© ® N O o A~ W N =

24

25
26
27
28
29
30
31
32

33

34

36
37

Hierarchical Planning Agent for Web-Browsing Tasks

Anonymous Author(s)
Affiliation
Address

email

Abstract

Recent advances in large language models (LLMs) have enabled the development
of agentic systems for sequential decision-making. Such agents must perceive their
environment, reason over multiple time steps, and take actions that optimize long-
term goals. However, existing web agents perform poorly on complex long-horizon
tasks due to key limitations: limited in-context memory for tracking history, weak
planning that fails to satisfy user constraints, difficulty handling task complexity,
and greedy behaviors that cause premature termination. To address these challenges,
we propose Structured Agent, a hierarchical planning framework with two core
components: (1) an online hierarchical planning algorithm that uses dynamic
AND/OR trees for efficient search, and (2) a structured memory module that tracks
candidate solutions to improve constraint satisfaction in information-seeking tasks.
Experiments on WebVoyager and custom shopping benchmarks demonstrate that
Structured Agent achieves improvements in long-horizon reasoning and planning
compared to standard LLM-based agents.

1 Introduction

Large language models (LLMs) have recently demonstrated remarkable performance across a wide
range of natural language processing tasks. This progress has led to the emergence of agentic
LLMs, which augment language models with the ability to perceive, reason, and act within interactive
environments. Agentic LLMs are now deployed in diverse applications, including enterprise workflow
automation, autonomous research assistance, customer support, and software development.

A particularly promising application lies in the domain of web agents, which browse and interact
with the internet to perform complex, goal-driven tasks such as information seeking, form filling,
transactional activities, and monitoring. However, this area remains relatively underdeveloped, with
many open challenges in building robust, and interpretable web-based agents.

Despite recent advances, current web agents continue to struggle on long-horizon, multi-step web-
browsing tasks | Yang et al., 2025, [Erdogan et al., 2025} |Q1 et al., [2025]]. Even when powered by
strong LLMs such as GPT-4o, studies show that agents frequently fail on tasks requiring fewer
than 15 steps [[Erdogan et al.| 2025} Q1 et al., [2025]. These shortcomings arise from weak task
planning, limited context memory, insufficient error recovery mechanisms [Koh et al., [2025]], and
greedy decision-making that leads to premature commitment to suboptimal strategies [Schmied
et al., [2025]|(See appendix [B). Open-source agents are especially vulnerable, as they often lack the
contextual capacity and domain expertise of proprietary models [Murty et al., 2025]].

To address these challenges, recent efforts [|Q1 et al. 2025, Murty et al.l [2025] have explored
curriculum-based reinforcement learning (RL) using expert- or LLM-generated trajectories to fine-
tune open-source models. While this improves performance, it is constrained by the high cost and
limited scalability of trajectory collection and does not fully exploit the compositional structure
inherent in many real-world tasks.

Submitted to NeurIPS 2025 Workshop on Efficient Reasoning. Do not distribute.

38
39
40
41
42
43
44
45
46
47
48

49
50
51
52
53
54
55
56
57
58
59
60
61

62

63
64
65
66

67
68
69

70
71

72

73
74

75
76
77
78
79
80
81
82

83
84
85
86
87
88
89

A promising alternative is to equip agents with explicit planning capabilities. Inspired by human
problem-solving, hierarchical planning allows agents to reason over tasks at multiple levels of
abstraction by recursively decomposing complex goals into structured hierarchies of subgoals and
actions. This approach improves efficiency, enhances robustness through better error isolation and
recovery, and increases the interpretability of the agent’s behavior. Recent works have tried to
integrate explicit planning mechanisms into web agents. Koh et al. [Koh et al.l 2025] explored
tree-based planning with A* search, Yang et al. [Yang et al., 2025] investigated incremental tree
construction using prune-and-branch strategies, and Erdogan et al. [Erdogan et al., 2025 introduced
planning with dynamic revisions. While these approaches advance agents beyond purely reactive
behavior, they primarily operate at the level of individual actions and therefore fail to exploit the
compositional structure of complex tasks, limiting overall planning efficiency.

To address the limitations of prior approaches, we introduce a hierarchical planning framework that
enables agents to dynamically construct and execute ordered AND/OR planning trees at inference
time, thus interleaving planning with execution. This hierarchical structure integrates AND nodes,
representing mandatory subgoals, and OR nodes, representing alternative sub-strategies. By com-
bining these, agents can decompose complex tasks into subgoals, reason about fallback options,
and produce interpretable, modular plans that transparently reflect their internal decision-making
process. Our framework employs a greedy depth-first search strategy for expansion, coupled with
dynamic pruning and plan revision mechanisms. These features enable agents to efficiently revise or
prune parts of the plan as new information becomes available and to explore large, complex search
spaces more effectively. Furthermore, for information-seeking tasks in web-browsing environments,
where agents are required to identify or recommend entities that fulfill user-specified constraints, we
incorporate a structured memory module that tracks potential entities and the constraints they satisfy,
thereby enhancing constraint satisfaction.

Our main contributions are as follows:

* We propose a hierarchical planning framework that enables inference-time planning through
the use of ordered AND/OR trees. This framework facilitates compositional reasoning,
dynamic pruning, and flexible plan revision, supporting more robust and adaptive decision-
making.

* For web-based information-seeking tasks, we introduce a structured memory module that
tracks potential entities and the constraints they satisfy, improving constraint satisfaction
during planning and execution.

* We conduct experiments on the challenging WebVoyager benchmark and a custom-designed
shopping benchmark, demonstrating the efficacy of our proposed method.

2 Related Works

Prior work on web agents can be broadly be classified into two main categories: (1) LLM inference-
based web agents and (2) fine-tuned LLMs as web agents.

LLM Inference-Based Web Agents: Several prior works [Putta et al., 2025, |Zhang et al., 2024,
He et al., 2024} Zhou et al.| 2024] have leveraged closed-source large language or multimodal models
for complex web-based tasks, often by employing inference-time strategies. For example, Wang et al.
[2025]] use LLMs to extract patterns from examples and prior trajectories to guide navigation and
decision-making. Other approaches incorporate Monte Carlo Tree Search (MCTS) [Zhang et al.|
2024] or value function networks [Koh et al., 2024] to facilitate exploration and backtracking during
planning. Methods such as Reflexion [[Shinn et al., [2023]] add reflection mechanisms and evaluators,
though often at the cost of frequent resets.

Hierarchical planning has also been investigated as a means of addressing compositional web tasks.
Erdogan et al.|[2025] introduce an optimization layer for higher-level planning, while [Sodhi et al.
[2024] propose dynamic multi-level control, though their approach depends on domain-specific
prompt engineering and task-specific policies. [Yang et al.| [2025]] present a lightweight tree structure
with effective text filtering and incremental plan revision, which outperforms many baselines but
struggles on more complex tasks due to limited error recovery and weak information retention. In
contrast, our method develops a more general AND/OR planning tree that supports robust error

90
91

92

93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112

113
114
115
116
17

118
119
120
121
122
123
124

125
126
127
128

129
130
131
132
133

134

135
136
137
138
139

handling and strategic planning with explicit dependency tracking, yielding more interpretable
trajectories (see Table[3). We discuss the rest of the relevant works in Appendix [C|

3 Preliminaries

Web-browsing tasks are partially observable and inherently stochastic. This arises because the content
and structure of web pages can change dynamically over time, often unpredictably or in response
to agent’s actions on the web-browser, and in most cases the agent does not have access to the full
underlying state of the web-browser environment. Typically, the agent is limited to information about
the current HTML webpage, its prior actions, and the extracted metadata. As a result, the agent is
required to make decisions under uncertainty while maintaining internal representations of its beliefs
about the environment.

To capture this uncertainty and partial observability, we model the interaction between the agent and
the web browser as a Partially Observable Markov Decision Process (POMDP) (O, S, A, R, P, pg, 7).
Here, o € O denotes the observations available to the agent, including the task description, plans
constructed by the agent, the HTML DOM of the web page, and additional metadata from its history
of interactions with the browser. The variable s € S represents the true underlying state of the web
browser environment and the agent. An action a € A may be either an atomic browser operation
(such as click, scroll, type, or go back) or a sequence of tokens describing a sub-goal or strategy.
The reward function R : S x A — R assigns a real-valued reward to each state-action pair (s, a),
while the transition function 7' : S x A — AlS| specifies a probability distribution over possible
next states for each state-action pair. The term pg € AlS! denotes the initial state distribution, and
v € (0,1) is the discount factor. We represent the agent’s policy as a function 7 : S — Al
mapping states to distributions over actions. Importantly, the optimal policy in a POMDP is generally
history-dependent.

We use a LLM to represent the agent’s policy. At each time step ¢, let h; denote the history
of observations, where h;y = {01,09,...,0:}. This history is encoded as a sequence of tokens
x¢ = [x1,T9,..., 2] that serves as the input prompt to the LLM. The action a; is generated as a
sequence of output tokens a; = [y1, Y2, - - . , Yn] produced by the LLM. The probability of selecting
action a, given the history hy is given by Pr(a; | he) = [[iey 7(yi | @15+ o, Ty Y1, -+ - Yim1)-
While this approach allows the LLM to utilize past observations, robust performance in web-browsing
tasks often hinges on the ability to look ahead, reason about future contingencies, and adjust its
strategy as new information is revealed. To address this, we propose a hierarchical framework that
interleaves planning and execution: at each decision point, the agent uses its history of observations
and actions as context, invoking the LLM policy to either revise its structured plan or sample the next
action for execution as appropriate. This approach enables the agent to dynamically adapt its plans in
response to the stochastic nature of the environment and its own actions.

Following prior work, we use the WebArena simulator to evaluate our agent on web-browsing tasks.
WebArena exposes a set of mouse and keyboard operations as discrete actions available to the agent,
including type, scroll, click, go_back, and go_home. Please see Appendix A of|Yang et al.
[2025]) for detailed descriptions of these actions.

We now introduce the Structured Agent framework, which consists of two core components: a Struc-
tured Memory module that efficiently tracks intermediate decisions and candidate solutions during
exploration, and an AND/OR Tree Planner that hierarchically decomposes tasks while reasoning over
alternative strategies. Together, these components enable robust error isolation, dynamic replanning,
and more reliable execution in complex web environments.

4 Structured Agent Framework

Our Structured Agent tightly interleaves planning and execution to solve complex, open-ended web-
based tasks. Central to our approach is an explicit AND/OR planning tree, which the agent constructs
and maintains dynamically. This tree enables hierarchical task decomposition, explicit reasoning
over alternatives, and real-time plan adaptation as new observations arrive. Our agent incrementally
expands and revises the planning tree, including pruning unpromising paths, in response to new

140
141

142
143
144
145
146
147

148
149
150
151
152

153

154
155
156
157
158
159
160
161

162
163
164
165
166

167
168
169

170

171
172
173
174

............................. > Browser Environment

AND/OR Tree AND Tree Operations
oR

N acnow Global Tree
—

/ \ / \ Update
N

Node
Expansion

Action
T uoneARSO TNLH

Node Completion
Check

Node
Repair

Structured Memory
| ‘ " s

LLM =

DFS Planner

— Notes Summarizer

Figure 1: High-level overview of Structured Agent Framework

information. This dynamic approach significantly improves computational efficiency and prevents
the planning tree from growing excessively large.

Conventional LLM agents cannot autonomously build and execute complex hierarchical plans. Rather
than relying on the LLM to generate or manage the full planning tree as done by AgentOccam [Yang
et al.| 2025]], our framework handles tree construction and maintenance. We delegate only targeted,
well-scoped operations such as node expansion, repair, completion checking, and pruning to LLM
calls. This clear separation of responsibilities improves both reliability and interpretability of the
agent’s behavior. Detailed descriptions of these operations appear in section[4.2]

We begin by introducing the formal structure of the AND/OR planning tree, and and then describe the
node-state-tracking mechanisms. Then, we present the four core tree operations and two observation
aggregation modules that monitor task progress and agent state. We conclude this section by
describing the overall planning algorithm that integrates these components for efficient and adaptive
execution.

4.1 AND/OR Planning Tree Structure

The foundation of our planning framework is an explicit AND/OR planning tree that guides both
the agent’s reasoning and its actions. Within this tree, the agent distinguishes between three types of
nodes. (1) AND nodes represent conjunctive subgoals, requiring all children to succeed before the
parent node can be marked as successful. Depending on the task, the ordering of AND node children
may or may not matter. (2) OR nodes represent alternative strategies for achieving a subgoal, if any
child of an OR node succeeds, the parent node is also considered successful. (3) ACTION nodes serve
as atomic leaves in the tree. Each ACTION node corresponds to a specific browser-level operation,
such as typing a query, scrolling, clicking a button, navigating back or home, or recording a note.

This hierarchical structure allows the agent to decompose tasks into flexible subgoals while explicitly
reasoning about alternative solution paths. For example, when solving a task such as “find
a coffee filter under $507, the agent may construct an AND node with two children
corresponding to searching for “coffee filter” and applying a price filter. Each subgoal may further be
decomposed or branched into OR nodes that represent different navigation or filtering strategies.

We allow both AND and OR nodes to expand into any combination of AND, OR, or ACTION nodes,
enabling general task decompositions while capturing the sequential dependencies that are common
in web-based workflows.

4.1.1 Node State Tracking

Our framework dynamically constructs an AND/OR planning tree, leveraging a LLM as a controller
and expanding nodes using a greedy depth-first search (DFS) strategy. Nodes are explored in depth-
first order: for AND nodes, children are executed sequentially as specified; for OR nodes, the
agent greedily selects which child to execute based on the LLM’s estimated likelihood of success,

175
176

177
178
179
180
181
182
183

184
185
186
187

189
190

191
192
193
194
195
196
197

198
199

200
201
202
203
204

)

Node

ID: 1 DONE
EXITING: IS
COMPLETE ?

Node States - Entering Exiting, [Eilgg

A
o

ENTERING: EXPAND
NODE or EXECUTE
CHILDREN

FAILURE: REPAIR
NODE OR PRUNE

Figure 2: Node state transitions during iterative modified greedy depth-first search in an AND/OR
tree. Each node may be processed multiple times and can enter the Entering and Failure states
repeatedly. However, once a node reaches the Exiting state successfully, it is considered complete
and will not be revisited.

Brightness Includes Screen

Item/Bundle Price ($) Native 1080p Blustooth5.0 8CRCE (701007

Status Notes

Need
compatible
screen under
$30

a
x

ProjectorA 420] 350 o Explore

Projector B+ .
ScreenBundle 0 a

Projector C 390 X

400 X Deleted Over budget

500 X Deleted No native 1080p

[< <]
axea

ProjectorA+ 445 V] 350 @candidate et al
80" Screen constraints

Figure 3: Example of Structured Memory for tracking constraints satisfaction of candidate solutions
in information-seeking tasks

conditioned on summaries of past actions and observations. Alternatively, action selection can be
guided by a learned value function, as in |Koh et al.|[2024].

Unlike classical DFS, our search space is stochastic, reflecting both environmental uncertainty and
the agent’s own actions. The agent can also dynamically prune or revise the tree, which may require
nodes to be revisited multiple times. When a node is pruned or revised, these changes must be
propagated upward to its parent and relevant ancestors to maintain global plan consistency. Notably,
if a child of an AND node is pruned or fails, any subsequent siblings in the execution order become
inapplicable and can no longer be executed. These requirements motivate several key modifications
to standard DFS.

Classical depth-first search marks nodes as either UNVISITED or VISITED, but this binary distinction
is insufficient for dynamic pruning and revision. Instead, we assign each node one of six possible
statuses: UNVISITED, VISITED, SUCCESS, FAIL, PRUNED, or DELETED. Every node begins as
UNVISITED and is marked VISITED upon processing. A node is marked SUCCESS if its objective
is achieved; for AND nodes, this means all children succeed and collectively satisfy the node’s
objective; for OR nodes, any single child’s success suffices; for ACTION nodes, the corresponding
browser operation must succeed.

Nodes are marked FAIL when their objectives cannot be achieved. For AND nodes, this occurs if any
child fails or is pruned; for OR nodes, if the selected child fails; for ACTION nodes, if the operation
is invalid or unsuccessful. Nodes are labeled PRUNED if they become irrelevant or irresolvable due
to new information. If the failure or pruning of a child in an AND node renders subsequent siblings
inapplicable (due to ordering constraints), those siblings are marked DELETED. This fine-grained
status labeling enables accurate tracking of execution, principled backtracking, and robust recovery
from errors or dead ends.

To support upward propagation of changes when a node is pruned or revised, we introduce three
additional execution states for each node on the DFES stack: ENTERING, EXITING, and FAILED.

A node is pushed onto the stack in the ENTERING state when it has not yet been processed or it still
has unprocessed children. It transitions to the EXITING state if it has been executed (in the case of an
ACTION node), once all of its children have been processed (for an AND node), or after the selected
child has been processed (for an OR node), and it is time to validate whether the node’s objective has
been satisfied. A node enters the FAILED state if execution fails (for ACTION nodes) or if any of its

205
206

207

208
209
210
211

212
213
214
215
216
217
218
219
220
221

222
223
224
225
226

227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245

246
247
248
249
250
251
252

254
255

children are pruned or fail, indicating that the node must be repaired or pruned. Notably, a node may
enter the stack in the ENTERING, EXITING, or FAILED state multiple times.

4.2 Tree Operations and Agent Modules

Recall that the agent’s policy is generally dependent on the history of observations. In practice,
it may not be feasible to contain the entire history of observations within the LLM’s in-context
memory. Following prior works, we generate summaries of the interactions with the browser to use
as substitutes for the full history of observations.

To organize and utilize these summaries effectively, the agent maintains several internal represen-
tations. The interaction history logs all observation summaries and actions up to the current time
step, while the fask progress summary tracks progress toward the main objective. The notes summary
aggregates information from all past observations that are relevant to the task, and the task constraints
encode global and item-level requirements from the task description. At each step, the observation
summary distills salient information from the current web page, and the action history lists all exe-
cuted browser actions. This metadata is supplied to all planning and execution operations, enabling
the agent to reason about its current estimate of the environment’s state. By explicitly managing this
metadata, the agent overcomes the limited context window of LLMs and maintains a coherent global
view of the task throughout execution.

Using this metadata, our framework implements four core tree operations to dynamically expand,
prune, and maintain the planning tree: Node Expansion, Node Repair, Global Tree Update, and Node
Completion Check. Each operation involves context-specific inference from the backbone LLM,
which is subsequently verified and executed by our framework. Full details of the LLM prompts,
inputs, and outputs for each operation are provided in the Appendix.

The Node Expansion operator determines the type of a node and, if applicable, generates its children.
For AND nodes, this operation outputs subgoal descriptions, for ACTION nodes, it produces a
browser-level command, for OR nodes, it returns candidate strategies and associated scores. Upon
receiving this output, the agent updates the tree structure. If expansion fails, the agent retries up to a
preset limit, persistent failure results in the node being marked as FAILED.

The Node Repair operator handles the revision of failed AND or OR nodes by adjusting their children.
It consumes the node’s description, the status of its children, relevant metadata (including the current
observation, sibling and parent statuses, and summaries of prior observations and notes), and generates
instructions for pruning or adding children. The agent validates and enacts these instructions, if node
repair fails after several attempts, it prunes the node.

The Global Tree Update module processes new observations to revise the tree structure. Given the
latest observation, the current (pruned) tree, the task progress summary, and the notes summary, the
module outputs instructions for pruning irrelevant subtrees and updating node descriptions. This
module aggressively eliminates unpromising branches. As with other operations, repeated failure
triggers a fallback strategy or additional pruning.

The Node Completion Checker operator determines whether an AND node has met its objective,
based on the statuses of its children. We invoke this module when all children have completed and
at least one has succeeded. It evaluates the node’s description, the task progress summary, notes
summary, and task constraints, returning a binary verdict of completion.

In addition to these tree operations, the agent employs two state aggregation modules to manage
its internal representations and summarize progress. The Observation and Context Summarizer
processes new observations to maintain an up-to-date summary of the environment and guide the
agent’s next actions. This module takes as input the current observation, task progress summary, notes
summary, and interaction history, and produces an updated task progress summary, an observation
summary, and guidance for subsequent steps.

The NotesvSummarizer updates the agent’s notes and their summary upon encountering a new web
page. Given the current observation, prior notes, task progress summary, and action history, it extracts
new task-relevant notes and generates a refined summary. These summaries help the agent monitor
task progress and facilitates planning.

256

257
258
259

261

262

264
265
266
267
268
269

270
271
272
273
274
275
276
277
278

279
280
281
282
283
284
285
286
287

289
290
291
292
293
294
295
296
297
298
299
300
301

302
303

304

305
306
307
308

4.3 Planning and Execution Algorithm

Equipped with the AND/OR tree structure and the core operations described above, we now describe
our modified greedy, iterative depth-first search (DFS) strategy for traversing the AND/OR planning
tree. The agent begins by pushing the root node which represents the given task, onto the DFS stack
in the ENTERING state. As in classical iterative DFS, the algorithm then iteratively pops the top node
from the stack and processes it according to its current state.

When processing a node in the ENTERING state, the agent first checks the node’s status. By default,
new nodes are marked as UNVISITED. If the node is UNVISITED, the agent invokes the Node
Expansion module to determine its type and expand it. For AND nodes, the module generates an
ordered list of children according to task constraints. For OR nodes, it ranks alternatives by their
estimated likelihood of success, as determined by LLM scoring or a value function. For ACTION
nodes, it outputs the precise browser command to execute. After expansion, or if the node was
previously expanded, the agent marks the node as VISITED and re-adds it to the stack in the EXITING
state.

Next, the agent proceeds according to node type. For AND nodes, it pushes each child onto the stack
in the ENTERING state for further processing. For OR nodes, it pushes only the most promising
unprocessed child in the ENTERING state. If the node has no children, no further action is taken
until its status is evaluated in the EXITING state. For ACTION nodes, the agent immediately
executes the specified browser command. If the command is successful, the agent marks the node as
SUCCESS, updates its internal context via the Observation Summarization module, and invokes the
Note Extraction and Summarization module to refine the task summary. The Global Tree Update
module prunes irrelevant branches and refines node descriptions as needed, propagating these changes
upward to keep the stack and tree consistent. If the ACTION node fails, the agent marks it as FAILED.

When processing a node in the EXITING state, the agent evaluates completion criteria based on the
node type. For AND nodes, the agent verifies that all valid, that is, unpruned or undeleted, child
nodes have succeeded and invokes the Node Completion module to ensure that the overall objective
of the AND node is met. Although this check is theoretically applicable to all AND nodes, we found
it to be overly strict in practice. Therefore, to avoid unnecessary retries and failures, we apply this
strict completion check only at the root node in our implementation. If completion is verified, the
agent marks the node as SUCCESS, otherwise, as FAILED. For OR nodes, the agent checks if at
least one child has succeeded, marking the node as SUCCESS if so, and as FAILED otherwise. For
ACTION nodes, the agent sets the status to SUCCESS or FAILED depending on the outcome of the
browser operation. Once a node is marked as SUCCESS, it is not processed again.

If the agent processes a node in the FAILED state, it attempts to repair the node or marks it as pruned.
For ACTION nodes, it prunes the node and updates the stack. If a failed ACTION node belongs to an
AND node, the agent deletes all remaining unexecuted siblings, since the conjunctive requirement
cannot be satisfied. For AND nodes, if none of the children have achieved the node’s objective, the
agent checks the node’s revision count. If the revision limit is not reached, the Node Repair module
attempts to generate new subgoals or modify the set of children. If repair fails or the revision limit
is reached, the agent prunes the AND node and all its descendants, propagating failure upward and
updating the stack. For OR nodes in the FAILED state, the agent first checks for any remaining
unprocessed children. If such children exist, it selects and pushes the most promising one onto the
stack in the ENTERING state. If all alternatives are exhausted, it attempts node repair if within the
revision limit, otherwise, it prunes the node. As with AND nodes, any pruning or failure of an OR
node propagates upward, ensuring the global plan remains consistent and that failures at lower levels
trigger repair or pruning at higher levels.

This DFS-based algorithm allows the agent to incrementally build and adapt its hierarchical plan,
efficiently respond to new observations and failures, while executing the task.

4.4 Structured Memory

While prior work such as AgentOccam allows agents to take notes and track task progress, it does not
reliably retain candidate entities identified during exploration. As a result, agents may lose valuable
information discovered earlier in the search process, which can lead to revisiting previously rejected
options or failing to explore alternative candidates when initial attempts are unsuccessful.

309
310
311
312
313
314
315
316

317
318
319
320
321
322

323

324
325

326
327
328
329
330
331
332
333
334
335
336
337
338

339
340
341
342
343
344
345
346
347

348

349

350

351

353
354

355

356

358
359

To address this limitation, we introduce a Structured Memory module specifically designed for
information-seeking scenarios, such as recommendation tasks or research-based tasks, where the
agent must retrieve information about items that satisfy user-specified constraints. In this context,
candidate entities refer to items encountered by the agent that may potentially fulfill these constraints.
The structured memory module extracts relevant constraints from the task description and organizes
them in a dynamic table (See [3)), with each row representing a candidate entity and columns capturing
constraints, attributes, or task-specific notes. The schema remains flexible, allowing new columns to
be added as additional constraints or features are encountered.

As the agent processes new or updated web pages, it prompts the language model to ADD, UPDATE,
or DELETE candidate entries based on the latest information. During decision-making such as in the
Node Expansion or Node Repair modules, the agent retrieves the top-K candidate entities that satisfy
the most number of user constraints to guide its subsequent actions. This memory mechanism allows
the agent to retain partially complete candidates, minimize redundant exploration, and make more
informed decisions throughout the planning and execution process.

5 Experiments

In this section, we evaluate our proposed Structured Agent against two baseline agents on two
web-browsing task benchmarks.

We conduct experiments on two datasets: (1) a Custom Complex Shopping dataset and (2) a subset
of WebVoyager [He et al.|[2024]. The Complex Shopping dataset contains 60 long-horizon Amazon
shopping tasks. Each task is specified through a natural language query that encodes detailed
constraints for one or more products, and the agent must generate recommendations that satisfy these
constraints. Task completions typically require 10-30 interaction steps, reflecting the complexity and
compositional nature of the user goals. The second dataset is a curated subset of the WebVoyager
benchmark [He et al., [2024], comprising 129 real-world tasks that involve navigation across diverse
live websites, including BBC News, ArXiv, Amazon, Coursera, GitHub, and HuggingFace. We
report results separately on the Amazon subset of WebVoyager and on the remaining non-shopping
tasks. Tasks requiring login credentials or raising security concerns are excluded, as the agent cannot
reliably attempt them. All experiments are conducted using two backbone language models: Claude
3.5 v2 and Claude 3.7. These serve as the underlying reasoning models powering the Structured
Agent across all evaluations.

Metrics. Following prior work [He et al.,|2024, Erdogan et al.|[2025]], we adopt task completion rate
as the primary evaluation metric. This metric is assessed using the LLM-as-a-Judge framework, which
evaluates agent trajectories based on summaries of observations, actions, notes, and final responses.
The judge is instructed to first decompose each task into item-level and task-level constraints, and
then assign one point per constraint satisfied, provided the evidence of satisfaction is grounded in the
agent’s observations, actions, and notes. Due to cost constraints, we primarily use GPT 4.1-mini as
the judge. To ensure robustness, we additionally provide human evaluations and GPT 4.1 evaluations
on the Amazon Shopping tasks. The full evaluation prompt provided to the LLM judge is included in

Appendix [B.T]

Baselines. We compare the Structured Agent against two strong baselines. The first is AgentOc-
cam [Yang et al}2025]], a planning agent that incrementally constructs and prunes action trees. The
second is Claude + Action History, which augments the Claude agent’s input with the full action
history. To isolate the contributions of Structured Memory and the AND/OR tree, we also evaluate
two ablations. The AND/OR Agent removes Structured Memory, while the Structured Memory Agent
corresponds to AgentOccam augmented with Structured Memory. All agents use Claude 3.5 or 3.7 as
their backbone model.

6 Results

Table 2] compares the success rates of our proposed Structured Agent and its variants against Agen-
tOccam, Vanilla-Claude, and Claude-Action Agent, all using Claude 3.5v2 as the backbone model.
The results show that according the the GPT-4.1-mini judge model, the AND/OR Agent outperforms
AgentOccam by 6.7% on WebVoyager Amazon tasks when Claude 3.5 is used as the backbone model.

360
361
362
363

364
365
366
367
368
369
370
371

372
373
374

376

377
378

380
381

Task Complexity —

WebVoyager WebVoyager Complex

Agents (Other Sites) (%) (Amazon) (%) Shopping (%)
Claude-Action 78.8 73.3 27.8
AgentOccam 89.1 75 41.1
AND/OR Agent (Ours) 86.5 80 48.3
Structured Agent (Ours) 79 81.7 46.1
Structured Memory Agent (Ours) 90.6 87.5 48.3

Table 1: Success rates of agents across datasets ordered by increasing task complexity from left to
right. Light background shading is applied to header cells using custom pastel colors to reflect task
domains. All agents use Claude 3.5v2 as the backbone model.

Complex Shopping Tasks

Human

Agents GPT 4.1 mini (%) GPT 4.1 (%) Evaluation (%)

Set 1: Claude 3.5

Claude-Action 27.8 30 40
AgentOccam 41.1 41.7 56.67
Structured Agent (Ours) 46.1 433 65
Structured Memory Agent (Ours) 48.3 46.7 56.67
Set 2: Claude 3.7

Claude-Action 35 31.7 -
AgentOccam 48.9 50 -
Structured Agent (Ours) 56.5 55.9 -

Table 2: Comparison of agent performance on complex shopping tasks using different evaluators.

Similarly, the Structured Agent surpasses AgentOccam by 7% on Complex Shopping tasks. These
improvements highlight the effectiveness of structured planning in handling complex environments.
We also observe that StructuredAgent achieves a 5% improvement over AgentOccam when Claude
3.7 is used as the backbone model.

We further observe that incorporating both Structured Memory and the AND/OR Tree benefits
performance on complex tasks, though it may lead to some degradation on easier tasks. Nonetheless,
agents equipped with either Structured Memory or the AND/OR Tree consistently outperform both
AgentOccam and the Claude-Action agent on complex tasks, underscoring the importance of these
components in solving more challenging scenarios. On the other hand, Claude-Action performs the
worst across most tasks. Despite Claude-Action having access to the full action history at every step,
its poor performance suggests that planning remains crucial, even for powerful models with access
to extensive contextual information.

We also observe some discrepancies between human judgment and GPT-4.1 evaluations, although the
overall performance trends are similar. We hypothesize that these differences arise from the large
number of constraints in complex tasks, which make agent performance more challenging to evaluate
consistently. This suggests the need for further experimentation.

7 Conclusion

In summary, our framework leverages dynamic AND/OR tree-based planning and structured memory
to address key limitations of current agentic LLMSs in complex web-browsing tasks. Our framework
enables hierarchical task decomposition, and improved constraint satisfaction, thereby enhancing the
effectiveness of web-browsing agents. Our empirical results on Custom Complex shopping dataset
and WebVoyager demonstrate the effectiveness of our proposed approach.

382

383
384
385

386
387
388
389
390
391

392
393
394

395
396
397
398
399
400

401
402

404
405

407
408

409
410
411
412

413
414
415

416
417
418

419
420
421

422
423

424
425
426

427
428

429
430

References

L. E. Erdogan, N. Lee, S. Kim, S. Moon, H. Furuta, G. Anumanchipalli, K. Keutzer, and A. Gholami.
Plan-and-act: Improving planning of agents for long-horizon tasks, 2025. URL https://
arxiv.orqg/abs/2503.09572.

H. He, W. Yao, K. Ma, W. Yu, Y. Dai, H. Zhang, Z. Lan, and D. Yu. WebVoyager: Building an end-
to-end web agent with large multimodal models. In L.-W. Ku, A. Martins, and V. Srikumar, editors,
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pages 6864—6890, Bangkok, Thailand, Aug. 2024. Association for Computational
Linguistics. doi: 10.18653/v1/2024.acl-long.371. URL https://aclanthology.org/
2024 .acl-long.371/.

N. Kandpal and C. Raffel. Position: The most expensive part of an LLM *should* be its training
data. In Forty-second International Conference on Machine Learning Position Paper Track, 2025.
URLhttps://openreview.net/forum?id=L6RpQ1h4Nxl

J. Y. Koh, R. Lo, L. Jang, V. Duvvur, M. Lim, P.-Y. Huang, G. Neubig, S. Zhou, R. Salakhutdinov,
and D. Fried. VisualWebArena: Evaluating multimodal agents on realistic visual web tasks. In
L.-W. Ku, A. Martins, and V. Srikumar, editors, Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pages 881-905, Bangkok,
Thailand, Aug. 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.
50. URL https://aclanthology.org/2024.acl-long.50/.

J. Y. Koh, S. M. McAleer, D. Fried, and R. Salakhutdinov. Tree search for language model agents,
2025. URL https://openreview.net/forum?id=kpL66Mvd2al

S. Murty, H. Zhu, D. Bahdanau, and C. D. Manning. Nnetnav: Unsupervised learning of browser
agents through environment interaction in the wild, 2025. URL https://arxiv.org/abs/
2410.02907.

P. Putta, E. Mills, N. Garg, S. R. Motwani, E. S. Markowitz, J. Kiseleva, C. Finn, D. Garg, and
R. Rafailov. Agent q: Advanced reasoning and learning for autonomous Al agents, 2025. URL
https://openreview.net/forum?id=LuytzzohTa.

Z. Qi, X. Liu, I. L. Tong, H. Lai, X. Sun, J. Sun, X. Yang, Y. Yang, S. Yao, W. Xu, J. Tang, and
Y. Dong. WebRL: Training LLM web agents via self-evolving online curriculum reinforcement
learning. In The Thirteenth International Conference on Learning Representations, 2025. URL
https://openreview.net/forum?id=oVKEAF JEqvV.

R. Rafailov, A. Sharma, E. Mitchell, S. Ermon, C. D. Manning, and C. Finn. Direct preference
optimization: Your language model is secretly a reward model, 2024. URL https://arxiv.
org/abs/2305.18290.

T. Schmied, J. Bornschein, J. Grau-Moya, M. Wulfmeier, and R. Pascanu. Llms are greedy agents:
Effects of 1l fine-tuning on decision-making abilities, 2025. URL |https://arxiv.org/abs/
2504.16078.

N. Shinn, F. Cassano, E. Berman, A. Gopinath, K. Narasimhan, and S. Yao. Reflexion: Language
agents with verbal reinforcement learning, 2023. URL https://arxiv.org/abs/2303}
11366.

M. Simchowitz, D. Pfrommer, and A. Jadbabaie. The pitfalls of imitation learning when actions are
continuous, 2025. URL https://arxiv.org/abs/2503.09722.

P. Sodhi, S. Branavan, Y. Artzi, and R. McDonald. Step: Stacked LLM policies for web actions. In
First Conference on Language Modeling, 2024. URL https://openreview.net/forum?
1d=5fg0VtRxgi.

H. Wang, S. Hao, H. Dong, S. Zhang, Y. Bao, Z. Yang, and Y. Wu. Offline reinforcement learning for
Ilm multi-step reasoning, 2024. URL https://arxiv.org/abs/2412.16145.

Z. Wang, J. Mao, D. Fried, and G. Neubig. Agent workflow memory, 2025. URL https://
openreview.net/forum?id=PfYg3eRrNi.

10

https://arxiv.org/abs/2503.09572
https://arxiv.org/abs/2503.09572
https://arxiv.org/abs/2503.09572
https://aclanthology.org/2024.acl-long.371/
https://aclanthology.org/2024.acl-long.371/
https://aclanthology.org/2024.acl-long.371/
https://openreview.net/forum?id=L6RpQ1h4Nx
https://aclanthology.org/2024.acl-long.50/
https://openreview.net/forum?id=kpL66Mvd2a
https://arxiv.org/abs/2410.02907
https://arxiv.org/abs/2410.02907
https://arxiv.org/abs/2410.02907
https://openreview.net/forum?id=LuytzzohTa
https://openreview.net/forum?id=oVKEAFjEqv
https://arxiv.org/abs/2305.18290
https://arxiv.org/abs/2305.18290
https://arxiv.org/abs/2305.18290
https://arxiv.org/abs/2504.16078
https://arxiv.org/abs/2504.16078
https://arxiv.org/abs/2504.16078
https://arxiv.org/abs/2303.11366
https://arxiv.org/abs/2303.11366
https://arxiv.org/abs/2303.11366
https://arxiv.org/abs/2503.09722
https://openreview.net/forum?id=5fg0VtRxgi
https://openreview.net/forum?id=5fg0VtRxgi
https://openreview.net/forum?id=5fg0VtRxgi
https://arxiv.org/abs/2412.16145
https://openreview.net/forum?id=PfYg3eRrNi
https://openreview.net/forum?id=PfYg3eRrNi
https://openreview.net/forum?id=PfYg3eRrNi

431 K. Yang, Y. Liu, S. Chaudhary, R. Fakoor, P. Chaudhari, G. Karypis, and H. Rangwala. Agentoccam:
432 A simple yet strong baseline for LLM-based web agents. In The Thirteenth International Confer-
433 ence on Learning Representations, 2025. URL |https://openreview.net/forum?id=
434 oWdzUpOlkX.

435 M. Zare, P. M. Kebria, A. Khosravi, and S. Nahavandi. A survey of imitation learning: Algorithms,
436 recent developments, and challenges, 2023. URL https://arxiv.org/abs/2309.02473\

437 Y. Zhang, Z. Ma, Y. Ma, Z. Han, Y. Wu, and V. Tresp. Webpilot: A versatile and autonomous
438 multi-agent system for web task execution with strategic exploration, 2024. URL https://
439 arxiv.org/abs/2408.15978.

440 A.Zhou, K. Yan, M. Shlapentokh-Rothman, H. Wang, and Y.-X. Wang. Language agent tree search
441 unifies reasoning acting and planning in language models, 2024. URL https://arxiv.org/
442 abs/2310.04406.

11

https://openreview.net/forum?id=oWdzUpOlkX
https://openreview.net/forum?id=oWdzUpOlkX
https://openreview.net/forum?id=oWdzUpOlkX
https://arxiv.org/abs/2309.02473
https://arxiv.org/abs/2408.15978
https://arxiv.org/abs/2408.15978
https://arxiv.org/abs/2408.15978
https://arxiv.org/abs/2310.04406
https://arxiv.org/abs/2310.04406
https://arxiv.org/abs/2310.04406

s A Algorithm Details

Algorithm 1: and_or_tree_traversal(root)

stack.append((root, NodeState. ENTERING))
counter < 0
while stack not empty do
node, state < stack.pop()
if node.status == NodeStatus. PRUNED then
self.backtrack_failure(node)
continue

end
else if node.status == NodeStatus. DELETED then

| continue
end
if state == NodeState. ENTERING then

\ stack, node < process_node_entering(node, stack)
end
else if state == NodeState. EXITING then

\ stack, node < process_node_exiting(node, stack)
end
else if state == NodeState. FAILED then

\ stack, node < process_node_failed(node, stack)
end
if counter > BUDGET then

| break
end

end

12

444

Algorithm 2: process_node_entering(node, stack)

if node.parent and node.parent.type == NodeType.OR then
\ perform_context_rollback(node.parent)
end
set_context(node)
node.execution_count <— node.execution_count + 1
if node.type == NodeType. UNKNOWN then
node < populate_node_type(node)
stack.append((node, NodeState. EXITING))
end
if node.type == NodeType. ACTION then
stack.append((node, NodeState. EXITING))
status < perform_action(node)
if status == SUCCESS then
perform_global_tree_update()
update_notes_and_observations()
node.status <~ NodeStatus. SUCCESS
end
else
| node.status <— NodeStatus. FAIL
end
end
if node.type == NodeType.AND then
if is_successful(node) then
| continue
end
else if has_atleast_one_valid_child(node) then
foreach child Input: r
everse(node.children) do
if child.status not
in CLOSED_STATUSES then
\ stack.append((child, NodeState. ENTERING))
end
end

end
else
| node.status <— NodeStatus.FAIL
end
end
if node.type == NodeType.OR then
success < is_successful(node)
if success then
| continue
end
else if is_valid(node) then
child < find_next_promising(node.children)
stack.append((child, NodeState. ENTERING))
end
else
| node.status <— NodeStatus.FAIL
end

end
return stack, node

13

445

Algorithm 3: process_node_exiting(node, stack)

if node.type == NodeType.ACTION then
if node.status Input: F
AILED_OR_PRUNED then
\ stack.append((node, NodeState. FAILED))
end
end
else
| node.status <— NodeStatus. SUCCESS
end
if node.type == NodeType.AND then
success < is_successful_and(node)
if success then
is_complete < check_for_completion_and(node)
if is_complete then
‘ node.status < NodeStatus.SUCCESS

continue
end

else
node.status <— NodeStatus.FAILED
stack.append((node, NodeState. FAILED))

end

end

else

node.status <— NodeStatus.FAILED
stack.append((node, NodeState.FAILED))

end
end
else if node.type == NodeType.OR then
success < is_successful_or(node)
if success then
| node.status <— NodeStatus. SUCCESS
end
else
node.status <— NodeStatus.FAIL
stack.append((node, NodeState. FAILED))
end

end
return stack, node

14

446

Algorithm 4: process_node_failed(node, stack)

if node.type == NodeType.ACTION then
node.status <— NodeStatus. PRUNED
self.propagate_failure_in_tree(node)
end
Ise if node.type == NodeType.AND then
if has_atleast_one_success then
is_complete <— check_for_completion_and(node)
if is_complete then
node.status <— NodeStatus. SUCCESS
continue
end
end
is_valid < is_valid_and(node)
if not is_valid then
if node.revision_count < MAX_REVISION_COUNT then
revised < revise_and_node(node)
stack < synchronize_stack()
if node.status == NodeStatus.SUCCESS then
| continue
end
else if revised or is_valid then
node.status < NodeStatus.VISITED
self.stack.append((node, NodeState. ENTERING))

(o]

end

else

prune_node(node)

stack <— synchronize_stack(stack)
self.propagate_failure_in_tree(node)

end
end

end

end

Ise if node.type == NodeType.OR then

is_valid < is_valid_or(node.children)

if is_valid then

node.status <— NodeStatus.VISITED
self.stack.append((node, NodeState. ENTERING))
continue

[+-]

end

else

if node.revision_count < MAX_REVISION_COUNT then
revised < revise_or_node(node)

stack < synchronize_stack(node)

if revised then

node.status < NodeStatus.VISITED
self.stack.append((node, NodeState. ENTERING))
end

else

prune_node(node)

stack < synchronize_stack(node)
self.propagate_failure_in_tree(node)

end

end
end

end
return stack, node

15

I Research Pinterest to discern the top three trending women’s ethnic wear style for 1
I Diwali, identifying the signature color most closely associated with each trend and 1
Iensur‘ing this color guides your subsequent selections. For each trend and its 1
Icorresponding signature color (prefer lighter colors), locate from the Pinterest Shop one |
purse and one footwear item, ensuring that both items are in the exact same signature 1
Icolor and exemplify the identified trend; for every item, access the product page to 1
Iextract all available product details, including brand name, seller name. !

AGENT OCCAM STRUCTURED AGENT
Palazzo Suits in il i Dhoti-style with Modern Palazzo Sari Set in Pista Powder Peach
Trends € © Stripe Sari Sets
Light Pink Peplum Tops Trends gyitin Light Pink Green Stripe Sari Set
Purses Incomplete Purses
Search
Shoes Incomplete Shoes
Search
et Pt

® ©

Figure 4: AgentOccam vs Structured Agent on a Pinterest task: AgentOccam terminates its search
prematurely when it fails to explore the third trend. On the other hand, StructuredAgent is able to
successfully retrieve items for all three trending women’s ethnic wear styles.

7 B Planning Tree

16

- [0] (AND) Research Pinterest to identify the top 3 women’s ethnic wear trends for Diwali. For each trend: 1) Specify the signature color currently
trending. 2) Find one matching footwear style and one purse, both in the same color (same color as the trend) from the Pinterest Shop. 3) Provide the
name of a potential brand or seller for each footwear and purse, and include a direct source or pin link if possible. Focus on vibrant, festive, and popular
looks. Do not end your search early. Limit your review to only the first 2 scrolls of results. Do not click on external links. [success]

- [0.1] (Atomic) Search for Diwali ethnic wear trends on Pinterest (type [401] [Diwali ethnic wear trends 2024] [1]) [success]

- [0.2] (Atomic) Document 3 trending ethnic wear styles with their signature elements (note [Trending Diwali Ethnic Wear 2024: 1. Pink - Anupa Sari
with embellished blouse from INDIASPOPUP.COM 2. Pista Green - Crush fabric sari with sequins embroidery border and yellow jacquard blouse from
Etsy 3. Powder Peach - Stripe sari set with thread, pearl and sequin embroidery, featuring plunging neckline blouse from KYNAH]) [success]

- [0.3] (AND) Navigate to Pinterest Shop and search for footwear in Pink, Pista Green, and Powder Peach shades from verified sellers specifically for
Diwali looks [success]

- [0.3.1] (Atomic) Navigate to Pinterest Shop section (click [208]) [success]

- [0.3.2] (Atomic) type [401] [Pink ethnic juttis Diwali footwear] [1] (type [401] [Pink ethnic juttis Diwali footwear] [1]) [success]

- [0.3.3] (Atomic) Return to previous page after completing pink footwear search (go_back) [success]

- [0.3.4] (Atomic) type [401] [Pista Green ethnic juttis Diwali] [1] (type [401] [Pista Green ethnic juttis Diwali] [1]) [success]

- [0.3.5] (Atomic) Return to previous page to continue accessory search (go_back) [success]

- [0.3.6] (Atomic) type [401] [Powder Peach ethnic juttis Diwali] [1] (type [401] [Powder Peach ethnic juttis Diwali] [1]) [success]

- [0.4] (OR) Search Pinterest Shop for matching ethnic clutches/purses in three colors by trying alternative search terms: 1) Search "Pink potli Diwali
bag" or "Pink ethnic clutch" from verified sellers, 2) Search "Pista Green potli Diwali bag" or "Mint ethnic clutch” from verified sellers, 3) Search
"Peach potli Diwali bag" or "Blush ethnic clutch” from verified sellers. Limit to first 2 scrolls of results. [success]

- [0.4.1] (AND) Search for powder peach ethnic clutches in Shop section [success]

- [0.4.1.1] (Atomic) Search for powder peach ethnic clutches in Shop section (type [401] [powder peach ethnic clutch Diwali] [1]) [success]

- [0.4.1.2] (Atomic) Execute search query for powder peach ethnic clutches (type [401] [powder peach ethnic potli clutch bag Diwali] [1]) [success]

- [0.4.1.4] (Atomic) note [Found matching powder peach potli bags from verified sellers: 1. 5 Elements Peach Brocade Pattern Potli Bag at Pernia’s Pop
Up Shop 2. AMYRA Peach Poly Silk Pearl Embroidered Potli Bag 3. SWABHIMANN ACCESSORIES Peach Pure Silk Potli Bag] (note [Found
matching powder peach potli bags from verified sellers: 1. 5 Elements Peach Brocade Pattern Potli Bag at Pernia’s Pop Up Shop 2. AMYRA Peach
Poly Silk Pearl Embroidered Potli Bag 3. SWABHIMANN ACCESSORIES Peach Pure Silk Potli Bag]) [success]

- [0.4.1.5] (Atomic) Modify search query to find matching powder peach potli bags (type [401] [powder peach potli bag Diwali] [1]) [success]

- [0.4.1.6] (Atomic) click [208] to ensure Shop filter is active before searching for powder peach accessories (click [208] to ensure Shop filter is active
before searching for powder peach accessories) [success]

- [0.4.1.8] (Atomic) Modify search to find powder peach potli bags for Diwali (type [401] [powder peach potli bag Diwali] [1]) [success]

- [0.5] (Atomic) Document powder peach accessory pairs with seller details (note [Powder Peach - Footwear: Coral Haze Juttis, Jutti Express formal
wear, 5 Elements ethnic shoes; Purse: 5 Elements Brocade Potli with tassels, AMYRA Poly silk Pearl Embroidered Potli, Ri Ritu Kumar Net and Silk
Zari Potli]) [success]

- [0.6] (AND) Document pink and pista green accessory pairs with seller details and pin links, ensuring color coordination and authenticity of sellers
[success]

- [0.6.1] (AND) Search and document pink ethnic footwear with seller details [success]

- [0.6.1.1] (Atomic) Search for pink ethnic footwear for Diwali (type [401] [pink ethnic juttis Diwali] [1]) [success]

- [0.6.1.2] (Atomic) note [Found matching pink footwear options: 1. B Anu Designs - Baby Pink Punjabi Jutti with Mirror and Bead handwork 2. Miar
Designs - Pink Leather Embroidered Juttis at Pernia’s Pop Up Shop 3. YASSIO - Pink Silk Floral Embroidered Juttis] (note [Found matching pink
footwear options: 1. B Anu Designs - Baby Pink Punjabi Jutti with Mirror and Bead handwork 2. Miar Designs - Pink Leather Embroidered Juttis at
Pernia’s Pop Up Shop 3. YASSIO - Pink Silk Floral Embroidered Juttis]) [success]

- [0.6.1.3] (Atomic) Return to previous page to continue accessory search (go_back) [success]

- [0.6.2] (Atomic) Document matching pink potli/clutch from search results (note [Found matching pink brocade potli bag from 5 Elements with tassels
and beads embellishments, suitable for festive wear]) [success]

- [0.6.3] (Atomic) Return to previous page after powder peach potli search (go_back) [success]

- [0.6.4] (Atomic) Search for pista green ethnic footwear using specific search terms (type [401] [Pista green embroidered juttis Diwali] [1]) [success]
- [0.6.5] (Atomic) Search for matching pista green clutch/potli (type [401] [Pista green brocade potli Diwali] [1]) [success]

- [0.6.6] (Atomic) Document complete accessory details with seller information for pista green trend accessories: Footwear - House of Vian’s Crepe
Embroidered Juttis and 5 Elements’ Leatherette Embellished Juttis; Purse - 5 Elements Green Brocade Embroidered Potli with tassels and dupion
lining, and Tarini Nirula Green Brocade Stone Embellished Potli with antique gold frame (Document complete accessory details with seller information
for pista green trend accessories: Footwear - House of Vian’s Crepe Embroidered Juttis and 5 Elements’ Leatherette Embellished Juttis; Purse - 5
Elements Green Brocade Embroidered Potli with tassels and dupion lining, and Tarini Nirula Green Brocade Stone Embellished Potli with antique gold
frame) [success]

- [0.6.7] (Atomic) Search for powder peach ethnic footwear (type [401] [powder peach ethnic juttis Diwali] [1]) [success]

- [0.6.10] (AND) Search for pink ethnic footwear pins from verified sellers and save direct links [success]

- [0.6.10.1] (Atomic) View details of pink leather embroidered juttis for Pink category (click [17999]) [success]

- [0.6.10.2] (Atomic) note [Pink leather juttis by Miar Designs - Features: Leather base with coin, thread, pearl, sequins and beads embroidery, Available
at Pernia’s Pop Up Shop, Price: 40,00, Formal occasion wear] (note [Pink leather juttis by Miar Designs - Features: Leather base with coin, thread,
pearl, sequins and beads embroidery, Available at Pernia’s Pop Up Shop, Price: 40,00, Formal occasion wear]) [success]

- [0.6.10.3] (Atomic) Return to previous page to continue purse search (go_back) [success]

- [0.6.11] (Atomic) Search for matching pink potli/clutch pins (type [401] [pink ethnic potli clutch Diwali] [1]) [success]

- [0.6.14] (Atomic) Verify and document color coordination between footwear-purse pairs (note [Color coordination verified: Pink category - Pink
Beaded Mirror Work Potli and Pink Brocade Potli perfectly match the pink leather juttis from Miar Designs in shade and festive style]) [success]

- [0.7] (Atomic) Document direct pin links for pink accessories from verified sellers (note [Found verified seller pin links: 1. Pink Brocade Tassels
Embellished Potli by 5 Elements - Direct Pin ID 20730 2. Pink Brocade Ghungroo Embroidered Potli by 5 Elements - Direct Pin ID 20752 3. Pink
Beaded Mirror Work Potli by Etsy verified seller - Direct Pin ID 21242]) [success]

- [0.8] (AND) Review and document direct pin links for all three color categories ensuring each has verified footwear and purse pairs with seller details
[success]

- [0.8.1] (Atomic) Document completed findings for Pink category (note [Pink Category Complete - Footwear: Miar Designs, Purses: Pink Beaded
Mirror Work Potli (Etsy), Pink Brocade Potli (5 Elements)]) [success]

- [0.8.2] (Atomic) Navigate to Pinterest Shop section for ethnic potli clutches (click [20411]) [success]

- [0.8.7] (Atomic) Search for powder peach potli options (type [401] [powder peach ethnic potli clutch Diwali] [1]) [success]

- [0.8.8] (Atomic) Search for matching Pista Green potli options with verified sellers and clear product details (type [401] [pista green ethnic potli clutch
Diwali] [1]) (Search for matching Pista Green potli options with verified sellers and clear product details (type [401] [pista green ethnic potli clutch
Diwali] [1])) [success]

- [0.8.9] (Atomic) Document verified seller information for Pista Green potlis (note [Verified Pista Green Potlis: 1. PLODE - Green Velvet Swarovski
Triangle Potli with crystal embellishments and rhinestone strap 2. Velleso - Green Mirror Work Potli with crystal drops and silver threadwork (24x23cm)
3. The Pink Potli - Green Raw Silk Potli with bead work and tassel embellishments]) [success]

- [0.8.10] (Atomic) Search for matching Powder Peach ethnic footwear options (type [401] [powder peach ethnic footwear Diwali] [1]) [success]

- [0.8.11] (Atomic) Search for matching Pista Green ethnic footwear options with verified sellers and clear product details (type [401] [pista green
ethnic footwear Diwali] [1]) [success]

- [0.8.12] (Atomic) Document pin links and details for Pista Green category footwear and purse pairs (note [Found direct pin links for Pista Green
category: 1) House of Vian Green Crepe Embroidered Juttis with crystals and gota patti from Pernia’s Pop Up Shop 2025, 2) 5 Elements Green
Leatherette Embellished Juttis with beadwork from Pernia’s Pop Up Shop 2025]) [success]

Table 3: Planning tree that was dynamically constructed for for identifying Diwali ethnic wear trends
on a Pinterest task

17

448

449
450
451
452

453
454
455
456
457

458
459
460
461

462
463

464

465
466
467
468
469
470
471
472
473
474
475
476
477
478
479

481
482

B.1 Prompts

You are a web-browsing assistant designed to extract structured constraint data from user queries. Given a natural language query, your task is to
identify and return:

1. A list of **distinct items** the user wants to retrieve (if any). 2. For each item, a list of **item-level constraints** that are explicitly mentioned in
the query. 3. A separate list of **task-level constraints** that apply to the overall task.

Definitions:

- **[tem**: A specific product, object, or entity that the user wants to find or retrieve information about. - **Item-level constraint**: Any attribute
or specification that is directly tied to an individual item. This may include (but is not limited to): brand, model, price, rating, features, color, size,
dimensions, delivery time, material, and any other **explicitly** stated property of the item. - **Task-level constraint**: A condition that affects the
overall search or task execution rather than a specific item.

Instructions:

- You must extract **only those task-level and item-level constraints that are explicitly stated** in the query. - You must **not assume, infer, or
interpret** any implicit constraints, even if they seem logically implied or contextually likely. - Do **not include any reasoning, commentary, or
explanation** in your output. - Each item type must appear only once in the ITEM_CONSTRAINTS® list. - If the query contains no valid constraints
or items, return empty lists using the required format.

Output Format:

The result must be returned strictly in the following JSON format:

{ "TASK_CONSTRAINTS": ["explicit_task_constraint]", "explicit_task_constraint2", "..."], "ITEM_CONSTRAINTS": [{ "item_type": ["ex-

plicit_item_constraint1", "explicit_item_constraint2", "..."] }, ...] }

EXAMPLE:

QUERY: Find a black laptop bag under 40andawirelessmouseunder25. Both should be delivered within 2 days. URL: www.amazon.com
OUTPUT:

{ TASK_CONSTRAINTS: [|, ITEM_CONSTRAINTS: [{ "laptop bag": ["Color: black", "Price: under $40", "Delivery time: within 2 days"] }, {
"wireless mouse": ["Price: under $25", "Type: wireless", "Delivery time: within 2 days"] } | }
QUERY: {task_objective}

Table 4: Prompt for extracting task constraints for task completion evaluation.

We propose the Subplan Evaluator as an auxiliary module to identify and discard low-quality subplans
generated by the agent. Recall that the planner uses an LLM to expand AND and OR nodes. For an
AND node, its children represent a subplan-i.e., a sequence of high-level steps intended to fulfill the
node’s objective.

In our experiments, we observed that LLM-generated subplans are occasionally incomplete, vague, or
contain subgoals that are not actionable. For instance, the LLM may incorrectly specify an actionable
subgoal as a note atomic action. This results in subplans that fail to progress toward the objective
within the web-browser environment, as the agent merely records information rather than taking
action.

To mitigate the impact of such poor subplans, we introduce a reward model that evaluates subplans
based on criteria such as completeness, logical ordering, redundancy, and correctness. During node
expansion, the planner can sample multiple candidate subplans and use this reward model to select
the most promising one.

We describe the training procedure for this reward model using a corpus of successful trajectories
provided by |[Murty et al.|[2025]].

C Related Works..continued

Fine-Tuned LL.Ms as Web Agents: Several studies [Erdogan et al., 2025} Q1 et al., 2025[Murty:
et al.;,|2025] have explored the use of open-source language models for web-based tasks, however,
these models frequently exhibit high failure rates due to their limited capacity and insufficient domain-
specific knowledge, stemming from their relatively small sizes. To address this, later works Erdogan
et al.|[2025]], Murty et al.| [2025]] proposed fine-tuning open-source models on expert trajectories
generated either by humans or closed-source LLMs. These studies show that such fine-tuning these
models on expert trajectories significantly improves performance, particularly when test tasks are
sampled from the same distribution as the training data. These methods commonly employ either
imitation learning [Zare et al., [2023]], where agents are trained on offline expert trajectories, or
reinforcement learning (RL), where agents learn through online interactions. However, agents trained
via imitation learning merely maximize the likelihood of expert actions, making them brittle and
prone to failure on complex or out-of-distribution tasks [Simchowitz et al.l[2025]]. Their effectiveness
heavily depends on the quality and diversity of the training trajectories, which are often expensive
to collect, especially when using proprietary LLMs. On the other hand, training web agents with
online RL is computationally intensive [Kandpal and Raffel| 2025 [Wang et al.l 2024]]. Moreover,
these agents typically receive only sparse binary feedback based on task or episode completion,
which introduces a credit assignment problem in partially correct trajectories. For example, the RL
algorithm may penalize correct intermediate actions if the final outcome is a task failure. As a result,

18

You are an evaluator assessing the performance of a web-browsing agent on a specific task.

You will be provided with the following components:

- Task Description A natural-language instruction outlining the goal the agent is expected to accomplish. This may involve retrieving, summarizing,
comparing, or verifying information from the web.

- Constraints A list of specific item-level and task-level requirements that must be satisfied for the task to be considered successful.

- Trajectory Summary A step-by-step log of the agent’s interaction with the environment. Each time step includes: - Observation: Summary of the
web-page the agent perceives at that moment. - Action: The behavior or command the agent executes (e.g., clicking, searching). - Interaction History
Summary: Summary of the agent’s progress (if available)

- The agent’s final response to the task

Evaluation Guidelines

- **Evaluate each item-level constraint once per item type**. Do not repeat the constraint evaluation for each instance of the same
item type. Instead, assess whether the constraint is satisfied **across all relevant items of that type**, and justify the evaluation
with evidence from the observations, notes, or interaction history. **For example:** If the task requires finding 3 laptops under
1000, andtheagentrecommends3laptops, evaluatetheconstraint” Price : under1000" only once. Mark it as **satisfied
only if all 3 laptops** meet the price constraint.

- Only use information that is **explicitly visible** in the agent’s observations, actions, notes, and final response. Do not rely on external knowledge,
domain expertise, or assumptions made by the agent.

- Do **not assume that a constraint is satisfied** based on the agent’s search terms, reasoning, or keyword usage (e.g., searching for "size 6"). A search
query does **not guarantee™* that the results meet the constraint. A constraint is only considered satisfied if the specific value (e.g., "Size: 6") is
explicitly shown in the observations, actions or agent’s notes.

- If the task requires finding the cheapest, most rated, or most reviewed item, only verify that appropriate filters or sorting options were applied - but
*#*only if those options are actually available on the website**.

- Evaluate only based on the **final response** of the agent. Intermediate steps or partially explored options should not be considered unless they
directly contribute to the final result.

- Do **not award partial credit** for incomplete constraints. A constraint is either **fully satisfied** or **not satisfied**. All requested attribute values
(e.g., price, brand, size) are treated as **separate constraints**.

- Do **not evaluate** the agent based on constraints that are **not explicitly stated** in the task description. For example, if the task does not mention
"size," "material," or "capacity," do not treat them as constraints — even if the agent includes or discusses them during the task.

- If there is no final response or the task is incomplete, assign a score of 0.

- You do not need to consider constraints that require the agent to find items with a given delivery period as the agent does not have access to the current
date and time.

Scoring Instructions

- Assign **1 point** for each item-level or task-level constraint that is fully and explicitly grounded in the observations, notes and actions. **Confirm
that the agent is not hallucinating.** **Note:** If the recommended item costs **less than** the specified price, it still satisfies the price constraint.
Evidence for constraints satisfied must be grounded only in observations, notes and actions. **Do not** ground evidence in the final response of the
agent.

- Assign **0 points** for constraints that are: - Not satisfied or Partially Satisfied - Assumed or inferred without explicit evidence in observations, notes,
or final response

- Assign **1 point** if the task was completed successfully and the final response is likely **not hallucinated**. A task is considered **completed
successfully** if the agent provides a clear and specific final response that directly fulfills the task objective, and is **explicitly supported** by
observed content or notes.

- Normalize the score: **Score = (Number of Satisfied Constraints + 1 point if task completed) / (Total Number of Constraints + 1)** This yields a final
score between **0.0 and 1.0%*,

Final Verdict

- ®*SUCCESS** — Only if **all** explicitly stated item and task-level constraints are fully satisfied (score = 1.0) - **FAILURE** — If **any**
constraint is not satisfied, or if the task is incomplete (score < 1.0)

Your response must strictly follow this format:

1. **Task Overview** - **Task Description**: (Copy the task as provided.)

- *#*Constraints**: (List the item-level and task-level constraints exactly as stated in the task description. **Do not infer or add any additional
constraints.**)

2. **Evaluation of Each Constraint** Evaluate each constraint using one of the following labels: - Satisfied - Partially Satisfied - Not Satisfied
Constraint 1: Evidence: Evaluation: Reason:

Constraint 2: Evidence: Evaluation: Reason:

(Continue for all constraints.) **Note**: Evidence must be grounded in observations, notes and actions only. Evidence cannot be grounded in the final
response of the agent.

3. **Agent Behavior Assessment** - **Action Effectiveness**: Was the agent’s sequence of actions appropriate and goal-directed?

- **Interpretation Accuracy**: Did the agent correctly interpret the content it observed?

- **Handling of Multi-step Tasks (if applicable)**: Did the agent address all required components of the task?

4. **Final Scoring** - Total Satisfied Constraints: X - Total Constraints: Y - Score (X / Y): Z - Final Verdict: SUCCESS / FAILURE

5. **Summary Comments (Optional)** (Provide any additional insights or suggestions about the agent’s behavior or reasoning.)

OBJECTIVE: {objective}

CONSTRAINTS: {constraints}

FINAL RESPONSE: {notes}

TRAJECTORY ({trajectory }

Table 5: Prompt for evaluating completion of task based on observation summaries, actions, notes
and final response of the agent.

19

You are an efficient AND/OR Tree Constructing Agent specialized in web-browsing tasks. You solve complex problems using AND/OR planning trees.
You dynamically construct AND/OR planning trees from observations of the webpage’s HTML DOM structure for efficient and robust task execution.
You are provided:

- root-level task description

- task constraints at item level

- HTML DOM structure as the observation

- node_id and desription of the node to analyze

- summary of current task progress

- summary of notes taken so far

- Information about node’s siblings and node’s parent’s siblings.

Node definitions:

Node Types <AND/ OR / Atomic>

- AND Node: Represents an ordered list of logical subgoals required to achieve the node’s objective.

- OR Node: Represents alternative sub-strategies (which can be other AND/OR nodes)

- Atomic Action: Single executable action strictly matching navigation_specifications described below.

Node status indicators:

- Unvisited nodes marked UNVISITED

- Pruned nodes marked PRUNED

- Completed nodes marked SUCCESS

- Temporarily failed nodes marked FAIL

NAVIGATION_SPECIFICATIONS: <LIST OF BROWSER ACTIONS>

Your Task

For the given node:

1. First, briefly analyze the node type: Based on the available information and the node description, determine whether the node is an AND node, an OR
node, or an Atomic node. Justify your reasoning before taking any action.

2. Then, choose ONE of the following options for the node:

A. MARK node as Atomic if: - the goal can be achieved using a single atomic action that strictly matches the NAVIGATION_SPECIFICATION. OR -
the goal does not require any browser navigation actions like ‘type‘, ‘click‘, and ‘go_back" and is information retrieved from thr webpage that can be
noted down using the ‘note‘ action.

B. EXPAND the node if: - the goal is not atomic and requires executing a sequence of atomic actions from NAVIGATION_SPECIFICATIONS. Clearly
state the node type (AND/OR): - Do not consider sub-goals and sub-strategies that cannot be executed on the webpage using one action or a sequence
of actions from NAVIGATION_SPECIFICATIONS. - For AND nodes, provide ordered list of logical subgoals that are necessary for satisfying the
node’s objective. - For OR nodes, provide observable list of alternative sub-strategies only. - For OR nodes, order alternatives by likelihood of success,
assigning scores within the range (0,1). - Do not add speculative or redundant subgoals.

VERY IMPORTANT RULES: - **Focus on expanding nodes in a way that will result in completing the task faster with high probability (Don’t take
very risky actions)**.

- Make sure that the temporal order of the children of an AND node is correct, detailed, and efficient. - Make sure to not split notes into multiple atomic
actions.

- Strictly do not use ‘note‘ for noting future actions or subgoals. For example, this is not a note -> ‘[Need to examine each search result for: 1.
Publication date 2024 2. Review count 20+ 3. Confirm it’s a Japan travel guide book]*

- Use ‘go_back* action to return to previous page especially when you have consecutive atomic actions like ‘click’, ‘type‘, ‘goto.

- Atomic actions like ‘type‘, ‘click® must be accompanied with valid IDs from the HTML DOM observation.

- Use atomic action ‘note’ strictly to note information that is necessary for completing the task or for actions that cannot be executed on the webpage. -
Expand only non-atomic steps. Do not decompose goal when it is directly achievable using an action from NAVIGATION_SPECIFICATIONS.

- Create OR nodes to consider different alternative strategies in cases where failure is probable.

- Structure plans as a knowledgeable efficient human would.

Output Format:

Begin by briefly describing the key elements from the input (overall task description, task progress, task feedback, task notes, node description,
observation). Then analyze the node within the given context and clearly identifying its type.

Do not change the node’s intended objective or assume a different node objective. Your highest priority is satisfying the node’s objective.

You can borrow notes from the notes summary if it helps in achieving the node’s objective. Use the local tree information to ensure that you are not
repeating any subgoals that have already been considered.

If the node is an Atomic Action, determine and briefly analyze the 3 best possible actions it could represent. For each, explain why it fits the context.
Then, select the single best action among them that is not very risky and will contribute to faster completion of the task and justify your choice.
Conclude your response using ONE of the following formats:

FORMAT 1 (Enclose all values in «» on a single line):

Node ID: «node_id»

Node Description: «Describe what does the atomic action do»

Node Type: «Atomic»

Expansion: «Exact Atomic action from NAVIGATION_SPECIFICATIONS»

Reasoning: «Brief justification explaining why the node is classified as Atomic» OR

FORMAT 2 (Enclose all values in «» on a single line, colon (;) separated):

Node ID: «node_id»

Node Description: «node_description»

Node Type: «<AND / OR»

Expansion: «1. First subgoal; 2. Second subgoal; 3. Additional subgoals» OR «1. Alternative strategy; 2. Alternative strategy; Additional alternatives
as necessary;...»

Reasoning: «Brief justification explaining why the node is classified as AND, OR, or Atomic, based on current observations.»

Example 1: Node ID: «2.1»

Node Description: «Find recipe with visible ratings and review counts»

Node Type: «Atomic»

Expansion: «click [123]»

Example 2:

Node ID: «2»

Node Description: «Filter results by rating and number of reviews»

Node Type: «<AND»

Expansion: «1. click [Recipe with 69 ratings to check star rating]; 2. go_back; 3. click [Check page 2 if first recipe doesn’t meet criteria]; 4. go_back; 5.
click [Check page 3 if needed]»

Example 3:

Node ID: «0.5.1»

Node Description: «Filter recipes by rating and review count»

Node Type: «OR»

Expansion: «1. Manually scan recipe listings for review counts and ratings (score: 0.9), 2. Click through to individual recipes to check ratings and
reviews (score: 0.8)»

Do not output anything outside of the specified format. Atomic actions must strictly match format specified in NAVIGATION_SPECICATIONS.
NOTE: Atomic actions ‘click* and ‘type‘ must be accompanied with valid IDs from the HTML DOM observation.

ROOT-LEVEL TASK DESCRIPTION:

{task_description}

ITEM LEVEL CONSTRAINTS:

{item_constraints} {additional_context}

OBSERVATION: {observation}

NODE_ID : Description: node_id : {node_description}

LOCAL TREE INFORMATION: {local_tree_info}

Table 6: Prompt fzo(g node expansion.

You are an AND/OR Tree Completeness Evaluator Agent specialized in web-browsing tasks. Your role is to assess whether a given AND node’s
objective has been successfully executed by the child nodes.

Node definitions:

Node Types <AND/ OR / Atomic>

- AND Node: Represents an ordered list of logical subgoals required to achieve the node’s objective.

- OR Node: Represents alternative sub-strategies (which can be other AND/OR nodes)

- Atomic Action: Single executable action strictly matching navigation_specifications described below.

Node status indicators:

- Unvisited nodes marked UNVISITED

- Pruned nodes marked PRUNED

- Completed nodes marked SUCCESS

- Temporarily failed nodes marked FAIL

NAVIGATION_SPECIFICATIONS:

<LIST OF BROWSER ACTIONS>

You are provided:

- The root-level task description

- Item level constraints if any

- node_id and description of the node to analyze

- Task progress summary

- Notes summary: notes taken by the agent so far - A list of its children: each with an ID, description, and status (SUCCESS, VISITED, UNVISITED,
or PRUNED)

- Task feedback

Your task is to determine whether a given AND node is complete.

Follow the steps below to make this determination:

1. Examine the current children of the AND node and their statuses.

- Identify each child subgoal or atomic action.

- Check whether each is marked as SUCCESS, FAILURE, or INCOMPLETE.

2. Review the task progress, task feedback, and notes summary.

- Look for any additional information that confirms or contradicts the completion of the node’s objective.

3. Determine whether all required subgoals or actions are present.

- Ensure no required subgoals are missing.

- Confirm that the subgoals appear in the correct order, as expected based on the task tree and the overall task objective.

4. Verify that each required subgoal or atomic action is marked as SUCCESS.

- Do not assume completion unless it is explicitly indicated.

- Partial or INCOMPLETE statuses are not sufficient.

5. Conclude that the AND node is COMPLETE only if: - All required subgoals or atomic actions are present, in the correct order, and marked
SUCCESS: OR - The successful child nodes, task progress summary, and task feedback clearly indicate that the node’s objective has been fully
achieved.

- **You are only required to satisfy explicitly stated constraints. Do not assume or enforce any implicit constraints.**

6. Mark the AND node as INCOMPLETE if:

- The node’s objective is not fully achieved, or

- Any required subgoal, step, or relevant information is missing or not marked SUCCESS.

Special Case - Root Node Evaluation:

If the node being evaluated is the root node, you must additionally verify whether the overall task objective is fully satisfied.

- If the task requires recommending or evaluating items, then:

- You must iterate over each item that is being considered or presented as a recommendation.

- For each item, check whether it satisfies all task constraints explicitly provided in the task description or item-level constraints.

- Note that constraints that are not explicitly mentioned in the task need not be satisfied.

- The node is incomplete if any recommended item fails to meet required constraints or if evaluation is missing or partial.

- The node is incomplete if the task is incomplete and some information explicitly required by the task is missing.

- Do not assume any additional implicit constraints than the ones explicitly specified.

Begin by analyzing all the information provided (task progress summary, notes summary, node description, children description).

Provide a brief explanation for your decision, citing any missing, out-of-order, or incomplete subgoals if relevant.

End your response in strictly one of the following formats, using a single line (reasoning and node id must be enclosed in «»):

If node’s objective is achieved:

COMPLETE «node_id»

Reasoning: «Reason why node’s objective is achieved by the agent. Cite references from task progress summary, notes summary and successful
children’s description»

OR

If node’s objective is not achieved:

INCOMPLETE «node_id»

Reasoning: «Reason why node’s objective is not achieved by the agent, Cite references from task progress summary, notes summary and successful
children’s description»

Example 1:

COMPLETE «0.1»

Reasoning: «All required subgoals for finding a compact digital camera with specified requirements are present, in logical order, and marked as
SUCCESS.»

Example 2:

INCOMPLETE «0.2»

Reasoning: «The subgoal to compare prices is marked as PRUNED, and the subgoal to check reviews is missing. The AND node’s objective is not fully
achieved.»

You must strictly follow the above format.

{additional_context}

NODE ID : DESCRIPTION node_id : {node_description}

CHILDREN {children}

Table 7: Prompt for evaluating if an AND node’s objective has been achieved.

21

483
484

486
487
488

490

491
492
493
494

495
496

You are a Global AND/OR Tree Update Agent revising an existing planning tree for a web-browsing task based on current available information so that
the task is executed more efficiently. Do not change the ordering of the sub-plans.

Node definitions: Node Types <AND/ OR / Atomic> - AND Node: Represents an ordered list of logical subgoals required to achieve the node’s
objective. - OR Node: Represents alternative sub-strategies (which can be other AND/OR nodes) - Atomic Action: Single executable action strictly
matching navigation_specifications described below. Node status indicators: - Unvisited nodes marked UNVISITED - Pruned nodes marked PRUNED -
Completed nodes marked SUCCESS - Temporarily failed nodes marked FAIL

NAVIGATION_SPECIFICATIONS: <LIST OF BROWSER ACTIONS>

You are provided: -The root-level task description -Current AND/OR tree description -HTML DOM structure as the observation - Task progress
summary - Notes summary: Summary of notes taken by the agent during the task

Your task is

to carefully analyze all the information provided and determine which nodes to prune and which nodes to update.

Apply changes in this strict order:

1. PRUNE nodes that are no longer relevant or are duplicates. 2. UPDATE node descriptions if intent is unchanged but content needs minor revision.
VERY IMPORTANT RULES: - You are only allowed to PRUNE or UPDATE nodes that have not been deleted , or pruned or marked succesful. - Do
not add status of the node while updating the description. - Only use existing node IDs from the current tree; do not create new node IDs or subtrees. -
Do not PRUNE important observations relevant to the task made in Atomic nodes with action ‘note‘. - Do NOT PRUNE children that are necessary for
satisfying the parent node’s objective. - Do not change node types. - Do not change the ordering of the sub-plans.

First reason about the update to the tree based on the information given (task description, item constraints, task progress summary, notes summary,
current and/or tree description, observation) to you and then given your answer in the following format. Use the and/or tree description to ensure that
you are not repeating any subgoals that have already been considered. Format each instruction on a new single line in the format given below (All
children and description must be enclosed in «». Children should be colon (;) separated):

PRUNE [node_id] UPDATE [node_id] «Describe the node’s new objective (subgoal/strategy/description of action)»

Example:

PRUNE [1.2] PRUNE [1.3] UPDATE [0.1.2] «type eggless cake in search bar» UPDATE [0.2] «Find an eggless cake recipe with over 60 votes and at
least 4.5 star rating by examining search results»

Do not split the list across multiple lines.

ROOT-LEVEL TASK DESCRIPTION: {task_description}

{additional_context}

AND/OR TREE DESCRIPTION: {and_or_tree_description}

OBSERVATION: {observation}

Table 8: Prompt for global tree update.

You are a Web-browsing Agent specialized in web-browsing tasks. You have taken notes while completing a given task and now you need to generate
an output for the task based on the notes you have collected. You are provided: - Task description - Sequence of notes taken during the execution of task
- Planning tree representation of the task

Node definitions: Node Types <AND/ OR / Atomic> - AND Node: Represents an ordered list of logical subgoals required to achieve the node’s
objective. - OR Node: Represents alternative sub-strategies (which can be other AND/OR nodes) - Atomic Action: Single executable action strictly
matching navigation_specifications described below. Node status indicators: - Unvisited nodes marked UNVISITED - Pruned nodes marked PRUNED -
Completed nodes marked SUCCESS - Temporarily failed nodes marked FAIL

Your Task is to:

Give a detailed response that directly addresses the task description, using only the information from the notes and the planning tree presentation. Do
not add any additional information or context that is not present in the notes. Even if the selected notes indicate that the task was not complete or certain
information is missing or constraints are not met, provide the best possible response based on the available information. Do not make assumptions or
inferences beyond what is explicitly stated in the notes.

VERY IMPORTANT RULES: - Do not assume any details or context that is not explicitly mentioned in the notes.

Output Format:

Begin by analyzing the notes, then give your detailed final response in the following format.:

Task Response: «Your detailed response to the task based on the notes. If the task was not completed, this may include incomplete information or
recommendations that do not meet the constraints or requirements, if applicable. If the task was completed successfully, ensure all required details are
specified. Do not skip any information that is required by the task.»

Example: Task Response: «I successfully found a recipe for an eggless chocolate cake with over 60 votes and a rating of 4.5 stars. The recipe includes
ingredients such as flour, sugar, cocoa powder, and baking soda. I also noted that the recipe requires 30 minutes of preparation time....»

TASK DESCRIPTION: {task_description}

NOTES TAKEN DURING TASK EXECUTION: {notes}

{additional_context}

Table 9: Prompt for generating final task response from notes taken during execution.

fine-tuning generalized web agents using high-quality trajectories with dense rewards remains an
underexplored research direction.

D Fine-tuning the Subplan Evaluator via Direct Preference Optimization

To train a subplan evaluator capable of ranking high-level plans, we utilize the Direct Preference
Optimization (DPQO) algorithm [Rafailov et al.| 2024]], which is designed to fine-tune policies based
on preference comparisons rather than explicit ground-truth outputs. DPO is especially useful
in scenarios where only relative preferences over candidate responses are available, rather than
supervised labels.

In our setting, the DPO algorithm is applied to optimize a reward model , that can distinguish
between good and bad subplans, conditioned on a task description and the initial observation. DPO
learns from a dataset of preference tuples (x, 4™, 4~), where x denotes the context (in our case, task
and initial observation), y* is the preferred subplan, and y~ is a less preferred or incorrect subplan.

To construct such a dataset, we begin with the NNetNav dataset [Murty et al.l [2025]], which con-
tains successful task execution trajectories from real-world web environments. Each trajectory is

22

You are a Context Summarization and Critiquing Agent for web-browsing tasks.

Your job is to maintain an accurate, up-to-date understanding of task progress by analyzing:

- Task description

- Item-level constraints (if any)

- Task progress summary (if provided)

- Observation history (if provided)

- Action history (if provided)

- Notes summary: summary of notes taken by the agent so far (if provided)

- Current observation (HTML DOM)

INSTRUCTIONS:

0. Do not infer any details or make assumptions. 1. Analyze all available inputs, especially the current HTML DOM.

2. Ensure all summaries remain aligned with the main task objective.

3. Do not omit any information that may influence decisions or navigation.

4. Make summaries detailed, well-structured, and actionable.

5. Use the format below exactly.

6. Enclose the response to each section in double angle brackets: ‘« »*.

Begin by analyzing the given context in detail. Then given your response stricly in the following format. Your output must ensure continuity, preserve
all essential details, and contribute to successful task completion.

RESPONSE FORMAT:

OBSERVATION SUMMARY

«Describe the information from the CURRENT OBSERVATION. Emphasize elements and features that are relevant or potentially useful for fulfilling
the task objective. Include all important detail.»

OBSERVATION HIGHLIGHTS

«Single list of integer element IDs (i.e., [123, 8765, 345]) from the current DOM that are relevant for interaction or for revisiting this step later. Only
include elements from the current page. Sort by relevance, with the most important listed first.»

TASK PROGRESS

«Analyze the task progress using the task description, item-level constraints, past progress summaries, observation history, action history, and notes.
First, summarize the key high-level steps the agent has actually taken toward completing the goal, focusing only on actions that were executed. Next,
evaluate whether each explicitly stated task requirement or constraint has been satisfied—if the task involves item selection or recommendation, as:
cach item individually for compliance. Do not assume or infer unstated constraints. Finally, diagnose why the task has not yet been completed: identify
any unsatisfied constraints, incorrect actions, or gaps in execution. Conclude with key takeaways or insights from the agent’s exploration that are
relevant to achieving successful task completion.»

TASK FEEDBACK

«Based on the task progress summary, provide an outline of what the agent should focus on next to successfully complete the task. (2 sentences)»
Example:

OBSERVATION SUMMARY «The page shows search results for "iPhone 12 Pro Blue 128GB" on Amazon. The first relevant listing is an Apple
iPhone 12 Pro, 128GB in Pacific Blue (Renewed) for $314.39. Multiple other iPhone models are also shown including iPhone 12, 13, and 14 in various
colors and storage configurations....»

OBSERVATION HIGHLIGHTS

«[6028, 6033, 6042, 7204, 9277, 9280, 7242]»

NEW NOTES

«Refer to the task description and constraints, and identify all new information that can be used to completing the task. This should support future
reference and continuity. Do not assume any information or make up new details. All details must be grounded in observation and actions. »

TASK PROGRESS

«The agent has successfully navigated to an Amazon search results page and identified a relevant product listing matching the task requirements.
Specifically, the agent located an Apple iPhone 12 Pro with 128GB of storage in Pacific Blue, listed for $314.39 in renewed condition and fully
unlocked. This matches the explicitly stated constraints for model, color, and storage capacity. The observation and notes confirm that the identified
product has a strong customer rating (4.1 out of 5 from over 12,000 ratings), further supporting its relevance. All explicitly defined task constraints
appear to be satisfied: model (iPhone 12 Pro), storage (128GB), color (Pacific Blue), fully unlocked, and condition (renewed). However, the task has
not yet been completed. The agent has not taken action to click on the product listing, verify the full product details on the product page, or add the item
to the cart. These remaining steps are essential for completing the task, as product details may vary across pages. The main takeaway is that the search
and identification phase has been completed successfully, and the agent should now focus on verifying the product and adding it to the cart to fulfill the
task requirements.»

TASK FEEDBACK

«The next step should be to click on the product listing to verify all details on the product page and then add it to the cart. The agent should ensure the
exact model and specifications are confirmed before proceeding with the purchase. Focus on completing the final step of adding the item to cart.»
Do not output anything outside of the specified format.

TASK DESCRIPTION:

{task_description}

{additional_context}

CURRENT OBSERVATION:

{observation}

SS

Table 10: Prompt for generating observation summary and contex summary.

23

497

498

499
500

501
502

503

504

505
506

507
508
509
510

511
512

514
515

You are an advanced web-browsing agent that solves web-browsing related tasks.

Your job is to generate notes base on current observation as well as formulate a response to the task query based on the notes and available information.
You are given:

- Task description

- Item-level constraints (if any)

- Task progress summary (if provided)

- Action history (if provided)

- Notes: Notes taken so far (if provided)

- Current observation (HTML DOM)

INSTRUCTIONS:

0. Do not infer any details or make assumptions.

1. Analyze all available inputs, especially the current HTML DOM.

3. Do not omit any information that may influence decisions or navigation.

5. Use the format below exactly.

6. Enclose the response to each section in double angle brackets: ‘« »*.

Begin by analyzing the context in detail. Given your final answer strictly in the following format.

RESPONSE FORMAT:

NEW NOTES

«Refer to the task description and constraints, and identify all new information that can be used to completing the task. This should support future
reference and continuity. Do not assume any information or make up new details. All details must be grounded in observation. Do not skip any
important notes relevant to the task. »

TASK RESPONSE

«Give a detailed response (you may repeat information from the above notes) that directly addresses the task description and constraints (if any), using
only the information from the previous notes,new notes, and the action history. Do not add any additional information or context that is not present in
the available information. Even if the selected notes indicate that the task was not complete or certain information is missing or constraints are not met,
provide the best possible response based on the available information. Do not make assumptions or inferences beyond what is explicitly stated in the
notes.»

Example:

NEW NOTES

«Found relevant iPhone 12 Pro listing matching requirements: - Model: iPhone 12 Pro - Storage: 128GB - Color: Pacific Blue - Price: $314.39 -
Condition: Renewed - Fully Unlocked - Rating: 4.1/5 stars from 12,669 ratings»

TASK RESPONSE

«Based on the task requirements, I have found an Apple iPhone 12 Pro with 128GB of storage in Pacific Blue, fully unlocked, in renewed condition, and
priced at $314.39. The listing has a solid customer rating of 4.1 out of 5 from 12,669 reviews.»

Do not output anything outside of the specified format.

TASK DESCRIPTION: {task_description}

{additional_context}

PREVIOUS NOTES: {notes}

CURRENT OBSERVATION: {observation }

Table 11: Prompt for generating notes summary.

represented as:

NN
D= (ij{(ogvag) i:Jl)
j=1
where Tj is the natural language description of the j-th task, og € O is the observation at step 7 of
trajectory j, a] € A is the atomic action taken at that step, L; is the length of the trajectory, and M
is the total number of trajectories.
From each successful trajectory, we extract a high-level plan p; = {g1, g2, ..., gn} consisting of
subgoals that were necessary and sufficient for completing the task. These subgoals are obtained by
prompting a large language model with the task description 7}, the initial observation of, and the

. i\ Lj
complete action sequence {a}};”.

Since the agent only observes o{ at the time of planning, we summarize this observation into a natural
language form O}, and define the input context as z; = (O}, T}).

To generate negative examples, we define a set of perturbation rules that simulate common subgoal
planning errors observed in real trajectories. For each good plan p;, we sample a rule and apply

it using a language model to produce a corrupted plan p;,, where l=1,...,K. This gives us K
negative plans per positive plan, resulting in a preference dataset of the form:

M
,Dpref - {(xjapﬁ {pj_,l}llil)}j:

where x; = (O;,Tj) is the input context, p; is the preferred (good) subplan, and p;, are the
corresponding perturbed (bad) subplans.

Learning with DPO. The DPO algorithm fine-tunes a policy 7,.(y |) using preference com-

parisons. The reward function associated with a candidate subplan y under context x is defined
as:

24

You are an advanced web-browsing agent. Your task is to maintain a table of candidate items by parsing the current webpage’s HTML DOM and
applying ’ADD’, "UPDATE’, or 'DELETE’ actions. Your goal is to keep the table accurate, up to date, and free of duplicates, based only on information
explicitly visible in the DOM.

You are given:

-HTML DOM of the current webpage

- task description

- item-level constraints

VERY IMPORTANT

- Record all important details that are relevant to the task and can be used for completing the task. Include any additional relevant details.
- Only include keys whose values are **clearly visible** in the HTML DOM. Record the exact value corresponding to each key.
- Keys must match attributes listed under ITEMS AND CONSTRAINTS.

IMPORTANT RULES

Use this table to keep track of potential candidate solutions that can be used in the future for task completion or if search fails.
1. Matching and Deduplication

- Before using ‘ADD*, check whether the item already exists in the candidate table.

- An item is considered a duplicate if all its visible fields match an existing entry (even if the ID differs).
- If a match is found:

- Use ‘UPDATE" with the existing ID.

- Only include fields that are newly visible or changed.

- Do **not** use ‘ADD* for duplicates.

2. Field Visibility - Only include fields with values explicitly visible in the HTML DOM.

- Do **not** guess or infer missing values.

- Add exact values instead of simply checking if constraints is satisfied.

- Do **not** include ‘"unknown"* or empty-string values for missing fields.

- Omit any field that is not explicitly visible.

3. Constraint Checking

3.1 Basic Constraint Handling - For each item, evaluate which required constraints are satisfied.

- If any are violated or missing:

- Add ‘constraints_not_met* listing the missing/invalid fields (e.g., ‘lift range, tray type‘)

- Set ‘status: uncertain®

- Add a brief ‘comment’ (e.g., "missing lift range")

3.2 Add Only When Most Constraints Are Met - Only use ‘ADD" if the item satisfies **most** required constraints (at least 60%).
- If fewer than half are satisfied: - Do **not** add the item.

- If it already exists, consider using ‘UPDATE* or ‘DELETE".

4. When to Use ‘UPDATE"*

Only use ‘UPDATE’ when **at least one of the following is true®*:

- A previously missing field has now been found (and was not already present)

- The item now meets all required constraints and can be marked ‘status: complete*

Do **not** update items:

- If nothing has changed

- If the values are already present and correct

- If the item is already marked ‘deleted*

5. Deletion - Use ‘DELETE" only if the item is **clearly invalid** — for example:

- Itis irrelevant

- It is severely incomplete (missing most required fields)

- It does not satisfy constraints and is not fixable

- Never issue ‘UPDATE" for an item that has already been deleted.

6. ID Assignment

- When using ‘ADD", assign a unique ID not already present in the table (e.g., ‘S102°, ‘CHO014°).

7. Item Validity

- The ‘item* name must match a known type defined under ITEMS AND CONSTRAINTS.

- Skip any item with an invalid or unrecognized type.

RESPONSE FORMAT

- Return only valid ‘ADD*, ‘UPDATE’, or ‘DELETE® actions — one per line.

- Do **not** return the HTML DOM or candidate table.

- Do **not** include explanation or commentary.

- If no action is needed, return an empty string.

Your response must strictly follow the following format.

Use one or more of the following actions, one per line:

ADD item:ID:UniquelD; key1:valuel; key2:value2; ...

UPDATE item:ExistingID key1:valuel; key2:value2; ...

DELETE item [ExistingID]

Note: item must match exactly to the items in item-level constraints.

‘While adding new items, always include the name or the title of the item.

EXAMPLES

ADD standing desk:ID:S102; Title:ErgoRise Desk; Price:$299.99; surface finish:Matte; status:uncertain; comment:"missing tray type and lift range"
UPDATE standing desk:S101 lift range:"24=48"; status:complete; comment:"lift range confirmed"
DELETE standing desk [S099]

TASK DESCRIPTION (task_description }

ITEMS AND CONSTRAINTS {items_and_constraints}

CURRENT CANDIDATE TABLES {current_table}

WEB PAGE CONTENT {current_observation}

Table 12: Prompt for extracting candidate items to add to structured memory

25

You are a web-browsing assistant. Given a user query, extract a list of items to retrieve and, for each item, list all relevant item-specific constraints such
as brand, price, rating, features, delivery time, etc.

Include any other item attributes explicitly or implicitly mentioned in the query that affect the desirability, quality, or functionality of the item (e.g.,
surface finish, memory presets, power type, compatibility). Treat these as additional constraints.

Include all intrinsic item-specific constraints, even if mentioned implicitly or as part of comparison criteria (e.g., “differ in brand or surface finish”
implies that brand and surface finish are relevant constraints). Treat such attributes as constraints to be listed.

Ignore any source-specific constraints (e.g., “from [a specific website]”) and general task-level instructions (e.g., “compare prices”, “top three results”).
Only include intrinsic item-specific constraints.

Only include items to retrieve—ignore any actions to perform. Ensure each item listed is unique. If there are no items to retrieve, return an empty list.
Output your response strictly in the following JSON format:

"ITEMS": ["item": "<description of item>", "constraints": ["<constraint]>", "<constraint2>", "..."] , ... |

Do not include any additional explanation. Always follow this format exactly.

TASK DESCRIPTION

{task_description }

ITEMS AND CONSTRAINTS

{items_and_constraints}

CURRENT CANDIDATE TABLES

{current_table}

WEB PAGE CONTENT

{current_observation}

Table 13: Prompt for extracting item-level constraints and attributes from task description.

You are a validation assistant for a candidate item table.

Your task is to verify whether each item satisfies the required constraints for its item type. If any constraint is violated or missing, issue an ‘UPDATE* or
‘DELETE’ command to adjust the table accordingly.

INSTRUCTIONS

1. For each item:

- Issue an ‘UPDATE" only if all of the following are true:

- The item is not marked as deleted

- One or more constraints are violated or missing

- The current values of ‘constraints_not_met", ‘status‘, or ‘comment* are incorrect, incomplete, or missing

- Use the following form:
““ UPDATE item:ID constraints_not_met: <key1> <key2> ..., status: uncertain or complete; comment: "brief explanation
- You are only allowed to update the following fields: - ‘constraints_not_met - ‘status‘ - ‘comment*

- Do not issue duplicate updates. Skip updates if no changes are needed.

- Issue a ‘DELETE" only if:

- The item is marked as complete but fails to meet any constraint

- Or the item is mostly complete but violates most required constraints

- Use this format: ““ DELETE item [ID] “*

- Do not delete items that are mostly incomplete or missing most of the required fields. These should be updated instead.
2. Item Validity - The ‘item* in every ‘UPDATE‘ or ‘DELETE‘ command must exactly match a valid item type defined under ‘ITEMS AND
CONSTRAINTS*.

- Skip any action for items with invalid or unrecognized types.

3. If the item satisfies all constraints and is already marked ‘status: complete*, or if the item is incomplete but does not require any changes, return
nothing.

RESPONSE FORMAT

- Return only ‘UPDATE" and ‘DELETE commands, one per line.

- Do not return the full item rows or any explanation.

- If no action is needed, return an empty string.

- Use one or more of the following actions, one per line.

- Note: item must match exactly to the items in item-level constraints.

Your response must strictly follow the following format.

Use one or more of the following actions, one per line:

UPDATE item:ExistingID key 1:valuel; key2:value2; ...

DELETE item [ExistingID]

EXAMPLES

UPDATE standing desk:SD002 constraints_not_met: <lift range> <tray type>; status: uncertain; comment: "Missing lift range and tray type"
DELETE standing desk [SD010]

TASK DESCRIPTION

{task_description}

ITEMS AND CONSTRAINTS

{items_and_constraints}

CANDIDATE TABLE:

{current_table}

Table 14: Prompt for updating structured memory

26

516
517
518

519
520
521
522

524
525

526
527

You are an AND/OR Tree Repairer Agent specialized in web-browsing tasks. Your job is to repair a node in an AND/OR planning tree derived from
HTML DOM structure observations.

Node definitions:

Node Types <AND/ OR / Atomic>

- AND Node: Represents an ordered list of logical subgoals required to achieve the node’s objective.

- OR Node: Represents alternative sub-strategies (which can be other AND/OR nodes)

- Atomic Action: Single executable action strictly matching navigation_specifications described below.

Node status indicators:

- Unvisited nodes marked UNVISITED

- Pruned nodes marked PRUNED

- Completed nodes marked SUCCESS

- Temporarily failed nodes marked FAIL

NAVIGATION_SPECIFICATIONS:

<LIST OF BROWSER ACTIONS>

You are provided:

- root-level task description

- task constraints at item level - HTML DOM structure as the observation - node_id and desription of the node to analyze - A list of its children: each
with an ID, description, and status (SUCCESS, VISITED, UNVISITED, or PRUNED) - A successor node with id and description, if present - Task
progress summary of the task - Notes summary of the task : Notes taken by the agent so far

Your task:

Your task is to review all the information provided including reasoning for repair (if available) and use it to repair the node. Make sure you prune
infeasible subgoals (which have not been marked successful or pruned) and add subgoals that are necessary for completing the node’s objective:
Repair the node by pruning or adding children to the node: Remove old infeasible children and add new children that were not previously used.
VERY IMPORTANT: -Assess node repairability using node type, child status, and remaining unmet goals. -Add only new, untried children , not already
present or marked SUCCESS or PRUNED. These children will be appended to existing children. -Each child must be minimal, concrete, and justified
by the current DOM. -For OR nodes: Suggest only new, obvious alternatives from the DOM. -For AND nodes: Suggest only missing or incomplete
subgoals in correct order. -Do NOT PRUNE children that are necessary for satisfying the parent node’s objective.

First reason about the repair and then give the final answer in the following format (Enclose all values in «» on a single line, colon (;) separated.
Ordering: Prune first, then add children):

PRUNE [node_id of child] ADD [repair_node_id] repair_node_type : «1. First added subgoal; 2. Second added subgoal; 3. Additional added subgoals
as necessary» OR ADD [node_id] node_type : «1. Added alternative strategy 1 (score: 0.x); 2. Added alternative strategy 2 (score: 0.y); Added
additional alternatives as necessary» Reasoning «Reason for the nodes pruned and added.»

Example 1: PRUNE [1246] PRUNE [1245] ADD [1244] AND : «1. Go north for 5 meters; 2. Turn left at the intersection; 3. Walk for 10 minutes»>
OR ADD [1244] OR : «1. Open the door (score: 0.9); 2. Pick up the key (score: 0.8)»

Do not re-add processed or pruned children. Note that you can only prune children of the node to repair and add children to the node to repair. Added
children will be appended to existing successful children. Respond using only the above. No extra text. Valid node_types are AND/OR/Atomic .
ROOT-LEVEL TASK DESCRIPTION: {task_description}

{additional_context}

OBSERVATION: {observation}

NODE ID : Description {node_id} {node_type} : {node_description}

NODE_CHILDREN_REPRESENTATION: children

REASON FOR REPAIR reason_for_repair

LOCAL TREE INFORMATION: {local_tree_info}

Table 15: Prompt for Node Repair

™ (y | x)

Teet (Y |)

where Z(.) is a partition function defined as Z(x) = Z Tref(Y |) exp(% r(x, y)) .
y

r(z,y) = Blog + Blog Z(x),

ey

Here, 7, is the reward policy being trained and 7,y is a fixed reference policy. In our case, 7 1S
the initial supervised fine-tuned (SFT) model, denoted 7spr, which is trained only on the good plans
extracted from the successful trajectories. Thus,

T (y |)

— + Blog Z(x).

r(z,y) = Blog

The parameter 3 € R controls the deviation from the reference policy 7sgr; smaller values of 3
encourage the reward model to stay closer to the reference, while larger values allow greater deviation
in favor of stronger preference alignment. This reward encourages 7, to assign higher probability to
plans that are preferred over those rejected, while regularizing against drift from mgpr.

Given a preference pair (p;, pj_l) under context x;, the DPO loss is given by:

exp(r(z;,p)))
exp(r(z;,p;)) + exp(r(z;, p;;))

Lppo = —log

This objective is minimized across all preference pairs in Dyt to obtain the final trained reward
policy 7.

After training, the policy 7, serves as a reward model capable of scoring subplans. At inference
time, given a task description 7" and an initial observation O, we construct a context x = (O, T') and

27

528
529

531

532

533

534
535
536

537
538
539

540
541

542
543
544

545

547

548
549
550

551
552

553
554
555

556
557
558

13.1

12.5 A
10.9

10.0 A

7.5 4 6.8

5.5 5.4
5.0 1

Avg No of Steps

2.5 A

0.0 ' ' ' . .
mo\"} ent cam ent cron
cructure® ViNoIo® Mme“tocgﬂuc‘“‘ed Coude M

Figure 5: Average number of steps taken by the agents on Complex Shopping tasks using Claude 3.5
as the backbone model.

evaluate a set of candidate subplans {p1, ..., pp} using the DPO reward function. The best subplan
is selected as:

p*=arg max r(z,p)=arg max flog M
pE€{p1,.--,PP} pE€{p1,.--,PP} 7TSFT(p ‘ 90)

This allows us to rank and select subplans based on their relative preference score, as learned from
comparisons during training.

E Experimental Details

Amazon Shopping Tasks

* Recommend 3 standing desks under $350 that support lift ranges from < 24” to > 48” and
include a cable management tray. Each recommendation should differ in brand or surface
finish. Do not add to cart-list lift range, tray type, and price.

* Recommend 3 pressure cookers under $100 with stainless steel inner pots and yogurt mode.
Each must be from a different brand. Do not add to cart—list material, features, rating, and
price.

» Recommend 3 wireless printers under $150 that support both AirPrint and borderless 4x6
photo printing. Do not add to cart-list brand, print support, and price.

» Recommend 3 mechanical keyboards under $400 with hot-swappable keys. Ensure variety
in switch type or layout (e.g., 75%, TKL). Do not add to cart-list hot-swap support, switch
type, and price.

* Recommend 3 laptop backpacks under $200 that support 17-inch laptops, include a padded
sleeve, and have a hidden anti-theft pocket. Ensure variation in material, port support, or
design. Do not add to cart-list capacity, features, and price.

* Recommend 3 noise-canceling headphones under $300 with multi-device pairing and passive
listening support. Ensure brand diversity. Do not add to cart-list battery specs, pairing
support, and price.

* Recommend 3 air purifiers under $350 with washable pre-filters and a night mode that
disables display lights. Do not add to cart-list pre-filter type, noise level, and price.

* Recommend 3 external SSDs (1TB) under $120 that use USB-C and offer hardware encryp-
tion. Ensure diversity in brand or ruggedness. Do not add to cart-list encryption support,
interface, and price.

* Recommend 3 espresso machines under $450 that include a milk frother and removable
water tank. Ensure different frother types or build designs. Do not add to cart-list milk
system, tank size, and price.

28

559
560
561

562
563
564
565
566

567
568
569
570
571

572

574
575

576
577

579

580
581
582
583

584
585
586
587
588

589
590
591
592

593
594
595
596

598
599
600

601

603
604
605

606
607

608
609
610

611
612
613

Recommend 3 portable projectors under $300 with 1080p native resolution, tripod screw
mount, and built-in Bluetooth speakers. Ensure model diversity. Do not add to cart—list
resolution, mounting, audio features, and price.

Find the cheapest projector and screen set under $450: (1) portable projector with native
1080p, Bluetooth 5.0+, keystone correction, and 300+ ANSI lumens; (2) 70-100 inch
outdoor screen. Recommend 3 combinations varying by projector brand. Choose the set
with the highest total reviews. List model names, Bluetooth version, brightness, and total
price.

Find the cheapest pair under $350 that includes: (1) over-ear wireless ANC headphones
with 40h+ battery life and USB-C charging; (2) premium Bluetooth 5.0+ speaker with
stereo pairing and IPX5 water resistance. Both must be rated 4.3+ stars. Recommend 3
brand-distinct combos. List battery specs, pairing and water-resistance features, rating, and
total cost.

Recommend 3 lightweight work kits under $400 with fast delivery: (1) adjustable aluminum
laptop stand supporting 10kg+; (2) rechargeable wireless keyboard + mouse; (3) USB-C
hub with HDMI, SD, and Ethernet. Choose the combo with the fastest shipping (2 days or
less). List ports, delivery times, and prices.

Under $450, find the most-reviewed premium travel set: (1) 17 inch anti-theft backpack
with TSA lock; (2) 8-piece compression packing cube set made from water-resistant fabric;
(3) digital luggage scale with auto-off, tare, and backlight. All rated 4.3+ stars. Recommend
most-reviewed option. List features, review counts, and total price.

Recommend the cheapest high-end ergonomic combo under $900: (1) dual-motor standing
desk (dual 275+ 1b capacity, cable tray, programmable presets); (2) office chair with ad-
justable headrest, and lumbar support. Both must be rated 4.5+ stars and have 500+ reviews.
List brands, specs, and combined price.

Find the fastest-delivery smart home bundle under $500: (1) smart speaker with built-in
voice assistant and premium audio; (2) smart bulb pack with color plus tuneable white and
10K+ hour lifespan; (3) smart plug with energy monitoring and USB port. All must be rated
4.5+ stars and offer two-day delivery. List assistant, bulb specs, plug features, delivery ETA,
and price.

Recommend 3 pro-level chef’s prep kits under $400: (1) 8" stainless chef’s knife with
full tang and thermo-transfer handle; (2) digital food thermometer with +0.1°C accuracy,
fast-read (<5s), and auto-off; (3) bamboo cutting board set with juice groove and non-slip
feet. Choose highest-rated combination. List specs, ratings, and price.

Find the most-reviewed outdoor adventure set under $500 each: (1) waterproof hiking back-
pack (30—40L) with rain cover; (2) rechargeable headlamp (500+ lumens) with adjustable
beam; (3) vacuum-insulated stainless steel bottle (32 oz) with sweat-proof exterior. All rated
4.5+ stars. List capacities, feature specs, review counts, and total price.

Recommend 3 advanced artist kits under $250: (1) LED desk lamp with CRI> 90 and
adjustable 3000K-6500K color; (2) sketchbook A4 with 200gsm acid-free paper; (3) graphite
pencil set including 2H-8B and charcoal. Kits must differ by lamp or sketchbook brand.
List specs, brand, review counts, and price.

Find the fastest-delivery premium pet care bundle under $250: (1) hands-free dog leash with
reflective stitching, padded waist belt, and shock absorber; (2) collapsible BPA-free silicone
travel bowl; (3) no-pull harness with five-point control and breathable mesh. All rated 4.5+
stars with two-day delivery. List materials, feature highlights, shipping ETA, review counts,
and combined price.

Recommend 2 cordless stick vacuums under $200 with detachable batteries, HEPA filtration,
at least 25 minutes runtime, and listed runtime and battery replacement ease.

Find 3 premium gaming chairs under $300 with adjustable lumbar support, at least 150-
degree recline, verified user weight support of at least 300 1bs, and listed weight capacity
and user review rating.

List 2 portable espresso makers under $100 compatible with Nespresso capsules, at least 18
bar pressure, BPA-free certification, and clearly state compatibility, pressure, and BPA-free
status. If criteria aren’t met, explain the closest match.

29

614
615
616

617
618
619
620

621
622
623

624
625
626

627
628
629

630
631
632

633
634
635

636
637
638

639
640
641

642
643
644

645
646
647

648
649

650
651
652

653
654
655

656
657
658

659
660
661

663
664

Recommend 3 noise-cancelling earbuds under $120 with at least 24-hour total playtime,
IPXS or higher waterproof rating, transparency mode, and clearly state sound quality ratings
and battery life duration.

Find 2 smart thermostats under $150 compatible with Alexa and Google Assistant, support-
ing multi-zone control, energy-saving certification, and clearly state assistant compatibility,
multi-zone capability, and certification details. If unavailable, suggest best alternatives with
limitations.

List 3 robot vacuums under $250 with mapping capability, no-go zones, voice assistant
support, runtime, and bin capacity. Identify models that fulfill most criteria if any feature is
missing.

Recommend 2 air fryers under $100 with at least five-quart capacity, dishwasher-safe
basket, preset cooking functions, and listed cooking presets and ease of cleaning. Highlight
trade-offs between price, capacity, and features if necessary.

Find 3 fitness trackers under $80 with continuous SpO2 monitoring, swim-proof rating of at
least 50 meters, sleep-tracking, battery life, and additional health monitoring features clearly
listed.

List 2 electric toothbrushes under $60 with pressure sensors, at least 30-day battery life,
ADA acceptance, charging type, and brush head replacement availability. Recommend
based on user reviews and clinical backing if ADA acceptance is missing.

Recommend 3 webcam models under $70 with autofocus, at least 1080p resolution, 60
frames per second streaming, built-in privacy cover, and microphone quality. Clearly identify
compromises on frame rate or privacy cover if necessary.

Recommend 2 wireless routers under $200 with Wi-Fi 6 support, dual-band, gigabit Ethernet
ports, and listed max coverage area. If no routers meet all, choose closest and note missing
attribute.

Find 3 kitchen stand mixers under $300 with at least 10 speeds, 5-quart bowl, and metal
construction. List speed count, bowl size, and material. If fewer than three, include models
that miss one requirement and indicate which.

List 2 Bluetooth speakers under $150 with waterproof rating of IPX7, at least 12-hour
battery life, and built-in voice assistant support. State battery life and assistant type. If
criteria aren’t met, explain closest fit.

Recommend 3 DSLR-style mirrorless cameras under $700 with interchangeable lenses, 4K
video, and in-body image stabilization. Clearly state sensor resolution, video spec, and
stabilization type. If none, suggest best trade-offs.

Find 2 cordless electric lawn mowers under $400 with at least 45 minute runtime, 20-inch
deck, and mulching capability. List runtime, deck size, and whether mulching kit included.

List 3 external SSDs under $150 with USB-C connection, at least 1 TB capacity, and read
speed over 1000 MB/s. Provide capacity, interface, and read speed. If fewer than three, note
closest specs.

Recommend 2 smartwatches under $200 with built-in GPS, NFC payments, and ECG or
heart-rate variability tracking. State GPS, NFC, and health feature. If none have ECG, list
HRYV instead.

Find 3 midsize camping tents under $200 with capacity for at least four people, full rainfly,
and tent weight under 15 pounds. List capacity, rainfly type, and weight. If criteria not fully
met, show closest option.

List 2 home security cameras under $100 with 1080p resolution, night vision, two-way
audio, and local storage option. Provide each feature’s status. If no local storage, note
cloud-only limitation.

Recommend 3 pair of running shoes under $120 with carbon-fiber plate or equivalent
propulsion tech, neutral support, and weight under 10 ounces. State plate tech, support type,
and weight. If none, note closest feature set.

30

665
666
667
668

669
670
671
672

673
674
675

676
677
678

679
680
681

682
683
684

685
686
687

688
689
690

691
692
693

694
695
696

697
698
699

701
702

703
704
705

706
707
708

709
710
71

712
713
714

715
716
77

Recommend 2 DSLR lenses under $500 for wildlife photography that have at least 300mm
focal length, image stabilization, and autofocus under 0.5s. List focal length, stabiliza-
tion type, and measured autofocus time. If none, suggest closest alternatives and note
compromises.

Find 3 camping stoves under $150 that support propane and butane, boil one liter of water
in under four minutes, and have built-in wind protection. Provide fuel type compatibility,
boil time, and wind guard design details. If fewer than three meet all, include near matches
with missing features.

List 2 insulated tumblers under $40 with 30-hour cold retention, 12-hour hot retention,
and dishwasher-safe lid. State retention times, lid type, and size. If criteria are missing,
recommend closest and explain trade-offs.

Recommend 3 external monitors under $300 with at least 27-inch size, IPS panel, 75 Hz
refresh rate, and USB-C power delivery. Provide screen size, panel type, refresh rate, and
wattage delivered via USB-C. If power delivery is absent, note fallback features.

Find 2 portable power stations under $400 with AC outlets, solar charging support, and
at least 500 Wh capacity. List AC output wattage, solar input type, and capacity. If solar
charging not supported, mention alternative recharge methods.

List 3 noise-monitoring baby monitors under $200 with temperature display, lullaby/music
playback, and two-way talk. Provide screen size (or app), temperature reporting, and audio
features. If lullaby feature is missing, note which are closest.

Recommend 2 countertop ice makers under $250 that produce at least 26 Ibs of ice per day,
have self-clean function, and use bullet-shaped ice. List daily output, cleaning cycle, and ice
type. If none match exactly, propose closest and trade-offs.

Find 3 inflatable paddle boards under $700 with maximum load of at least 300 lbs, included
pump, and thickness of at least 6 inches. Provide max load, pump type, and board thickness.
If load capacity slightly lower, note it.

List 2 smart jump ropes under $100 with integrated fitness tracking, Bluetooth app syncing,
and rechargeable battery. State tracking metrics, app availability, and battery runtime. If
rechargeable is not available, recommend suitable near match.

Recommend 3 gaming keyboards under $150 with per-key RGB lighting, hot-swappable
switches, and dedicated macro keys. Provide switch type, lighting software, and macro
implementation details. If hot-swap is not present, note it.

Recommend 3 sulfate-free shampoos under $25 that are color-safe, contain at least 2% argan
oil, and have a pH between 5 and 6. List ingredient percentages, color-safe claims, and pH
value. If pH is not listed, note this clearly.

Find 2 paraben-free retinol serums under $50 with at least 0.5% retinol, added vitamin
C, and cruelty-free certification. Clearly state retinol and vitamin C concentrations, and
certification status.

List 3 mineral sunscreens under $30 that are zinc-oxide based, at least SPF 30, reef-safe (no
oxybenzone/octinoxate), and water-resistant for at least 80 minutes. Provide SPF, zinc-oxide
percentage, and water resistance time.

Recommend 2 fragrance-free facial moisturizers under $40 with hyaluronic acid, non-
comedogenic, and dermatologist-tested. List hyaluronic acid percentage, comedogenic
rating, and dermatologist testing claims.

Find 3 sulfate-free cleansing oils under $35 with at least two plant oils, vitamin E, and
eco-cert organic certification. Clearly state oil types, vitamin E content, and certification
status.

List 2 paraben-free body lotions under $20 with at least 10% shea butter, fast-absorbing
formula, and allergy-tested status. Provide shea butter percentage, absorption claim, and
testing certification.

Recommend 3 vegan lipsticks under $25 that are cruelty-free, provide at least six-hour wear,
and include SPF 15. List wear time, SPF rating, and certification details. If SPF is absent,
clearly state the trade-off.

31

718
719
720

721
722
723

724
725
726

727

728

729
730
731
732

733
734
735

737

100 96.20 94,75

Train
Test
80
70.17 70.35
X
> 80 571 5360
E
=)
S 40
<
20
0
\ ed ed ed
Pre.tra\“ o ;‘me—t\“‘ PO F'me—mn

Figure 6: Classification accuracy of the Subplan Reward Model on the train and test sets, evaluated
using the pre-trained, SFT fine-tuned, and DPO fine-tuned versions of the unsloth/Meta-Llama-3.1-
8B-Instruct model.

* Find 2 alcohol-free facial toners under $30 with probiotics or niacinamide, non-pore-
clogging, and a pH between 4 and 5. List active ingredients and pH; if pH is not listed,
clearly note it.

* List 3 caffeine-infused eye creams under $35 that are fragrance-free, paraben-free, and claim
to reduce puffiness within 15 minutes. State caffeine concentration, effectiveness claim
timing, and ingredient exclusions.

» Recommend 2 multifunctional balm sticks under $30 that are petroleum-free, contain SPF,
and can be used on lips, cheeks, and cuticles. Provide ingredient list, SPF rating, and
specified usage areas. Clearly note if multifunction use is limited.

F Structured Agent Framework

F.1 Subplan Evaluator

For evaluating the subplan evaluator, we assess the accuracy of the learned reward model on a
held-out test set of subplan preferences. This is treated as a binary classification task where the model
must choose the preferred plan between each positive-negative plan pair. We report classification
accuracy as the primary metric for this component.

Figure[6|evaluates a pre-trained Llama-3.1-8B-Instruct model as a subplan evaluator, com-
paring it to models fine-tuned using SFT and DPO on the test subplan preference dataset. Fine-tuning
with SFT improves classification accuracy by approximately 17%, while subsequent fine-tuning with
DPO provides an additional 24% gain, resulting in a total 41% improvement over the pre-trained
model. These results highlight the effectiveness of our reward modeling approach.

32

	Introduction
	Related Works
	Preliminaries
	Structured Agent Framework
	AND/OR Planning Tree Structure
	Node State Tracking

	Tree Operations and Agent Modules
	Planning and Execution Algorithm
	Structured Memory

	Experiments
	Results
	Conclusion
	Algorithm Details
	Planning Tree
	Prompts

	Related Works..continued
	Fine-tuning the Subplan Evaluator via Direct Preference Optimization
	Experimental Details
	Structured Agent Framework
	Subplan Evaluator

