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Abstract

In this work, we study how to efficiently apply re-
inforcement learning (RL) for solving large-scale
stochastic optimization problems by leveraging
intervention models. The key of the proposed
methodology is to better explore the solution
space by simulating and composing the stochastic
processes using pre-trained deep learning (DL)
models. We demonstrate our approach on a chal-
lenging real-world application, the multi-sourcing
multi-period inventory management problem in
supply chain optimization. In particular, we em-
ploy deep RL models for learning and forecast-
ing the stochastic supply chain processes under a
range of assumptions. Moreover, we also intro-
duce a constraint coordination mechanism, de-
signed to forecast dual costs given the cross-
products constraints in the inventory network. We
highlight that instead of directly modeling the
complex physical constraints into the RL opti-
mization problem and solving the stochastic prob-
lem as a whole, our approach breaks down those
supply chain processes into scalable and com-
posable DL modules, leading to improved per-
formance on large real-world datasets. We also
outline open problems for future research to fur-
ther investigate the efficacy of such models.

1. Introduction
Multi-sourcing and multi-period inventory management
problem (MMIMP) is a challenging real-world application
in stochastic optimization. When complex stochastic supply
chain processes and constraints exist, it is not computation-
ally trackable to directly solving the problem using clas-
sic optimization techniques such as dynamic programming.
Despite making suboptimal decisions, modern inventory
management systems (IMS) in retail supply chain (such
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as Walmart and Amazon) typically deploy heuristic-based
multi-sourcing buying strategies, which employ a combined
system with a just-in-time (JIT) ordering strategy plus other
specialized strategies that strive to achieve a balance be-
tween supply shortage and inventory health across all prod-
ucts without compromising the inventory management’s
contribution to the overall retail service.

In real world supply chains, order quantities are subject
to several post-processors, including modification to meet
vendor constraints such as minimum order and batch size
constraints. Second, the supply may be unreliable and ven-
dors may only partially fill orders that they receive. This
may occur for multiple reasons, including that the vendor
itself is out of stock. In the literature the proportion of
the original order quantity retailer ultimately receives is re-
ferred to as the yield or fill rate. In the current state, there
is no existing representation model to learn those external
processes.

This work is motivated by the prior work (Madeka et al.,
2022) which established the viability of Deep RL for single-
sourcing inventory planning problem. But we forward this
line of research by targeting for a more complex variant of
the aforementioned problem, wherein multi-sourcing chan-
nels of vendors are available and the primary trade-off con-
sidered was to strike a balance for costs vs supply risks for
different vendors. On the other hand, we aim to investigate
effects of stochastic quantity over time arrival profiles.

Here, we emphasize that a critical issue encountered in solv-
ing the multi-sourcing inventory problem via traditional
methods such as dynamic programming is the unknown dy-
namics of a variety of underlying processes associated with
inventory control. For instance, customer demand is not
deterministic and exhibits volatility which are influenced by
seasonality, external sourcing processes, etc. To incorporate
those complex supply chain processes, we attempt to inves-
tigate whether it is possible to efficiently scale the training
of decision policies from the vast amount of data generated
from intervention models for the various state variables with
stochastic behaviors.

We organize rest of the paper as summarized next. In Sec-
tion 2, we mathematically formulate the dual-sourcing in-
ventory management problem and thereby describe our dual
sourcing RL methodology as a solution for the problem.
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In Section 3, we present our main results from numerical
experiments. Additionally, in Section 4, we extend our
dual sourcing RL baseline model by introducing a capacity
mechanism control strategy and provide evaluation results.
Finally, we conclude the paper with discussion on future
work in Section 5.

2. A Deep RL Approach for the Dual Sourcing
Problem

2.1. Modeling the Dual Sourcing Problem as an
Exo-IDP

In this section we model the dual sourcing problem as an
Exogenous Interactive Decision Process (Exo-IDP). We
consider the case of a retailer managing a set A of products
for T time steps, where the objective is to maximize revenue
by placing orders to both long lead time (LLT) and JIT
sources. To succinctly describe our process, we focus on
just one product i ∈ A, though we note that decisions can
be made jointly for every product.

State The price received at sale, costs incurred on JIT
purchase, and holding costs are denoted as pit, c

J,i
t , and hit,

respectively. For LLT orders, the retailer typically receives
a discount on the cost of goods sold, so there is a different
cost incurred on purchase cL,i

t . , Additionally, the demand
for product i at time t is denoted as dit. The aforementioned
set of variables are completely exogenous, and therefore
their evolution is independent of any policy’s interaction
with the Exo-IDP.

Together these exogenous processes form the state as fol-
lows,

sit ≜
(
dit, p

i
t, c

J,i
t , cL,i

t , ,ρJ,i
t ,ρL,i

t ,MJ,i
t ,ML,i

t

)
. (1)

The history of the joint process up to time t is defined as

Ht := {(ki0, si1, . . . , sit)}
|A|
i=1,

where ki0 is the initial inventory level. Product-level histories
can be defined similarly.

Actions For product i, action ait implies placing orders
via JIT, LLT channels at time t. In other words, agent’s
interaction with the Exo-IDP is only via placing orders.
More precisely,

ait ≜ (qJ,it , qL,i
t ). (2)

So we have ait ∈ R2. For a class of policies parameterized
by θ, we can defined the actions as

ait = πi
θ,t(Ht). (3)

We define the set of these policies as Π ≜ {πi
t(; θ)|θ ∈

Θ, i ∈ A, t ∈ [0, T − 1]}.

External Sourcing Processes After orders are created
and submitted to vendors, they can arrive in multiple ship-
ments over time, and the total arriving quantity may not
necessarily sum up to the order quantity placed. Any
constraints the vendor imposes on the retailer’s orders
MJ,i

t ∈ Rdv – such as minimum order quantities and
batch sizes – are exogenous to the ordering decisions. We
define an order quantity post-processor on the JIT source
fJp : R≥0×Rdv → R≥0 that may modify the order quantity.
The final order quantity submitted to the vendor is denoted
as q̃J,it := fJp (q

J,i
t ,MJ,i

t ). Similarly, the final LLT order
quantity is defined as q̃L,i

t := fLp (q
L,i
t ,ML,i

t ).

At every time t, the vendor has allocated a supply UJ,i
t that

denotes the maximum number of units it can send (regard-
less the amount we order), which will arrive over from the
current week up to L1 weeks in the future according to
an exogenous arrival shares process (ρJ,it,0, ..., ρ

J,i
t,L1

) where∑
l ρ

J,i
t,l = 1 and ρJ,it,l ≥ 0 for all i, t and l. The arrival quan-

tity at lead time j from order qJ,it can be denote as oJ,it,j :=

min(UJ,i
t , q̃J,it )ρJ,it,j . The LLT arrival quantities are defined

similarly and denoted as oL,i
t,j := min(UL,i

t , q̃L,i
t )ρL,i

t,j .

In brief, the overall sourcing processes from the initial order
quantity to final arrivals can be modeled as

oJ,it,j := min(UJ,i
t , fp(q

J,i
t ,MJ,i

t ))ρJ,it,j , (4)

oL,i
t,j := min(UL,i

t , fp(q
L,i
t ,ML,i

t ))ρL,i
t,j . (5)

Internal Inventory Dynamics Iit− and Iit denote the on-
hand inventory for product i at the beginning and end of a
period t, respectively. The inventory update rule is given as
follows,

Iit− = Iit−1 +

L1∑
j=0

oJ,it,j +

L2∑
j=0

oL,i
t,j , (6)

and
Iit = max{Iit− − dit, 0}. (7)

Reward Function We formulate the reward realized at t
taking into account the current period inventory costs and
sales. The construction of reward in our problem is such
that it measures the periodic cash outflows caused due to
replenishment and holding costs of inventory, and inflows
are attributed to customer sales. It is defined as

Ri
t ≜ pit min(dit, I

i
t−)− c

J,i
t

L1∑
j=0

oJ,it,j − c
L,i
t

L1∑
j=0

oL,i
t,j − h

i
tI

i
t .

(8)

Hence, computation of reward is essentially a function of
history vector Ht and policy parameters θ, R(Ht, s

i
t, θ).

1

1Reward is a function of current period action ai
t which is
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2.2. The Dual Sourcing Optimization Problem

In our setting, we aim to maximize the total discounted
2 reward across the T length time horizon in expectation,
while accounting for other constraints.

In the following, we state the dual sourcing optimization
problem P1,

P1 : max
θ∈Θ

E
[∑
i∈A

T−1∑
t=0

γtRi
t(θ)

]
, (9)

s.t.

Ii0 = I
i
, (10)

Equations(3− 7), (11)

where Eq. (9) is the expression for initial inventory.

2.3. Scaling the Learning by Forecasting Sourcing
Processes

In practice, we do not actually observe the full supply and
arrival share processes for either the JIT or LLT sources.
Under the IDP model described in the previous section, we
only observe the arrivals share processes when an order was
placed historically and we only observe the supply process
when we do not receive the full order quantity. To handle
this censoring we directly forecast the arrivals instead of
the supply and arrival shares processes.

To see why this makes sense, note that the dynam-
ics (6) and reward function (8) depend only on the ar-
rivals oJ,it,j := min(UJ,i

t , fp(q
J,i
t ,MJ,i

t ))ρJ,it,j and oL,i
t,j :=

min(UL,i
t , fp(q

L,i
t ,ML,i

t ))ρL,i
t,j . Thus, for the purposes of

constructing our simulator from historic data, we forecast ar-
rivals conditional on the action ait rather than estimating the
post-processing behavior and the supply and arrival share
processes.

Arrivals For arrivals, denoting byHi
t,O the observed com-

ponents of Hi
t , one can forecast

p(oJ,it,0, . . . , o
J,i
t,L1
|Hi

t,O;ψ1). (12)

Note that conditioning on Hi
t,O, θ is equivalent to condi-

tioning on Hi
t,O, ψ1 and the past JIT order actions ais for

s ≤ t.

3. Experimental Evaluations
3.1. Training/Evaluation Configurations

Real-world Dataset We use the same real-world dataset
as used in (Madeka et al., 2022) with approximately 80,000

computed via policy π parameterized by θ, and input Ht.
2This discounted reward implies time value of actual cash flows.

The discounting factor here is γ.

products for 124 weeks from April 2017 to August 2019.
Out of the 124 weeks, we treat the first 72 weeks as training
dataset and the remaining 52 as the backtesting dataset.
However, in future iterations, we plan to train the DRL
models on 104 weeks so that the policy agents can better
track seasonal patterns.

Baselines We compare our Dual Sourcing RL
(DualSrc-RL) buy policy against several baselines,
i.e. BaseStockHorizonTip (BSHT), Tailored Base
Surge (TBS), Just-in-time RL (JIT-RL). The first two are
classic operation research baselines and the JIT-RL is the RL
baseline where the RL model is trained as a single-sourcing
model (Madeka et al., 2022). More detailed description of
those baselines are reported in Appendix A.1.

3.2. Main Results and Analytics

We use the training dataset to train the RL algorithms
and perform evaluation experiments for the compared al-
gorithms over the test dataset. The evaluation results are
reported in Table 1.

Setting Method % of BSHT

JIT Policy BSHT 100
JIT-RL 104.78

Dual Sourcing TBS 117.69
DualSrc-RL 121.54

Table 1: Cumulative discounted rewards (as % of BSHT) for
52 backtest periods for different policy methods.

From the results above, we can observe that overall dual
sourcing strategies DualSrc-RL, TBS are favorable in
terms of rewards. Furthermore, DualSrc-RL is most prof-
itable in all the run scenarios, and has 4% reward gains over
TBS.

4. Capacity Management with Neural
Coordination

Having formulated the unconstrained inventory control prob-
lem in P1, now we consider a constrained situation, where
network capacity constraints are introduced, and consid-
ered as part of the exogenous process. We are interested
in studying the constrained problem because it is a chal-
lenging variant in real-world supply chain applications. A
large retailer typically manages a supply chain for multiple
products and has limited resources (such as storage) that are
shared amongst all the products that retailer stocks. Specif-
ically, we have the following set of formulas representing
the storage capacity constraints,

G := {K0,K2, ...,KT−1}. (13)
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The constrained problem P1 can be obtained by adding the
capacity constraints (15) to P1,

P2 : max
θ∈Θ

E
[∑
i∈A

T−1∑
t=0

γtRi
t(θ)

]
, (14)

s.t.∑
i∈A

viIit ≤ Kt, . (15)

For the reward function, we modify the unconstrained re-
ward to incorporate a penalty according to the capacity
prices,

Rλ,i
t ≜ Ri

t − λtviIit , (16)

where λt is the storage capacity price at time t.

4.1. Forecasting the Capacity Prices by a Neural
Coordinatator

The role of coordinator agent is to predict capacity prices
for the targeting inventory network given any capacity con-
straints as input. One example of a coordination mechanism
is model predictive control (MPC), which would use fore-
casted demand to perform a dual cost search for the next L
periods. However, for an RL buying policy that uses many
historical features, model predictive control would require
forward simulating many features and it may be difficult to
model the full joint distribution of all these features.

Instead, we apply a coordination approach as used in (Eise-
nach et al., 2024) by introducing a deep learning model for
this problem. Specifically, we train a neural network to fore-
cast the future prices of capacity that would be required to
constrain the dual sourcing RL buying policy. Specifically,
we learn a neural network to predict,

(λt, λt+1, ..., λt+L) = ϕω(Ht, G), (17)

where Ht denotes the historical state vector and G denotes
the capacity constraints.

The training algorithm for the neural coordinator can be
found in Appendix.

4.2. Evaluation Results

In this section, we backtest our proposed dual sourcing buy
policy with neural coordinator for storage capacity manage-
ment.

Compared Policies and Baselines We compare our un-
constrained Dual Sourcing RL (DualSrc-RL) buy policy
(as the baseline) with its two constrained variants. For the
first variant, the neural coordinator is used to constrain the

DualSrc-RL agent, and a MPC predictor is used to con-
strain DualSrc-RL as the second variant.

Performance Metrics In addition to measuring reward
achieved by the various policies, we consider several ad-
ditional measures of constraint violation. They are (M1)
mean constraint violation (M2) percent of weeks where the
violation exceeded 10%.

Results The Table 2 shows the results on the out-of-training
backtesting period, where each combination of policy and
coordinator were evaluated against 100 sampled storage
constraint paths. Note that under all metrics (both violation
and reward) the DualSrc-RL policy with neural coordina-
tor outperforms DualSrc-RL with MPC. Although some
of the violation metrics seem somewhat high, one should
keep in mind that many of the capacity curves sampled will
be highly constraining, much more so than in a real-world
setting – in practice if the supply chain were so constrained,
one would build more capacity.

Table 2: Out-of-distribution evaluation results.

Violations

Buy Algo Coordinator M1 M2 Reward

DualSrc-RL - 28.9% 35.8% 100
DualSrc-RL Neural 3.5 % 9.1% 99.7
DualSrc-RL MPC 13.3% 18.2% 96.9

5. Conclusion and Future Work
In this paper, we investigates ML-based inventory control
methodologies with the consideration of stochastic supply
chain processes that introduce scalable representation mod-
els to mitigate the supply risk and optimize the complex
cross-product constraints/resources. Specifically, we inves-
tigate how to efficiently build a Deep RL framework for
the problem by forecasting the real-world supply chain pro-
cesses under a range of assumptions. We highlight that
instead of directly modeling the complex physical con-
straints into the learning pipeline and solving the problem
as a whole, our approach breaks down those supply chain
processes into different DL modules, leading to improved
performance on larger real-world retail datasets. For future
research, it is interesting to develop efficient modules for ap-
proximating other cross-product dependencies in real-world
supply chain networks, e.g. containerization processes in
global transportation, truck-load and placement.
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A. Related work
Dual Sourcing Inventory Control: Dual sourcing is a heavily studied problem in inventory control literature, and has
become a common practice supply chain organizations worldwide. In vanilla dual sourcing problem, the sourcing channels
i.e., JIT, LLT essentially cause a trade-off in lead time vs ordering costs since usually LLT ( direct import sourcing channel )
has lower sourcing cost. In this context, Tailored Base-Surge (TBS) policy is a widely used method, wherein at each period,
a constant order is placed via the LLT channel, and a dynamic order is placed to match an inventory order-up-to level via the
JIT channel respectively. The JIT channel’s order-up-to level essentially implies a Safety Stock maintained to address sudden
demand surges (Xin & Goldberg, 2018). Although, such policies present fairly intuitive approaches to handle the dual
sourcing problem, but the optimality analysis of such policies has been a hard problem in general (Whittemore & Saunders,
1977), except for certain edge cases. Interestingly, the optimal policy is shown to be vanilla base-stock policy when the lead
time difference between LLT and JIT channels is exactly 1 period (Fukuda, 1964).

Reinforcement Learning for Inventory Control: Recently, application of Reinforcement Learning (RL) methods to
produce ordering decisions in large scale inventory management systems has gained significant attention. In this context,
Deep RL approaches have emerged more recently over its other Model-Based counterparts, due to improved computational
scalability and generalization performance of Deep Neural Network (DNN) architectures. Furthermore, DRL methods have
been shown to achieve performance gains over benchmarks for the multi-period newsvendor problem under fairly realistic
assumptions on costs, prices, demand and stationarity (Balaji et al., 2019). It is worth highlighting that DRL for single
sourcing problem has been comprehensively investigated with extensive empirical evidences at Amazon (Madeka et al.,
2022).

Capacity Management and Coordinatation Mechanism Retailers typically manage a supply chain for multiple products
and has limited capacity resources (such as storage) that are shared amongst all the products that retailer stocks. The classic
method for handling capacity constraints is to call a simulation and optimization process to compute shadow prices on
the shared resources. Model predictive control (MPC) consists of using a model to forward simulate a system to optimize
control inputs and satisfy any constraints. At each time step, one re-plans based on updated information that has become
available in order to select the next control input. Recent work Maggiar et al. (2024) introduced the Consensus Planning
Protocol (CPP), which targets problems where multiple agents (each of which is locally optimizing its own utility function)
all consume a shared resource. This is closely related to a distributed ADMM procedure (Boyd et al., 2011). Another work
(Eisenach et al., 2024) presented a new capacity control mechanism for RL-based buying policies and proposed a Neural
Coordinator model to generate forecasts of capacity prices. Their formulation of capacitated inventory management can be
viewed as a special case of CPP (a central coordinator adjusts prices, and the other agents adjust their plans).

A.1. Baseline Methods

A.1.1. IMPROVED TAILORED BASE SURGE POLICY

We adopt a modified version of vanilla Tailored Base Surge (TBS) policy which has been described in (Xin & Goldberg,
2018). For each product i, TBS policy will place a dynamic LLT order qi,TBSL,t every period. In our problem setting, this LLT
order will arrive with lead-time of δL.

Whereas, for orders through JIT channel, this TBS policy will first calculate a dynamic target order-upto-level Ii,Tipt via the
production “Horizon Tip Calculator” method. Consequently, TBS policy places also places a dynamic order for the JIT
channel i.e., qi,TBSJ,t that can bring back the inventory level to Ii,Tipt . With on-hand inventory at the end of the period, Iit , the
JIT order at time t is given by:

qi,TBSJ,t = max

{
0, Ii,Tipt − Iit −

[
t−1∑
t̃=0

t+δi,Predt∑
k=t

(
oJ,i
t̃,k−t̃

+ oL,i

t̃,k−t̃

)]}
, (18)

where δi,Predt is the median forecasted VLT at time t for product i. In other words, Improved TBS subtracts on-hand and
inflight inventory from the Horizon Tip to compute JIT orders for current period. The order quantities qi,TBSJ,t , qi,TBSL,t will
arrive according to the underlying quantity over time arrival models.

Choice of LLT Order Input: We set LLT order quantities qi,TBSL as scaled 12-week rolling mean of product-level demands
from training set, i.e., qi,TBSL,t = α · 1

12 ·
∑t−1

t̃=t−11 d
i
t̃
. The order scaling factor α is used in our experiments as a search

parameter for getting optimal TBS policy.
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A.1.2. OTHER BASELINE POLICIES

1. We use a single source JIT Base Stock Policy with orders dictated by eq. (18) which we call
BaseStockHorizonTip (BSHT).

2. The existing RL buying policy for JIT single source from the literature (Madeka et al., 2022).

B. Training Algorithms
B.1. Training Algorithm for the Buy Policy

Firstly, recall that parameters θ ∈ Θ at any time t essentially dictates the RL agent’s policy as expressed in eq. (3), therefore
our problem reduces to learning optimal parameters θ⋆ ∈ Θ. Specifically, we leverage a Deep Neural Network (DNN)
architecture for π(·, ·; θ). So, θ in our DRL framework essentially implies the weights and parameters of the constituent
neurons in the policy network.

Observe that constraints of P1 (9) are in fact definitions for different components of the reward function, and, therefore
can be omitted from the optimization problem formulation otherwise. Next, we present the Direct Backpropagation
(DirectBP-DualSrc) training algorithm for DRL policy.

Algorithm 1 Direct Backpropagation DRL training algorithm (DualSrc-RL)

0: Input: set of products A, training batch size M , step size: η, θ0 ∈ Θ.
0: Initialize: Batch Iterator: b← 1.
0: while θ is not converged do
0: Sample mini-batch of products Ab of size M from A. and set Rb ← 0.
0: for i ∈ Ab do
0: Ri ← 0, Ii0 ← I

i
.

0: for t = 0, . . . , T Train − 1 do
0: Place orders

(
qiJ,t, q

i
L,t

)
= πi

t(Ht; θb−1).
0: Sample JIT, LLT arrivals (oJ,it,0, . . . , o

J,i
t,L1

, oL,i
t,0 , . . . , o

L,i
t,L2

).
0: Update inventory Iit according to (6) and (7).
0: Collect reward Ri

t according to (8)
0: Ri ← Ri

t + γt ·Ri
t.

0: end for
0: Rb ← Rb +Ri.
0: end for
0: θb ← θb−1 + η · ∇θPb

1

∣∣
θ=θb−1

. // Update Parameters of Policy Network π(·, ·; θ).
0: b← b+ 1.
0: end while=0

B.2. Training Algorithm for the Neural Coordinator

In the next, we introduce the optimization problem for learning the neural coordinator. First, assume a fixed dual sourcing
buying policy θ. Below we describe the ways in which the coordinator’s Exo-IDP deviates from the buying agent’s Exo-IDP.

The coordinator solves the following problem:

P3 : min
ω∈Ω

E
[ T−1∑

t=0

(
∑
i∈A

viIit −Kt)
2
+ + ||λt||+ L

(
λt, H

λ
t

) ]
, (19)

(20)

where L
(
λt, H

λ
t

)
denotes the total capacity price forecast error at time t,

L
(
λt, H

λ
t

)
=

L∑
s=1

||λt − (λ̂Lt−s)L−s||2, (21)

7



Deep RL Inventory Management with Supply and Capacity Risk Awareness

which is the mean squared error (MSE) of all past forecasts for the current cost.

We implement of the training algorithm for learning the neural coordinator for our dual sourcing problem. Specifically,
we train the coordinator by solving the problem (P3). Similar to the training algorithm for the dual sourcing buy policy,
we apply the Direct Backpropagation algorithm to optimize the loss objective 19 in (P3). The pseudo code of the training
algorithm is shown in Algorithm 2.

Algorithm 2 Training algorithm for the Neural Coordinator

0: Input: set of products A, training batch size M , step size: η, given buy policy θ,
{Ii}i∈A, δL, ϵ, initial neural coordinator ω0 ∈ Ω.

0: Initialize: Batch Iterator: b← 1.
0: while stop criterion is not satisfied do
0: Sample mini-batch of products Ab of size M from A. and set Rb ← 0.
0: for i ∈ Ab do
0: Ri ← 0, Ii0 ← I

i
.

0: for t = 0, . . . , T Train − 1 do
0: Collect instantaneous state and history vector sit,Ht.
0: Place orders

(
qiJ,t, q

i
L,t

)
= πi

t(Ht, s
i
t; θ).

0: Sample JIT, LLT arrivals (oJ,it,0, . . . , o
J,i
t,L1

, oL,i
t,0 , . . . , o

L,i
t,L2

).
0: Collect reward Ri

t and update inventory Iit .
0: end for
0: end for
0: Update global state and compute coordination loss by Equation 19.
0: ωb ← ωb−1 + η · ∇ωPb

3

∣∣
ω=ωb−1

. // Update Parameters of the Neural Coordinator ϕ(·, ·;ω).
0: b← b+ 1.
0: end while=0

C. Input Features
C.1. Featurization for Buying Policy

In terms of features, we mainly use the following feature list provided to the buying policy:

1. The current inventory level

2. Previous actions aiu that have been taken

3. Time series features

(a) Historical availability corrected demand

(b) Distance to public holidays

(c) Historical website glance views data

4. Static product features

(a) Product group

(b) Text-based features from the product description

(c) Brand

(d) Volume

5. Economics of the product - (price, cost etc.)

6. Capacity costs – past costs and forecasted future costs
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C.2. Featurization for Neural Coordinator

The neural coordinator takes the following aggregate/population level features:

1. Aggregated actions, inventory, demands for all current and previous times

(a) Order quantities

(b) Inventory

(c) Availability corrected demand

(d) Inbound

(e) All the above, but weighted by inbound and storage volumes

2. Forecasted quantities for next L weeks.

(a) Mean demand at lead time

(b) Inventory after expected drain at lead time

(c) All the above, but weighted by inbound and storage volumes

3. Other time series features

(a) Distance to public holidays

(b) Mean economics of products - (price, cost etc.), weighted by demand and volumes

4. Capacity costs (past costs and forecasted future costs)

D. Complementary Results of the Neural Coordinator in Addition to Sec. 4.2
The Figure 1 below demonstrates two examples of trajectories in the evaluation period for our DualSrc-RL (DS-RL) buy
policies with their coordinator settings (unconstrained, Neural coordinator or MPC). We can see that the neural coordinator
is able to constrain the on hand inventory within the capacity limit on the out-of-training backtesting period.

Figure 1: Inventory trajectories under different constraint paths during the out-of-training period.
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