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Abstract

Transformer-based object detectors have shown competitive performance recently.
Compared with convolutional neural networks limited by the relatively small re-
ceptive fields, the advantage of transformer for visual tasks is the capacity to
perceive long-range dependencies among all image patches, while the deficiency
is that the local fine-grained information is not fully excavated. In this paper,
we introduce the Coarse-grained and Fine-grained crossing representations to
build an efficient Detection Transformer (CFDT). Specifically, we propose a local-
global cross fusion module to establish the connection between local fine-grained
features and global coarse-grained features. Besides, we propose a coarse-fine
aware neck which enables detection tokens to interact with both coarse-grained
and fine-grained features. Furthermore, an efficient feature integration module
is presented for fusing multi-scale representations from different stages. Exper-
imental results on the COCO dataset demonstrate the effectiveness of the pro-
posed method. For instance, our CFDT achieves 48.1 AP with 173G FLOPs,
which possesses higher accuracy and less computation compared with the state-
of-the-art transformer-based detector ViDT. Code will be available at https:
//gitee.com/mindspore/models/tree/master/research/cv/CFDT,

1 Introduction

Object detection is a fundamental task in the field of computer vision[l1} [2]. The former mainstream
architectures for object detection are mostly based on convolutional neural networks (CNNs)[13} 14}
5161 [7]. With the pioneering work of transformer [8] from natural language processing [9} [10]] into
object detection by DETR [[11]], its variants [12} 13} [14] show competitive detection performance
[L5]], which can be attributed to the strong long-range dependency capturing ability.

Modern CNN-based object detectors, such as Faster-RCNN [16], YoloV3 [17], FCOS [18]], and Effi-
cientDet [19]], can be divided into three components: backbone, neck and head. With the development
of transformer in vision tasks, there are two common manners to deploy transformer for object detec-
tion. One is to replace the CNN-based backbones with transformer variants in object detectors. For
example, some recently proposed transformer architectures like Swin Transformer [20]], PVT [21}[22]
and CMT [23]] are utilized as backbone in the Mask-RCNN [24]] or RetinaNet [25]] detection frame-
works. However, this manner heavily relies on the original detection frameworks, while anchor gener-
ation and post-processing with non-maximum suppression [26] are still indispensable. In this way, the
role of transformer is just the backbone for feature extraction. The other manner is to replace the neck
part with transformer [[11]], which discards the post-processing and anchor setting in conventional
detection frameworks. Such a method still requires CNN to extract semantic information from images.
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The typical representatives of this ap-
proach are DETR [[11]] and its variants,
such as Deformable-DETR [12], Effi-
cient DETR [13]], and DAB-DETR [27].
Carion et al. propose DETR [L1]] to
firstly combine CNN and transformer to
build an end-to-end detector. In DETR,
ResNet [4] is used as the backbone for
extracting features, and transformer is
proposed to integrate the relations be-
tween learnable object queries and inter-
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training. Inspired by deformable convo- Figure 1: Performance comparison with other represen-
lution networks [28]], Zhu et al. propose tative detectors on COCO 2017 val set. The FLOPs is
Deformable DETR [12], which replaces calculated with a 800 x 1333 input image.

the original multi-head attention with de-

formable attention module. Besides, it aggregates multi-scale features in different stages of backbone,
which is effective for object detection. With the multi-scale deformable attention module, Deformable
DETR greatly exceeds DETR in both accuracy and training speed. In order to simplify the complexity
of the transformer-based detection framework, Fang ez al. proposes YoloS[47]], which realizes fast ob-
ject detection with a simple structure. To fully dig the potential of transformer in object detection task,
Song et al. construct an efficient and effective fully transformer-based (both backbone and neck are
transformer-based architectures) object detector called ViDT [14]). It adopts Swin-Transformer [20]
as the backbone and reconfigures the attention module to support standalone object detection. In addi-
tion, it incorporates an encoder-free neck structure to further boost the detection performance without
introducing too much computational burden. ViDT obtains the best AP and latency trade-off among
existing transformer-based object detectors. Furthermore, some recently proposed transformer-based
object detectors [29} 130, 31} 132} 33]] show better performance than original CNN-based detectors.

For transformer-based detection models like DETR [11] and ViDT[14]], the typical strategy is to
perform long-range attention on the divided feature patches. Compared with convolutional neural
networks limited by a relatively small receptive field scale, the main advantage of transformer-based
models is the capacity to perceive long-range dependencies among all image patches. However,
the rich spatial information inside these divided patches is rarely considered by previous models.
Take the general object detection benchmark as an example[1], there are objects with various sizes.
Fine-grained representations can help to recognize multi-scale and irregular objects. For the previous
transformer-based detectors, excessive pursuit of global feature representations yet paying less
attention to local representations limits them for multi-scale perception. Therefore, it is crucial for
object detectors to capture and fuse both fine-grained features inside the image patches and the global
coarse-grained features to better detect objects with different scales.

In this paper, we propose to fully leverage both global Coarse-grained and local Fine-grained features
to build an efficient Detection Transformer (CFDT) with transformer backbone and transformer
neck. In the backbone, we maintain both coarse-grained and fine-grained features and introduce
a lightweight Local-Global Cross Fusion (LGCF) module. In this way, a fully bidirectional cross
fusion between local fine-grained and global coarse-grained information is carried out in each stage.
In terms of neck, we propose Coarse-Fine Aware Neck (CFAN) which allows detection tokens to
make attention-based interaction with fine-grained representations firstly, and then perform further
interaction with coarse-grained representations. Finally, a lightweight bottom-up feature integration
algorithm called Efficient Multiscale Feature Intergration (EMF]I) is designed for enriching high
resolution feature maps in the early stages. The extensive experiments demonstrate the effectiveness
of the proposed method. As shown in Figure[I] our CFDT detectors obtain the best AP and FLOPs
trade-off among existing transformer-based object detectors.



2 Preliminaries

In this section, we briefly revisit the fine-grained representations in vision transformers and the
transformer-based detection frameworks.

2.1 Fine-grained Representations in Vision Transformers

Transformer-based models are recently applied in visual tasks. In general, they divide the original
images into NV patches for capturing long-range dependencies between these IV patches [34} (35, 136,
37,138]. However, such a framework destroys the internal relationship and ignores the fine-grained
representations inside each patch. Han et al. [39] propose a Transformer iN Transformer (TNT)
architecture that constructs not only the global connection among outer patches, but also the inner
communication inside each patch. The outer patches describe global coarse-grained features while
the inner patches represent local fine-grained information. Without loss of generality, denote .7-"5—1
and ]-'}*1 as the outer patches and inner patches input to the [-th stage, respectively. Correspondingly,

denote ]-"ZO and F } as the outer patches and inner patches output by the [-th stage, respectively. Then,
the basic TNT block can be formulated as follows:

Fi = F' 4 MLP(LN(F\™! + MSA(LN(F\ 1)), (M

Fb=F5 '+ MLP(LN(F5* + MSA(LN(F5' + FC(F)))), )

where M LP, LN and M SA represent Multi-Layer Perceptron, Layer Normalization [40] and
Multi-head Self-Attention, respectively. F'C represents the linear projection layer. In a word, Eq.[T]
represents the inner transformer and Eq. 2] represents the outer transformer with inner attention. With
TNT block, each outer patch can not only obtain the long-range dependency with other outer patches,
but also integrate its corresponding finer-grained inner representations.

PyramidTNT [41] is the improved version of TNT, which introduces pyramid architecture and
convolutional stem. With the relatively small amount of computation, PyramidTNT achieves a
higher accuracy on ImageNet dataset [42]. Besides, the pyramid architecture is more suitable as the
backbone of dense prediction tasks, such as object detection and instance segmentation. That is, with
PyramidTNT as the backbone, the multi-scale inner fine-grained features and outer coarse-grained
features can be easily obtained for the downstream tasks.

2.2 Detection Transformers

DETR. DETR utilizes ResNet as the backbone to extract features. In the neck part, it first adopts
6x transformer blocks to perform self-attention on features, and then adopts another 6x transformer
blocks to perform cross attention between object queries and features. After the transformer-based
neck, the final classification and regression results are predicted directly through detection heads. For
the selection of training samples, DETR constructs the matching cost matrix between object queries
and ground truths, and uses the Hungarian algorithm to efficiently calculate the optimal assignment
[43]. DETR is an end-to-end framework, which does not need anchor boxes and non-maximum
suppression.

Deformable DETR. There are still two deficiencies for DETR, including slow convergence and
relatively poor detection performance for small objects. Deformable DETR proposes a deformable
attention module, which attends to a small set of key sampling points around a reference. Besides,
the deformable attention module can be naturally extended to aggregate multi-scale features, which is
effective for object detection. Compared with DETR, Deformable DETR only needs 50 epochs to
converge and greatly improve the detection performance of small objects.

ViDT. Compared with DETR and Deformable DETR, ViDT is a fully transformer-based detector. For
the backbone, ViDT employs Swin-Transformer rather than ResNet. To fully utilize the transformer-
based backbone, det tokens and patches share the same attention weights. In the last stage, ViDT
constructs a reconfigured attention module to make cross attention between det tokens and patches.
As for the neck, ViDT only retains the decoder part of Deformable DETR and its architecture is
computationally efficient. Compared with other transformer-based detectors, ViDT obtains the best
AP and latency trade-off.



3 Approach

In this section, we describe the proposed modules in detail. Firstly, we present the local-global cross
fusion module to improve the backbone for object detection. Then, we illustrate the coarse-fine
aware neck to further make det tokens interact with inner and outer patches. Finally, a lightweight
bottom-up feature integration algorithm is introduced.

3.1 Local-Global Cross Fusion
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Figure 2: Illustration of LGCF embedded in the backbone of PyramidTNT in CFDT. Patch Aggr.
represents patches aggregation, which is used to merge and reduce patches. Down-Trans. and
Up-Trans. indicate spatial down-transform and up-transform of patches, respectively.

In TNT blocks or PyramidTNT blocks, from Eq. 2] although the outer patches can acquire the
information of fine-grained inner representations, the restricted receptive field of inner patches and
the unidirectional "Inner to Outer" strategy limit the diversity of inner features. Besides, the inner
patches corresponding to each outer patch can only make self-attention in a fixed 4 x 4 region. As a
result, they have no connection with inner patches that belong to other outer patches. Therefore, a
Local-Global Cross Fusion (LGCF) module is proposed here, as shown in Figure 2] LGCF can be
divided into two sub-modules, including Local Cross Fusion (LCF) and Global Cross Fusion (GCF).

Formally, given a 2D image Z € RH*WX3 the outer coarse-grained patches and inner fine-grained

" _H_ W _ ! H W Cp
patches output by the [-th stage are denoted as F, € R2#+2720#27" and F; € R 720716,
respectively. For the inner patches, LCF is proposed to fuse them with long-range dependency to
expand the receptive field. Since the relationship between outer patches is global, LCF brings the
perception of global information to the original inner patches which only attach fixed 4 x 4 internal
self-attention. The process of LCF can be formulated as follows:

Crossy = Ft + Upsample(Convy 1 (F5))))), 3)

Ft = FL + GELU(LN(Convszx3(Crossh))). 4)

Eq. [3|describes the cross operation from outer to inner. In the equation, Convi 1 and Upsample
represent convolution with kernel size 1 x 1 and upsampling with bilinear interpolation respectively.
The point convolution is adopted to keep the features’ channel of outer patches consistent with inner
patches, and the upsampling operation is adopted to expand the spatial scale of outer patches to
16 times. The transformed outer patches are in line with inner patches both in spatial dimension
and channel dimension. C’rosslI is the summation of inner patches and transformed outer patches.
Then, we use the combination of "Convolution-Normalization-Activation" to further fuse the crossed
features, as described in Eq. E} Conuvsy 3 represents the convolution operation with 3 x 3 kernel size.
LN and GELU represent Layer Normalization [40] and Gaussian Error Linear Unit activation [44]],
respectively.



Although the outer patches acquire fine-grained inner representations with original PyramidTNT
blocks, the fusion method of simple flattening and addition ignores spatial information. Similar to
LCF, we propose GCF to integrate inner features into outer patches. This process can be formulated
as follows:

Crossty = Fb + Convgxa(FL), %)

Fly = FL + GELU(LN(Convsy3(Crossh))). ©)

Eq. [5|represents the cross operation from inner patches to outer patches. Different from the combi-
nation of point convolution and upsample in Eq. [3] we directly use a C'onv,x4 to get a transformed
F! consistent with ]—'(l) in both spatial shape and channel. In Eq. @, we also use the combination of
"Convolution-Normalization-Activation" to further fuse the crossed features.

With this module, bidirectional cross fusion is carried out between local features and global features
after each stage. The local representations integrate more global information and the original global
coarse-grained representations fuse the fine-grained information. Experimental results show that the
proposed LGCF can greatly improve the detection performance.

3.2 Coarse-Fine Aware Neck

MSDA

Coarse-grained Patches

Det Token

Figure 3: Illustration of the coarse-fine aware neck in CFDT. MSDA is the abbreviation of Multi-Scale
Deformable Attention. The small brown star indicates sampling point.

No matter DETR or ViDT, the neck part always performs the cross attention operation between
det tokens and global long-range dependency features. In object detection task, there are usually
targets with different scales in different positions. Therefore, it is necessary to pay attention to
multi-scale and multi-source useful features. Here, we propose a Coarse-Fine Aware Neck (CFAN)
module, which allows det tokens to interact with not only coarse-grained outer patches but also
with fine-grained inner patches. In practice, we perform Multi-Scale Deformable Attention (MSDA)
[12] between det tokens and local fine-grained features firstly, then between det tokens and global
coarse-grained features, as illustrated in Figure [3] The cross attention between det tokens and inner
patches can be formulated as follows:

My L Kr
MSDAQuer. AFV} ) = > Wa |30 A - Wh Fh(n(0) + Apwar) |, (D
m=1 =1 k=1
where .
Qaet = Qaet + MSDAQaet, {Fi},_,) (8)

where Q)qe: represents the det tokens. Eq.[/| represents the MSDA process between det tokens
and inner patches. M7 indicates the attention head and K7 is the total number of sampled keys in
inner patches. Besides, ¢;(p) represents the reference point in the [-th stage features, while Ap,,x
represents the corresponding sampling offset for the next deformable attention operation. A,,;x is
the attention weights of the K'-th sampling contents. W,,, and W;n are the projection matrices in
multi-head attention operation.

After the deformable cross attention of det tokens and inner patches, we first combine the

MSDA(Q et {f}}le) to Qge; and then interact with F. This process can be formulated as
follows:

Mo L Ko
MSDAQaet {Fo ) =Y W |3 A Wi, Fo(n(0) + D) |, 9)
m=1 =1 k=1



where Mo indices the attention head and K is the total number of sampled keys in outer patches.
Consistent with the original MSDA in Deformable DETR [[12f], we set the default values of M and
Mo to 8 in the following experiments.

3.3 Efficient Multi-scale Feature Intergration

For an input image Z € RA>XWx3  the
shapes of output features in four stages

in our backbone can be set as 4 x ¥, F¢
Hox W B W respectively. i

In contrast, the shapes of output features
in four stages in Swin-Transformer or p2
ResNet should be £ x ¥, I 5 AL

%, % X 3—‘/‘;, respectively. In ViDT or
Deformable DETR, when utilizing Swin-
Transformer or ResNet as backbone, the
output features of the first stage is not Figure 4: Illustration of the efficient multi-scale feature
used by the neck due to the insufficient intergration module in CFDT. F' ! represents the output
useful information. The downsampled ~patches (inner or outer) in [-th stage.

features of the last stage are usually taken

as an additional features in their methods. In object detection task, the shapes of features have a great
impact on the final performance. In general, it is more effective to use large-scale features for small
object detection. Therefore, although the feature extraction capability of the first stage is limited, we

still cannot ignore the output features of this stage.
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To effectively utilize the output of the first stage, we design an Efficient Multiscale Feature Integration
(EMFI) module, as shown in Figure [d] We insert EMFI into the fine-grained and coarse-grained
features respectively, which can enhance the feature representation of the early stages. This module
can be formulated as follows:

]-‘(l) = ]-'(l) + Upsample(C’onv1x1(-7:<l)+1))v (10)
Fi = Fj + Upsample(Convy (Ff™)). b

The output of {-th stage is the summation of original features and transformed output of (I + 1)-th
stage. The transformer operation is consist of bilinear interpolation and point convolution, which can
bring ignorable computational cost. Such a bottom-up structure enables the high-resolution features
of the early stages to integrate the later features with low resolution but richer semantic information.

4 Experiments

In this section, we conduct extensive experiments. Thorough ablation studies are also provided in
this section.

4.1 Dataset and Implementation Details

We conduct experiments on Microsoft COCO 2017 benchmark [1]]. Following the usual practice,
118K images are used for training, 5K images for testing. In addition, we follow the training strategy
provided in ViDT [14], including AdamW [45] with the initial learning rate of 1 x 10~%, training with
multi-scale input sizes and the total training epoch is set as 50. We use PyramidTNT series models
pretrained on ImageNet-1K as the initial backbones of detectors. The results are reported over three
backbones: PyramidTNT-Tiny (P-Tiny), PyramidTNT-Small (P-Small), and PyramidTNT-Medium
(P-Medium). Considering the existence of Batch Normalization [46] in the stem of backbone and the
batch size of training object detection network is much smaller than that in image classification, we
freeze all parameters of Batch Normalization layers in the training process. Besides, the training batch
size per card of P-Tiny and P-Small is set as 2, while that of P-Medium is 1. For evaluation, Average
Precision (AP) is calculated on COCO, and the floating point operations (FLOPs) is calculated under
a 800 x 1333 input image.



Table 1: Comparisions of CFDT with other transformer-based detectors on COCO 2017 val set.

Model | Backbone | AP | APsy AP;s APs APy APr FLOPs (G)
FLOPs (G) Range: 10~50
YOLOS[47] DeiT-Tiny 304 | 486 31.1 124 31.8 482 21
ViDT14] Swin-Nano 404 | 596 433 232 425 558 37
CFDT * P-Tiny 43.0 | 625 458 239 457 59.7 33
FLOPs (G) Range: 50~150
DETR[11] ResNet-50 420 | 624 442 205 458 o6l.1 86
Conditional DETR[48]] ResNet-50 409 | 61.8 433 208 446 592 90
DAB DETR[27] ResNet-50 422 63.1 447 215 457 603 94
UP DETR[49] ResNet-50 428 | 63.0 453 208 471 61.7 86
DN DETR[30] ResNet-50 441 | 644 467 229 480 634 94
SAM DETR[51] ResNet-50 418 | 632 439 221 459 609 100
ViDT14] Swin-Tiny 448 | 645 487 259 476 621 114
CFDT" P-Small 458 | 653 492 259 485 63.6 77
FLOPs(G) Range: 150~300
DETR[11] ResNet-101 435 | 638 464 219 480 61.8 152
DETR[11]] DC5-ResNet-50 | 43.3 | 63.1 459 225 473 6l1.1 187
DETR[11] DC5-ResNet-101 | 449 | 64.7 477 237 495 623 253
Efficient DETR[13]] ResNet-50 45.1 | 63.1 49.1 283 484 59.0 210
Efficient DETR[13]] ResNet-101 457 | 64.1 495 282 49.1 60.2 289
Conditional DETR[48]] ResNet-101 428 | 637 460 21.7 46.6 609 156
Conditional DETR[48]] | DC5-ResNet-50 | 43.8 | 644 467 240 476 60.7 195
Conditional DETR[48]] | DC5-ResNet-101 | 45.0 | 65.5 484 26.1 489 62.8 262
SMCA[52] ResNet-50 456 | 655 49.1 259 493 626 152
SMCA[52] ResNet-101 463 | 66.6 502 272 505 632 218
DAB DETR][27] ResNet-101 435 639 46,6 236 473 615 174
DAB DETR|[27] DC5-ResNet-50 | 44.5 | 65.1 477 253 482 623 202
DAB DETR][27] DC5-ResNet-101 | 45.8 | 65.9 493 27.0 49.8 63.8 282
DN DETR[50] ResNet-101 452 | 655 483 241 49.1 65.1 174
DN DETR[30] DC5-ResNet-50 | 46.3 | 66.4 49.7 267 50.0 643 202
DN DETR[50] DC5-ResNet-101 | 47.3 | 67.5 50.8 28.6 51.5 650 282
Deformable DETR[12] ResNet-50 454 | 647 49.0 268 483 61.7 173
SAM DETR[51] DC5-ResNet-50 | 45.0 | 654 479 262 49.0 63.3 210
YOLOS[47] DeiT-Small 36.1| 557 376 156 384 553 194
ViDT14] Swin-Small 474 | 677 512 304 50.7 64.6 208
CFDT” P-Medium 48.1 | 67.8 51.8 281 509 664 173

* denotes that backbone and neck are both transformer-based architecture.

4.2 Main Results

We compare our method with latest transformer-based detectors, including DETR[11], SMCA[52],
UP DETR[49]], Efficient DETR][13]], Conditional DETR[48]], DAB DETR[27]], DN DETR][50], SAM
DETRI51]], YOLOS[47] and ViDT][14], as shown in Table E} For fair comparison, all the results do
not utilize the strategy of multi-scale test.

Compare with tiny detectors. YOLOS[47] is a canonical ViT architecture for object detection.
Although it has a small computational cost, the neck-free design withholds the YOLOS from obtaining
high performance, our CFDT achieves +12.7 AP compared to the Deit-tiny based YOLOS. When
compared to the recently proposed lightweight ViDT[14], our CFDT outperforms it by +2.6 AP
with fewer FLOPs. More specifically, the backbones of ViDT and CFDT attain similar results on
ImageNet (74.9 of Swin-Nano v.s. 75.2 of P-Tiny), and the superiority in COCO further demonstrates
the improvements brought by our proposed LGCF, CFAN, and EMFI.

Compare with small detectors. We further compare our P-small based CFDT with Swin-tiny based
ViDT and several variants of ResNet-50 based DETR. For example, DN DETR[S0] accelerates DETR
training by introducing query denoising. Our CFDT outperforms it by +1.7 AP with far less FLOPs
(-17G), and we still exceed the ViDT by +1.0 AP, and the FLOPs is significantly reduced by 37G.



Compare with medium detectors. For the backbone with P-Medium, our CFDT achieves 48.1
AP with 173G FLOPs. In terms of AP, the detectors close to our method are DN DETR with
DC5-ResNet-101 and ViDT with Swin-Small. Compared with them, the FLOPs of our method is
lower than these detectors by 109G and 35G, respectively. Besides, our method still reaches a better
detection performance.

When compared to those detectors with ResNet as the backbone, transformer-based models like
ViDT and CFDT show the better trade-off between accuracy and computational cost (higher AP and
fewer FLOPs). This also reveals that the detectors which consist of transformer-based backbone and
transformer-based neck possess great potential for efficient object detection.

4.3 Ablations

Comparison between PyramidTNT

and Swin-Transformer. In order to il- ) )
lustrate that our detection performance Table 2: Comparisons between Swin-Transformer and

is not due to the backbone replace- PyramidTNT.

ment of PyramidTNT, we firstly show Models | ImageNet (Top-1) | COCO (AP)*
tShe.comparlson of.PyramldTNT and Swin-Nano 719 204
win-Transformer in Table 2l  Al- p {dTNT-Ti ‘ 752 ‘ 40.8
though the Top-1 accuracy of Pyra- yramt 1y ’ ’
midTNT series on ImageNet is slightly Swin-Tiny ‘ 81.3 ‘ 44.8
higher than that of the corresponding PyramidTNT-Small 82.0 43.4
sized Swin-Transformer models, AP of Swin-Small 83.0 47.4
directly taking PyramidTNT-Small or = PyramidTNT-Medium 83.5 ‘ 44.3

PyramidTNT-Medium as backbone of
ViDT is significantly lower than that of
Swin-Transformer. For further analy-
sis, compared with PyramidTNT, Swin-
Transformer utilizes the "Shift Window" to obtain multi-scale features, which is effective for object
detection. So for transformer-based object detection, it is not good enough to directly deploy
PyramidTNT as backbone.

* AP is obtained by taking ViDT as detection framework
and the corresponding models set as backbone.

Local-Global Cross Fusion. We analyze the impact of different elements in LGCF, as shown in
Table 3] The baseline of our method with backbone of P-Tiny is 40.8 AP. After introducing the LCF
to fuse the outer coarse-grained patches into fine-grained inner patches, AP is improved to 41.3.
Correspondingly, it is more effective to embed GCF in the detector. After the introduction of GCF,
we achieve an AP improvement of 1.2 compared with baseline. For further analysis, the improvement
of GCF is higher than LCF, but it is also accompanied by a higher amount of calculation. The reason
is that the channels of outer patches are 16 times that of inner. So the convolution operation in GCF
brings more computation. Finally, we combine the two cross fusion strategies together and achieve
an improvement of 1.4 AP compared with baseline.

Table 3: Analysis of Local-Global Cross Fusion module with backbone of P-Tiny.

Backbone | LCF GCF | AP Aup | FLOPs (G)

408 - 27.8
413 105 28.5
420 112 30.8
22 114 315

P-Tiny v
v v

Sampling Points of CFAN. We conduct an ablation experiment on the sampled points number K of
inner fine-grained patches. The baseline is the P-Tiny backbone with LGCF whose AP is 42.2. For
outer patches, we set K as 4, which is consistent with Deformable DETR and ViDT. Considering
that one outer patch corresponds to 16 inner patches, so K7 is set to an integer multiple of 16. The
result is shown in Table[d When K7 is set to 0, there is no cross attention between det tokens and
fine-grained patches in the neck part. At this case, det tokens directly interact with outer global
coarse-grained patches through Multi-Scale Deformable Cross Attention modules. When K1 equals
to 32, AP increases to 42.3 with det tokens interacting with 32 sampled keys of inner patches. The



best performance is K set to 64, which obtains 42.6 AP and 0.4 higher than baseline. At this case,
K71 equals 64 inner points that 4 sampled outer keys correspond to.

Table 4: Effect of sampled keys number K7 of inner fine-grained patches in P-Tiny.

Kr| O | 16 | 32 | 48 | 64 | 80
AP | 422 | 422 | 423 | 42.5 | 42.6 | 42.4

Complete Component Analysis. We analyze all components in CFDT, and the detailed result is
shown in Table E} For Tiny model as backbone, we find that the LGCF, CFAN and EMFI improve the
AP of 1.4, 0.4, 0.4 respectively. Combining all the proposed modules together, our method achieve
43.0 AP, which is 2.2 AP higher than baseline. In addition, the increase of computation brought by
the introduction of these three modules is acceptable. Compared with ViDT based on Swin-Nano
(40.4 AP, 37G FLOPs), our method has less computation cost, but possesses 2.6 AP higher than
Swin-Nano. For other backbones of our method, although the proposed modules bring in a little
computation cost, the FLOPs of CFDT is still less than that of other models. Compared with other
transformer-based detectors, our method achieve a higher AP.

Table 5: Analysis of all components in CFDT.

Backbone | LGCF CFAN EMFI | AP Aap | FLOPs (G)

40.8 - 27.8
. v 422 114 31.5
P-Tiny v v 426 118 33.0
v v v 43.0 122 33.2

43.4 - 65.1

v 450 116 74.6

P-Small v v 453 1.9 76.1
v v v 458 124 76.5
4473 - 150.0

. v 465 122 170.8
P-Medium v v 472 12.9 172.3
v v v 481 138 173.2

4.4 Visualization of sampling points in CFAN

To better understand the Coarse-Fine Aware Neck, we randomly select three images and visualize
the sampling points in both coarse-grained patches and fine-grained patches, as shown in Figure 3
From the visualization, it is apparently that the sampling points on coarse-grained patches are more
concentrated in a certain area on foreground, while the sampling points on fine-grained patches are
more widely distributed. However, many sampling points on fine-grained patches are assigned to the
background area. Therefore, it is necessary to combine them together to capture the effective features
for better detection.

5 Conclusion

In this paper, we propose an efficient object detector called CFDT with coarse-grained and fine-
grained cross representations. In order to further improve the performance of detector, we propose
local-global cross fusion module, coarse-fine aware neck and efficient multi-scale feature intergration
strategy. Compared with the state-of-the-art transformer-based detector ViDT, the combination of our
approach achieves better detection performance with less computation cost. Among other transformer-
based detectors, our method obtains a better trade-off between AP and FLOPs. Experimental results
demonstrate the effectiveness of the proposed method. For future research, we hope to transfer this
idea to more transformer-based models, so as to improve the performance of various visual tasks with
transformer.



Figure 5: Illustration of the sampling points in CFAN. We transform the sampling points location of
corresponding prediction boxes to original images. The bigger red points indicate the sampling points
on coarse-grained patches and the smaller blue points represent the sampling points on fine-grained
patches.
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