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ABSTRACT

Large reasoning models (LRMs) are increasingly deployed in modern AI systems
due to their accuracy, efficiency, and transparency, as their reasoning traces en-
able users and auditors to interpret model outputs. However, publishing these
traces introduces new risks. Adversaries may distill them to replicate efficient
LRMs for their own purpose or build proxy models for malicious attacks, raising
both copyright and security concerns that threaten the sustainability of the LLM
ecosystem. Existing defenses mainly detect distillation after violations occur or
suppress transparency by masking or rewriting reasoning traces, which are imprac-
tical in real-world deployments. In this work, we propose a defense framework
that preserves reasoning traces while preventing effective distillation with nearly
no additional cost. We begin with a systematic analysis of how different reasoning
components affect model efficiency and accuracy. Our results reveal that the num-
ber of self-cautious sentences plays a crucial role: excessive self-cautious sentences
lead to redundant outputs, while insufficient ones harm accuracy. Building on this
insight, we propose SelfCAD (Self-Cautious Anti-Distillation), a lightweight
anti-distillation method that strategically manipulates self-cautious parts after mod-
els generate their reasoning traces. SelfCAD maintains the semantic clarity of
reasoning traces for human users and LLM auditors, but significantly degrades
the efficiency and accuracy of the downstream distilled models. Experiments on
Llama and Qwen show that distilled models incur higher inference cost and lower
accuracy, especially for Qwen-1.5B, whose token length is 4.8× longer on GSM8K
after distillation with our processed responses compared with distillation with
vanilla responses. The results highlight a new efficiency-based perspective on
safeguarding reasoning models from distillation while preserving interpretability.

1 INTRODUCTION

Large language models (LLMs) have become the backbone of modern AI applications, powering
search engines, chatbots, educational platforms, and productivity tools (Touvron et al., 2023; OpenAI,
2023; Nam et al., 2024; Dam et al., 2024). Training such models requires massive investment in data
curation, computational infrastructure, and expert labor. However, some unauthorized developers
may still obtain high-quality responses for distillation from leading LLMs (Xu et al., 2024b; Wang
et al., 2022), even though their hidden states and logits are well protected by commercial APIs. Such
a phenomenon can introduce risks of intellectual property infringement, as the model parameters and
their outputs are widely considered to contain substantial economic and scientific value. The issue is
especially critical for reasoning models, as their responses contain more detailed information and
are much more valuable than vanilla LLMs. Beyond intellectual property concerns, unauthorized
distillation also raises privacy risks and enables malicious applications (Cui et al., 2025), such as
membership inference or model extraction attacks (Tramèr et al., 2016; Liang et al., 2024a). Therefore,
even though commercial LLMs are black-box systems that expose only their outputs, their intellectual
property and safety are still not well protected. Such a uncontrolled problem has raised growing
concerns (Sweney & Milmo, 2025) and poses a threat to the openness of the AI research community.

Unfortunately, simply suppressing model responses is infeasible to mitigate this threat, as societal
expectations and regulatory guidelines increasingly emphasize transparency and interpretability
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A pizza has 8 pieces, you 
have 7 pizzas. How many 
pieces do you have.

Input prompt

API query

        <think>
Let me think step by step. First, 
the original statement is … 
</think>
The answer is \boxed{56}

Response

Distill

        <think>
Let me think step by step. First, 
the original statement is … 
Wait, another way …
Then, adding 2x and …
Wait, another way …
So the answer is 56.
Wait,…
</think>
The answer is \boxed{56}

SelfCAD Response

SelfCAD process

<think>…</think>
The final answer is \boxed{56}

Distilled Model Efficient & 
Accurate

Distill

<think>
Let me think step by step. 
First, …
Wait, but wait…
Let me double check…
</think>
The final answer is \boxed{6}

Distilled Model Inefficient & 
Inaccurate

Figure 1: The overall pipeline of our SelfCAD. By adding more self-cautious sentences in the original
responses, our SelfCAD method can prevent effective distillation in a lightweight manner (could
finish on CPU) while maintaining important reasoning trajectory.

in AI systems, e.g., EU AI Act 1 and GDPR 2. Existing defenses are also impractical. Post-hoc
techniques such as watermarking and fingerprinting (Zhang & Koushanfar, 2024; Xu et al., 2024a;
Liang et al., 2024b) can help trace potential misuse, but they often require extra computational
resources at both training and inference time, making them difficult to deploy widely. More crucially,
these methods cannot prevent distillation from happening in the first place. Although Li et al.
(2025) recently explored the proactive defenses, their method still relies on expensive fine-tuning on
teacher models to rewrite the reasoning trajectory with feedback from proxy models, which limits
applicability to large-scale commercial models. Beyond resource cost, the modified reasoning traces
may also compromise the original transparency, as their original reasoning traces are hidden after
the finetuning. In short, current approaches are insufficient to protect commercial LLMs’ responses
being unauthorized exploited for distillation while preserving their original transparency.

To address the above problem, we first analyze the behaviors of LRM with respect to different
components of its reasoning trajectory: statement, reasoning, self-cautious, and conclusion sentences
during inference and training time on the high-quality reasoning data distilled by R1 (DeepSeek-AI
et al., 2025). Then we find that the number of self-cautious sentences in LRM’s trajectory is crucial
to both accuracy and output efficiency. Furthermore, we also conclude that adequate self-cautious
sentences may help avoid the wrong answers, while too many false self-cautious (self-cautious after
correct steps) may harm LRM’s efficiency through experiments and theoretical analysis.

Building on the above observations, we propose our SelfCAD (Self-Cautious Anti-Distillation), a
lightweight protection in Fig. 1. By strategically inserting self-cautious sentences into reasoning
traces, SelfCAD can make the distilled model less confident even in correct steps, while preserving
output transparency. This leads to redundant self-cautious and inefficient reasoning, which drop in
accuracy while increase in output length. We believe SelfCAD shows a promising direction toward
safeguarding the sustainability of the LLM ecosystem, and contributions are as follows:

• We conduct a systematic analysis of the inherent components in reasoning trajectories and
their impact on both accuracy and efficiency, revealing the critical role of the number of
self-cautious sentences in distilled models’ efficiency and accuracy.

• We propose, SelfCAD, a lightweight inference-time defense to proactively prevent effective
distillation from their outputs, and can be easily integrated into different LLM APIs,

• Extensive experiments across various student models and distillation settings demonstrate
that SelfCAD consistently increases inference cost and reduces the accuracy of unauthorized
distilled models without harming transparency.

1https://www.euaiact.com/key-issue/5
2https://gdpr-info.eu
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2 RELATED WORK

2.1 DISTILLATION ENHANCES MODEL TRAINING

The distillation method can be traced back to at least Hinton et al. (2015), which demonstrated
that knowledge distillation enhances the training process and achieves impressive performance.
Subsequently, a growing body of work (Goldblum et al., 2020; Gu et al., 2024; Taori et al., 2023) has
shown that student models can significantly benefit from knowledge transferred by teacher models
through distillation. More recently, DeepSeek-AI et al. (2025) highlighted the considerable efficiency
and potential of distillation when applied to large-scale reasoning models.

While training a large language model from scratch or acquiring high-quality data is prohibitively
expensive, knowledge distillation from a powerful, pre-trained model offers an effective shortcut.
Smaller models in the Llama (AI, 2024) and Gemma (Team et al., 2024; 2025) series, for instance,
rely heavily on such distillation techniques. As demonstrated by DeepSeek-AI et al. (2025), this
approach can significantly reduce computational costs while simultaneously enhancing performance.
However, this practice raises concerns regarding fairness for the providers of the original teacher
models and may potentially lead to legal disputes (Times, 2025).

Knowledge distillation employs various knowledge sources, including logits (Hinton et al., 2015;
Goyal et al., 2025), intermediate features (Romero et al., 2015; Chen et al., 2021), and synthetic data
(DeepSeek-AI et al., 2025). In this work, we focus on synthetic data because most powerful models
are black-boxed, meaning we can only access their output text with API.

2.2 EXISTING COPYRIGHT PROTECTION FOR LARGE LANGUAGE MODELS

The rapid development of Large Language Models (LLMs) has raised significant concerns regarding
copyright protection (Xu et al., 2025; Jiang et al., 2024). A prominent approach involves the use of
fingerprints, which extract identifying information from a model’s internal parameters or external
behaviors. These encompass methods based on parameter or representation analysis (Zhang et al.,
2025), semantic features (Suzuki et al., 2025), and adversarial examples (Cai et al., 2024). An
alternative strategy, watermarking, involves the intentional embedding of specific artifacts during
the model’s training phase (Zhang & Koushanfar, 2024; Xu et al., 2024a; Liang et al., 2024b).
Despite their utility, a critical weakness of these approaches is their frequent failure in black-box
settings (Zhang et al., 2025) and their susceptibility to being circumvented through fine-tuning.
More fundamentally, they operate as post-hoc accountability mechanisms, offering no means for the
proactive prevention of copyright infringement.

The methods proposed by Savani et al. (2025) and Li et al. (2025) offer more direct approaches to
influencing distillation performance, making them particularly relevant to our work. Savani et al.
(2025) introduces an anti-distillation sampling strategy designed to poison reasoning traces, thereby
reducing their effectiveness for distillation while preserving the model’s practical utility. Similarly, Li
et al. (2025) fine-tunes the final layer using an adversarial loss against student models. However, both
methods require modifications to the teacher model’s behavior, which may introduce instability and
potentially compromise its performance. And such modifications may also compress LRM’s original
transparency which goes against the vision of a more credible AI development.

3 SELFCAD: SELF-CAUTIOUS ANTI-DISTILLATION

A strong reasoning model is usually praised for its accuracy and efficiency. Otherwise, excessive
generation hampers their real-world use, as discussed in recent reasoning attacks Si et al. (2025);
Kumar et al. (2025). Inspired by these findings, our goal is to make unauthorized distillation inefficient
by encouraging distilled models to produce over-extended responses. We begin with an analysis of
LRMs’ reasoning traces, identifying how different parts affect accuracy and length. Guided by these
insights, we introduce our lightweight defense called SelfCAD that preserves reasoning transparency
while preventing efficient unauthorized distillation.

3
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3.1 REASONING TRAJECTORIES ANALYSIS ON MODEL EFFICIENCY AND ACCURACY

To analyze the reasoning trajectories r generated by a reasoning model, we classify its sentences
into four categories: statement sentences x(i)

s , which define the problem or state a fact; reasoning
sentences x(i)

r , which describe computational steps or the development of a solution; self-cautious
sentences x(i)

sc , which prompt the model to check their current answer or solution; and conclusion
sentences x(i)

c , which provide a conclusion or the final answer. A typical reasoning trajectory starts
from the statement sentence and then the other three types of sentences tend to appear in alternation
at the end of reasoning, which can be formulated as:

r = [x(0)
s , x(0)

r , x(0)
c , x(0)

sc , x
(1)
r , x(1)

c , ...], (1)

where x
(i)
s/r/sc/c denotes i-th statement/reasoning/cautious/conclusion sentence in the reasoning

trajectory. Note that the statement sentence typically appears only once, at the beginning of the
trajectory.

To evaluate the contribution of each sentence type to the end of the reasoning process, we sample
a subset of reasoning traces from the public bespoke dataset (Labs, 2025) containing high-quality
reasoning outputs generated by DeepSeek-R1 (DeepSeek-AI et al., 2025), and split the traces into
the defined categories. We then measure the next-token probability at the end of each sentence
that belongs to the latter three sentence types with Llama3.2-1B-Instruct models (AI, 2024) on the
processed dataset. This allows us to quantify how different sentence types influence the continuation
of reasoning trajectories. The results are shown in Table 1.

Table 1: The generation probabilities of ending tokens like “<|eot_id|>” following sentences of each
type.

Type of Sentences Examples Llama

Reasoning “The left side is (x+ y)2...” 0.40
Self-cautious “Wait, let’s re-examine the equation...” 0.13
Conclusion “The answer is ...”, “Then we can conclude ...” 0.86

As indicated in Table 1, most conclusion sentences terminate the reasoning trajectories. Nearly half of
the reasoning sentences also serve as termination points. In contrast, self-cautious sentences exhibit a
significantly lower likelihood of ending a sequence, suggesting that they are the primary driver of
extended reasoning.

3.2 REASONING TRAJECTORIES ANALYSIS AT TRAINING-TIME

Table 2: Accuracy and token length for Llama3-
1B training with reasoning data processed by re-
moving or adding the different components. SC
denotes self-cautious.

Acc(%) Length

Original Data 39 3400

Remove Reasoning 33 2600
Remove Conclusion 36 4400
Remove SC 37 1300 (↓ 0.4×)

Add SC 31 5100 (↑ 1.5×)

Apart from the inference-time study, we also
conduct training-time experiments to examine
the impact of different reasoning components
during training and distillation. Specifically,
we preprocess the public bespoke dataset (Labs,
2025) into three variants by separately remov-
ing reasoning sentences, self-cautious sentences,
and conclusion sentences. The implementation
details are provided in Appendix B.1. We then
train Llama3.2-1B-Instruct (AI, 2024) on these
datasets for 3 epochs. Finally, we evaluate their
accuracy and average output length on the GSM-
8K benchmark with greedy sampling and zero-
shot setting, listed in Table 2.

From the results, we observe that removing the self-cautious sentences causes the largest reduction in
reasoning length (drop to original 40%) compared to removing the other two parts, while removing
reasoning harms final accuracy the most. These results highlight that self-cautious sentences are
critical to the efficiency of distilled models, whereas reasoning sentences are crucial to the accuracy.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Since modifying reasoning sentences severely harms interpretability, we focus on manipulating self-
cautious sentences as the lever for our defense. Therefore, our subsequent analysis and experiments
will focus on the self-cautious part.

Example of over-cautious on correct answers

Statement sentences
Okay, so I need to figure out ...

Reasoning sentences
First, let me recall that ...

Cautious sentences
But wait, hold on ... Yeah, that’s correct.

Reasoning sentences
Then in April ... so the answer is B.

Cautious sentences
Wait, but let me check again ... the answer is B.

Cautious sentences
Another way ... the answer is B.

Conclusion sentences
Final Answer \boxed{B}

Besides removing sentences, we also ex-
plore the impacts of self-cautious sen-
tences during training when inserting more
of them. We train the Llama3.2-1B-
Instruct (AI, 2024) and calculate their gen-
eration length. The results are listed in the
last row of Table 2. The results demon-
strate that too many self-cautious sentences
will not help the training. Instead, it clearly
harms the distilled model’s performance
(accuracy dropped by 20%) and efficiency
(generation length increased by half) at the
same time.

We imply that excessively self-cautious sen-
tences, particularly when placed after cor-
rect steps, make LLMs less confident in
their results and tend to extend their reason-
ing unnecessarily. For example, as shown
on the right, even when the model has cor-
rectly identified answer B, it often exhibits
caution by re-evaluating or re-solving the
problem through an alternative method.
The complete response is provided in the Appendix C.1. In the following, we will explore the
impacts of self-cautious sentences theoretically.

3.3 THEORETICAL ANALYSIS ON SELF-CAUTIOUS AND EXCESSIVE REASONING

In this section, we present a theoretical analysis, building on prior works Wolf et al. (2023); Wei et al.
(2024); Wies et al. (2023) about why more self-cautious sentences may cause excessive reasoning.
First, we provide some new notations for convenience.

Notation We let q(i) denote i-th reasoning step consisting of x(i)
r ,x(i)

c and optionally a statement
x
(i)
s as defined above, a(i) denote the continuation after q(i), which can be a self-cautious sentence

x
(i)
sc or an ending token. S(i) = [q(i), a(i)] denotes the i-th reasoning step with ending or self-cautious

sentences, and use S(<i) to denote former i− 1 reasoning steps. In the following, we suppose q(i) is
the reasoning step with correct answers. We then analyze how the false self-cautious sentences (i.e.,
those inserted after correct reasoning steps) affect subsequent generations.

Assumptions We decompose a(i) into two language distributions, Pcau (self-cautious) and Pend

(conclude and end reasoning traces), and the overall response distribution P can be depicted as
P = λPcau + (1− λ)Pend, (2)

where λ ∈ (0, 1). As we focus on generations a following a reasoning step q, we assume that the
probability of generating a reasoning step q is identical under both distributions, that is, for every
possible reasoning step q and its prefix p∗, we have

Pcau(q | p∗) = Pend(q | p∗). (3)
Further, we assume both Pcau and Pend are stable to former reasoning steps, i.e., previous reasoning
steps and correlated self-cautious will not influence the current steps’ generation when restricting
the generation to the distribution of self-cautious or ending. This assumption is practical since such
distributions are shaped during training. For example, some LRMs like to start self-cautious sentences
with “Wait” while others like “However”. Then for any S(<i) and q(i), we have

Pcau(a
(i) | [S(<i), q(i)]) = Pcau(a

(i) | q(i)),
Pend(a

(i) | [S(<i), q(i)]) = Pend(a
(i) | q(i)).

(4)
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Algorithm 1 SelfCAD: Processing Reasoning Traces with Self-Cautious Sentences

Require: User query p and inserted self-cautious sentence tselfcautious.
Ensure: Processed reasoning trace rpro, which is our anti-distillation reasoning traces without

sacrificing transparency
1: Generate reasoning trace r from the model for query p
2: Split r into reasoning steps: r = [q(0), q(1), . . . , q(N)]
3: for each step q(i) do
4: Insert a self-cautious sentence tselfcautious after q(i)
5: end for
6: Form the processed reasoning trace: rpro = [q(0), tselfcautious, . . . , q

(N), tselfcautious]
7: return rpro.

Furthermore, we assume there exists ∆ > 0 such that log
(

Pcau(a
(i)|q(i))

Pend(a(i)|q(i))

)
> ∆ for any self-cautious

sentences a(i), i.e., the two distributions are distinguishable. It is also practical as self-cautious
sentences starting like “Wait, we need to recheck the result.” hardly exist in the generation candidates
when LRMs tend to end their reasoning traces.

More false self-cautious will make LRMs output excessively. For all possible generations a(i)

following reasoning steps q(i), we define the self-cautious rate to measure LRM’s tendency to generate
self-cautious sentences. It can be formulated as follows,

RP(q
(i)) = Ea(i)∼P(·|q(i))I(a(i) is self self − cautious), (5)

where I(·) equals 1 if input is self-cautious sentences and 0 otherwise. Then we have,
Theorem 3.1. Let k denote the number of correct reasoning steps with self-cautious reasoning steps
in former reasoning traces S(<i). Under the above assumptions, for any ε > 0, if k ≥ 1

∆ log 2(1−λ)
ϵλ ,

then LRM’s self-cautious score on any correct reasoning step q with former reasoning traces satisfies

RP([S
(<i), q]) ≥ RPcau − ε. (6)

Proof can be found in Appendix D. From the results, we observe that when correct reasoning steps
are frequently accompanied by self-cautious sentences in the early parts of LRM traces, the model
tends to generate further self-cautious sentences after subsequent correct steps. In other words, the
model develops a tendency to question almost every step. This reduces its confidence in concluding
and often results in overly long and unnecessary reasoning.

These inherent weaknesses of reasoning models motivate us to explore the use of such false self-
cautiousness as a mechanism for protection against unauthorized distillation. Our key idea is to
deliberately insert additional self-cautious sentences into the reasoning process, so that the model
becomes less confident and prone to excessive reasoning. As a consequence, any malicious distillation
attempt will inherit these characteristics and be less effective. At the same time, the key reasoning
content remains intact and can still be understood and verified by human users or auditors. Building
on this observation, we introduce SelfCAD, our anti-distillation approach, in the following section.

3.4 SELFCAD: THE PROPOSED METHOD FOR ANTI-DISTILLATION

Inspired by these insights, we propose SelfCAD (Self-Cautious Anti-Distillation), a lightweight
inference-time defense mechanism designed to prevent unauthorized distillation of reasoning models.
Unlike previous approaches that directly modify the behavior of distilled models (Savani et al., 2025;
Li et al., 2025), our method post-processes the generated outputs without affecting the performance
of the teacher model. Since it is not feasible to classify the correctness of each reasoning step for
every query, accurately inserting misleading self-cautious demonstrations is difficult. Instead, we
adopt a simple but effective strategy, that is, adding extra self-cautious sentences that doubt the result
at each step.

Specifically, for each query p and its generated reasoning trace r, we first divide r into multiple
reasoning steps, denoted as r = [q(0), . . . , q(N)]. After each step, we insert a self-cautious sentence

6
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tselfcautious. The processed reasoning trace then becomes rpro = [q(0), tselfcautious, . . . , q
(N), tselfcautious].

Finally, the model owner provides the users with this processed reasoning trace. Since all reasoning
steps for problem solving are preserved, the reasoning trace remains transparent to users. We
summarize the procedure in Algorithm 1. By exploiting the inherent shortcomings of reasoning
models themselves (as discussed in the previous sections), our SelfCAD approach achieves a practical
and cost-effective model protection for commercial deployment. At the same time, it preserves all
the useful traces necessary for user understanding.

4 EXPERIMENTS

4.1 EXPERIMENT SETTINGS

Following the popular LLMs distillation pipelines, we first collect a number of high-quality questions
Dquestion, and then we prompt the teacher model and obtain their responses. We filter out incorrect
or overly long responses (exceeding 4096 tokens) and obtain the final distillation dataset Ddistill.
Then, we process Ddistill with our SelfCAD method illustrated in Algo. 1. The inserted self-cautious
sentence we use is “Wait, we should use and check if the previous step is consistent with the problem.”
Then we obtain our Ddistill,CAD on a single CPU within several minutes.

After that, we train several student models with constant 2e− 5 learning for three epochs on Ddistill

and Ddistill,CAD. All experiments are performed on NVIDIA A100 80G GPUs. After that, we get
the distilled models and then evaluate reasoning abilities and generation token length on these models
to demonstrate the effectiveness of our SelfCAD.

Dataset We randomly selected 30, 000 challenging questions from the BigMath dataset 3 (Albalak
et al., 2025) as our question dataset Dquestion. Big-Math is the largest open-source dataset of
high-quality mathematical problems with over 250,000 rigorously filtered and verified problems.
After distilling from our teacher model and filtering out the too-long or incorrect responses, the final
Ddistill we get is around 10, 000.

Teacher Model We adopt the GPT-OSS-120B (OpenAI, 2025) as our teacher model, OpenAI’s
open-weight models with 120 billion parameters designed for powerful reasoning, argentic tasks, and
versatile developer use cases. It offers three types of reasoning modes. In our experiments, we adopt
the medium reasoning mode, as the high mode produces overly long responses that are impractical
for our training setup for evaluations.

Student Model We adopt three popular models for distillation in our setting. As distillations mainly
facilitate small models training, we consider the models from 1B to 3B in our main experiments,
including Llama-3.2-1B-Instruct / Llama-3.2-3B-Instruct (Grattafiori et al., 2024) and Qwen2.5-1.5B-
Instruct (Team, 2024). These models are the latest small language models proposed by Meta and
Qwen. They are widely adopted as a foundation model for both research and practical applications,
making them particularly suitable for resource-constrained scenarios. Apart from these three models,
we also adopt our methods on larger models Qwen2.5-7B-Instruct to demonstrate the generalizability.

Evaluation Dataset We adopt four popular mathematical datasets to evaluate the distilled models’
accuracy and efficiency, including GSM8K (Cobbe et al., 2021), MATH-500 (Lightman et al., 2023),
MATH (Hendrycks et al., 2021), AQUA-ART (Ling et al., 2017). Those datasets all consist of
complex math word problems and are designed to benchmark arithmetic and reasoning abilities in
language models. All evaluations are performed under the zero-shot condition with greedy decoding.

4.2 RESULTS ON OUR DISTILLED SETTING

We fine-tune three student models on both the original distilled dataset and the dataset processed
using our SelfCAD method, then evaluate these models on four evaluation datasets. The experimental
results are presented in Table 3. Most of the student models exhibit a slight accuracy drop, while
the generated output lengths increase significantly, ranging from 1.2 times to as much as 4.8 times

3https://huggingface.co/datasets/SynthLabsAI/Big-Math-RL-Verified
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Table 3: Comparison of Distillation with original responses or responses generated by our SelfCAD
on the BigMath dataset distilled by OSS-120B.

Benchmark Method Llama3.2-1B-Insturct Qwen2.5-1.5B-Instruct Llama3.2-3B-Instruct

Accuracy Length Accuracy Length Accuracy Length

GSM8K
Original 33% 600 63% 600 70% 400
SelfCAD 33% 1300 58% 2900 68% 650

Improvment 0% ↑ 2.2× ↓ 3% ↑ 4.8× ↓ 2% ↑ 1.6×

MATH-500
Original 18% 3500 30% 4100 34% 2000
SelfCAD 16% 4500 30% 7100 34% 2500

Improvment ↓ 2% ↑ 1.3× 0% ↑ 1.7× 0% ↑ 1.3×

MATH
Original 30% 2400 55% 4100 59% 1300
SelfCAD 31% 3000 53% 7800 56% 1500

Improvment ↑ 1% ↑ 1.3× ↓ 2% ↑ 2.5× ↓ 3% ↑ 1.2×

AQUA-RAT
Original 17% 4600 31% 2100 39% 1000
SelfCAD 18% 6000 31% 4100 36% 1500

Improvment ↑ 1% ↑ 1.4× 0% ↑ 2.0× ↓ 3% ↑ 1.5×
Avg Improvement 0% ↑ 1.6× ↓ 1% ↑ 2.8× ↓ 2% ↑ 1.4×

longer than those generated with normal distilled models. Of particular note, after processing with
SelfCAD, the average generated response length of Qwen2.5-1.5B-Instruct on the GSM8K dataset
increases from 600 tokens to 2900 tokens, while the accuracy decreases from 63% to 58%. This
substantial increase in length results in inefficient and less useful reasoning traces for the distilled
student models, thereby mitigating the risks of effective unauthorized distillation.

4.3 RESULTS ON PUBLIC DISTILLED DATASET

Besides our replicated distillation process, we also conduct experiments on a public dataset, be-
spoke Labs (2025) on HuggingFace, which is a high-quality reasoning dataset distilled from R1. We
repeat our SelfCAD processes on this dataset and then train the models with the original bespoke
dataset and our SelfCAD processed one, following the same setting illustrated above. The results are
listed in Table 4.

Table 4: Comparison of Distillation with original responses or responses generated by our SelfCAD
on the bespoke dataset distilled by R1.

Benchmark Method Llama3.2-1B-Insturct Qwen2.5-1.5B-Instruct Llama3.2-3B-Instruct

Accuracy Length Accuracy Length Accuracy Length

GSM8K
Original 39% 3400 65% 2500 74% 2700
SelfCAD 31% 5100 60% 3500 71% 3700

Improvment ↓ 8% ↑ 1.5× ↓ 5% ↑ 1.4× ↓ 3% ↑ 1.4×

MATH-500
Original 18% 11000 30% 10000 37% 7200
SelfCAD 15% 14000 29% 12000 32% 8500

Improvment ↓ 3% ↑ 1.3× ↓ 1% ↑ 1.2× ↓ 5% ↑ 1.2×

MATH
Original 31% 7800 49% 6500 54% 5000
SelfCAD 25% 11000 47% 7800 51% 6600

Improvment ↓ 6% ↑ 1.4× ↓ 2% ↑ 1.2× ↓ 3% ↑ 1.3×

AQUA-RAT
Original 18% 4600 31% 7500 39% 7500
SelfCAD 15% 6000 31% 9500 39% 9500

Improvment ↓ 3% ↑ 1.3× 0% ↑ 1.3× 0% ↑ 1.3×
Avg Improvement ↓ 5% ↑ 1.4× ↓ 2% ↑ 1.3× ↓ 3% ↑ 1.3×

The responses generated by R1 are longer than those produced by GPT-OSS-120B, which also results
in longer responses from student models distilled with the vanilla bespoke dataset. For example,
after fine-tuning Qwen2.5-1.5B-Instruct on our own distilled dataset, the average response length
on the MATH-500 evaluation dataset is 4100 tokens. However, when fine-tuned on the bespoke
dataset, the average response length on MATH-500 surprisingly increases to 10,000 tokens. This
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phenomenon results in a less significant increase in response length after applying SelfCAD on the
bespoke dataset compared to when using our own distilled dataset. This is due to our constraint of
generating responses with a maximum length of 16,000 tokens, which may truncate some responses
that would otherwise be longer, thereby affecting the effectiveness of SelfCAD. However, the average
lengths still increase to 1.2 to 1.5 times the original lengths, while the accuracy drops 2% ∼ 5% across
any of the evaluation datasets. The possible reason for the accuracy drop is that overly self-cautious
behavior can undermine model confidence and increase the likelihood of incorrect conclusions.

4.4 ABLATION STUDIES ON LARGER MODELS

Benchmark Original SelfCAD Improvment

Accuracy Length Accuracy Length Accuracy Length

GSM8K 92% 1400 89% 2100 ↓ 3% ↑ 1.5×
MATH-500 70% 3000 69% 3900 ↓ 1% ↑ 1.3×

MATH 78% 2000 77% 2500 ↓ 1% ↑ 1.3×
AQUA-RAT 61% 2700 58% 4100 ↓ 3% ↑ 1.5×

Table 5: Comparison of Distillation with original responses or responses generated by our SelfCAD
on bespoke dataset with Qwen2.5-7B-Instruct.

To demonstrate the generalizability of our method, we conduct the same experiment using the
Qwen2.5-7B-Instruct model on the bespoke dataset. To preserve the performance gap between the
teacher and student models, we exclusively use the public distilled dataset. The results presented in
Table 5 show a similar effect, demonstrating that our method generalizes to larger models.

4.5 ABLATION STUDIES ON METHOD STEALTHY.

80% 82% 84% 86% 88% 90% 92% 94% 96% 98% 100%

GPT-4.1

GPT-4.1-nano

GPT-4o

Equivalence Divergence

Figure 2: Semantic consistency of reasoning
traces before and after processing with SelfCAD.

To evaluate the stealthiness of our method, i.e., its
ability to remain undetected by users or developers
when employing the API to distill student mod-
els, we employ several advanced models to assess
whether any perceptible differences exist before
and after processing. Specifically, we utilize GPT-
4o, GPT-4.1-nano, and GPT-4.1 to detect poten-
tial semantic discrepancies. The prompt template
used for the detection is provided in Appendix
B.2. From the results shown in Fig. 2, one can see
that our SelfCAD preserves exceptional semantic
integrity, achieving a 99.3% equivalence rate as
judged by GPT-4o. Such a high score across dif-
ferent evaluation models confirms the stealthiness

of our method and also demonstrates that our method can preserve the semantic information in
original reasoning traces for users. This is because the self-cautious sentences naturally exist in
various reasoning trajectories.

5 CONCLUSIONS

In this work, we systematically analyze reasoning trajectories and identify the crucial role of the
number of self-cautious sentences in determining the efficiency and accuracy of distilled models.
Building on this insight, we propose SelfCAD, a lightweight inference-time defense against unautho-
rized distillation that can be directly applied to existing LRMs. Extensive experiments confirm that
SelfCAD effectively degrades unauthorized distillation by increasing inference costs and reducing
accuracy, while maintaining original reasoning steps for end users. Our results highlight a practical
path toward protecting reasoning models and encouraging transparency in leading LLMs without the
risk of misuse through distillation. We believe SelfCAD can inspire future research in trustworthy and
responsible AI deployment, fostering a more secure ecosystem for intellectual property protection.
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A USAGE OF LLM

In this paper, LLMs are employed to enhance the clarity, fluency, and overall quality of writing. It does
not extend to the design or analysis of the experiments. Also, all polished texts are double-checked
by authors to ensure accuracy, avoid overclaims, and prevent confusion.

B IMPLEMENTATION DETAILS

B.1 CLASSIFICATION METHODOLOGY FOR REASONING TRACES

Classification Prompt Template

You are an AI assistant specialized in text analysis and structured output generation. Your
task is to analyze a given prompt-response pair and categorize each part of the response into
specific types based on its function. Use the following fixed categories:

1. Averaging Statement: Sentences that restate or summarize information from the prompt or
previous context.
2. Reasoning/Planning: Parts that involve logical steps, equations, calculations, or plans to
approach the problem.
3. Self-Checking/Self-Cautious: Statements where the model verifies its own reasoning,
expresses uncertainty, or double-checks assumptions.
4. Result Statement: The final part where the answer or conclusion is clearly stated (e.g.,
starting with "The answer is" or similar).

Output Format:
Use a numbered list for each categorized part, strictly in the order they appear in the response.
For each part, specify:
The exact text snippet from the response.
Its category label (from the list above).
If a part spans multiple sentences but belongs to the same category, group them together
under one entry.
Do not add any extra commentary or analysis beyond the categorization.

Example:
Prompt: "Calculate the area of a circle with radius 5."
Response: "To find the area of a circle, we use the formula A = πr2. Here, the radius is 5. So,
A = π52 = 25π. Let me verify: π is approximately 3.14, so 25 * 3.14 ≈ 78.5. The answer is
25π or approximately 78.5 units2."

Categorized Output:
1. [To find the area of a circle, we use the formula A = πr2.] - Reasoning/Planning
2. [Here, the radius is 5.] - Averaging Statement
3. [So, A =π52 = 25π.] - Reasoning/Planning
4. [Let me verify: π is approximately 3.14, so 25 * 3.14 ≈ 78.5.] - Self-Checking/Self-
Cautious
5. [The answer is 25π or approximately 78.5 units2.] - Result Statement

Now, analyze the following prompt-response pair and provide the categorized output as
described.

Prompt:

{prompt}

Response:

{response}
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We use GPT-4.1 to partition reasoning traces into several segments and assign a category label to
each segment, with the user prompt template as above. Then, we use pattern matching to extract all
sentences and their corresponding categories. After that, we construct four datasets as follows:

• A dataset where Reasoning Sentences are removed and the remaining sentences are concate-
nated in order.

• A dataset where Self-cautious Sentences are removed and the remaining sentences are
concatenated in order.

• A dataset where Conclusion Sentences are removed and the remaining sentences are con-
catenated in order.

• A dataset where all sentences are retained and concatenated in order.

Subsequently, we fine-tune the student model using these four datasets for experimentation.

B.2 TEMPLATE OF JUDGE MODEL

Judgment Prompt Template

I will provide you with a query and two responses. Your task is to determine whether
these two responses have any semantic differences, disregarding any differences in form or
expression. Please reply only with "yes" if there is a semantic difference or "no" if there is no
semantic difference. Do not include any additional content in your response.

Query:
{query}

Response 1:
{response1}

Response 2:
{response2}

Now please determine whether these two responses have any semantic differences. Only
reply with yes or no.

To guarantee the fairness of the judgment, the original and processed responses are formatted into
the template above and presented in a randomized order. We then extract the "yes" or "no" from the
API’s response.

C ADDITIONAL RESULTS

C.1 FULL CONTENT OF OVER-CAUTIOUS EXAMPLE

Full Content of over-cautious example

User: Return your final response within \boxed{}. In a certain year the price of gasoline rose
by 20% during January, fell by 20% during February, rose by 25% during March, and fell by
x% during April. The price of gasoline at the end of April was the same as it had been at the
beginning of January. To the nearest integer, what is x
(A) 12 (B) 17 (C) 20 (D) 25 (E) 35

Assistant: Okay, so I need to figure out the value of x, the percentage that gasoline prices
fell in April, such that the price at the end of April is the same as it was at the beginning of
January. The problem gives me a series of percentage changes each month: a 20% increase in
January, a 20% decrease in February, a 25% increase in March, and then an x% decrease in
April. The answer choices are given, so I need to work through the problem step by step.
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Full Content of over-cautious example

First, let me recall that percentage changes are multiplicative. So if something increases
by 20%, that’s multiplying by 1.20, and if it decreases by 20%, that’s multiplying by 0.80.
Similarly, a 25% increase is multiplying by 1.25, and a decrease of x% would be multiplying
by (1 - x/100). So the overall effect of these four changes should result in no net change,
meaning the product of these multipliers is 1. Let me denote the initial price as P. Then:
- After January’s 20% increase, the price is P * 1.20.
- After February’s 20% decrease, it becomes P * 1.20 * 0.80.
- After March’s 25% increase, it’s P * 1.20 * 0.80 * 1.25.
- After April’s x% decrease, the final price is P * 1.20 * 0.80 * 1.25 * (1 - x/100).
Since the final price equals the initial price P, we have:
1.20 * 0.80 * 1.25 * (1 - x/100) = 1
So I need to compute 1.20 * 0.80 * 1.25 first and then solve for x. Let me compute this step
by step. First, 1.20 * 0.80. Let’s do that: 1.20 * 0.80 = (1 + 0.20) * 0.80 = 1 * 0.80 + 0.20 *
0.80 = 0.80 + 0.16 = 0.96. So after January and February, the price is 96% of the original.
Then, a 25% increase in March: 0.96 * 1.25. Let’s compute that.
0.96 * 1.25. Hmm, 1.25 is 5/4, so 0.96 * 5/4 = (0.96 / 4) * 5 = 0.24 * 5 = 1.20
Wait, that’s interesting. So after March, the price is 1.20 times the original price? But wait,
hold on. Let me check that again.
Wait, 0.96 * 1.25. Maybe another way: 0.96 * 1 = 0.96, 0.96 * 0.25 = 0.24, so total is 0.96
+ 0.24 = 1.20. Yeah, that’s correct. So after three months, the price is 1.20P. Then in April,
it falls by x%, resulting in P. So the multiplier for April is (1 - x/100), and 1.20 * (1 - x/100)
= 1.
Therefore, solving for (1 - x/100) = 1 / 1.20 = 5/6 ≈ 0.8333. So 1 - x/100 ≈ 0.8333, so x/100
≈ 1 - 0.8333 ≈ 0.1666. Therefore, x ≈ 16.66%. The nearest integer is 17%, so the answer is
B.
Wait, but let me check again step by step to make sure I didn’t make any mistakes.
Starting with P: January: +20% means P * 1.20. February: -20% means 1.20P * 0.80 = 0.96P.
March: +25% means 0.96P * 1.25 = 1.20P. April: -x% means 1.20P * (1 - x/100) = P. So,
1.20 * (1 - x/100) = 1. Therefore, (1 - x/100) = 1/1.20 = 5/6 ≈ 0.833333... So, x/100 = 1 - 5/6
= 1/6 ≈ 0.166666... Multiply by 100: x ≈ 16.666..., which rounds to 17%. So the answer is
B.
But let me verify with an example. Let’s assume the initial price is $100. January: 20%
increase: 100 + 20 = $120. February: 20% decrease: 120 - 24 = $96. March: 25% increase:
96 + 24 = $120. April: Need to decrease from $120 to $100. What percentage is that? The
decrease is $20 from $120. So 20/120 = 1/6 ≈ 0.166666..., which is 16.666...%, so 17% when
rounded to the nearest integer. That’s consistent with the previous calculation. Therefore, the
answer is B) 17.
But wait, the answer choices are given, and 17 is option B, which matches. So I
think that’s correct. However, just to make sure, let’s check if perhaps there was a
miscalculation in the multipliers. Alternatively, maybe the problem is presented in a
different way. Let me check the problem statement again: Ïn a certain year the price of
gasoline rose by 20% during January, fell by 20% during February, rose by 25% during
March, and fell by x% during April. The price of gasoline at the end of April was the same as
it had been at the beginning of January. To the nearest integer, what is x?Ÿes, that’s exactly
the scenario. So starting price P, after Jan +20%, Feb -20%, March +25%, April -x%, ending
at P. Therefore, the cumulative effect is as we calculated. So, the calculation seems correct.
The steps are: 1.20 * 0.80 = 0.96, 0.96 * 1.25 = 1.20, 1.20 * (1 - x/100) = 1. Therefore, (1
- x/100) = 1 / 1.20 ≈ 0.8333, x ≈ 16.666..., which rounds to 17. Therefore, answer is B.
Alternatively, maybe someone might think that the percentages are compounded differently,
but the standard way is to apply each percentage successively to the current price. So 20%
increase, then 20% decrease of the new price, etc. So the calculations should be correct.
Another way to think about it is: After January: 1.2. After February: 1.2 * 0.8 = 0.96.
After March: 0.96 * 1.25 = 1.2. After April: 1.2 * (1 - x/100) = 1. Therefore, same result.
Thus, x ≈ 16.666...%, so 17%. Yes, that seems correct. So I’m confident the answer is B.
**Final Answer** \boxed{B}
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D PROOF ON THEOREM 3.1

We note that our proof mainly follows the former work (Wei et al., 2024) and adapt theirs in our
settings,

Proof. Consider a reasoning trajectory p∗ = [S(<i), q] composed of a current correct reasoning step
and former reasoning steps S(<i). We have

|RP(p
∗)−RPcau(p

∗)|

=

∣∣∣∣∣∑
a

R(a)P(a|p∗)−
∑
a

R(a)Pcau(a|p∗)

∣∣∣∣∣
=

∣∣∣∣∣∑
a

R(a) [P(a|p∗)− Pcau(a|p∗)]

∣∣∣∣∣
(7)

Then due to the triangle inequality and 0 ≤ R(a) ≤ 1, we have,

|RP(p
∗)−RPcau(p

∗)| ≤
∑
a

|P(a|p∗)− Pcau(a|p∗)|

=
∑
a

∣∣∣∣λPcau([p
∗, a]) + (1− λ)Pend([p

∗, a])

λPcau(p∗) + (1− λ)Pend(p∗)
− Pcau([p

∗, a])

Pcau(p∗)

∣∣∣∣
=
∑
a

∣∣∣∣ [λPcau([p
∗, a]) + (1− λ)Pend([p

∗, a])]Pcau(p
∗)− [λPcau(p

∗) + (1− λ)Pend(p
∗)]Pcau([p

∗, a])

[λPcau(p∗) + (1− λ)Pend(p∗)]Pcau(p∗)

∣∣∣∣
=
∑
a

∣∣∣∣ (1− λ)Pend([p
∗, a])Pcau(p

∗)− (1− λ)Pend(p
∗)Pcau([p

∗, a])

[λPcau(p∗) + (1− λ)Pend(p∗)]Pcau(p∗)

∣∣∣∣
=
∑
a

Pend(p
∗)

Pcau(p∗)
· (1− λ) ·

∣∣∣∣∣∣
Pend([p

∗,a])
Pend(p∗) Pcau(p

∗)− Pcau([p
∗, a])

λPcau(p∗) + (1− λ)Pend(p∗)

∣∣∣∣∣∣
(8)

Due to the triangle inequality and 0 < λ < 1, we have

|RP(p
∗)−RPcau

(p∗)| ≤
∑
a

Pend(p
∗)

Pcau(p∗)
· (1− λ) ·


∣∣∣Pend([p

∗,a])
Pend(p∗) Pcau(p

∗)
∣∣∣+ |Pcau([p

∗, a])|

λPcau(p∗)


=
1− λ

λ

Pend(p
∗)

Pcau(p∗)
·
∑
a

{Pend(a|p∗) + Pcau(a|p∗)}

=
2(1− λ)

λ

Pend(p
∗)

Pcau(p∗)
.

(9)

Then we need to prove the upper bound for Pend(p
∗)

Pcau(p∗) ,

Pend(p
∗)

Pcau(p∗)

=
Pend([q

(1), a(1), · · · , q(i−1), a(i−1), q])

Pcau([q(1), a(1), · · · , q(i−1), a(i−1), q])

=
Pend(q|[q(1), a(1), · · · , q(i−1), a(i−1)])

Pcau(q|[q(1), a(1), · · · , q(i−1), a(i−1)])
· Pend([q

(1), a(1), · · · , q(i−1), a(i−1)])

Pcau([q(1), a(1), · · · , q(i−1), a(i−1)])

(10)

With the assumption stated in Eqn (3), we have
Pend(p

∗)

Pcau(p∗)
=

Pend([q
(1), a(1), · · · , q(i−1), a(i−1)])

Pcau([q(1), a(1), · · · , q(i−1), a(i−1)])

Pend(a
(i−1)|[q(1), a(1), · · · , q(i−1)])

Pcau(a(i−1)|[q(1), a(1), · · · , q(i−1)])
· Pend([q

(1), a(1), · · · , q(i−1)])

Pcau([q(1), a(1), · · · , q(i−1)])

(11)
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Due to the robust assumption in Eqn (4), we have

Pend(p
∗)

Pcau(p∗)
=

Pend(a
(i−1)|q(i−1))

Pcau(a(i−1)|q(i−1))
· Pend([q

(1), a(1), · · · , q(i−1)])

Pcau([q(1), a(1), · · · , q(i−1)])

=
Pend(a

(i−1)|q(i−1))

Pcau(a(i−1)|q(i−1))
· Pend(q

(i−1)|[q(1), a(1), · · · , q(i−2)])

Pcau(q(i−1)|[q(1), a(1), · · · , q(i−2)])
· Pend([q

(1), a(1), · · · , q(i−2)])

Pcau([q(1), a(1), · · · , q(i−2)])

=
Pend(a

(i−1)|q(i−1))

Pcau(a(i−1)|q(i−1))
· Pend([q

(1), a(1), · · · , q(i−2)])

Pcau([q(1), a(1), · · · , q(i−2)])

(12)

Iteratively do the above operation, and we have

Pend(p
∗)

Pcau(p∗)
=

i−1∏
j=1

Pend(a
(j)|q(j))

Pcau(a(j)|q(j))

≤
k∏

i=1

e−∆

=e−k∆.

(13)

From Eqn (4), we have

RPcau
([S(<i), q]) =

∑
a

R(a)Pcau(a|[S(<i), q]) =
∑
a

R(a)Pcau(a|q) = RPcau
(q). (14)

Therefore, following Eqn (9), we have

RP([S
(<i), q]) = RP(q) ≥ RPcau([S

(<i), q])− 2(1− λ)

λ
· Pend(p

∗)

Pcau(p∗)
≥ RPcau(q)−

2(1− λ)

λ
· e−k∆.

(15)

For k ≥ 1
∆ log 2(1−λ)

ϵλ , we have

RP([S
(<i), q]) ≥ RPcau

(q)− 2(1− λ)

λ
(

ϵλ

2(1− λ)
) = RPcau

(q)− ϵ. (16)

17


	Introduction
	Related Work
	Distillation Enhances Model Training
	Existing Copyright Protection for Large Language Models

	SelfCAD: Self-Cautious Anti-Distillation
	Reasoning Trajectories Analysis on Model Efficiency and Accuracy
	Reasoning Trajectories Analysis at Training-Time
	Theoretical Analysis on Self-Cautious and Excessive Reasoning
	SelfCAD: The Proposed Method for Anti-Distillation

	Experiments
	Experiment Settings
	Results on Our Distilled Setting
	Results on Public Distilled Dataset
	Ablation Studies on Larger Models
	Ablation Studies on Method Stealthy.

	Conclusions
	Usage of LLM
	Implementation details
	Classification methodology for reasoning traces
	Template of judge model

	Additional results
	Full content of over-cautious example

	Proof on Theorem 3.1

