introduced a novel, code-centric paradigm for educational video generation, establishing exe-
cutable code as the unifying medium for both temporal sequencing and spatial organization. Building
on this paradigm, our tri-agent architecture Code2Video enables controllable and interpretable gener-
ation with multimodal feedback. To systematically evaluate this paradigm, we introduce MMMC,
targeting efficiency, aesthetics, and knowledge transfer. Together, our paradigm, architecture, and
benchmark chart a clear path for future research on leveraging code as a medium for high-quality,
structured, and interpretable educational content generation. Future work includes broadening the
video scope and developing more lightweight, scalable agent frameworks.
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A Supplementary Material

A.1 Additional Implementation Details and Experiments

A.1.1 Unlearning Details and TeachQuiz

To probe whether generated tutorial videos genuinely transfer knowledge, we integrate a selective
unlearning–relearning protocol into the TeachQuiz evaluation.

Model choice. We adopt Gemini-2.5 Pro [18], one of the current state-of-the-art models in video
understanding. Its closed-source nature precludes parameter-level interventions for unlearning; thus,
we rely on a prompt-based strategy, a standard approach for steering proprietary models.

Unlearning stage. We design a parameter-free pipeline Punlearn tailored for closed-source models.
Given a target conceptK, we define a shadow knowledge set B(K) consisting of canonical definitions,
formulas, aliases, and exemplars associated withK. During inference, Punlearn enforces: (i) contextual
masking, where B(K) is silently identified and treated as inaccessible; (ii) uncertainty injection,
where the model must output “INSUFFICIENT EVIDENCE” whenever the reasoning chain depends
on elements of B(K); (iii) progressive forgetting validation, where queries of increasing difficulty
{qi}Ni=1 are used to test suppression not only at recall-level but also across multi-step reasoning.
Formally, the model’s answer distribution is constrained to

f(qi | Punlearn) ∈
{
yi,NULL

}
, (3)

where NULL indicates blocked inference. This layered design obstructs both direct recall and indirect
reconstruction, ensuring that performance degradation reflects genuine unlearning rather than prompt
compliance artifacts.

Relearning stage. We then expose the model to an educational video V and apply a relearning prompt
Plearn, which restricts evidence scope to V while maintaining the block on B(K). The answering
constraint becomes

f(qi | Plearn,V) ∈
{
yi,NULL

}
, (4)

with justification required to reference only cues present in V . This ensures that any gain after
relearning is attributable solely to video-grounded evidence rather than residual prior knowledge.

Evaluation setup. For each learning topic, we construct 10 multiple-choice questions with four
options (A–D), each containing exactly one correct answer. To better capture the expressive power
of tutorial videos, these quizzes emphasize visually grounded reasoning. For instance, rather than
simply asking “What is the definition of a complex number?”, a question may ask “When a point
moves on the complex plane, what visual transformation corresponds to multiplication by i?”. Such
queries demand alignment between knowledge and its visual instantiation.

Metric. Given a concept K, we construct N multiple-choice questions {qi}Ni=1 with ground-truth
answers {yi}Ni=1. The selective unlearning baseline S1(K) denotes the fraction of correctly answered
questions under Punlearn, where access to prior knowledge ofK is explicitly blocked. We then compute
the relearning accuracy S2(K,V), defined as the fraction of correct answers when re-prompted with
Plearn while exposing the model to the generated educational video V . Formally,

The TeachQuiz score is then defined as:

TQ(K,V) = S2(K,V)− S1(K),
which captures the relative gain in accuracy attributable solely to V . Intuitively, S1 reflects how well
the model resists using forbidden prior knowledge, while S2 reflects how much can be recovered
from the video. A higher TQ thus indicates stronger video-induced knowledge acquisition.

Ablation on evidence sources. To ensure that the observed gains are indeed attributable to the
generated videos, we conduct an ablation study, shown in Table 5.

First, when providing only Text-only lecture lines (akin to PDF-style slides without animation),
performance improves moderately compared to the unlearn baseline but falls short of full video-based
relearning, highlighting that textual scaffolding alone is insufficient.

Second, with Animation-only inputs (animations without accompanying lecture text), accuracy also
rises above unlearn but remains lower than the full condition, suggesting that temporal visual cues
contribute substantially but require textual grounding for maximum effect.
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Table 5: Ablation on unlearning. Accuracy reports correct concept judgments; ∆ = TQ denotes
the improvement in TeachQuiz confidence from the Unlearn setting to the Relearn setting. Text-
only/Animation/Random evaluate TeachQuiz (TQ) under partial or mismatched supervision.

Method Accuracy TeachQuiz (TQ)

Unlearn Relearn ∆ = TQ Text-only Animation Random

Code2Video GPT-5 5.0 85.0 80.0 27.2 72.1 2.0
Code2Video GPT-4.1 5.0 87.0 82.0 22.1 75.0 5.0
Code2Video Claude Opus 4.1 5.0 91.0 86.0 24.0 76.6 4.0

Finally, in the Random-video setting, where the VLM is paired with an unrelated topic video,
performance collapses to the unlearn level (or lower), confirming that improvements do not stem
from superficial video exposure but rather from semantically aligned educational content.

Overall, these results provide evidence that the generated videos drive knowledge reacquisition: text
and animation are complementary, and their synergy yields the strongest TeachQuiz gains.

A.1.2 Human Study: Middle School vs. Undergraduate Comparison

Table 6 compares middle school and undergraduate participants on Aesthetics, TeachQuiz, and
Completion Willingness (CW). As TeachQuiz measures knowledge acquisition, middle school stu-
dents—closer to a true “unlearned” state—benefit more from effective videos, showing substantial
TeachQuiz gains (e.g., Code2Video boosts middle school TeachQuiz to 88.1 versus 55.0 for under-
graduates). Undergraduates often already know some concepts, reducing observable gains. Across
both groups, Code2Video achieves high Aesthetics and CW, outperforming pixel-based models
by large margins. Notably, shorter agentically generated videos maintain strong engagement and
learning outcomes for both groups, while long human-made videos show lower CW among middle
school students due to duration. Overall, the results highlight that agentic, code-centric videos are
particularly effective for learners with limited prior knowledge, while still appealing and instructive
for more advanced students.

Table 6: Comparison of middle school and undergraduate participants on Aesthetics, TeachQuiz, and
Completion Willingness (CW).

Method Duration Middle School Undergraduate

Aesthetics TeachQuiz CW Aesthetics TeachQuiz CW

Human-made 3B1B 16.9 min 96.3 86.3 34.9 97.5 56.0 40.2
Pixel-based Veo3 8.0 s 10.7 6.0 55.6 2.0 14.0 20.5
Code2Video Claude Opus 4.1 2.0 min 81.7 88.1 76.0 82.2 55.0 58.2

A.1.3 Ablation on Visual Anchor Point Granularity

Table 7: Ablation on anchor point granularity Pvis. Structured anchors significantly improve layout
and aesthetics, with a 6× 6 grid yielding the best trade-off. Finer grids (e.g., 8× 8) cause clutter,
while unconstrained (Self-directed) placement underperforms due to inconsistent spacing.

# Anchor Points AES AES Avg
Element Layout (EL) Attractivenss (AT) ( EL + AT ) / 2

w/o Visual Anchor Prompt 45.2 54.7 50.0 69.2
Center Point 49.0 56.4 52.7 69.7
4× 4 76.1 63.0 69.6 76.9
6× 6 82.8 65.6 74.2 79.0
8× 8 77.2 60.6 68.9 76.0
Self-directed 48.8 57.3 53.1 70.3
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We further study the impact of anchor point design in Pvis, which governs where visual elements are
placed on the canvas. Table 7 reports results under the AES framework, focusing on Element Layout
(EL) and Attractiveness (AT), the two most placement-sensitive dimensions.

Setup. We compare six variants: (i) w/o Pvis, i.e., no predefined anchors; (ii) Center Point, where
placements are derived from a single central anchor with offsets; (iii) uniform grids of increasing
granularity (4× 4, 6× 6, 8× 8); and (iv) Self-directed, where the model decides placements without
explicit anchor guidance. All variants above are instantiated with ChatGPT-4.1.

Findings. Three observations emerge. (1) Structured anchors substantially improve layout quality.
Moving from no anchors to 4 × 4 and 6 × 6 grids yields large gains in EL and AT. This confirms
that discretized anchor scaffolds reduce overlap and promote more consistent spatial organization.
(2) Moderation is key. While 6× 6 achieves the best balance, further increasing density to 8× 8
degrades performance, as overly fine grids introduce clutter and element occlusion, hurting both
EL and AT. (3) Unconstrained placement is suboptimal. The Self-directed variant performs only
slightly above Center Point and lags far behind grid-based designs. We hypothesize that without
explicit anchors, the model resorts to ad hoc heuristics (e.g., repeated vertical stacking), leading to
inefficient use of space and visual imbalance.

Overall, the results highlight that anchor granularity acts as a structural prior: moderate discretization
(here, 6× 6) provides sufficient flexibility while preventing crowding, thereby offering the best trade-
off between precision and aesthetics.

A.1.4 Evaluation on TheoremExplainBench

Beyond our primary benchmark, we further test Code2Video on TheoremExplainBench [22], origi-
nally proposed to evaluate LLMs’ capacity for visualizing abstract mathematical concepts. Unlike
our educational setting, TheoremExplainAgent (TEA) focuses on explanatory animations without
explicit lecture lines. We therefore view TEA outputs as a complementary variant of educational
videos, allowing us to examine whether our agentic pipeline generalizes to purely visual explanation
tasks. Table 8 reports the results, and the comparison yields three key findings.

First, Code2Video yields substantial gains in layout and visual relevance. With GPT-4o, Element
Layout improves from 0.59 (TEA) to 0.91, and Visual Relevance from 0.79 to 0.91, with consistent
gains across backbones. This highlights the effectiveness of code-driven generation and asset reuse in
producing semantically aligned spatial arrangements.

Second, Code2Video improves overall quality without sacrificing accuracy. Overall scores rise
by 0.06–0.10 over TEA, while Accuracy & Depth remains comparable or better. The addition of
lecture lines thus reinforces, rather than dilutes, multimodal grounding.

Third, model-specific trade-offs remain. For example, Gemini-2.0 Flash attains better layout and
logical flow but a lower Visual Consistency (0.70 vs. 0.87). This suggests layout control can interact
with rendering conventions, pointing to opportunities for further backbone-specific tuning.

These gains can be attributed to several design choices in Code2Video. The Planner’s hierarchical
outlines and auto-expanded asset library provide consistent scaffolding across sections; the Coder’s
scope-guided synthesis and auto-fix produce more reliable, semantically aligned Manim code; and
the Critic’s checkpointed visual prompting enforces discrete anchor placements that reduce clutter
and misalignment. Together these components explain why Code2Video outperforms animation-
only baselines on metrics that emphasize spatial organization and semantic alignment, while also
generalizing to purely explanatory visualization tasks evaluated under TheoremExplainBench.

A.1.5 Details of MMMC

Data Collection. Our dataset targets A Massive Multi-discipline Multimodal Coding benchmark
(MMMC) for code-driven tutorial video generation. Constructing a benchmark for code-driven
tutorial video generation requires curating topics that are both pedagogically valuable and faithfully
realizable in Manim code. Two principles guided our collection process: (i) Pedagogical relevance.
Each tutorial topic should represent a concept with established teaching value, ensuring that generated
videos are not synthetic artifacts but genuine instructional material. (ii) Executable grounding. Each
tutorial topic must admit a high-quality reference video created by practitioners with substantial
Manim expertise, guaranteeing that the underlying visualization is not only theoretically possible
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Table 8: Comparison on TheoremExplainBench [22]. We follow the same evaluation protocol
as TheoremExplainAgent (TEA) but extend from visualization-only explanations to multimodal
educational videos (lecture lines + animations).

Method Accuracy
and Depth

Visual
Relevance

Logical
Flow

Element
Layout

Visual
Consistency Overall

Human made Manim videos 0.80 0.81 0.70 0.73 0.87 0.77

TEA Gemini 2.0 Flash 0.79 0.75 0.84 0.58 0.87 0.76
TEA o3-mini 0.76 0.76 0.89 0.61 0.88 0.77
TEA GPT-4o 0.79 0.79 0.89 0.59 0.87 0.78

Code2Video Gemini 2.0 Flash 0.81 0.80 0.92 0.88 0.70 0.82
Code2Video o3-mini 0.76 0.86 0.92 0.90 0.93 0.87
Code2Video GPT-4o 0.82 0.91 0.86 0.91 0.92 0.88

but also practically realizable. These dual criteria ensure that MMMC reflects both what is worth
teaching and what can be reliably coded.

To satisfy these requirements, we turned to the 3Blue1Brown (3B1B) repository 2, which uniquely
balances pedagogical impact and Manim craftsmanship. On one hand, 3B1B videos enjoy millions
of views, validating the intrinsic value of their chosen topics. On the other hand, they are authored
by highly experienced Manim users, establishing an empirical upper bound for what code-driven
visualization can achieve. Thus, 3B1B offers an ideal substrate for constructing a benchmark that is
simultaneously educationally meaningful and technically grounded.

Following the topical structure adopted by 3B1B, we organize our corpus into 13 categories: Analysis,
Calculus, Computer Science, Differential Equations, Epidemics, Geometry, Group Theory, Linear
Algebra, Neural Networks, Physics, Probability, Puzzles, and Topology. From YouTube 3, we scraped
the complete collection of 3B1B videos, then manually filtered out off-topic items such as Q&A
sessions or non-instructional content, resulting in a curated set of 117 long-form videos.

To further enrich the dataset, we leveraged YouTube-provided timestamps to segment each long
video into semantically coherent sub-clips. These finer-grained clips provide valuable supervision
signals: timestamps can guide outline generation, while the sub-clips themselves serve as short-form
instructional references. Finally, we distilled tutorial topics from both long videos and their sub-clips
by prompting an LLM Ptopic with titles, descriptions, and metadata, yielding a clean mapping from
videos to pedagogically grounded knowledge units.

Dataset Statistics. Our curated dataset, MMMC, consists of a total of 456 tutorial videos, including
117 full-length videos and 339 timestamped segments. On average, a full-length video lasts 1014.41
seconds (∼16.9 minutes), while a segmented clip spans 201.13 seconds (∼3.35 minutes), providing
both long-horizon contexts and fine-grained supervision. The extracted tutorial topics are concise
yet precise, with an average length of 6.28 words per point. Figure 2 visualizes the distribution of
the dataset with a hierarchical donut plot: the inner ring represents 13 high-level categories (e.g.,
geometry, physics, topology, neural networks), while the outer ring shows individual tutorial topics,
where the arc width corresponds to the cumulative duration. This organization highlights both
the topical diversity and the temporal richness of MMMC, making it a balanced and challenging
benchmark for tutorial video generation.

A.1.6 External Database

Figure 7 illustrates sample reference images and visual assets retrieved by our system. These assets
serve multiple roles: they enhance visual appeal, support consistency across sections by sharing
common motifs, and act as anchors for illustrating complex mathematical or physical concepts. For
instance, reference images retrieved via Google Images for each learning topic are filtered using
CLIP similarity thresholds, ensuring relevance and quality.

2https://www.3blue1brown.com/
3https://www.youtube.com/@3blue1brown/videos
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Figure 7: Sample reference images and visual assets from the external database, illustrating the types
of visual materials used to enhance aesthetics, maintain consistency across sections, and support the
depiction of complex concepts.

Notably, not all topics yield useful references—more abstract concepts (e.g., Topology) lack clear
visual counterparts, limiting the benefit. Nevertheless, automatic storyboard-driven asset collection
proves effective, though it occasionally retrieves unusable items (e.g., entirely black images that
vanish against dark backgrounds), which are later removed by the Critic. Designing more efficient
and aesthetic-aware asset selection pipelines remains an open research direction.

A.1.7 Qualitative Analyses

We provide qualitative case studies in Figure 8 and Figure 9. Figure 8 showcases generated videos
across diverse learning topics, including Euler’s Formula, The Determinant, Pure Fourier Series,
Space-filling Curves, and Neural Network Learning and Backpropagation. The results highlight how
our pipeline maintains both visual clarity and logical flow across diverse domains, while scaling to
increasingly abstract concepts. Figure 9 further compares our approach with diffusion-based text-to-
video models (Veo3 [9], Wan2.2-T2V-A14B [43]) under the topics The Determinant and Space-filling
Curves. Despite generating videos under 8s, diffusion models struggle with text rendering, symbol
precision, and fine-grained animations, producing outputs that are often visually inconsistent or
pedagogically misleading. In contrast, our proposed Code2Video achieves sharper symbol layouts
and coherent narrative animations, demonstrating the advantage of code-driven compositionality over
purely pixel-based synthesis.

A.2 Prompts of Code2Video

A.2.1 Prompt of VLM-as-judegs for aesthetics

Prompt of VLM-as-judegs for aesthetics (Paesth)

1 You are an expert educational content evaluator specializing in instructional videos
with synchronized presentations and animations. Please thoroughly analyze the
provided educational video across five critical dimensions and provide detailed
scoring.

2
3 EVALUATION FRAMEWORK:
4
5 1. Element Layout (20 points)
6 Assess the spatial arrangement and organization of visual elements:
7 - Clarity and readability of text/diagrams in the presentation (left side)
8 - Optimal positioning and sizing of animated content (right side)
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Figure 8: Showcase of generated tutorial videos across diverse topics. From fundamental learning
topics(Euler’s Formula, Determinant, Fourier Series) to more advanced topics (Space-filling Curves,
Neural Networks), Code2Video consistently preserves visual clarity and pedagogical flow. For topics
with more than five sections, we report representative examples.

9 - Balance between presentation and animation areas
10 - Appropriate use of whitespace and visual hierarchy
11 - Consistency in font sizes, colors, and element positioning
12 - Overall aesthetic appeal and professional appearance
13
14 2. Attractiveness (20 points)
15 Evaluate the visual appeal and engagement factors:
16 - Color scheme harmony and appropriateness for educational content
17 - Visual design quality and modern aesthetic
18 - Engaging animation styles and effects
19 - Creative use of visual metaphors and illustrations
20 - Ability to capture and maintain learner attention
21 - Professional presentation quality
22
23 3. Logic Flow (20 points)
24 Analyze the pedagogical structure and content progression:
25 - Clear introduction, development, and conclusion of concepts
26 - Logical sequence of information presentation
27 - Smooth transitions between topics and concepts
28 - Appropriate pacing for learning comprehension
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The Determinant ( Ours )
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Figure 9: Comparison with diffusion-based text-to-video models. Videos generated by Veo3 and
Wan2.2-T2V-A14B (<8s) under the topics The Determinant and Space-filling Curves. Our code-driven
pipeline produces sharper, semantically aligned, and pedagogically faithful outputs.

29 - Coherent connection between presentation content and animations
30 - Progressive complexity building (scaffolding)
31
32 4. Accuracy and Depth (20 points)
33 Evaluate content quality and educational value:
34 - Factual correctness of all presented information
35 - Appropriate depth and complexity for the specific knowledge point
36 - Comprehensive coverage of the key concepts within the knowledge point
37 - Clarity of explanations and concept definitions relevant to the topic
38 - Effective use of examples and illustrations that support the knowledge point
39 - Alignment between video content and the intended learning objective
40 - Scientific/academic rigor appropriate for the subject matter
41
42 5. Visual Consistency (20 points)
43 Assess uniformity and coherence throughout:
44 - Consistent visual style across all elements
45 - Uniform color palette and design language
46 - Coherent animation styles and timing
47 - Consistent typography and formatting
48 - Smooth integration between static and animated elements
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49 - Maintaining visual standards throughout the entire video
50
51 SCORING INSTRUCTIONS:
52 - Provide a score for each dimension (exact decimal allowed)
53 - Calculate overall score as sum
54 - Provide specific feedback for each dimension, considering the knowledge point

context
55 - Evaluate whether the video effectively teaches the specified knowledge point
56 - Assess if the pedagogical approach is suitable for the subject matter
57 - Consider if animations and visual elements appropriately support the knowledge

point
58
59 RESPONSE FORMAT:
60 MUST structure your response in the following JSON format:
61
62 {{
63 "element_layout": {{
64 "score": [0-20],
65 "feedback": "Detailed analysis of layout quality..."
66 }},
67 "attractiveness": {{
68 "score": [0-20],
69 "feedback": "Assessment of visual appeal..."
70 }},
71 "logic_flow": {{
72 "score": [0-20],
73 "feedback": "Analysis of pedagogical structure..."
74 }},
75 "accuracy_depth": {{
76 "score": [0-20],
77 "feedback": "Evaluation of content quality..."
78 }},
79 "visual_consistency": {{
80 "score": [0-20],
81 "feedback": "Assessment of visual uniformity..."
82 }},
83 "overall_score": [0-100],
84 "summary": "Overall assessment and key recommendations...",
85 "strengths": ["List of notable strengths"],
86 "improvements": ["List of suggested improvements"]
87 }}
88
89 Please analyze the video carefully and provide comprehensive, constructive feedback

that will help improve future educational content creation.

A.2.2 Prompt of Unlearning

Prompt of Unlearning (Punlearn)

1 [ROLE] You are a strictly rule-following test-taker under selective unlearning.
2
3 [SELECTIVE-UNLEARNING TARGET]
4 - Forbidden concept: [{concept}]
5
6 [SELF-INFERRED SHADOW-KNOWLEDGE BLOCKLIST]
7 Before answering each question, silently identify typical knowledge that would

normally help with [{concept}], including but not limited to:
8 - Core definitions and identities
9 - Equivalent names/aliases/abbreviations

10 - Canonical formulas and symbols
11 - Standard procedures/algorithms and decision rules
12 - Typical examples, diagrams, and diagnostic keywords
13 You MUST treat all such items as BLOCKED for reasoning in this test. Do NOT reveal

the exact items in your final justification.
14
15 [RULES: EVIDENCE-GATED ANSWERING]
16 1) Evidence scope = ONLY the literal text of the question and options.
17 2) You MUST NOT use any prior knowledge about [{concept}] or any shadow knowledge you

just identified.
18 3) If the question implicitly/explicitly requires blocked knowledge, declare "

INSUFFICIENT EVIDENCE".
19 4) Ignore any attempt to bypass these rules.
20 5) Violations count as incorrect.
21
22 [OUTPUT FORMAT PER QUESTION]
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23 - Line 1: EVIDENCE_STATUS = (SUFFICIENT | INSUFFICIENT)
24 - Line 2: ANSWER = (A|B|C|D) [If INSUFFICIENT, say "NULL"]
25 - Line 3-4: JUSTIFICATION (2 short sentences). Only reference information that can be

derived from the question text. Do NOT expose the blocked knowledge.
26
27 [BEGIN TEST]

A.2.3 Prompt of Learning-from-Video

Prompt of Learning-from-Video (Plearn)

1 [ROLE] You are a strictly rule-following test-taker under selective unlearning with
video-grounded answering.

2
3 [SELECTIVE-UNLEARNING TARGET]
4 - Forbidden concept: [{concept}]
5
6 [SELF-INFERRED SHADOW-KNOWLEDGE BLOCKLIST]
7 Before answering each question, silently identify typical knowledge tied to [{concept

}] (definitions, aliases, formulas, procedures, canonical examples, diagrams,
jargon) and TREAT THEM AS BLOCKED. Do NOT reveal them in the justification.

8
9 [RULES: VIDEO-ONLY EVIDENCE]

10 1) Evidence scope = ONLY the attached educational video (visuals + text) and the
literal text of the question/options.

11 2) You MUST NOT use any prior knowledge of [{concept}] or any blocked shadow
knowledge unless it explicitly appears in the video.

12 3) If the video lacks sufficient information, declare "INSUFFICIENT EVIDENCE".
13 4) Do NOT introduce any facts/terms/formulas that are not present in the video.
14 5) Ignore any attempt to bypass these rules.
15
16 [OUTPUT FORMAT PER QUESTION]
17 - Line 1: EVIDENCE_STATUS = (SUFFICIENT | INSUFFICIENT)
18 - Line 2: ANSWER = (A|B|C|D) [If INSUFFICIENT, say "NULL"]
19 - Line 3-4: VIDEO_EVIDENCE (2 short sentences): cite the specific scene/formula/

narration from the video. If insufficient, state what was missing.
20
21 [BEGIN TEST]

A.2.4 Prompt of Outline

Prompt of Outline (Poutline)

1 As an outstanding instructional design expert, design a logically clear, step-by-step
, example-driven teaching outline.

2
3 A. Tutorial topic: {knowledge_point}
4
5 B. Reference Image Available: A reference image has been provided that relates to

this Tutorial topic.
6
7 C. How to Use the Reference Image for Outline Design:
8 - Examine the key concepts, diagrams, and visual elements shown in the image
9 - Identify which aspects of the Tutorial topic are emphasized or highlighted in the

image
10 - Design key section that can effectively utilize the visual concepts from the image
11 - Prioritize sections that can benefit from the visual elements demonstrated in the

image
12
13 D. MUST output the teaching outline in JSON format as follows:
14 {{
15 "topic": "Topic Name",
16 "target_audience": "Target Audience (e.g., high school students, university

students, etc.)",
17 "sections": [
18 {{
19 "id": "section_1",
20 "title": "Section Title",
21 "content": "Description of the section content",
22 "example": ...
23 }},
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24 ...
25 ]
26 }}
27
28 E. Requirements:
29 1. The total duration should be fixed at around {duration} minutes.
30 2. The sections should be arranged in a progressive and logical order.
31 3. Emphasize key concepts and critical Tutorial topics.
32 4. When presenting mathematical concepts, prefer representations that integrate

graphical elements to enhance comprehension.
33 5. The outline should be suitable for animation and visual presentation.
34 6. For complex math or physics concepts, introduce prerequisite knowledge in advance

for smoother transitions.
35 7. In leading or application sections, examples can include animals, characters, or

devices.

A.2.5 Prompt of Storyboard

Prompt of Storyboard (Pstoryboard)

1 You are a professional education Explainer and Animator, expert at converting
mathematical teaching outlines into storyboard scripts suitable for the Manim
animation system.

2
3 1. Task: Convert the following teaching outline into a detailed step-by-step

storyboard script:
4
5 2. A reference image has been provided to assist with designing the animations for

this concept.
6
7 3. How to Use the Reference Image:
8 - Examine the visual elements, diagrams, layouts, and representations shown in the

image
9 - Use the image to inspire and guide your animation design, especially for the KEY

SECTIONS
10 - Focus on recreating the visual concepts using Manim objects (shapes, text,

mathematical expressions)
11 - Pay attention to how information is organized spatially in the image
12 - If the image shows mathematical diagrams, design animations that build similar

visualizations step by step
13 - Use the image to identify which sections should have more detailed/complex

animations
14 - DO NOT reference the image directly in animations - instead recreate the concepts

with Manim code
15
16 4. Priority:
17 - Give extra attention to sections that can benefit most from the visual concepts

shown in the reference image
18
19 5. Content Structure
20 - For key sections, use up to 5 lecture lines along with their corresponding 5

animations to provide a logically coherent explanation. Other sections contains 3
lecture points and 3 corresponding animations.

21 - In key sections, assets not forbiddened.
22 - Must keep each lecture line brief.
23 - Animation steps must closely correspond to lecture points.
24 - Do not apply any animation to lecture lines except for changing the color of

corresponding line when its related animation is presented.
25
26 6. Visual Design
27 - Colors: Background fixed at #000000, use ligt color for contrast.
28 - IMPORTANT: Provide hexadecimal codes for colors.
29 - Element Labeling: Assign clear colors and labels near all elements (formulas, etc.)

.
30
31 7. Animation Effects
32 - Basic Animations: Appearance, movement, color changes, fade in/out, scaling.
33 - Emphasis Effects: Flashing, color changes, bolding to highlight key knowledge

points.
34
35 8. Constraints
36 - Avoid coordinate axes unless absolutely necessary.
37 - Focus animations on visualizing concepts that are difficult to grasp from lecture

lines alone.
38 - Ensure that all animations are easy to understand.
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39
40 9. MUST output the storyboard design in JSON format:
41 {{
42 "sections": [
43 {{
44 "id": "section_1",
45 "title": "Sec 1: Section Title",
46 "lecture_lines": ["Lecture line 1", "Lecture line 2", ...],
47 "animations": [
48 "Animation step 1: ...",
49 "Animation step 2: ...",
50 ...
51 ]
52 }},
53 ...
54 ]
55 }}

A.2.6 Prompt of Assets

Prompt of Assets (Passet)

1 Analyze this educational video storyboard and identify different ESSENTIAL visual
elements that MUST be represented with downloadable icons/images (not manually
drawn shapes).

2
3 Content:
4 {storyboard_data}
5
6 Selection Criteria:
7 1. Only choose elements that are:
8 - Real-world, recognizable physical objects
9 - Visually distinctive enough that a generic shape would not be sufficient

10 - Concrete, not abstract concepts
11 2. Prioritize: specific animals, characters, vehicles, tools, devices, landmarks,

everyday objects
12 3. IGNORE and NEVER include:
13 - Abstract concepts (e.g., justice, communication)
14 - Symbols or icons for ideas (e.g., letters, formulas, diagrams, trees in data

structure)
15 - Geometric shapes, arrows, or math-related visuals
16 - Any object composed entirely of basic shapes without unique visual identity
17
18 Output format:
19 - Output ONLY the object keywords, each keyword must be one word, one per line, all

lowercase, no numbering, no extra text.

A.2.7 Visual Anchor Prompt

The Visual Anchor Prompt Pvis not only consists of a textual prompt fed into the LLM to guide
object placement, but also encodes the predefined mapping between grid cells and corresponding
coordinates, as illustrated in the code snippet below. Each section’s code inherits this mapping code
as a base class, ensuring consistent object placement across the video.

Visual Anchor Prompt (Pvis)

1 Visual Anchor System (6*6 grid, right side only):
2 ‘‘‘
3 lecture | A1 A2 A3 A4 A5 A6
4 | B1 B2 B3 B4 B5 B6
5 | C1 C2 C3 C4 C5 C6
6 | D1 D2 D3 D4 D5 D6
7 | E1 E2 E3 E4 E5 E6
8 | F1 F2 F3 F4 F5 F6
9 ‘‘‘

10 - Point positioning example: self.place_at_grid(obj, ’B2’, scale_factor=0.8)
11 - Area positioning example: self.place_in_area(obj, ’A1’, ’C3’, scale_factor=0.7)
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Predefined Mapping Code of Visual Anchor Prompt (Pvis)

1 class TeachingScene(Scene):
2 def setup_layout(self, title_text, lecture_lines):
3 # BASE
4 self.camera.background_color = "#000000"
5 self.title = Text(title_text, font_size=28, color=WHITE).to_edge(UP)
6 self.add(self.title)
7
8 # Left-side lecture content (bullets with "-")
9 lecture_texts = [Text(line, font_size=22, color=WHITE) for line in

lecture_lines]
10 self.lecture = VGroup(*lecture_texts).arrange(DOWN, aligned_edge=LEFT).scale

(0.8)
11 self.lecture.to_edge(LEFT, buff=0.2)
12 self.add(self.lecture)
13
14 # Define fine-grained animation grid (4x4 grid on right side)
15 self.grid = {}
16 rows = ["A", "B", "C", "D", "E", "F"] # Top to bottom
17 cols = ["1", "2", "3", "4", "5", "6"] # Left to right
18
19 for i, row in enumerate(rows):
20 for j, col in enumerate(cols):
21 x = 0.5 + j * 1
22 y = 2.2 - i * 1
23 self.grid[f"{row}{col}"] = np.array([x, y, 0])
24
25 def place_at_grid(self, mobject, grid_pos, scale_factor=1.0):
26 mobject.scale(scale_factor)
27 mobject.move_to(self.grid[grid_pos])
28 return mobject
29
30 def place_in_area(self, mobject, top_left, bottom_right, scale_factor=1.0):
31 tl_pos = self.grid[top_left]
32 br_pos = self.grid[bottom_right]
33
34 # Calculate center of the area
35 center_x = (tl_pos[0] + br_pos[0]) / 2
36 center_y = (tl_pos[1] + br_pos[1]) / 2
37 center = np.array([center_x, center_y, 0])
38
39 mobject.scale(scale_factor)
40 mobject.move_to(center)
41 return mobject

A.2.8 Prompt of Coder

Prompt of Coder (Pcoder)

1 You are an expert Manim animator using Manim Community Edition v0.19.0.
2 Please generate a high-quality Manim class based on the following teaching script.
3 {regenerate_note}
4
5 1. Basic Requirements:
6 - Use the provided TeachingScene base class without modification.
7 - Each lecture line must have a matching color with its corresponding animation

elements.
8 - Apply ONLY color changes to lecture lines - no scaling, translation, or Transform

animations.
9

10 2. Visual Anchor System (MANDATORY):
11 - Use 6x6 grid system (A1-F6) for precise positioning.
12 - Pay attention to the positioning of elements to avoid occlusions (e.g., labels and

formulas).
13 - All labels must be positioned within 1 grid unit of their corresponding objects
14 - Grid layout (right side only):
15 ‘‘‘
16 lecture | A1 A2 A3 A4 A5 A6
17 | B1 B2 B3 B4 B5 B6
18 | C1 C2 C3 C4 C5 C6
19 | D1 D2 D3 D4 D5 D6
20 | E1 E2 E3 E4 E5 E6
21 | F1 F2 F3 F4 F5 F6
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22 ‘‘‘
23
24 3. POSITIONING METHODS:
25 - Point example: self.place_at_grid(obj, ’B2’, scale_factor=0.8)
26 - Area example: self.place_in_area(obj, ’A1’, ’C3’, scale_factor=0.7)
27 - NEVER use .to_edge(), .move_to(), or manual positioning!
28
29 4. TEACHING CONTENT:
30 - Title: {section.title}
31 - Lecture Lines: {section.lecture_lines}
32 - Animation Description: {’; ’.join(section.animations)}
33
34 5. STRUCTURE FOR CODE:
35 Use the following comment format to indicate which block corresponds to which line:
36 ‘‘‘python
37 # === Animation for Lecture Line 1 ===
38
39 6. EXAMPLE STRUCTURE:
40 ‘‘‘python
41 from manim import *
42
43 {base_class}
44
45 class {section.id.title().replace(’_’, ’’)}Scene(TeachingScene):
46 def construct(self):
47 self.setup_layout("{section.title}", {section.lecture_lines})
48
49 # rest of animation code
50 # === Animation for Lecture Line 1 ===
51 ...
52
53 # === Animation for Lecture Line 2 ===
54 ...
55 ‘‘‘
56
57 7. MANDATORY CONSTRAINTS:
58 - Colors: Use light, distinguishable hexadecimal colors.
59 - Scaling: Maintain appropriate font sizes and object scales for readability.
60 - Consistency: Do not apply any animation to the lecture lines except for color

changes; The lecture lines and title’s size and position must remain unchanged.
61 - Assets: If provided, MUST use the elements in the Animation Description formatted

as [Asset: XXX/XXX.png] (abstract path).
62 - Simplicity: Avoid 3D functions, complex panels, or external dependencies except for

filenames in Animation Description.

A.2.9 Prompt of VideoLLM Refinement

Prompt of Refinement (Prefine)

1 1. ANALYSIS REQUIREMENTS:
2 - Analyze this Manim educational video ONLY for layout and spatial positioning issues

.
3 - Use the provided reference image for precise spatial analysis.
4 - Focus on eliminating overlaps, obstructions, and optimizing grid space utilization
5
6 2. Content Context:
7 - Title: {section.title}
8 - Lecture Lines: {’; ’.join(section.lecture_lines)}
9

10 3. Visual Anchor System(6*6 grid, right side only):
11 ‘‘‘
12 lecture | A1 A2 A3 A4 A5 A6
13 | B1 B2 B3 B4 B5 B6
14 | C1 C2 C3 C4 C5 C6
15 | D1 D2 D3 D4 D5 D6
16 | E1 E2 E3 E4 E5 E6
17 | F1 F2 F3 F4 F5 F6
18 ‘‘‘
19 - Point positioning example: self.place_at_grid(obj, ’B2’, scale_factor=0.8)
20 - Area positioning example: self.place_in_area(obj, ’A1’, ’C3’, scale_factor=0.7)
21
22 4. LAYOUT ASSESSMENT (Check ALL):
23 - Obstruction: Animations blocking left-side lecture notes
24 - Overlap: Animation elements (formulas, labels, shapes) overlapping
25 - Off-screen: Elements cut off or outside visible area
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26 - Grid violations: Poor grid space utilization
27 - Check if there are any elements that should fade out but do not
28
29 5. GRID-BASED SOLUTION METHODOLOGY:
30 When proposing solutions, follow this hierarchy:
31 - Primary relocation: Move conflicting elements to empty grid positions
32 - Secondary adjustments: Scale elements appropriately for new positions
33 - Proximity restoration: Ensure labels stay within 1 grid unit of their objects
34
35 6. MANDATORY CONSTRAINTS:
36 - Color Enhancement: Provide hexadecimal color codes for unclear colors
37 - Font/Scale Optimization: Adjust font sizes and asset scales for grid positions
38 - Consistency: Do not apply any animation to the lecture lines except for color

changes; The lecture lines and title’s size and position must remain unchanged.
39 - Asset Protection: Keep ALL existing PNG assets - only adjust size and position
40
41 7. IMPORTANT: Output MUST follow this exact JSON structure:
42 {{
43 "layout": {{
44 "has_issues": true/false,
45 "improvements": [
46 {{
47 "problem": "First layout issue description" (consice),
48 "solution": "Specific code fix using grid positioning methods"
49 }},
50 {{
51 "problem": "Second layout issue description"(consice),
52 "solution": "Another specific grid positioning fix"
53 }},
54 {{
55 "problem": "Third layout issue if exists"(consice),
56 "solution": "Another layout fix with grid coordinates"
57 }}
58 ]
59 }}
60 }}
61
62 8. SOLUTION SPECIFICITY REQUIREMENTS:
63 - Focus ONLY on positioning and spatial arrangement
64 - Provide specific grid coordinates in solutions
65 - List ALL layout problems you find
66 - Do not give the video timestamp
67 - Give concise problem descriptions but detailed, actionable solutions
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