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Abstract

Multi-Agent Path Finding (MAPF) is a fundamental problem
in robotics and logistics, where multiple agents must reach
their goals without collisions. While deep Multi-Agent Rein-
forcement Learning methods have recently shown impressive
scalability and adaptability, their black-box nature hinders
interpretability and trust—crucial aspects for deployment in
real-world systems. In this work, we propose an interpretable
policy distillation framework for MAPFE. We first formulate
MAPEF as a stochastic game and execute a trained neural pol-
icy across diverse environments to build a large dataset of
state—action pairs. We then distill this neural policy into a de-
cision tree model that captures its underlying decision rules
while maintaining strong performance. Through extensive
evaluation, we analyze the trade-off between interpretabil-
ity and performance, demonstrating that our distilled mod-
els achieve high fidelity to the original policy while provid-
ing transparent, human-understandable reasoning about agent
behavior.

Introduction

A wide range of real-world applications such as warehouse
logistics, autonomous vehicle coordination, and drone fleet
management can be formulated as Multi-Agent Path Find-
ing (MAPF) problems. In MAPF, several agents must reach
their respective goal locations while avoiding collisions with
obstacles and with each other. Finding optimal solutions
with respect to flowtime or makespan is known to be NP-
hard (Stern et al. 2019). Despite this complexity, numer-
ous solvers have been developed that can produce opti-
mal (Sharon et al. 2012), bounded-suboptimal (Boyarski
et al. 2015), or feasible solutions (Standley 2010). However,
these methods are usually centralized, requiring global in-
formation and costly replanning whenever the environment
changes. This makes them unsuitable for large-scale or par-
tially observable real-time domains.

In recent years, Multi-Agent Reinforcement Learning
(MARL) has emerged as a promising alternative (Zhang,
Yang, and Bagar 2021). By learning decentralized poli-
cies that can operate under partial observability, MARL ap-
proaches allow agents to react autonomously to local obser-
vations. Centralized Training with Decentralized Execution
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(CTDE) has become a dominant paradigm, enabling coordi-
nated yet scalable behaviors (Foerster et al. 2018; Rashid
et al. 2020). MARL-based MAPF methods have demon-
strated strong generalization across various environments
and robustness to dynamic changes such as new obstacles
or agent failures.

Yet, a major drawback of neural network-based policies
remains their lack of interpretability. Deep networks en-
code decisions in millions of parameters, making it diffi-
cult to understand why an agent behaves in a certain way,
to trust its behavior in safety-critical scenarios, or to de-
bug undesired outcomes. For real-world multi-agent sys-
tems—such as autonomous fleets or human-robot collabo-
ration—interpretability is essential to ensure transparency,
accountability, and human oversight.

In this work, we aim to bridge the gap between
performance and interpretability in MARL for MAPFE
Specifically, we propose to distill the policy of a trained
neural network into an interpretable model, such as a
decision tree (Breiman, Friedman, and Stone 2017). Our
goal is to retain as much of the performance as possible
while providing a model that can be inspected, explained,
and potentially verified.

To achieve this, we first construct a comprehensive dataset
by running the neural network policy in a variety of MAPF
environments. Each agent’s local observation and corre-
sponding action are recorded, forming a large collection
of state-action pairs. This dataset serves as the supervision
source for training interpretable models. Our first contribu-
tion is a detailed methodology for building this dataset, en-
suring it captures the diversity of situations encountered by
agents during navigation.

We perform a qualitative analysis of the decision rules
learned by the interpretable models, examining whether
these rules correspond to intuitive human reasoning for nav-
igation and coordination. Our second contribution is an ex-
tensive evaluation of interpretable policies derived from this
dataset. We assess their fidelity to the original neural net-
work and their effectiveness in MAPF environments of vary-
ing complexity.



Related Work
Multi-Agent Path Finding

We focus on maps represented as undirected, unweighted
graphs G = (V, E), where the vertex set V' contains all pos-
sible locations and the edge set I contains all possible tran-
sitions between adjacent locations. A MAPF instance Z con-
sists of a map G and a set of agents D = {1,..., N}, where
each agent i € D has a start location v*" € V and a goal

location vfoal € V. We assume that start and goal vertices
are unique for all agents, i.e., v} # v3** and v £ vfoal
for all i # j.

The objective of MAPF is to find collision-free plans for
all agents. A plan P = {py,...,pn} consists of individual
paths p; = (pi0,.-.,Dip,)) for each agenti € D, where

(DitsPiev1) € B, pio = v, and p; g(p,) = vE We
consider two types of conflicts: vertex conflicts (i, j, v, t),
when two agents occupy the same vertex v € V at time ¢,
and edge conflicts (7, j, u, v, t), when two agents traverse the
same edge (u,v) = (v, u) € F in opposite directions at time
t (Silver 2005). A plan P is feasible if it contains no vertex
or edge conflicts. The goal is to find a feasible plan P* that
minimizes the global objective, such as the total flowtime
Ser L),

Despite its NP-hardness (Yu and LaValle 2013), a vari-
ety of MAPF solvers exist that can find optimal (Sharon
et al. 2012), bounded-suboptimal (Cohen and Koenig 2016),
or fast feasible solutions (Li et al. 2021). However, most
of these solvers rely on centralized computation and global
information, which limits scalability and flexibility in dy-
namic or partially observable domains where costly replan-
ning would otherwise be required.

%

Multi-Agent Reinforcement Learning

Multi-Agent Reinforcement Learning (MARL) offers an al-
ternative decentralized approach to MAPF. A MARL prob-
lem can be formalized as a partially observable stochastic

game
M=(D,S,A,P,R,Z,Q),

where D = {1,...,N} is the set of agents, S is the
state space, A = A; x --- x Apn the joint action
space, P(s¢y1|s¢, ar) the transition probability, R(s:, a;) =
(re1,-..,re.n) € RY the joint reward, Z the set of local ob-
servations, and Q(si+1) = zi41 = (Zi41,1,-- -, Z1+1,N) €
ZN the joint observation function.

Each agent ¢ maintains an action-observation history
Tii € (Z x A;)" and follows a local policy ;(at:|7¢.4),
forming the joint policy @ = (my,...,mx). The local pol-
icy can be evaluated by a value function QT (s:,ar) =
Ex[R¢i|s¢, at], where Ry ; = ZZ:OI y¥ry ki is the return
of agent i, v € [0,1] is the discount factor, and 7" the time
horizon.

In cooperative MARL, the goal is to find an optimal joint
policy 7* = (n§,...,m%) that maximizes a shared perfor-
mance metric, typically the global return:

Qu(st,a1) =Y Q7 (51, 1)

1€D

Recent progress in MARL, such as value factoriza-
tion (Sunehag et al. 2017; Rashid et al. 2020) and
communication-based coordination (Sukhbaatar, Fergus
et al. 2016), has significantly improved coordination among
agents. Combined with centralized training and decentral-
ized execution (CTDE) (Foerster et al. 2018), exemplified
by the COMA algorithm, these methods allow agents to
learn coordinated, robust behaviors while acting indepen-
dently during execution.

Interpretable Policies and Distillation Methods

While deep MARL has shown strong performance in com-
plex environments, neural policies remain largely black-box
models. Their internal representations are difficult to inter-
pret, which hinders trust, safety verification, and transfer-
ability to real-world systems. In safety-critical domains such
as autonomous navigation, interpretability is essential for
human oversight and debugging.

Model distillation (Hinton, Vinyals, and Dean 2015)
provides a principled way to transfer knowledge from
a complex model (the feacher) to a simpler one (the
student). When applied to reinforcement learning, this
approach—known as policy distillation (Rusu et al.
2015)—aims to train a new policy that mimics the behavior
of a pretrained agent while using a smaller or more inter-
pretable architecture.

In the context of interpretability, decision trees and rule-
based models have gained attention for their transparency
and their ability to express decision boundaries in human-
understandable terms (Craven 1996; Bastani, Kim, and Bas-
tani 2017). Recent works have explored using decision trees
as interpretable surrogates for reinforcement learning poli-
cies (Coppens et al. 2019; Verma et al. 2018), balancing ex-
plainability and performance.

In this work, we follow this direction and propose to distill
a MARL policy trained for MAPF into a decision tree. This
allows us to analyze the learned decision rules, assess their
faithfulness to the original neural policy, and evaluate their
ability to generalize across various MAPF scenarios.

Background
MAPF as a Stochastic Game

To study interpretable policies in the context of Multi-
Agent Path Finding (MAPF), we adopt the stochastic game
formulation introduced in prior works (Silver 2005; Phan
et al. 2024). We consider discrete gridworld environments
in which each cell can be free, occupied by an obstacle, or
occupied by an agent. Formally, each environment is repre-
sented as a tuple G = (V| E), where V denotes the set of
grid cells and E the set of edges connecting adjacent cells
under 4-neighborhood connectivity.

At each time step ¢, the joint state is defined as s; =
(Vp1,..., v n) € S C VN, where v, ; is the position of
agent 7 and all positions are distinct, i.e., vy; # vy ; for
i # j. Each agent 7 selects an action a, ; from a discrete ac-
tion space A; = {wait, north, south, west, east}. State tran-
sitions are deterministic: valid moves update the agent’s po-
sition, while invalid moves (e.g., collisions, out-of-bound



actions, or simultaneous traversal of the same edge by two
agents) are converted into a wait action.
The individual reward function is defined as:

+1 if agent i reaches its goal v,

e =40 if agent ¢ remains at its goal,
—1 otherwise.

Each agent ¢ observes a local neighborhood around its posi-
tion v; ; through a fixed-size field of view (FOV). Following
prior work (Sartoretti et al. 2019), a 7 x 7 FOV is adopted.
The observation z; ; is encoded as a multi-channel tensor in-
cluding: (1) obstacle locations, (2) nearby agents, (3) visible
goals, (4) the agent’s own goal if present in the FOV, and
(5) a channel encoding the Manhattan distance and direction
to the goal. This is illustrated in Figure 1, from (Phan et al.
2024).

Obstacle Other Other Agent Agent
......Positions  Goals Positions Goal Direction

Figure 1: Example for an individual observation of the
red agent in a gridworld domain. Agents are represented
as colored circles, their goals as similarly-colored squares,
and obstacles as black squares. Each agent ¢ has a limited
field of view (FOV) of the environment map, which is cen-
tered around its location encoded by five channels: locations
of obstacles, location of other agents’ goals, locations of
nearby agents, and location of the goal v£** if within the
FOV, and the Manhattan distance and direction of agent ¢ to
its goal.

With a discount factor v = 1, the negated return —R; ;
equals the travel distance £(p;) if the goal is reached, or
the episode horizon 7" otherwise. Thus, maximizing the total

value
Qror = Z Qi
i€D

in MARL is equivalent to minimizing the expected flowtime
in MAPE. This simple reward structure discourages unnec-
essary delays and implicitly penalizes collisions, enabling
a general black-box formulation without handcrafted penal-
ties or heuristics.

Neural Network Training

The neural policy used in this work is trained using the
CACTUS framework (Phan et al. 2024), which introduces
a confidence-based curriculum learning strategy for MARL
in MAPF domains. The key idea is to progressively increase

the complexity of training environments in accordance with
the confidence of the agent’s policy.

At the beginning of training, agents are placed in
small, obstacle-free grids with short start-goal distances.
As the training progresses and the actor network gains
confidence—measured through the stability of its perfor-
mance—the curriculum gradually introduces more challeng-
ing settings. These include larger grid sizes, higher obstacle
densities, and longer goal distances.

The actor network, denoted as mny, is a fully-connected
feedforward neural network that operates on flattened lo-
cal observations of size d = 245 (corresponding to a 5-
channel 7 x 7 field of view). The network consists of two
hidden layers, each containing 64 neurons with ELU activa-
tion functions, which introduce non-linearities while main-
taining smooth gradient flow:

Input (245) — Linear(64) — ELU — Linear(64)

— ELU — Linear(5) — Softmax.

The output layer produces a probability distribution over
the discrete action space {wait, north, south, west, east} us-
ing a softmax activation. This architecture is lightweight yet
expressive enough to capture complex policies based on par-
tial observations, enabling agents to effectively coordinate
and avoid collisions in multi-agent scenarios.

This incremental training approach helps stabilize learn-
ing, mitigates sparse reward issues, and encourages the
emergence of cooperative behaviors among agents. The re-
sulting neural policy mnn achieves high task performance
and generalization across diverse gridworld configurations,
providing a strong foundation for subsequent distillation into
an interpretable model.

Contribution
Dataset Construction for Policy Distillation

To distill the learned neural policy 7nN into an interpretable
surrogate, we first construct a large-scale dataset that cap-
tures its behavior across varied environments. Each data
sample corresponds to an individual agent’s decision and is
represented as a pair (x, y) where:

T =2z, € RY, y = (),

with myn () denoting the action probability distribution out-
put by the trained policy. We systematically generate envi-
ronments by varying three parameters:

e grid size G € {10,40, 80},
* obstacle density p € {0,0.1,0.2,0.3},
* number of agents N € {4, 8,16}.

For each combination (G, p, N'), 1000 random environments
are generated. During simulation, the neural policy acts au-
tonomously, producing tuples (x,y) at each decision step.
The resulting dataset therefore approximates the empirical
distribution of agent behaviors under the trained MARL pol-
icy.

Because exhaustive enumeration of all configurations is
infeasible, this sampling strategy emphasizes diversity over



completeness, ensuring the dataset contains representative
examples of both typical and rare scenarios (e.g., conges-
tion, deadlocks, narrow passages). Note also that the CAC-
TUS training is done for a given multi-agent system (i.e. a
given number of agents). As the number of agents is vary-
ing in our study, the performance of the neural network are
not as good as those presented in the original research arti-
cle (Phan et al. 2024).

Decision Tree Distillation and Analysis

Using the collected dataset, we train a Decision Tree (DT)
classifier to approximate the neural policy. The DT learns a
mapping 7pr : R? — A by minimizing the cross-entropy
loss between the neural policy outputs and the DT predic-

tions:
Z Z Yq log 7ipr(alz).

(z,y)€D acA

Laisin = —

We evaluate the performance and interpretability of the
distilled Decision Tree (DT) policy. We select a tree of depth
4, which offers a good balance between expressiveness and
interpretability. The dataset is split into a training set (80%)
and a test set (20%) to assess generalization performance.

Table 1 reports the quantitative evaluation of the distilled
model. The DT achieves an overall test accuracy of 0.81,
demonstrating that a relatively shallow interpretable model
can faithfully reproduce most behaviors of the original neu-
ral policy.

Action Precision Recall Fl-score Support
NORTH (1) 0.87 0.78 0.82 17076
SOUTH (2) 0.76 0.78 0.77 16789
WEST (3) 0.81 0.86 0.83 18594
EAST (4) 0.81 0.83 0.82 14741

Table 1: Classification report for the distilled DT policy.

The results show that the model performs particularly well
on the dominant movement classes (SOUTH, EAST, and
WEST), with F1-scores above 0.77. The WAIT (0) action re-
mains difficult to predict due to its rarity and contextual de-
pendence (e.g., temporary congestion or deadlocks), which
are underrepresented in the dataset.

Beyond classification fidelity, we also assess the distilled
DT policy on the original MAPF task metrics to evaluate
its practical effectiveness. Specifically, we report the com-
pletion rate and the total reward. The completion rate mea-
sures the proportion of agents that successfully reach their
goal positions at the end of each episode, while the total
reward corresponds to the cumulative sum of rewards col-
lected by all agents throughout the episode. These metrics
provide a more direct evaluation of how well the distilled
policy preserves the functional behavior of the neural policy
in a multi-agent navigation setting.

Table 2 summarizes the results obtained on a 40 x 40 grid
with an obstacle density of 0.0. The DT achieves a comple-
tion rate and total reward comparable to those of the original

Model Completion Rate Total Reward
Neural Policy 0.627 +0.227 —1194 4+ 1099
DT (depth 4) 0.627 +0.239 —12124+ 1154

Table 2: MAPF performance metrics comparing the neural
policy and its distilled DT counterpart on a 40 x 40 grid.

neural policy, indicating that the distilled model retains most
of the operational performance despite its simplicity.

The results demonstrate that the distilled Decision Tree
policy closely matches the neural policy in terms of both
completion rate and total reward. This suggests that the dis-
tilled model not only captures the decision boundaries of the
neural policy but also generalizes effectively in the orig-
inal MAPF environment, achieving near-equivalent task-
level performance while remaining interpretable.

From Decision Tree to Human-Readable Rules

Rather than visualizing the full decision tree, which can
be difficult to read, we converted it into a compact
set of human-readable decision rules of the form IF
condition THEN action. Each feature index corre-
sponds to a specific spatial position and channel in the
5 X 7 x 7 observation tensor, following the flattening or-
der (channel-first). Here is one of the rule that has been ex-
tracted:

IF featl7 > 0.55 AND feat23 <= 0.59
AND feat25 <= 0.67 THEN action = 1.

featl7, feat23, feat25, and feat31 belong to
Channel 0, encoding the normalized Euclidean distances
from the goal to the agent’s neighboring cells (respectively
North, West, East, and South). These values implicitly indi-
cate the goal direction — the smaller the value, the closer
the goal lies in that direction. The interpretation of this rule
is the following. Since feat 23 and feat25 are small, and
feat17 is large, the agent is going north. This type of in-
terpretation can be done for each extracted rule.

From these rules, we observe that the Decision Tree pri-
marily relies on interpretable spatial cues: the relative direc-
tion and distance to the goal (features from Channel 0), and
the presence of obstacles or other agents (Channels 2 and
3). This is fully consistent with intuitive navigation behav-
ior — the policy learns to move toward the smallest-distance
direction while avoiding obstacles and collisions.

Visual Interpretation of Feature Importance

To further assess interpretability, we visualize the relative
importance of each feature channel in the Decision Tree.
For each channel, we aggregate the normalized feature im-
portance scores across the entire tree and project them back
onto the 7 X 7 observation grid.

The resulting activation maps (Fig. 2) highlight which
spatial regions of the FOV most strongly influence the
agent’s decisions. For instance, goal-related features show
strong activations along the “Distance to goal” axis. Simi-
larly, high activations appear near the frontal and lateral cells
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Figure 2: Spatial importance maps for each observation channel. White areas indicate high feature importance in decision-

making.

of the obstacle channel, confirming that obstacle avoidance
plays a dominant role in policy decisions.

These visualizations provide a clear and intuitive under-
standing of the decision process, bridging the gap between
black-box deep reinforcement learning and interpretable
symbolic reasoning.

Sensitivity Analysis

In this section, we analyze the robustness of both the neural
and distilled Decision Tree (DT) policies with respect to var-
ious factors: the tree depth, obstacle density, and grid size.
All experiments use the same neural policy trained with 8
agents. While absolute performance values are lower than
those reported in the original study (Phan et al. 2024), the
following analysis provides useful insights into the relative
behaviors of the two models under different environmental
conditions.

All experiments were executed on a x86_64 GNU/Linux
(Ubuntu 18.04.5 LTS) machine equipped with an Intel i7-
8700 CPU (8 cores at 3.2GHz) and 64 GB RAM.

Effect of Decision Tree Depth

Table 3 reports the influence of tree depth on fidelity and task
performance, under fixed grid size (40 x 40) and zero obsta-
cle density. Accuracy measures the DT’s agreement with the
neural policy on the test set, while completion rate and total
reward quantify task-level performance on MAPF.

Depth Accuracy Completion rate Total reward

NN - 0.921 £ 0.050 —473 + 364
4 0.81 0.885 £ 0.064 —551 £ 374
5 0.82 0.904 £ 0.052 —507 + 351
6 0.84 0.894 £ 0.060 —537 £ 376
7 0.85 0.898 £ 0.064 —534 £ 401
8 0.85 0.898 £ 0.064 —534 + 401

Table 3: Sensitivity of Decision Tree performance to model
depth (Grid size = 40, Obstacle density = 0).

Deeper trees yield slightly higher fidelity, as indicated by
improved accuracy. However, beyond depth 5, performance
on the MAPF task saturates, with completion rates and re-
wards plateauing near those of the neural policy. This sug-

gests that while additional depth enhances representational
capacity, a moderate depth (4-6) is sufficient to capture most
of the neural policy’s structure without significant loss in
task-level performance.

Effect of Obstacle Density

Table 4 presents the sensitivity of both models to increasing
obstacle density, under a fixed 40 x 40 grid and DT depth 4.

Density Model Completion rate Total reward

0.0 NN 0.921 £ 0.050 —473 £+ 364
DT 0.885 £ 0.064 —551 £ 374
0.1 NN 0.267 £ 0.077 —1866 + 1100
DT 0.221 £ 0.093 —1956 £ 1118
0.2 NN 0.073 £ 0.037 —2257 + 1254
DT 0.081 £ 0.033 —2241 £+ 1259
0.3 NN 0.033 £ 0.031 —2331 £ 1261
DT 0.040 £ 0.025 —2322 + 1276

Table 4: Sensitivity to obstacle density (Grid size = 40, De-
cision Tree depth = 4).

As obstacle density increases, both models experience a
sharp decline in completion rate and total reward, reflect-
ing the growing difficulty of coordination and path planning.
The DT closely follows the neural policy across all densities,
with similar degradation trends and overlapping confidence
intervals. This consistency suggests that the symbolic sur-
rogate generalizes adequately to more constrained environ-
ments, despite its reduced expressiveness.

Effect of Grid Size

Finally, Table 5 investigates how scaling the environment
affects performance, with obstacle density fixed at zero and
DT depth set to 4.

Both models demonstrate strong scalability across grid
sizes. The neural policy maintains high completion rates as
the environment grows, and the DT achieves nearly identi-
cal results. These findings indicate that the distilled policy
preserves the neural model’s generalization ability across
spatial scales, supporting the viability of interpretable sur-
rogates for large-scale MAPF tasks.



Grid size Model Completion rate Total reward

10 NN 0.627 £ 0.227 —1194 4+ 1099
DT 0.627 + 0.239 —1212 + 1154

40 NN 0.921 £ 0.050 —473 + 364
DT 0.885 £ 0.064 —551 + 374

80 NN 0.940 £ 0.024 —623 + 390
DT 0.952 +£0.051 —624 £ 425

Table 5: Sensitivity to grid size (Obstacle density = 0, Deci-
sion Tree depth = 4).

Discussion and Conclusion

This study investigated the faithfulness and robustness of a
symbolic surrogate model for neural policies in multi-agent
pathfinding (MAPF). The proposed decision tree achieved
high fidelity to the neural policy (accuracy up to 0.89), yet its
task-level performance remained consistently below that of
the original network. Sensitivity analyses across tree depth,
obstacle density, and grid size revealed that deeper trees par-
tially recover the neural model’s efficiency, while general-
ization to unseen environmental scales remains limited.

These findings underline a trade-off between inter-
pretability and behavioral expressiveness in symbolic ap-
proximations of learned policies. In safety-critical or
explainability-oriented control systems, such surrogates
may provide valuable transparency while preserving part
of the original functionality. Future work should focus on
standardizing the evaluation of symbolic proxies for neural
policies, particularly in dynamic and multi-agent control set-
tings, to better quantify the trustworthiness and reproducibil-
ity of interpretable Al controllers.
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