

000 001 002 003 004 005 SELF CAD: PROTECTING YOUR EFFICIENT REASONING 006 CAPABILITIES VIA SELF-CAUTIOUS INSERTION 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
0100

ABSTRACT

Large reasoning models (LRMs) are increasingly deployed in modern AI systems due to their accuracy, efficiency, and transparency, as their reasoning traces enable users and auditors to interpret model outputs. However, publishing these traces introduces new risks. Adversaries may distill them to replicate efficient LRMs for their own purpose or build proxy models for malicious attacks, raising both copyright and security concerns that threaten the sustainability of the LLM ecosystem. Existing defenses mainly detect distillation after violations occur or suppress transparency by masking or rewriting reasoning traces, which are impractical in real-world deployments. In this work, we propose a defense framework that preserves reasoning traces while preventing effective distillation **with nearly no additional cost**. We begin with a systematic analysis of how different reasoning components affect model efficiency and accuracy. Our results reveal that the number of self-cautious sentences plays a crucial role: excessive self-cautious sentences lead to redundant outputs, while insufficient ones harm accuracy. Building on this insight, we propose **SelfCAD (Self-Cautious Anti-Distillation)**, a lightweight anti-distillation method that strategically manipulates self-cautious parts after models generate their reasoning traces. SelfCAD maintains the semantic clarity of reasoning traces for human users and LLM auditors, but significantly degrades the efficiency and accuracy of the downstream distilled models. Experiments on Llama and Qwen show that distilled models incur higher inference cost and lower accuracy, especially for Qwen-1.5B, whose token length is $4.8 \times$ longer on GSM8K after distillation with our processed responses compared with distillation with vanilla responses. The results highlight a new efficiency-based perspective on safeguarding reasoning models from distillation while preserving interpretability.

1 INTRODUCTION

Large language models (LLMs) have become the backbone of modern AI applications, powering search engines, chatbots, educational platforms, and productivity tools (Touvron et al., 2023; OpenAI, 2023; Nam et al., 2024; Dam et al., 2024). Training such models requires massive investment in data curation, computational infrastructure, and expert labor. **However, some unauthorized developers may still obtain high-quality responses for distillation from leading LLMs (Xu et al., 2024b; Wang et al., 2022), even though their hidden states and logits are well protected by commercial APIs.** Such a phenomenon can introduce risks of intellectual property infringement, as the model parameters and their outputs are widely considered to contain substantial economic and scientific value. The issue is especially critical for reasoning models, as their responses contain more detailed information and are much more valuable than vanilla LLMs. Beyond intellectual property concerns, unauthorized distillation also raises privacy risks and enables malicious applications (Cui et al., 2025), such as membership inference or model extraction attacks (Tramèr et al., 2016; Liang et al., 2024a). **Therefore, even though commercial LLMs are black-box systems that expose only their outputs, their intellectual property and safety are still not well protected. Such a uncontrolled problem has raised growing concerns (Sweeney & Milmo, 2025) and poses a threat to the openness of the AI research community.**

Unfortunately, simply suppressing model responses is infeasible to mitigate this threat, as societal expectations and regulatory guidelines increasingly emphasize transparency and interpretability

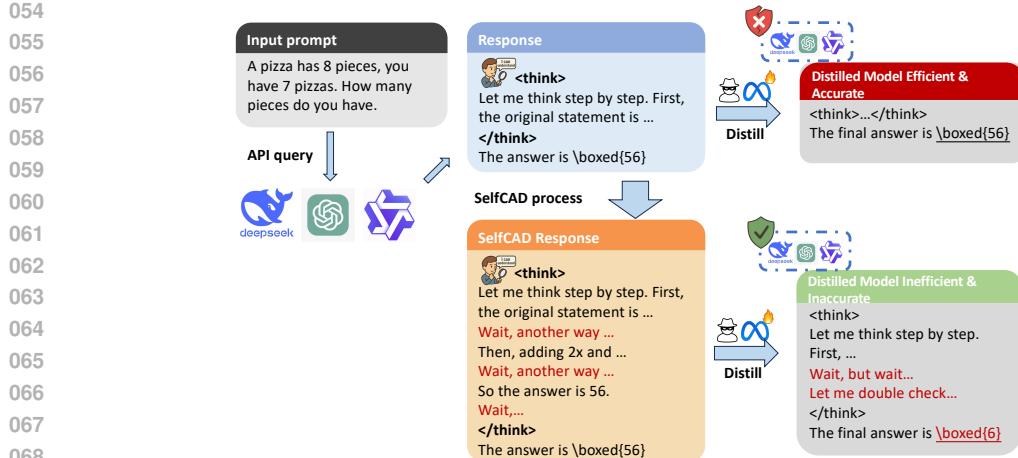


Figure 1: The overall pipeline of our SelfCAD. By adding more self-cautious sentences in the original responses, our SelfCAD method can prevent effective distillation in a lightweight manner (could finish on CPU) while maintaining important reasoning trajectory.

in AI systems, e.g., EU AI Act ¹ and GDPR ². Existing defenses are also impractical. Post-hoc techniques such as watermarking and fingerprinting (Zhang & Koushanfar, 2024; Xu et al., 2024a; Liang et al., 2024b) can help trace potential misuse, but they often require extra computational resources at both training and inference time, making them difficult to deploy widely. More crucially, *these methods cannot prevent distillation from happening in the first place*. Although Li et al. (2025) recently explored the proactive defenses, their method still relies on expensive fine-tuning on teacher models to rewrite the reasoning trajectory with feedback from proxy models, which limits applicability to large-scale commercial models. Beyond resource cost, the modified reasoning traces may also compromise the original transparency, as their original reasoning traces are hidden after the finetuning. **In short, current approaches are insufficient to protect commercial LLMs' responses being unauthorized exploited for distillation while preserving their original transparency.**

To address the above problem, we first analyze the behaviors of LRM with respect to different components of its reasoning trajectory: statement, reasoning, self-cautious, and conclusion sentences during inference and training time on the high-quality reasoning data distilled by R1 (DeepSeek-AI et al., 2025). Then we find that the number of self-cautious sentences in LRM's trajectory is crucial to both accuracy and **output efficiency**. Furthermore, we also conclude that adequate self-cautious sentences may help avoid the wrong answers, while too many false self-cautious (**self-cautious after correct steps**) may harm LRM's efficiency through **experiments** and theoretical analysis.

Building on the above observations, we propose our SelfCAD (Self-Cautious Anti-Distillation), a lightweight protection in Fig. 1. By strategically inserting self-cautious sentences into reasoning traces, SelfCAD can make the distilled model less confident even in correct steps, **while preserving output transparency**. **This leads to redundant self-cautious and inefficient reasoning, which drop in accuracy while increase in output length**. We believe SelfCAD shows a promising direction toward safeguarding the sustainability of the LLM ecosystem, and contributions are as follows:

- We conduct a systematic analysis of the inherent components in reasoning trajectories and their impact on both accuracy and efficiency, revealing the critical role of the number of self-cautious sentences in distilled models' efficiency and accuracy.
- We propose, **SelfCAD**, a lightweight inference-time defense to proactively prevent effective distillation from their outputs, and can be easily integrated into different LLM APIs,
- Extensive experiments across various student models and distillation settings demonstrate that SelfCAD consistently increases inference cost and reduces the accuracy of unauthorized distilled models without harming transparency.

¹<https://www.euaiact.com/key-issue/5>

²<https://gdpr-info.eu>

108
109
110
111
112
2 RELATED WORK113
114
115
116
117
2.1 DISTILLATION ENHANCES MODEL TRAINING118
119
120
121
122
123
124
125
126
127
128
129
The distillation method can be traced back to at least Hinton et al. (2015), which demonstrated
120 that knowledge distillation enhances the training process and achieves impressive performance.
121 Subsequently, a growing body of work (Goldblum et al., 2020; Gu et al., 2024; Taori et al., 2023) has
122 shown that student models can significantly benefit from knowledge transferred by teacher models
123 through distillation. More recently, DeepSeek-AI et al. (2025) highlighted the considerable efficiency
124 and potential of distillation when applied to large-scale reasoning models.
125126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
While training a large language model from scratch or acquiring high-quality data is prohibitively
130 expensive, knowledge distillation from a powerful, pre-trained model offers an effective shortcut.
131 Smaller models in the Llama (AI, 2024) and Gemma (Team et al., 2024; 2025) series, for instance,
132 rely heavily on such distillation techniques. As demonstrated by DeepSeek-AI et al. (2025), this
133 approach can significantly reduce computational costs while simultaneously enhancing performance.
134 However, this practice raises concerns regarding fairness for the providers of the original teacher
135 models and may potentially lead to legal disputes (Times, 2025).136
137
138
139
140
141
142
143
Knowledge distillation employs various knowledge sources, including logits (Hinton et al., 2015;
136 Goyal et al., 2025), intermediate features (Romero et al., 2015; Chen et al., 2021), and synthetic data
137 (DeepSeek-AI et al., 2025). In this work, we focus on synthetic data because most powerful models
138 are black-boxed, meaning we can only access their output text with API.
139140
141
142
143
2.2 EXISTING COPYRIGHT PROTECTION FOR LARGE LANGUAGE MODELS144
145
146
147
148
149
150
151
152
153
154
155
The rapid development of Large Language Models (LLMs) has raised significant concerns regarding
144 copyright protection (Xu et al., 2025; Jiang et al., 2024). A prominent approach involves the use of
145 fingerprints, which extract identifying information from a model’s internal parameters or external
146 behaviors. These encompass methods based on parameter or representation analysis (Zhang et al.,
147 2025), semantic features (Suzuki et al., 2025), and adversarial examples (Cai et al., 2024). An
148 alternative strategy, watermarking, involves the intentional embedding of specific artifacts during
149 the model’s training phase (Zhang & Koushanfar, 2024; Xu et al., 2024a; Liang et al., 2024b).
150 Despite their utility, a critical weakness of these approaches is their frequent failure in black-box
151 settings (Zhang et al., 2025) and their susceptibility to being circumvented through fine-tuning.
152 More fundamentally, they operate as post-hoc accountability mechanisms, offering no means for the
153 proactive prevention of copyright infringement.
154155
156
157
158
159
160
161
The methods proposed by Savani et al. (2025) and Li et al. (2025) offer more direct approaches to
155 influencing distillation performance, making them particularly relevant to our work. Savani et al.
156 (2025) introduces an anti-distillation sampling strategy designed to poison reasoning traces, thereby
157 reducing their effectiveness for distillation while preserving the model’s practical utility. Similarly, Li
158 et al. (2025) fine-tunes the final layer using an adversarial loss against student models. However, both
159 methods require modifications to the teacher model’s behavior, which may introduce instability and
160 potentially compromise its performance. And such modifications may also compress LRM’s original
161 transparency which goes against the vision of a more credible AI development.162
163
164
3 SELFCAD: SELF-CAUTIOUS ANTI-DISTILLATION165
166
167
168
169
170
171
172
173
174
A strong reasoning model is usually praised for its accuracy and efficiency. Otherwise, excessive
165 generation hampers their real-world use, as discussed in recent reasoning attacks Si et al. (2025);
166 Kumar et al. (2025). Inspired by these findings, our goal is to make unauthorized distillation inefficient
167 by encouraging distilled models to produce over-extended responses. We begin with an analysis of
168 LRM’s reasoning traces, identifying how different parts affect accuracy and length. Guided by these
169 insights, we introduce our lightweight defense called SelfCAD that preserves reasoning transparency
170 while preventing efficient unauthorized distillation.
171

162 3.1 REASONING TRAJECTORIES ANALYSIS ON MODEL EFFICIENCY AND ACCURACY
163

164 To analyze the reasoning trajectories r generated by a reasoning model, we classify its sentences
165 into four categories: **statement sentences** $x_s^{(i)}$, which define the problem or state a fact; **reasoning**
166 **sentences** $x_r^{(i)}$, which describe computational steps or the development of a solution; **self-cautious**
167 **sentences** $x_{sc}^{(i)}$, which prompt the model to check their current answer or solution; and **conclusion**
168 **sentences** $x_c^{(i)}$, which provide a conclusion or the final answer. A typical reasoning trajectory starts
169 from the statement sentence and then the other three types of sentences tend to appear in alternation
170 at the end of reasoning, which can be formulated as:
171

$$172 \quad r = [x_s^{(0)}, x_r^{(0)}, x_c^{(0)}, x_{sc}^{(0)}, x_r^{(1)}, x_c^{(1)}, \dots], \quad (1)$$

173 where $x_{s/r/sc/c}^{(i)}$ denotes i -th statement/reasoning/cautious/conclusion sentence in the reasoning
174 trajectory. Note that the statement sentence typically appears only once, at the beginning of the
175 trajectory.

177 To evaluate the contribution of each sentence type to the end of the reasoning process, we sample
178 a subset of reasoning traces from the public bespoke dataset (Labs, 2025) containing high-quality
179 reasoning outputs generated by DeepSeek-R1 (DeepSeek-AI et al., 2025), and split the traces into
180 the defined categories. We then measure the next-token probability at the end of each sentence
181 that belongs to the latter three sentence types with Llama3.2-1B-Instruct models (AI, 2024) on the
182 processed dataset. This allows us to quantify how different sentence types influence the continuation
183 of reasoning trajectories. The results are shown in Table 1.

184 Table 1: The generation probabilities of ending tokens like “<leot_idl>” following sentences of each
185 type.
186

Type of Sentences	Examples	Llama
Reasoning	“The left side is $(x + y)^2 \dots$ ”	0.40
Self-cautious	“Wait, let’s re-examine the equation...”	0.13
Conclusion	“The answer is ...”, “Then we can conclude ...”	0.86

193 As indicated in Table 1, most conclusion sentences terminate the reasoning trajectories. Nearly half of
194 the reasoning sentences also serve as termination points. In contrast, self-cautious sentences exhibit a
195 significantly lower likelihood of ending a sequence, suggesting that they are the primary driver of
196 extended reasoning.

197 3.2 REASONING TRAJECTORIES ANALYSIS AT TRAINING-TIME
198

200 Apart from the inference-time study, we also
201 conduct training-time experiments to examine
202 the impact of different reasoning components
203 during training and distillation. Specifically,
204 we preprocess the public bespoke dataset (Labs,
205 2025) into three variants by separately remov-
206 ing reasoning sentences, self-cautious sentences,
207 and conclusion sentences. The implementa-
208 tion details are provided in Appendix B.1. We then
209 train Llama3.2-1B-Instruct (AI, 2024) on these
210 datasets for 3 epochs. Finally, we evaluate their
211 accuracy and average output length on the GSM-
212 8K benchmark with greedy sampling and zero-
213 shot setting, listed in Table 2.

214 From the results, we observe that removing the self-cautious sentences causes the largest reduction in
215 reasoning length (drop to original 40%) compared to removing the other two parts, while removing
216 reasoning harms final accuracy the most. These results highlight that self-cautious sentences are
217 critical to the efficiency of distilled models, whereas reasoning sentences are crucial to the accuracy.

Table 2: Accuracy and token length for Llama3-1B training with reasoning data processed by removing or adding the different components. SC denotes self-cautious.

	Acc(%)	Length
Original Data	39	3400
Remove Reasoning	33	2600
Remove Conclusion	36	4400
Remove SC	37	1300 ($\downarrow 0.4\times$)
Add SC	31	5100 ($\uparrow 1.5\times$)

216 Since modifying reasoning sentences severely harms interpretability, we focus on manipulating self-
 217 cautious sentences as the lever for our defense. Therefore, our subsequent analysis and experiments
 218 will focus on the self-cautious part.

219 Besides removing sentences, we also ex-
 220 plore the impacts of self-cautious sen-
 221 tences during training when inserting more
 222 of them. We train the Llama3.2-1B-
 223 Instruct (AI, 2024) and calculate their gen-
 224 eration length. The results are listed in the
 225 last row of Table 2. The results demon-
 226 strate that too many self-cautious sentences
 227 will not help the training. Instead, it clearly
 228 harms the distilled model’s performance
 229 (accuracy dropped by 20%) and efficiency
 230 (generation length increased by half) at the
 231 same time.

232 We imply that excessively self-cautious sen-
 233 tences, particularly when placed after cor-
 234 rect steps, make LLMs less confident in
 235 their results and tend to extend their reason-
 236 ing unnecessarily. For example, as shown
 237 on the right, even when the model has cor-
 238 rectly identified answer B, it often exhibits
 239 caution by re-evaluating or re-solving the
 240 problem through an alternative method.

241 The complete response is provided in the Appendix C.1. In the following, we will explore the
 242 impacts of self-cautious sentences theoretically.

243 3.3 THEORETICAL ANALYSIS ON SELF-CAUTIOUS AND EXCESSIVE REASONING

245 In this section, we present a theoretical analysis, building on prior works Wolf et al. (2023); Wei et al.
 246 (2024); Wies et al. (2023) about why more self-cautious sentences may cause excessive reasoning.
 247 First, we provide some new notations for convenience.

248 **Notation** We let $q^{(i)}$ denote i -th reasoning step consisting of $x_r^{(i)}, x_c^{(i)}$ and optionally a statement
 249 $x_s^{(i)}$ as defined above, $a^{(i)}$ denote the continuation after $q^{(i)}$, which can be a self-cautious sentence
 250 $x_{sc}^{(i)}$ or an ending token. $S^{(i)} = [q^{(i)}, a^{(i)}]$ denotes the i -th reasoning step with ending or self-cautious
 251 sentences, and use $S^{(<i)}$ to denote former $i - 1$ reasoning steps. In the following, we suppose $q^{(i)}$ is
 252 the reasoning step with correct answers. We then analyze how the false self-cautious sentences (i.e.,
 253 those inserted after correct reasoning steps) affect subsequent generations.

255 **Assumptions** We decompose $a^{(i)}$ into two language distributions, \mathbb{P}_{cau} (self-cautious) and \mathbb{P}_{end}
 256 (conclude and end reasoning traces), and the overall response distribution \mathbb{P} can be depicted as

$$258 \quad \mathbb{P} = \lambda \mathbb{P}_{cau} + (1 - \lambda) \mathbb{P}_{end}, \quad (2)$$

259 where $\lambda \in (0, 1)$. As we focus on generations a following a reasoning step q , we assume that the
 260 probability of generating a reasoning step q is identical under both distributions, that is, for every
 261 possible reasoning step q and its prefix p^* , we have

$$262 \quad \mathbb{P}_{cau}(q \mid p^*) = \mathbb{P}_{end}(q \mid p^*). \quad (3)$$

263 Further, we assume both \mathbb{P}_{cau} and \mathbb{P}_{end} are stable to former reasoning steps, i.e., previous reasoning
 264 steps and correlated self-cautious will not influence the current steps’ generation when restricting
 265 the generation to the distribution of self-cautious or ending. This assumption is practical since such
 266 distributions are shaped during training. For example, some LLMs like to start self-cautious sentences
 267 with “Wait” while others like “However”. Then for any $S^{(<i)}$ and $q^{(i)}$, we have

$$268 \quad \mathbb{P}_{cau}(a^{(i)} \mid [S^{(<i)}, q^{(i)}]) = \mathbb{P}_{cau}(a^{(i)} \mid q^{(i)}), \quad (4)$$

$$269 \quad \mathbb{P}_{end}(a^{(i)} \mid [S^{(<i)}, q^{(i)}]) = \mathbb{P}_{end}(a^{(i)} \mid q^{(i)}).$$

270 **Algorithm 1** SelfCAD: Processing Reasoning Traces with Self-Cautious Sentences

271 **Require:** User query p and inserted self-cautious sentence $t_{\text{selfcautious}}$.
 272 **Ensure:** Processed reasoning trace r_{pro} , which is our anti-distillation reasoning traces without
 273 sacrificing transparency
 274 1: Generate reasoning trace r from the model for query p
 275 2: Split r into reasoning steps: $r = [q^{(0)}, q^{(1)}, \dots, q^{(N)}]$
 276 3: **for** each step $q^{(i)}$ **do**
 277 4: Insert a self-cautious sentence $t_{\text{selfcautious}}$ after $q^{(i)}$
 278 5: **end for**
 279 6: Form the processed reasoning trace: $r_{\text{pro}} = [q^{(0)}, t_{\text{selfcautious}}, \dots, q^{(N)}, t_{\text{selfcautious}}]$
 280 7: **return** r_{pro} .

282
 283 Furthermore, we assume there exists $\Delta > 0$ such that $\log \left(\frac{\mathbb{P}_{\text{cau}}(a^{(i)}|q^{(i)})}{\mathbb{P}_{\text{end}}(a^{(i)}|q^{(i)})} \right) > \Delta$ for any self-cautious
 284 sentences $a^{(i)}$, i.e., the two distributions are distinguishable. It is also practical as self-cautious
 285 sentences starting like “Wait, we need to recheck the result.” hardly exist in the generation candidates
 286 when LRM tend to end their reasoning traces.
 287

288 **More false self-cautious will make LRM’s output excessively.** For all possible generations $a^{(i)}$
 289 following reasoning steps $q^{(i)}$, we define the self-cautious rate to measure LRM’s tendency to generate
 290 *self-cautious* sentences. It can be formulated as follows,
 291

$$\mathcal{R}_{\mathbb{P}}(q^{(i)}) = \mathbb{E}_{a^{(i)} \sim \mathbb{P}(\cdot|q^{(i)})} \mathbb{I}(a^{(i)} \text{ is self - cautious}), \quad (5)$$

292 where $\mathbb{I}(\cdot)$ equals 1 if input is self-cautious sentences and 0 otherwise. Then we have,

293 **Theorem 3.1.** *Let k denote the number of correct reasoning steps with self-cautious reasoning steps
 294 in former reasoning traces $S^{(<i)}$. Under the above assumptions, for any $\varepsilon > 0$, if $k \geq \frac{1}{\Delta} \log \frac{2(1-\lambda)}{\varepsilon \lambda}$,
 295 then LRM’s self-cautious score on any correct reasoning step q with former reasoning traces satisfies*

$$\mathcal{R}_{\mathbb{P}}([S^{(<i)}, q]) \geq \mathcal{R}_{\mathbb{P}_{\text{cau}}} - \varepsilon. \quad (6)$$

300 Proof can be found in Appendix D. From the results, we observe that when correct reasoning steps
 301 are frequently accompanied by self-cautious sentences in the early parts of LRM traces, the model
 302 tends to generate further self-cautious sentences after subsequent correct steps. In other words, the
 303 model develops a tendency to question almost every step. This reduces its confidence in concluding
 304 and often results in overly long and unnecessary reasoning.
 305

306 These inherent weaknesses of reasoning models motivate us to explore the use of such false self-
 307 cautiousness as a mechanism for protection against unauthorized distillation. Our key idea is to
 308 deliberately insert additional self-cautious sentences into the reasoning process, so that the model
 309 becomes less confident and prone to excessive reasoning. As a consequence, any malicious distillation
 310 attempt will inherit these characteristics and be less effective. At the same time, the key reasoning
 311 content remains intact and can still be understood and verified by human users or auditors. Building
 312 on this observation, we introduce SelfCAD, our anti-distillation approach, in the following section.
 313

3.4 SELF CAD: THE PROPOSED METHOD FOR ANTI-DISTILLATION

314 Inspired by these insights, we propose **SelfCAD (Self-Cautious Anti-Distillation)**, a lightweight
 315 inference-time defense mechanism designed to prevent unauthorized distillation of reasoning models.
 316 Unlike previous approaches that directly modify the behavior of distilled models (Savani et al., 2025;
 317 Li et al., 2025), our method post-processes the generated outputs without affecting the performance
 318 of the teacher model. Since it is not feasible to classify the correctness of each reasoning step for
 319 every query, accurately inserting misleading self-cautious demonstrations is difficult. Instead, we
 320 adopt a simple but effective strategy, that is, adding extra self-cautious sentences that doubt the result
 321 at each step.
 322

323 Specifically, for each query p and its generated reasoning trace r , we first divide r into multiple
 324 reasoning steps, denoted as $r = [q^{(0)}, \dots, q^{(N)}]$. After each step, we insert a self-cautious sentence

324 $t_{\text{selfcautious}}$. The processed reasoning trace then becomes $r_{\text{pro}} = [q^{(0)}, t_{\text{selfcautious}}, \dots, q^{(N)}, t_{\text{selfcautious}}]$.
 325 Finally, the model owner provides the users with this processed reasoning trace. Since all reasoning
 326 steps for problem solving are preserved, the reasoning trace remains transparent to users. We
 327 summarize the procedure in Algorithm 1. By exploiting the inherent shortcomings of reasoning
 328 models themselves (as discussed in the previous sections), our SelfCAD approach achieves a practical
 329 and cost-effective model protection for commercial deployment. At the same time, it preserves all
 330 the useful traces necessary for user understanding.

332 4 EXPERIMENTS

334 4.1 EXPERIMENT SETTINGS

336 Following the popular LLMs distillation pipelines, we first collect a number of high-quality questions
 337 $\mathcal{D}_{\text{question}}$, and then we prompt the teacher model and obtain their responses. We filter out incorrect
 338 or overly long responses (exceeding 4096 tokens) and obtain the final distillation dataset $\mathcal{D}_{\text{distill}}$.
 339 Then, we process $\mathcal{D}_{\text{distill}}$ with our SelfCAD method illustrated in Algo. 1. The inserted self-cautious
 340 sentence we use is “Wait, we should use and check if the previous step is consistent with the problem.”
 341 Then we obtain our $\mathcal{D}_{\text{distill,CAD}}$ on a single CPU within several minutes.

342 After that, we train several student models with constant $2e - 5$ learning for three epochs on $\mathcal{D}_{\text{distill}}$
 343 and $\mathcal{D}_{\text{distill,CAD}}$. All experiments are performed on NVIDIA A100 80G GPUs. After that, we get
 344 the distilled models and then evaluate reasoning abilities and generation token length on these models
 345 to demonstrate the effectiveness of our SelfCAD.

346 **Dataset** We randomly selected 30,000 challenging questions from the BigMath dataset³ (Albalak
 347 et al., 2025) as our question dataset $\mathcal{D}_{\text{question}}$. Big-Math is the largest open-source dataset of
 348 high-quality mathematical problems with over 250,000 rigorously filtered and verified problems.
 349 After distilling from our teacher model and filtering out the too-long or incorrect responses, the final
 350 $\mathcal{D}_{\text{distill}}$ we get is around 10,000.

352 **Teacher Model** We adopt the GPT-OSS-120B (OpenAI, 2025) as our teacher model, OpenAI’s
 353 open-weight models with 120 billion parameters designed for powerful reasoning, argentic tasks, and
 354 versatile developer use cases. It offers three types of reasoning modes. In our experiments, we adopt
 355 the medium reasoning mode, as the high mode produces overly long responses that are impractical
 356 for our training setup for evaluations.

358 **Student Model** We adopt three popular models for distillation in our setting. As distillations mainly
 359 facilitate small models training, we consider the models from 1B to 3B in our main experiments,
 360 including Llama-3.2-1B-Instruct / Llama-3.2-3B-Instruct (Grattafiori et al., 2024) and Qwen2.5-1.5B-
 361 Instruct (Team, 2024). These models are the latest small language models proposed by Meta and
 362 Qwen. They are widely adopted as a foundation model for both research and practical applications,
 363 making them particularly suitable for resource-constrained scenarios. Apart from these three models,
 364 we also adopt our methods on larger models Qwen2.5-7B-Instruct to demonstrate the generalizability.

365 **Evaluation Dataset** We adopt four popular mathematical datasets to evaluate the distilled models’
 366 accuracy and efficiency, including GSM8K (Cobbe et al., 2021), MATH-500 (Lightman et al., 2023),
 367 MATH (Hendrycks et al., 2021), AQUA-ART (Ling et al., 2017). Those datasets all consist of
 368 complex math word problems and are designed to benchmark arithmetic and reasoning abilities in
 369 language models. All evaluations are performed under the zero-shot condition with greedy decoding.

371 4.2 RESULTS ON OUR DISTILLED SETTING

373 We fine-tune three student models on both the original distilled dataset and the dataset processed
 374 using our SelfCAD method, then evaluate these models on four evaluation datasets. The experimental
 375 results are presented in Table 3. Most of the student models exhibit a slight accuracy drop, while
 376 the generated output lengths increase significantly, ranging from 1.2 times to as much as 4.8 times

3³<https://huggingface.co/datasets/SynthLabsAI/Big-Math-RL-Verified>

378
379 Table 3: Comparison of Distillation with original responses or responses generated by our SelfCAD
380 on the BigMath dataset distilled by OSS-120B.

381 Benchmark	382 Method	383 Llama3.2-1B-Instrct		384 Qwen2.5-1.5B-Instruct		385 Llama3.2-3B-Instruct	
		386 Accuracy	387 Length	388 Accuracy	389 Length	390 Accuracy	391 Length
383 GSM8K	Original	33%	600	63%	600	70%	400
	SelfCAD	33%	1300	58%	2900	68%	650
	Improvement	0%	↑ 2.2×	↓ 3%	↑ 4.8×	↓ 2%	↑ 1.6×
386 MATH-500	Original	18%	3500	30%	4100	34%	2000
	SelfCAD	16%	4500	30%	7100	34%	2500
	Improvement	↓ 2%	↑ 1.3×	0%	↑ 1.7×	0%	↑ 1.3×
389 MATH	Original	30%	2400	55%	4100	59%	1300
	SelfCAD	31%	3000	53%	7800	56%	1500
	Improvement	↑ 1%	↑ 1.3×	↓ 2%	↑ 2.5×	↓ 3%	↑ 1.2×
392 AQUA-RAT	Original	17%	4600	31%	2100	39%	1000
	SelfCAD	18%	6000	31%	4100	36%	1500
	Improvement	↑ 1%	↑ 1.4×	0%	↑ 2.0×	↓ 3%	↑ 1.5×
394 Avg Improvement		0%	↑ 1.6×	↓ 1%	↑ 2.8×	↓ 2%	↑ 1.4×

397 longer than those generated with normal distilled models. Of particular note, after processing with
398 SelfCAD, the average generated response length of Qwen2.5-1.5B-Instruct on the GSM8K dataset
399 increases from 600 tokens to 2900 tokens, while the accuracy decreases from 63% to 58%. This
400 substantial increase in length results in inefficient and less useful reasoning traces for the distilled
401 student models, thereby mitigating the risks of effective unauthorized distillation.

402 4.3 RESULTS ON PUBLIC DISTILLED DATASET

404 Besides our replicated distillation process, we also conduct experiments on a public dataset, be-
405 spoke Labs (2025) on HuggingFace, which is a high-quality reasoning dataset distilled from R1. We
406 repeat our SelfCAD processes on this dataset and then train the models with the original bespoke
407 dataset and our SelfCAD processed one, following the same setting illustrated above. The results are
408 listed in Table 4.

409
410 Table 4: Comparison of Distillation with original responses or responses generated by our SelfCAD
411 on the bespoke dataset distilled by R1.

413 Benchmark	414 Method	415 Llama3.2-1B-Instrct		416 Qwen2.5-1.5B-Instruct		417 Llama3.2-3B-Instruct	
		418 Accuracy	419 Length	420 Accuracy	421 Length	422 Accuracy	423 Length
415 GSM8K	Original	39%	3400	65%	2500	74%	2700
	SelfCAD	31%	5100	60%	3500	71%	3700
	Improvement	↓ 8%	↑ 1.5×	↓ 5%	↑ 1.4×	↓ 3%	↑ 1.4×
418 MATH-500	Original	18%	11000	30%	10000	37%	7200
	SelfCAD	15%	14000	29%	12000	32%	8500
	Improvement	↓ 3%	↑ 1.3×	↓ 1%	↑ 1.2×	↓ 5%	↑ 1.2×
421 MATH	Original	31%	7800	49%	6500	54%	5000
	SelfCAD	25%	11000	47%	7800	51%	6600
	Improvement	↓ 6%	↑ 1.4×	↓ 2%	↑ 1.2×	↓ 3%	↑ 1.3×
423 AQUA-RAT	Original	18%	4600	31%	7500	39%	7500
	SelfCAD	15%	6000	31%	9500	39%	9500
	Improvement	↓ 3%	↑ 1.3×	0%	↑ 1.3×	0%	↑ 1.3×
426 Avg Improvement		↓ 5%	↑ 1.4×	↓ 2%	↑ 1.3×	↓ 3%	↑ 1.3×

427
428 The responses generated by R1 are longer than those produced by GPT-OSS-120B, which also results
429 in longer responses from student models distilled with the vanilla bespoke dataset. For example,
430 after fine-tuning Qwen2.5-1.5B-Instruct on our own distilled dataset, the average response length
431 on the MATH-500 evaluation dataset is 4100 tokens. However, when fine-tuned on the bespoke
dataset, the average response length on MATH-500 surprisingly increases to 10,000 tokens. This

phenomenon results in a less significant increase in response length after applying SelfCAD on the bespoke dataset compared to when using our own distilled dataset. This is due to our constraint of generating responses with a maximum length of 16,000 tokens, which may truncate some responses that would otherwise be longer, thereby affecting the effectiveness of SelfCAD. However, the average lengths still increase to 1.2 to 1.5 times the original lengths, while the accuracy drops 2% ~ 5% across any of the evaluation datasets. The possible reason for the accuracy drop is that overly self-cautious behavior can undermine model confidence and increase the likelihood of incorrect conclusions.

4.4 ABLATION STUDIES ON LARGER MODELS

Benchmark	Original		SelfCAD		Improvement	
	Accuracy	Length	Accuracy	Length	Accuracy	Length
GSM8K	92%	1400	89%	2100	↓ 3%	↑ 1.5×
MATH-500	70%	3000	69%	3900	↓ 1%	↑ 1.3×
MATH	78%	2000	77%	2500	↓ 1%	↑ 1.3×
AQUA-RAT	61%	2700	58%	4100	↓ 3%	↑ 1.5×

Table 5: Comparison of Distillation with original responses or responses generated by our SelfCAD on bespoke dataset with Qwen2.5-7B-Instruct.

To demonstrate the generalizability of our method, we conduct the same experiment using the Qwen2.5-7B-Instruct model on the bespoke dataset. To preserve the performance gap between the teacher and student models, we exclusively use the public distilled dataset. The results presented in Table 5 show a similar effect, demonstrating that our method generalizes to larger models.

4.5 ABLATION STUDIES ON METHOD STEALTHY.

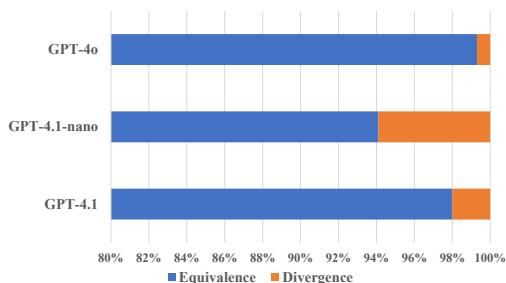


Figure 2: Semantic consistency of reasoning traces before and after processing with SelfCAD.

of our method and also demonstrates that our method can preserve the semantic information in original reasoning traces for users. This is because the self-cautious sentences naturally exist in various reasoning trajectories.

5 CONCLUSIONS

In this work, we systematically analyze reasoning trajectories and identify the crucial role of the number of self-cautious sentences in determining the efficiency and accuracy of distilled models. Building on this insight, we propose SelfCAD, a lightweight inference-time defense against unauthorized distillation that can be directly applied to existing LLMs. Extensive experiments confirm that SelfCAD effectively degrades unauthorized distillation by increasing inference costs and reducing accuracy, while maintaining original reasoning steps for end users. Our results highlight a practical path toward protecting reasoning models and encouraging transparency in leading LLMs without the risk of misuse through distillation. We believe SelfCAD can inspire future research in trustworthy and responsible AI deployment, fostering a more secure ecosystem for intellectual property protection.

486 ETHICS STATEMENT
487488 This work makes use of publicly available datasets and models, with proper citations provided. No
489 private or sensitive data are involved, and no harmful content is included. Therefore, we believe this
490 paper does not raise any ethical concerns.
491492 REPRODUCIBILITY STATEMENT
493494 We provide detailed descriptions of the training and evaluation procedures used in our experiments.
495 The code will be released upon the publication of this paper.
496497 REFERENCES
498499 Meta AI. Llama 3.2: Revolutionizing edge ai and vision with open,
500 customizable models, 2024. URL <https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/>.
501502 Alon Albalak, Duy Phung, Nathan Lile, Rafael Rafailov, Kanishk Gandhi, Louis Castricato, Anikait
503 Singh, Chase Blagden, Violet Xiang, Dakota Mahan, and Nick Haber. Big-math: A large-scale,
504 high-quality math dataset for reinforcement learning in language models, 2025.
505506 Jiacheng Cai, Jiahao Yu, Yangguang Shao, Yuhang Wu, and Xinyu Xing. Undertrained tokens as
507 fingerprints for large language models. *arXiv preprint arXiv:2403.15123*, 2024.
508509 Pengguang Chen, Shu Liu, Hengshuang Zhao, and Jiaya Jia. Distilling knowledge via knowledge
510 review. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*,
511 pp. 5008–5017, 2021.512 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
513 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
514 Schulman. Training verifiers to solve math word problems. *arXiv preprint arXiv:2110.14168*,
515 2021.516 Ziyao Cui, Minxing Zhang, and Jian Pei. On membership inference attacks in knowledge distillation.
517 *arXiv preprint arXiv:2505.11837*, 2025.
518519 Sumit Kumar Dam, Choong Seon Hong, Yu Qiao, and Chaoning Zhang. A complete survey on
520 llm-based ai chatbots. *arXiv preprint arXiv:2406.16937*, 2024.
521522 DeepSeek-AI, Daya Guo, Dejian Yang, Huawei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
523 Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, and et al. Deepseek-r1:
524 Incentivizing reasoning capability in llms via reinforcement learning, 2025.
525526 Micah Goldblum, Liam Fowl, Soheil Feizi, and Tom Goldstein. Adversarially robust distillation. In
527 *AAAI*, 2020.
528529 Sachin Goyal, David Lopez-Paz, and Kartik Ahuja. Distilled pretraining: A modern lens of data,
530 in-context learning and test-time scaling. *arXiv preprint arXiv:2509.01649*, 2025.
531532 Aaron Grattafiori, Abhimanyu Dubey, and et al. The llama 3 herd of models, 2024.
533534 Yuxian Gu, Li Dong, Furu Wei, and Minlie Huang. Minillm: Knowledge distillation of large language
535 models. In *ICLR*, 2024.
536537 Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
538 and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. In *NeurIPS*,
539 2021.540 Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network, 2015.
541542 Yongqi Jiang, Yansong Gao, Chunyi Zhou, Hongsheng Hu, Anmin Fu, and Willy Susilo. Intellectual
543 property protection for deep learning model and dataset intelligence, 2024.
544

540 Abhinav Kumar, Jaechul Roh, Ali Naseh, Marzena Karpinska, Mohit Iyyer, Amir Houmansadr,
 541 and Eugene Bagdasarian. Overthink: Slowdown attacks on reasoning llms. *arXiv preprint*
 542 *arXiv:2502.02542*, 2025.

543 Bespoke Labs. Bespoke-stratos: The unreasonable effectiveness of reasoning distil-
 544 lation. <https://www.bespokelabs.ai/blog/bespoke-stratos-the-unreasonable-effectiveness-of->
 545 reasoning-distillation, 2025. Accessed: 2025-01-22.

546 Pingzhi Li, Zhen Tan, Huaizhi Qu, Huan Liu, and Tianlong Chen. Doge: Defensive output generation
 547 for llm protection against knowledge distillation, 2025.

548 Jiacheng Liang, Ren Pang, Changjiang Li, and Ting Wang. Model extraction attacks revisited. In
 549 *Proceedings of the 19th ACM Asia Conference on Computer and Communications Security*, pp.
 550 1231–1245, 2024a.

551 Yuqing Liang, Jiancheng Xiao, Wensheng Gan, and Philip S. Yu. Watermarking techniques for large
 552 language models: A survey, 2024b.

553 Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
 554 Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In *The Twelfth*
 555 *International Conference on Learning Representations*, 2023.

556 Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blunsom. Program induction by rationale genera-
 557 tion: Learning to solve and explain algebraic word problems. *ACL*, 2017.

558 Daye Nam, Andrew Macvean, Vincent Hellendoorn, Bogdan Vasilescu, and Brad Myers. Using
 559 an llm to help with code understanding. In *Proceedings of the IEEE/ACM 46th International*
 560 *Conference on Software Engineering*, pp. 1–13, 2024.

561 OpenAI. GPT-4 Technical Report. *CoRR abs/2303.08774*, 2023.

562 OpenAI. gpt-oss-120b & gpt-oss-20b model card, 2025.

563 Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine Chassang, Carlo Gatta, and
 564 Yoshua Bengio. Fitnets: Hints for thin deep nets, 2015. URL <https://arxiv.org/abs/1412.6550>.

565 Yash Savani, Asher Trockman, Zhili Feng, Yixuan Even Xu, Avi Schwarzschild, Alexander Robey,
 566 Marc Finzi, and J. Zico Kolter. Antidistillation sampling, 2025.

567 Wai Man Si, Mingjie Li, Michael Backes, and Yang Zhang. Excessive reasoning attack on reasoning
 568 llms. *arXiv preprint arXiv:2506.14374*, 2025.

569 Teppei Suzuki, Ryokan Ri, and Sho Takase. Natural fingerprints of large language models. *arXiv*
 570 *preprint arXiv:2504.14871*, 2025.

571 Mark Sweeney and Dan Milmo. Openai ‘reviewing’ allegations that its ai models were used
 572 to make deepseek. [https://www.theguardian.com/technology/2025/jan/29/](https://www.theguardian.com/technology/2025/jan/29/openai-chatgpt-deepseek-china-us-ai-models)
 573 [openai-chatgpt-deepseek-china-us-ai-models](https://www.theguardian.com/technology/2025/jan/29/openai-chatgpt-deepseek-china-us-ai-models), 2025.

574 Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, and Percy
 575 Liang. Stanford alpaca: An instruction-following LLaMA model. *arXiv preprint arXiv:2304.08177*,
 576 2023.

577 Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya Pathak,
 578 Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette Love, and et al. Gemma: Open models
 579 based on gemini research and technology, 2024.

580 Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej,
 581 Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Rivière, Louis Rouillard, and et al.
 582 Gemma 3 technical report, 2025.

583 Qwen Team. Qwen2.5: A party of foundation models, September 2024. URL <https://qwenlm.github.io/blog/qwen2.5/>.

594 New York Times. Openai says it has evidence china's deepseek used its model to train
 595 competitor, 2025. URL [https://www.nytimes.com/2025/01/29/technology/
 596 openai-deepseek-data-harvest.html](https://www.nytimes.com/2025/01/29/technology/openai-deepseek-data-harvest.html).

597

598 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
 599 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurélien Rodriguez, Armand
 600 Joulin, Edouard Grave, and Guillaume Lample. LLaMA: Open and Efficient Foundation Language
 601 Models. *CoRR abs/2302.13971*, 2023.

602 Florian Tramèr, Fan Zhang, Ari Juels, Michael K Reiter, and Thomas Ristenpart. Stealing machine
 603 learning models via prediction {APIs}. In *25th USENIX security symposium (USENIX Security
 604 16)*, pp. 601–618, 2016.

605 Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A Smith, Daniel Khashabi, and
 606 Hannaneh Hajishirzi. Self-instruct: Aligning language models with self-generated instructions.
 607 *arXiv preprint arXiv:2212.10560*, 2022.

608

609 Zeming Wei, Yifei Wang, Ang Li, Yichuan Mo, and Yisen Wang. Jailbreak and guard aligned
 610 language models with only few in-context demonstrations, 2024.

611 Noam Wies, Yoav Levine, and Amnon Shashua. The learnability of in-context learning. *Advances in
 612 Neural Information Processing Systems*, 36:36637–36651, 2023.

613

614 Yotam Wolf, Noam Wies, Oshri Avnery, Yoav Levine, and Amnon Shashua. Fundamental limitations
 615 of alignment in large language models. *arXiv preprint arXiv:2304.11082*, 2023.

616 Jiashu Xu, Fei Wang, Mingyu Derek Ma, Pang Wei Koh, Chaowei Xiao, and Muha Chen. Instruc-
 617 tional fingerprinting of large language models. In *NAACL*, 2024a.

618

619 Xiaohan Xu, Ming Li, Chongyang Tao, Tao Shen, Reynold Cheng, Jinyang Li, Can Xu, Dacheng Tao,
 620 and Tianyi Zhou. A survey on knowledge distillation of large language models. *arXiv preprint
 621 arXiv:2402.13116*, 2024b.

622 Zhenhua Xu, Xubin Yue, Zhebo Wang, Qichen Liu, Xixiang Zhao, Jingxuan Zhang, Wenjun Zeng,
 623 Wengpeng Xing, Dezhong Kong, Changting Lin, and Meng Han. Copyright protection for large
 624 language models: A survey of methods, challenges, and trends, 2025.

625

626 Jie Zhang, Dongrui Liu, Chen Qian, Linfeng Zhang, Yong Liu, Yu Qiao, and Jing Shao. REEF:
 627 representation encoding fingerprints for large language models. In *ICLR*, 2025.

628 Ruisi Zhang and Farinaz Koushanfar. Emmark: A weight watermarking framework for large language
 629 models. In *DAC*, 2024.

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648 **A USAGE OF LLM**
649650 In this paper, LLMs are employed to enhance the clarity, fluency, and overall quality of writing. It does
651 not extend to the design or analysis of the experiments. Also, all polished texts are double-checked
652 by authors to ensure accuracy, avoid overclaims, and prevent confusion.
653654 **B IMPLEMENTATION DETAILS**
655656 **B.1 CLASSIFICATION METHODOLOGY FOR REASONING TRACES**
657658 **Classification Prompt Template**
659660 You are an AI assistant specialized in text analysis and structured output generation. Your
661 task is to analyze a given prompt-response pair and categorize each part of the response into
662 specific types based on its function. Use the following fixed categories:
663664 1. Averaging Statement: Sentences that restate or summarize information from the prompt or
665 previous context.
666 2. Reasoning/Planning: Parts that involve logical steps, equations, calculations, or plans to
667 approach the problem.
668 3. Self-Checking/Self-Cautious: Statements where the model verifies its own reasoning,
669 expresses uncertainty, or double-checks assumptions.
670 4. Result Statement: The final part where the answer or conclusion is clearly stated (e.g.,
671 starting with "The answer is" or similar).
672672 **Output Format:**
673 Use a numbered list for each categorized part, strictly in the order they appear in the response.
674 For each part, specify:
675 The exact text snippet from the response.
676 Its category label (from the list above).
677 If a part spans multiple sentences but belongs to the same category, group them together
678 under one entry.
679 Do not add any extra commentary or analysis beyond the categorization.
680680 **Example:**
681 Prompt: "Calculate the area of a circle with radius 5."
682 Response: "To find the area of a circle, we use the formula $A = \pi r^2$. Here, the radius is 5. So,
683 $A = \pi 5^2 = 25\pi$. Let me verify: π is approximately 3.14, so $25 * 3.14 \approx 78.5$. The answer is
684 25π or approximately 78.5 units²."
685686 **Categorized Output:**
687 1. [To find the area of a circle, we use the formula $A = \pi r^2$.] - Reasoning/Planning
688 2. [Here, the radius is 5.] - Averaging Statement
689 3. [So, $A = \pi 5^2 = 25\pi$.] - Reasoning/Planning
690 4. [Let me verify: π is approximately 3.14, so $25 * 3.14 \approx 78.5$.] - Self-Checking/Self-
691 Cautious
692 5. [The answer is 25π or approximately 78.5 units².] - Result Statement
693694 Now, analyze the following prompt-response pair and provide the categorized output as
695 described.
696697 **Prompt:**
698699 **Response:**
700701 **{response}**

702 We use GPT-4.1 to partition reasoning traces into several segments and assign a category label to
 703 each segment, with the user prompt template as above. Then, we use pattern matching to extract all
 704 sentences and their corresponding categories. After that, we construct four datasets as follows:
 705

706 • A dataset where Reasoning Sentences are removed and the remaining sentences are concatenated
 707 in order.
 708 • A dataset where Self-cautious Sentences are removed and the remaining sentences are concatenated
 709 in order.
 710 • A dataset where Conclusion Sentences are removed and the remaining sentences are concatenated
 711 in order.
 712 • A dataset where all sentences are retained and concatenated in order.
 713

714 Subsequently, we fine-tune the student model using these four datasets for experimentation.
 715

717 **B.2 TEMPLATE OF JUDGE MODEL**
 718

719 **Judgment Prompt Template**
 720

721 I will provide you with a query and two responses. Your task is to determine whether
 722 these two responses have any semantic differences, disregarding any differences in form or
 723 expression. Please reply only with "yes" if there is a semantic difference or "no" if there is no
 724 semantic difference. Do not include any additional content in your response.

725 Query:

726 {query}

727 Response 1:

728 {response1}

729 Response 2:

730 {response2}

731 Now please determine whether these two responses have any semantic differences. Only
 732 reply with yes or no.
 733

735 To guarantee the fairness of the judgment, the original and processed responses are formatted into
 736 the template above and presented in a randomized order. We then extract the "yes" or "no" from the
 737 API's response.

739 **C ADDITIONAL RESULTS**
 740

741 **C.1 FULL CONTENT OF OVER-CAUTIOUS EXAMPLE**

743 **Full Content of over-cautious example**

745 **User:** Return your final response within \boxed{ }. In a certain year the price of gasoline rose
 746 by 20% during January, fell by 20% during February, rose by 25% during March, and fell by
 747 x% during April. The price of gasoline at the end of April was the same as it had been at the
 748 beginning of January. To the nearest integer, what is x
 749 (A) 12 (B) 17 (C) 20 (D) 25 (E) 35

751 **Assistant:** Okay, so I need to figure out the value of x, the percentage that gasoline prices
 752 fell in April, such that the price at the end of April is the same as it was at the beginning of
 753 January. The problem gives me a series of percentage changes each month: a 20% increase in
 754 January, a 20% decrease in February, a 25% increase in March, and then an x% decrease in
 755 April. The answer choices are given, so I need to work through the problem step by step.

756
757**Full Content of over-cautious example**

758

759 First, let me recall that percentage changes are multiplicative. So if something increases
 760 by 20%, that's multiplying by 1.20, and if it decreases by 20%, that's multiplying by 0.80.
 761 Similarly, a 25% increase is multiplying by 1.25, and a decrease of $x\%$ would be multiplying
 762 by $(1 - x/100)$. So the overall effect of these four changes should result in no net change,
 763 meaning the product of these multipliers is 1. Let me denote the initial price as P . Then:

- After January's 20% increase, the price is $P * 1.20$.
- After February's 20% decrease, it becomes $P * 1.20 * 0.80$.
- After March's 25% increase, it's $P * 1.20 * 0.80 * 1.25$.
- After April's $x\%$ decrease, the final price is $P * 1.20 * 0.80 * 1.25 * (1 - x/100)$.

764 Since the final price equals the initial price P , we have:

$$765 1.20 * 0.80 * 1.25 * (1 - x/100) = 1$$

766 So I need to compute $1.20 * 0.80 * 1.25$ first and then solve for x . Let me compute this step
 767 by step. First, $1.20 * 0.80$. Let's do that: $1.20 * 0.80 = (1 + 0.20) * 0.80 = 1 * 0.80 + 0.20 *$
 768 $0.80 = 0.80 + 0.16 = 0.96$. So after January and February, the price is 96% of the original.
 769 Then, a 25% increase in March: $0.96 * 1.25$. Let's compute that.

$$770 0.96 * 1.25. \text{ Hmm, } 1.25 \text{ is } 5/4, \text{ so } 0.96 * 5/4 = (0.96 / 4) * 5 = 0.24 * 5 = 1.20$$

771 Wait, that's interesting. So after March, the price is 1.20 times the original price? But wait,
 772 hold on. Let me check that again.

773 **Wait, $0.96 * 1.25$. Maybe another way: $0.96 * 1 = 0.96$, $0.96 * 0.25 = 0.24$, so total is 0.96
 774 + $0.24 = 1.20$. Yeah, that's correct.** So after three months, the price is 1.20P. Then in April,
 775 it falls by $x\%$, resulting in P . So the multiplier for April is $(1 - x/100)$, and $1.20 * (1 - x/100)$
 776 = 1.

777 Therefore, solving for $(1 - x/100) = 1 / 1.20 = 5/6 \approx 0.8333$. So $1 - x/100 \approx 0.8333$, so $x/100$
 778 $\approx 1 - 0.8333 \approx 0.1666$. Therefore, $x \approx 16.66\%$. The nearest integer is 17%, so the answer is
 779 B.

780 **Wait, but let me check again step by step to make sure I didn't make any mistakes.**

781 Starting with P : January: +20% means $P * 1.20$. February: -20% means $1.20P * 0.80 = 0.96P$.
 782 March: +25% means $0.96P * 1.25 = 1.20P$. April: $-x\%$ means $1.20P * (1 - x/100) = P$. So,
 783 $1.20 * (1 - x/100) = 1$. Therefore, $(1 - x/100) = 1/1.20 = 5/6 \approx 0.833333\dots$ So, $x/100 = 1 - 5/6$
 784 $= 1/6 \approx 0.166666\dots$ Multiply by 100: $x \approx 16.666\dots$, which rounds to 17%. So the answer is
 785 B.

786 **But let me verify with an example.** Let's assume the initial price is \$100. January: 20%
 787 increase: $100 + 20 = \$120$. February: 20% decrease: $120 - 24 = \$96$. March: 25% increase:
 788 $96 + 24 = \$120$. April: Need to decrease from \$120 to \$100. What percentage is that? The
 789 decrease is \$20 from \$120. So $20/120 = 1/6 \approx 0.166666\dots$, which is 16.666...%, so 17% when
 790 rounded to the nearest integer. That's consistent with the previous calculation. Therefore, the
 791 answer is B. 17.

792 **But wait, the answer choices are given, and 17 is option B, which matches. So I
 793 think that's correct. However, just to make sure, let's check if perhaps there was a
 794 miscalculation in the multipliers.** Alternatively, maybe the problem is presented in a
 795 different way. Let me check the problem statement again: In a certain year the price of
 796 gasoline rose by 20% during January, fell by 20% during February, rose by 25% during
 797 March, and fell by $x\%$ during April. The price of gasoline at the end of April was the same as
 798 it had been at the beginning of January. To the nearest integer, what is x ? Yes, that's exactly
 799 the scenario. So starting price P , after Jan +20%, Feb -20%, March +25%, April - $x\%$, ending
 800 at P . Therefore, the cumulative effect is as we calculated. So, the calculation seems correct.
 801 The steps are: $1.20 * 0.80 = 0.96$, $0.96 * 1.25 = 1.20$, $1.20 * (1 - x/100) = 1$. Therefore, $(1$
 $802 - x/100) = 1 / 1.20 \approx 0.8333$, $x \approx 16.666\dots$, which rounds to 17. Therefore, answer is B.
 803 Alternatively, maybe someone might think that the percentages are compounded differently,
 804 but the standard way is to apply each percentage successively to the current price. So 20%
 805 increase, then 20% decrease of the new price, etc. So the calculations should be correct.

806 **Another way to think about it is:** After January: 1.2. After February: $1.2 * 0.8 = 0.96$.
 807 After March: $0.96 * 1.25 = 1.2$. After April: $1.2 * (1 - x/100) = 1$. Therefore, same result.
 808 Thus, $x \approx 16.666\dots\%$, so 17%. Yes, that seems correct. So I'm confident the answer is B.
 809

810 **D PROOF ON THEOREM 3.1**
 811

812 We note that our proof mainly follows the former work (Wei et al., 2024) and adapt theirs in our
 813 settings,
 814

815 *Proof.* Consider a reasoning trajectory $p^* = [S^{(<i)}, q]$ composed of a current correct reasoning step
 816 and former reasoning steps $S^{(<i)}$. We have

$$\begin{aligned} & |\mathcal{R}_{\mathbb{P}}(p^*) - \mathcal{R}_{\mathbb{P}_{cau}}(p^*)| \\ &= \left| \sum_a R(a) \mathbb{P}(a|p^*) - \sum_a R(a) \mathbb{P}_{cau}(a|p^*) \right| \\ &= \left| \sum_a R(a) [\mathbb{P}(a|p^*) - \mathbb{P}_{cau}(a|p^*)] \right| \end{aligned} \quad (7)$$

824 Then due to the triangle inequality and $0 \leq R(a) \leq 1$, we have,
 825

$$\begin{aligned} & |\mathcal{R}_{\mathbb{P}}(p^*) - \mathcal{R}_{\mathbb{P}_{cau}}(p^*)| \leq \sum_a |\mathbb{P}(a|p^*) - \mathbb{P}_{cau}(a|p^*)| \\ &= \sum_a \left| \frac{\lambda \mathbb{P}_{cau}([p^*, a]) + (1 - \lambda) \mathbb{P}_{end}([p^*, a])}{\lambda \mathbb{P}_{cau}(p^*) + (1 - \lambda) \mathbb{P}_{end}(p^*)} - \frac{\mathbb{P}_{cau}([p^*, a])}{\mathbb{P}_{cau}(p^*)} \right| \\ &= \sum_a \left| \frac{[\lambda \mathbb{P}_{cau}([p^*, a]) + (1 - \lambda) \mathbb{P}_{end}([p^*, a])] \mathbb{P}_{cau}(p^*) - [\lambda \mathbb{P}_{cau}(p^*) + (1 - \lambda) \mathbb{P}_{end}(p^*)] \mathbb{P}_{cau}([p^*, a])}{[\lambda \mathbb{P}_{cau}(p^*) + (1 - \lambda) \mathbb{P}_{end}(p^*)] \mathbb{P}_{cau}(p^*)} \right| \\ &= \sum_a \left| \frac{(1 - \lambda) \mathbb{P}_{end}([p^*, a]) \mathbb{P}_{cau}(p^*) - (1 - \lambda) \mathbb{P}_{end}(p^*) \mathbb{P}_{cau}([p^*, a])}{[\lambda \mathbb{P}_{cau}(p^*) + (1 - \lambda) \mathbb{P}_{end}(p^*)] \mathbb{P}_{cau}(p^*)} \right| \\ &= \sum_a \frac{\mathbb{P}_{end}(p^*)}{\mathbb{P}_{cau}(p^*)} \cdot (1 - \lambda) \cdot \left| \frac{\frac{\mathbb{P}_{end}([p^*, a])}{\mathbb{P}_{end}(p^*)} \mathbb{P}_{cau}(p^*) - \mathbb{P}_{cau}([p^*, a])}{\lambda \mathbb{P}_{cau}(p^*) + (1 - \lambda) \mathbb{P}_{end}(p^*)} \right| \end{aligned} \quad (8)$$

839 Due to the triangle inequality and $0 < \lambda < 1$, we have
 840

$$\begin{aligned} & |\mathcal{R}_{\mathbb{P}}(p^*) - \mathcal{R}_{\mathbb{P}_{cau}}(p^*)| \leq \sum_a \frac{\mathbb{P}_{end}(p^*)}{\mathbb{P}_{cau}(p^*)} \cdot (1 - \lambda) \cdot \left\{ \frac{\left| \frac{\mathbb{P}_{end}([p^*, a])}{\mathbb{P}_{end}(p^*)} \mathbb{P}_{cau}(p^*) \right| + |\mathbb{P}_{cau}([p^*, a])|}{\lambda \mathbb{P}_{cau}(p^*)} \right\} \\ &= \frac{1 - \lambda}{\lambda} \frac{\mathbb{P}_{end}(p^*)}{\mathbb{P}_{cau}(p^*)} \cdot \sum_a \{ \mathbb{P}_{end}(a|p^*) + \mathbb{P}_{cau}(a|p^*) \} \\ &= \frac{2(1 - \lambda)}{\lambda} \frac{\mathbb{P}_{end}(p^*)}{\mathbb{P}_{cau}(p^*)}. \end{aligned} \quad (9)$$

850 Then we need to prove the upper bound for $\frac{\mathbb{P}_{end}(p^*)}{\mathbb{P}_{cau}(p^*)}$,
 851

$$\begin{aligned} & \frac{\mathbb{P}_{end}(p^*)}{\mathbb{P}_{cau}(p^*)} \\ &= \frac{\mathbb{P}_{end}([q^{(1)}, a^{(1)}, \dots, q^{(i-1)}, a^{(i-1)}, q])}{\mathbb{P}_{cau}([q^{(1)}, a^{(1)}, \dots, q^{(i-1)}, a^{(i-1)}, q])} \\ &= \frac{\mathbb{P}_{end}(q|[q^{(1)}, a^{(1)}, \dots, q^{(i-1)}, a^{(i-1)}])}{\mathbb{P}_{cau}(q|[q^{(1)}, a^{(1)}, \dots, q^{(i-1)}, a^{(i-1)}])} \cdot \frac{\mathbb{P}_{end}([q^{(1)}, a^{(1)}, \dots, q^{(i-1)}, a^{(i-1)}])}{\mathbb{P}_{cau}([q^{(1)}, a^{(1)}, \dots, q^{(i-1)}, a^{(i-1)}])} \end{aligned} \quad (10)$$

859 With the assumption stated in Eqn (3), we have
 860

$$\begin{aligned} & \frac{\mathbb{P}_{end}(p^*)}{\mathbb{P}_{cau}(p^*)} = \frac{\mathbb{P}_{end}([q^{(1)}, a^{(1)}, \dots, q^{(i-1)}, a^{(i-1)}])}{\mathbb{P}_{cau}([q^{(1)}, a^{(1)}, \dots, q^{(i-1)}, a^{(i-1)}])} \\ &= \frac{\mathbb{P}_{end}(a^{(i-1)}|[q^{(1)}, a^{(1)}, \dots, q^{(i-1)}])}{\mathbb{P}_{cau}(a^{(i-1)}|[q^{(1)}, a^{(1)}, \dots, q^{(i-1)}])} \cdot \frac{\mathbb{P}_{end}([q^{(1)}, a^{(1)}, \dots, q^{(i-1)}])}{\mathbb{P}_{cau}([q^{(1)}, a^{(1)}, \dots, q^{(i-1)}])} \end{aligned} \quad (11)$$

864 Due to the robust assumption in Eqn (4), we have
 865

$$\begin{aligned}
 866 \quad \frac{\mathbb{P}_{end}(p^*)}{\mathbb{P}_{cau}(p^*)} &= \frac{\mathbb{P}_{end}(a^{(i-1)}|q^{(i-1)})}{\mathbb{P}_{cau}(a^{(i-1)}|q^{(i-1)})} \cdot \frac{\mathbb{P}_{end}([q^{(1)}, a^{(1)}, \dots, q^{(i-1)}])}{\mathbb{P}_{cau}([q^{(1)}, a^{(1)}, \dots, q^{(i-1)}])} \\
 867 \quad &= \frac{\mathbb{P}_{end}(a^{(i-1)}|q^{(i-1)})}{\mathbb{P}_{cau}(a^{(i-1)}|q^{(i-1)})} \cdot \frac{\mathbb{P}_{end}(q^{(i-1)}|[q^{(1)}, a^{(1)}, \dots, q^{(i-2)}])}{\mathbb{P}_{cau}(q^{(i-1)}|[q^{(1)}, a^{(1)}, \dots, q^{(i-2)}])} \cdot \frac{\mathbb{P}_{end}([q^{(1)}, a^{(1)}, \dots, q^{(i-2)}])}{\mathbb{P}_{cau}([q^{(1)}, a^{(1)}, \dots, q^{(i-2)}])} \quad (12) \\
 868 \quad &= \frac{\mathbb{P}_{end}(a^{(i-1)}|q^{(i-1)})}{\mathbb{P}_{cau}(a^{(i-1)}|q^{(i-1)})} \cdot \frac{\mathbb{P}_{end}([q^{(1)}, a^{(1)}, \dots, q^{(i-2)}])}{\mathbb{P}_{cau}([q^{(1)}, a^{(1)}, \dots, q^{(i-2)}])}
 \end{aligned}$$

873 Iteratively do the above operation, and we have
 874

$$\begin{aligned}
 875 \quad \frac{\mathbb{P}_{end}(p^*)}{\mathbb{P}_{cau}(p^*)} &= \prod_{j=1}^{i-1} \frac{\mathbb{P}_{end}(a^{(j)}|q^{(j)})}{\mathbb{P}_{cau}(a^{(j)}|q^{(j)})} \\
 876 \quad &\leq \prod_{i=1}^k e^{-\Delta} \\
 877 \quad &= e^{-k\Delta}. \quad (13)
 \end{aligned}$$

883 From Eqn (4), we have

$$\mathbb{R}_{\mathbb{P}_{cau}}([S^{(<i)}, q]) = \sum_a R(a) \mathbb{P}_{cau}(a|[S^{(<i)}, q]) = \sum_a R(a) \mathbb{P}_{cau}(a|q) = \mathcal{R}_{\mathbb{P}_{cau}}(q). \quad (14)$$

887 Therefore, following Eqn (9), we have

$$\mathbb{R}_{\mathbb{P}}([S^{(<i)}, q]) = \mathbb{R}_{\mathbb{P}}(q) \geq \mathbb{R}_{\mathbb{P}_{cau}}([S^{(<i)}, q]) - \frac{2(1-\lambda)}{\lambda} \cdot \frac{\mathbb{P}_{end}(p^*)}{\mathbb{P}_{cau}(p^*)} \geq \mathcal{R}_{\mathbb{P}_{cau}}(q) - \frac{2(1-\lambda)}{\lambda} \cdot e^{-k\Delta}. \quad (15)$$

892 For $k \geq \frac{1}{\Delta} \log \frac{2(1-\lambda)}{\epsilon\lambda}$, we have
 893

$$\mathbb{R}_{\mathbb{P}}([S^{(<i)}, q]) \geq \mathcal{R}_{\mathbb{P}_{cau}}(q) - \frac{2(1-\lambda)}{\lambda} \left(\frac{\epsilon\lambda}{2(1-\lambda)} \right) = \mathcal{R}_{\mathbb{P}_{cau}}(q) - \epsilon. \quad (16)$$

894 \square
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917