
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

A DUAL-FUSION COGNITIVE DIAGNOSIS FRAMEWORK
FOR OPEN STUDENT LEARNING ENVIRONMENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Cognitive diagnosis model (CDM) is a fundamental and upstream component in
intelligent education. It aims to infer students’ mastery levels based on historical
response logs. However, existing CDMs usually follow the ID-based embedding
paradigm, which could often diminish the effectiveness of CDMs in open student
learning environments. This is mainly because they can hardly directly infer new
students’ mastery levels or utilize new exercises or knowledge without retraining.
Textual semantic information, due to its unified feature space and easy accessibil-
ity, can help alleviate this issue. Unfortunately, directly incorporating semantic
information may not benefit CDMs, since it does not capture response-relevant
features and thus discards the individual characteristics of each student. To this
end, this paper proposes a dual-fusion cognitive diagnosis framework (DFCD) to
address the challenge of aligning two different modalities, i.e., textual semantic
features and response-relevant features. Specifically, in DFCD, we first propose the
exercise-refiner and concept-refiner to make the exercises and knowledge concepts
more coherent and reasonable via large language models. Then, DFCD encodes the
refined features using text embedding models to obtain the semantic information.
For response-related features, we propose a novel response matrix to fully incorpo-
rate the information within the response logs. Finally, DFCD designs a dual-fusion
module to merge the two modal features. The ultimate representations possess
the capability of inference in open student learning environments and can be also
plugged in existing CDMs. Extensive experiments across real-world datasets show
that DFCD achieves superior performance by integrating different modalities and
strong adaptability in open student learning environments.

1 INTRODUCTION

Nowadays, intelligent education is gaining increasing attention in the field of computer science Liu
(2021); Chen et al. (2023); Liu et al. (2023); Zhou et al. (2024). Cognitive diagnosis (CD), which is a
fundamental upstream task in intelligent education Anderson et al. (2014), acts as a pivotal role in cur-
rent student learning environments Liu (2021). It has a significant and primary impact on subsequent
components such as computer adaptive testing Zhuang et al. (2022), course recommendations Huang
et al. (2019); Xu & Zhou (2020), and learning path recommendations Liu et al. (2019). As illustrated
in the left part of Figure 1, its goal is to deduce students’ mastery level on each concept and other
attributes, such as the difficulty levels of exercises through historical response logs and a Q-matrix.

Classical educational measurement cognitive diagnosis models (CDMs), such as item response
theory (IRT) and the deterministic input, noisy and gate model (DINA) De La Torre (2009), either
rely on hand-crafted interaction functions or stringent assumptions (e.g., students must master all
concepts associated with an exercise to answer it correctly) or complex parameter estimation methods.
These make them unsuitable for large-scale student learning environments. Consequently, neural-
based CDMs have recently emerged rapidly. Most existing neural-based CDMs Wang et al. (2020a);
Gao et al. (2021); Ma et al. (2022); Wang et al. (2023) follow the traditional ID-based embedding
paradigm, vectorizing students, exercises and concepts through embeddings and distinguishing them
by IDs. They subsequently update the ID-embeddings by recovering historical response logs (i.e.,
predict student score on exercises) through binary cross entropy (BCE) loss. However, adhering
to this paradigm can lead to failure in open student learning environments where the number or
content of students, exercises and concepts are dynamically changing. Students today often complete
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Figure 1: The left subfigure denotes the process of CD. The middle subfigure shows the results of
the motivation study on MOOC-Radar dataset. The right subfigure shows the t-SNE visualization of
exercise text via text-embedding-ada-002 from the NeurIPS2020 dataset, with each exercise point
colored according to its corresponding concept. Notably, we select the subfigures of certain datasets
for brevity. Similar results for other datasets are presented in the Appendix B.

tests on online education platforms such as IELTS, TOEFL, and GMAT. New students with a large
number of their own response records can join at any time, and the assessment content may vary
widely. And the online system must quickly diagnose the abilities of these new students and select
subsequent test questions accordingly. Such a dynamic open student learning environment presents
a significant drawback for the traditional ID-based CDM framework which relies on retraining to
accommodate new students, exercises or concepts, because the extensive time required for retraining
is often unacceptable given the low-latency demands of real-time testing. Therefore, our core idea
is to design a framework that enables existing CDMs to be effective in open student learning
environments without the need of retraining.

Textual features (e.g., exercise text and concept name) have demonstrated the ability of generalizing
to various downstream tasks in natural language processing due to their unified nature, even in unseen
domains Radford et al. (2018; 2019); Brown et al. (2020). Clearly, textual features can potentially
alleviate the aforementioned issue. All we need is to train a projector to map the textual space to
the actual diagnostic space. However, to the best of our knowledge, textual CD is still unexplored.
Unfortunately, as shown in the middle part of Figure 1, directly incorporating text semantic features
in the traditional CD setting or open student learning environment may not benefit CDMs and can
even perform worse than the original CDM. Details of this experiment can be found in Appendix B.
We contend that two reasons account for this. First, as shown in the right part of Figure 1, exercises
with the same concept are not well-clustered together and are even quite dispersed. It indicates that
exercise text features may not directly reflect their related concepts. Second, as shown in Figure 5 of
Appendix B, exercises with similar correctness rates are far apart. It indicates that textual features do
not capture response-relevant features, thus disregarding the individual characteristics of each student.
That is to say, simply incorporating textual information is not sufficient. We must also integrate other
types of features, such as response-relevant features, to ensure the completeness of the diagnostic
information.

To this end, this paper proposes a dual-fusion cognitive diagnosis framework (DFCD) to address
the challenges of aligning two different modalities, namely, textual semantic features and response-
relevant features. DFCD enables existing CDMs to be effective in open student learning environments
without the need of retraining. Specifically, in DFCD, we first propose the exercise-refiner and
concept-refiner to make the exercises and concepts more coherent and reasonable via large language
models. Then, DFCD encodes the refined features using cutting-edge text embedding models to obtain
the textual semantic features. For response-relevant features, we propose a novel response matrix
to fully incorporate the information within the response logs and Q-Matrix, effectively balancing
the size of feature spaces of students, exercises and concepts. Finally, DFCD designs a dual-fusion
module to merge the two modal features. The ultimate representations possess the capability of
inference in open student learning environments and can be also plugged in existing CDMs. Extensive
experiments across real-world datasets show that DFCD achieves superior performance by integrating
representations in different modalities and strong adaptability in open student learning environments.

The subsequent sections respectively recap the related work, present the preliminaries, introduce the
proposed DFCD, show the empirical analysis and finally conclude the paper.
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2 RELATED WORK

2.1 COGNITIVE DIAGNOSIS MODELS

ID-based Cognitive Diagnosis Models. Most existing CDMs adhere to the ID-based embedding
paradigm, which involves vectorizing students, exercises, and concepts through embeddings and
distinguish them by their IDs. They can be categorized by the dimension of mastery levels into two
types: latent factor models (e.g., using a fixed length vector to represent students’ latent mastery
levels), such as multidimensional item response theory (MIRT)Sympson (1978), and models based
on patterns of concept mastery (i.e., the dimension of mastery level is the number of concepts), such
as DINA De La Torre (2009). These two methods either rely on hand-crafted interaction functions or
impose stringent assumptions and complex parameter estimation methods, which may not be effective
in today’s large-scale student learning environments. NCDM Wang et al. (2020a) employs multi-layer
perceptrons (MLP) as interaction function and represents mastery patterns as continuous variables
within the range of [0, 1]. Various approaches have been employed to capture fruitful information in
the response logs, such as MLP-based Ma et al. (2022); Wang et al. (2023), graph attention network
based Gao et al. (2021), Bayesian network based Li et al. (2022). However, this paradigm can fail
in open student learning environments. Due to the limitations of IDs, for instance, ID-embedding
methods require model retraining for new students, which is unacceptable in real online platforms
where timely diagnostic results are expected.

Cognitive Diagnosis Models for Open Student Learning Environments. As online education
platforms become increasingly popular, designing CDMs for open student learning environments
is crucial. ICD Tong et al. (2022) makes the first attempt to target streaming log data with the goal
of updating students’ mastery levels in real-time without the need for retraining. However, it may
require substantial time when there are numerous records in a short period. DCD Chen et al. (2023),
IDCD Li et al. (2024) and ICDM Liu et al. (2024a) rely on simple interaction matrices or hand-crafted
graph structures as the feature space, which either demonstrate unpromising performance in open
student learning environments or solely focus on a single scenario (e.g., new students). And it is
worth noting that unlike the cold-start issues addressed by TechCD Gao et al. (2023) and ZeroCD Gao
et al. (2024), open student learning environment focus on inferring the attribue for new students, new
exercises and new concepts with unseen response logs during the training phase, which is commonly
seen in current online education or testing platforms.

2.2 TEXT-BASED REPRESENTATION LEARNING IN INTELLIGENT EDUCATION SYSTEMS

Text-based representation learning in intelligent education systems has recently gained significant
popularity. NCDM+ Wang et al. (2020a) utilizes exercise text via TextCNN Kim (2014) to complete
the Q-Matrix in CD. EKT Liu et al. (2021) enhances student performance prediction in knowledge
tracing by utilizing exercise text descriptions. However, neither of them fuse the exercise text or
concept name into representations in CD. The most related work is ECD Zhou et al. (2021), which
fuses student context-aware features (e.g., parental education level, monthly study expenses) into
representations of students in cognitive diagnosis. However, such features are often difficult to obtain
in real-world scenarios due to the need to protect the privacy of students and teachers. TechCD Gao
et al. (2023) and ZeroCD Gao et al. (2024) use BERT Devlin (2018) for simply extracting exercise
text feature which is different from our focus.

3 PRELIMINARIES

Let us consider open student learning environments which contain three sets: S = {s1, . . . , }, E =
{e1, . . . , }, and C = {c1, . . . , }. The relationship between exercises and concepts is represented by
the matrix Q, which is a binary matrix where Qjk = 1 denotes exercise ej is related to concept ck. In
this paper, we consider three types of open learning environments: unseen students, unseen exercises,
and unseen concepts. For instance, in the unseen students scenario, the number of exercises and
concepts remains unchanged. Notably, this means we do not consider overlapping open scenarios,
such as the simultaneous occurrence of a large number of new students and new exercises. This is
because data from online learning platforms can always be divided into the aforementioned three
types of open learning environments based on timestamps.
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Figure 2: The overall framework of DFCD. (a) Textual feature constructor. Examples in it are all
from real data. (b) Response feature constructor. (c) Detailed components of DFCD.

Problem Definition. Suppose that the open learning student environment has collected a large number
of observed response logs, represented as triplets TO = {(s, e, r)|s ∈ SO, e ∈ EO, rse ∈ {0, 1}}.
rse = 1 represents correct and rse = 0 represents wrong. SO denotes the observed student set in
TO, and similarly, EO and CO represent the observed sets of exercises and concepts, respectively.
Assume that there are a certain number of unobserved upcoming response logs TU involving SU , EU

and CU . The goal of CD in open student learning environment is to infer the Mas ∈ R|SU |×|CO∪CU |

which denotes the latent mastery level of students on each concept.

4 METHODOLOGY: THE PROPOSED DFCD

In this section, we present the textual feature constructor and response feature constructor. Following
that, we delve into the proposed dual-fusion framework. We conclude the section by discussing the
model’s training. Notably, the strength of DFCD lies in addressing CD in open learning environments.
Hence, all its underlying notions are derived from this scenario. Nevertheless, we assert that DFCD
is versatile enough to be applied in standard scenarios like previous works Wang et al. (2020a). The
framework of DFCD is shown in Figure 2.

4.1 TEXTUAL FEATURE CONSTRUCTOR

The exercise text can, to some extent, reflect the difficulty level of specific concepts for the students.
However, it is evident that exercise text alone cannot directly reflect the expert annotated concepts
being tested. For instance, as shown in Figure 2(a), it may related to many concepts (e,g, trigonometric
functions, calculate ability), but the annotated concept is “Square Roots". The name of the concept also
has this issue; the same concept, such as “time" is completely different in physics and mathematics.
To bridge the gap between real text and its inherent concepts, inspired by the recent successes of
large language models (LLMs) in reasoning, we utilize LLMs as exercise refiner and concept refiner.
Specifically inspired by recent advancements Xi et al. (2023); Ren et al. (2024), we design the system
prompt αe, αc to function as part of the input for LLMs. This prompt aims to explicitly outline
the LLM’s role in creating precise summarizations for exercises or concepts by clearly defining
the input-output content and the desired output format. By combining this system prompt with the
exercise/concept summarization generation prompts βe and βc, we can effectively harness LLMs to
create precise summarizations. We provide vivid examples in Appendix C. The mathematical process
is as follows:

Sej = LLM(αe, βe, γej ), Sck = LLM(αc, βc, γck) , (1)

where Sej denotes the summarization result of ej , Sck denotes the summarization result of ck. γej
represents the related concept name of ej , γck represents exercises which assess ck. Finally, we can
obtain the refined textual features of exercises and concepts using advanced text embedding models.

4
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These models effectively transform diverse text inputs into fixed-length vectors, preserving their
inherent meaning and contextual information. It can be expressed as

Z(1)
ej = TEM(Sej ), Z(1)

ck
= TEM(Sck) , (2)

where Z
(1)
ej ∈ R1×dl denotes the refined textual feature of exercise ej , Z(1)

ck ∈ R1×dl denotes
the refined textual feature of concept ck. TEM denotes any text embedding modules (e.g., text-
embedding-ada-002 Brown et al. (2020), instructor Su et al. (2022)). dl is the dimension of text
embedding in TEM. Notably, since student textual profiles are difficult to obtain due to privacy and
educational sensitivity, we derive student textual features Z(1)

si as the pooled (e.g., mean) result of
the exercises they have completed. We provide the t-SNE visualization of text embeddings before
and after refinement in the Appendix C, where it can be observed that most exercises with the same
concepts are clustered more together than before refinement.

4.2 RESPONSE FEATURE CONSTRUCTOR

As shown in Figure 1, we contend that directly replacing the ID-embedding with text embedding
fails primarily because the textual descriptions do not accurately reflect the actual context of student
responses. For instance, a question might have a simple textual description, which could result in
an embedding that reflects a lower difficulty level. However, certain details may be prone to errors,
significantly reducing the students’ accuracy and revealing a higher actual difficulty level. Therefore,
fusing response feature into the representations is also very crucial. The previous work Chen et al.
(2023); Li et al. (2024), following the paradigm of recommendation systems Liang et al. (2018),
utilizes the historical interaction matrix IO as features for students or exercises. This approach may
lead to an imbalance in the size of the student and exercise feature space, causing it to fail in certain
open student learning environments, and fails to incorporate characteristics of the concepts, which
have shown success in recent works Ma et al. (2022); Wang et al. (2023). To this end, we propose the
response matrix RO ∈ R(|SO|+|EO|+|CO|)×(|SO|+|EO|+|CO|)) which incorporate both IO and QO

and balance the size of feature space well. It can be elegantly expressed in matrix form

RO =

 O IO O

IO
⊤

O QO

O QO⊤
O

 , Z(2)
si = RO

si , Z
(2)
ej = RO

ej+|SO|, Z
(2)
ck

= RO
ck+|SO|+|EO| . (3)

As shown in equation 3, students’ features consist of their responses to exercises, exercises’ features
consist of student responses and their related concepts, and concepts’ features consist of the exercises
that assess them. We can easily derive the response features from RO as shown in the right part
of equation 3, namely, Z(2)

si , Z(2)
ej and Z

(2)
ck ∈ R1×(|SO|+|EO|+|CO|).

4.3 DUAL FUSION FRAMEWORK

Projectors. After obtaining the textual features and response features, the key challenge is how to
fuse these two modalities, which have different dimensions, in a personalized manner. Firstly, we
introduce T-Projector and R-Projector to align features from two modalities in the same dimension,
facilitating subsequent processing. Concretely, in each projector, we utilize three different MLP for
students, exercises, and concepts. Here, we take student si as an example. It can be expressed as

Z̃(1)
si = MLP(1)

s (Z(1)
si ), Z̃(2)

si = MLP(2)
s (Z(2)

si ) , (4)

where Z̃
(1)
si , Z̃

(2)
si ∈ R1×d denotes the aligned student features in the dual modalities. MLP(1)

s and
MLP(2)

s are trainable neural networks to change the dimension into d.

Personalized Attention Module. As our goal is to infer the mastery level of students, which
is determined by the aforementioned two modalities, each student should have different weights
assigned to these modalities. This reflects the personalized nature of student learning in reality.
Therefore, inspired by Wang et al. (2021); Liu et al. (2024a), we design a personalized attention
module. The weight corresponding to the two modality can be computed as

w(1)
si = as tanh

(
Z̃(1)

si Ws + bs

)⊤
, w(2)

si = as tanh
(
Z̃(2)

si Ws + bs

)⊤
, (5)
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where as ∈ R1×d denotes attention vector, Wg
s ∈ Rd×d and bg

s ∈ R1×d are trainable parameters in
the students’ features fusion phase. We can derive the ultimate representation of si by normalized
weighted summed of Z̃(1)

si and Z̃
(2)
si which can be expressed as

w̃(1)
si = (1 + ew

(2)
si

−w(1)
si )−1, w̃(2)

si = (1 + ew
(1)
si

−w(2)
si )−1, Zsi = w̃(1)

si Z̃(1)
si + w̃(2)Z̃(2)

si , (6)

where w̃
(1)
si and w̃

(2)
si denotes the normalized weights. Zsi represents the fused representation of

student si. Similarly, one can obtain Zej and Zck through the same process.

Graph Encoder. Previous works Gao et al. (2021); Liu et al. (2024a) have shown that extracting
the relationships among students, exercises, and concepts is crucial, as it can enhance the model’s
generalization and interpretability performance. Therefore, we utilize a cutting-edge graph encoder
to obtain the final representation of si, which can be expressed as H = Encoder(Zs,Ze,Zc)
where Encoder can be any graph encoder like graph attention network Brody et al. (2022) or graph
transformer Shi et al. (2021). Details can found in Appendix C.

4.4 TRAINING FOR DFCD

Integrating Existing CDMs. To integrate DFCD with most existing CDMs, we need to modify the
dimensions to align with the specific type of CDM being used. Since our goal is to infer the students’
mastery levels in a fixed dimension, we assume that the total number of concepts is already known
(i.e., |CO|+ |CU |). For CDMs where the embedding size is a latent dimension (e.g., KaNCD), we
directly employ Hsi ,Hej and Hck as the input embedding for the integrated CDMs. Otherwise (e.g.,
NCDM), following Liu et al. (2024a), we introduce transformation layers. Here, we take student si
as an example, which can be formulated as

H̃si = HsiW
(s)
t + b

(s)
t , (7)

where H̃si will be employed as input embedding for incorporated CDMs and W
(s)
t ∈

Rd×(|CO|+|CU |), b(s)
t ∈ R1×(|CO|+|CU |) are trainable parameters. This significantly reduces the

time complexity of graph convolution by encoder which will be further analyzed in the Appendix C.4.
Therefore, we train the DFCD with integrated CDMs in an end-to-end manner.

SimpleCD. Existing neural-based CDMs Gao et al. (2021); Wang et al. (2023); Liu et al. (2024a)
except NCDM often have numerous parameters, which may not be effective in open learning
environments because they tend to overfit the historical response logs Li et al. (2024). Therefore, we
propose a CDM called “SimpleCD" which is parameter-free except for the interaction function. It
can be expressed as

ŷij = F((σ(HsiH
⊤
c )− σ(HejH

⊤
c ))⊙Qej )) , (8)

where ŷij ∈ [0, 1] represents the prediction score of i-th student practice j-th exercise, F(·) de-
notes the Positive MLP which is commonly utilized in CD and σ typically employs the Sigmoid.
σ(HsiH

⊤
c ∈ R1×(|CO|+|CU |)) denotes the mastery level of student si, namely Massi . “⊙” repre-

sents the element-wise product. Qej ∈ R1×(|CO|+|CU |) signifies the concepts associated with the
j-th exercise. More details about Postive MLP and SimpleCD can be found in Appendix C. We
empirically find that it works well in open student learning environments.

Optimization. Given input features of students, exercises and concepts, existing CDMs can predict
the score of students on certain exercises, which can be formulated as

ŷij = MCD(Hsi ,Hej ,Hc) , (9)

where MCD(·) denotes the CDMs, and H represents the input features that contains the representation
of the student, exercises and concepts. In the CD task, the main loss function involves computing the
BCE loss between the actual response scores and the model’s predicted outcomes in a mini-batch.
This overall loss can be expressed as follows

LBCE = −
∑

(s,e,rse)∈TO

[rse log ŷse + (1− rse) log(1− ŷse)] . (10)

Training Cost. We have conducted a complexity analysis and training speed comparison in Ap-
pendix C.4. Notably, after training, we can infer the mastery level of 126 newly arrived students
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with 1,024 response logs in just 64 ms. For the cost of using large language models, our strategy for
selecting large language models is discussed in Appendix D.4. We found that using cost-effective
models like OpenAI’s GPT-3.5-Turbo or Google’s Gemini-pro achieves relatively satisfactory results.

5 EXPERIMENT

In this section, we first delineate three real-world datasets and evaluation metrics. Then through
comprehensive experiments, we aim to manifest the preeminence of DFCD in both open student
learning environment and standard scenario. Due to space constraints, we place the experiments in
the standard scenario in Appendix D.5. To ensure reproducibility and robustness, all experiments
are conducted ten times. Our code is available at https://anonymous.4open.science/r/
DFCD-8710.

5.1 EXPERIMENTAL SETTINGS

Datasets. Our experiments are conducted on three real-world datasets, i.e., NeurIPS2020 Wang et al.
(2020b), XES3G5M Liu et al. (2024b) and MOOCRadar Yu et al. (2023). These three datasets
represents diverse educational contexts and subject, which are collected from a wide variety of courses
includes the educational contexts and subjects from chinese, history, economics ,math, physics and
so on. For more detailed statistics on these three datasets, please refer to Table 1. The details about
datasets source and data preprocessing are depicted in the Appendix D.1. Notably, “Sparsity” refers
to the sparsity of the dataset, which is calculated as |T |

|S||E| . “Average Correct Rate” represents the
average score of students on exercises, and “Q Density” indicates the average number of concepts
per exercise.

Table 1: Statistics of real-world datasets for experiments.
Datasets #Students #Exercises #Concepts #Response Logs Sparsity Average Correct Rate Q Density

NeurIPS2020 2,000 454 38 258,233 0.284 0.547 1.000
XES3G5M 2,000 1,624 241 207,204 0.063 0.817 1.000

MOOCRadar 2,000 915 696 385,323 0.210 0.878 2.240

Evaluation Metrics. To assess the efficacy of DFCD, we utilize both score prediction and in-
terpretability metrics following the previous works Wang et al. (2020a); Chen et al. (2023). This
approach offers a holistic evaluation from both the predictive accuracy and interpretability standpoints.

Score Prediction Metrics: Evaluating the efficacy of CDMs poses difficulties owing to the absence of
the true mastery level. A prevalent workaround is to appraise these models based on their capability
to predict students’ scores on exercises in the test data. The classic classification metrics such as area
under the curve (AUC), Accuracy (ACC) are used in our paper.

Interpretability Metric: Diagnostic results are highly interpretable hold significant importance in CD.
In this regard, we employ the degree of agreement (DOA), which is consistent with the approach
used in Wang et al. (2020a); Li et al. (2022). The detailed description about DOA can be found in
Appendix D.2. We compute the top 10 concepts with the highest number of response logs in our
experiment and refer to it as DOA@10.

Implementation Details. For parameter initialization, we employ the Xavier Glorot & Bengio
(2010), and for optimization purposes, Adam Kingma & Ba (2015) is adopted. The batch size is set as
1024 for all datasets. The learning rate is fixed as 1e−4. We adjust the dimension d within the range
{32, 64, 128, 256}, the type of graph encoder within the range {MLP,GCN,GAT,GT}. We utilize
four attention heads for attention-based encoders, with all other parameters set to the PyG Fey &
Lenssen (2019) defaults. We employ grid search to find the best hyperparameters using the validation
set. Selection related to LLMs is introduced in Appendix D.4. Analysis regarding the aforementioned
hyperparameters can be found in Section 5.3 and Appendix D.9.

5.2 PERFORMANCE COMPARISON IN OPEN STUDENT LEARNING ENVIRONMENT

Compared Methods. We compare DFCD against other methods and utilize the hyperparameter
settings described in their respective original publications. More details can be found in Appendix D.
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Table 2: Overall performance in open student learning environment scenario. In each column, an
entry with the best mean value is marked in bold and underline for the runner-up. The standard
deviation is not shown in the table since it is very small (less than 0.01). If the mean value of the best
model significantly differs from the runner-up, passing a t-test with a significance level of 0.05, then
we denote it with “*” at the corresponding position. “-” indicates that the model is not suitable of
calculating this metric.

Dataset NeurIPS2020 XES3G5M MOOCRadar

Metric AUC ACC DOA@10 AUC ACC DOA@10 AUC ACC DOA@10

Unseen Student

KANCD-Mean 66.60 62.18 - 71.23 82.32 - 81.60 88.70 -
KANCD-Nearest 74.59 68.00 71.15 71.55 81.97 60.27 89.37 90.34 77.98

IDCD 77.64 70.65 74.15 75.68 82.29 69.75 92.36 91.32 81.26
ICDM 67.67 62.99 62.53 70.34 81.53 61.82 86.94 89.23 71.10

DFCD 78.19 71.39∗ 74.33 77.79∗ 83.05 71.99∗ 92.91 91.68 82.15
Unseen Exercise

KANCD-Mean 67.61 62.86 70.49 55.68 77.60 58.63 59.60 62.03 74.17
KANCD-Nearest 69.58 69.12 70.01 55.34 74.12 58.58 65.14 69.85 75.59

IDCD 74.63 68.28 73.90 62.30 77.27 67.09 78.52 87.79 81.07
ICDM 69.49 64.17 64.80 61.10 79.03 63.18 79.79 87.06 73.71

DFCD 77.76∗ 71.29∗ 74.17∗ 76.15∗ 82.61∗ 71.82∗ 91.98∗ 91.61∗ 81.93
Unseen Concept

KANCD-Mean 67.91 65.61 68.21 63.01 71.57 58.89 82.30 85.58 76.48
KANCD-Nearest 70.53 65.80 68.53 65.38 81.67 57.95 84.69 87.22 76.44

IDCD 73.55 66.36 68.04 72.50 82.04 69.51 91.12 91.01 81.27
ICDM 73.43 66.40 61.08 70.75 82.04 61.53 92.15 91.18 68.08

DFCD 77.68∗ 70.68∗ 73.85∗ 78.83∗ 83.41∗ 72.14∗ 92.89∗ 91.56∗ 82.10

• KaNCD-Mean Wang et al. (2023): As the original KaNCD is designed solely for the standard
scenario. We assigns the embedding of unseen students or exercises to the average of the seen
ones Liu et al. (2024a).

• KaNCD-Nearest Wang et al. (2023): For each unseen students, exercises or concepts in TU , we
assign their embedding based on the most similar one in TO, who is selected based on the similarity
of response logs. Here, we use cosine similarity as the similarity measure function Liu et al. (2024a).

• IDCD Li et al. (2024): It propose an identifiable cognitive diagnosis framework based on a novel
response-proficiency response paradigm and its diagnostic module leverages inductive learning
representations which can be used in the open student learning environment.

• ICDM Liu et al. (2024a): It utilizes a student-centered graph and inductive mastery levels as the
aggregated outcomes of students’ neighbors in student-centered graph which enables to infer the
unseen students by finding the most suitable representations for different node types.

Details. To evaluate the effectiveness of our proposed DFCD in open student learning environments,
we conduct experiments following Liu et al. (2024a) on datasets with unseen students, unseen
exercises, and unseen concepts. For the unseen student scenario, we randomly select students who
do not appear in the training data. For the unseen exercise scenario, we randomly select exercises
not present in the training data. For the unseen concept scenario, we randomly select exercises
with concepts that are not in the training data. The test size pt is set to 0.2, following the previous
researches Wang et al. (2020a); Li et al. (2022). In order to prevent data leakage, we retain the test
data intact and partition the training data by students, exercises, or concepts at a ratio of 0.2, with
the validation ratio set at 0.1. In this approach, we can obtain two sets from training data: TO and
TU . We train the DFCD using only the TO. Then we use the TU for inference. Ultimately, the score
prediction metrics is computed only by the prediction of students set SU in TU for exercises in the
test data. We provide an example of how our DFCD trains and infers in the open student learning
environment scenario in Appendix D.3. KaNCD-Mean which assigns the embedding of unseen
students to the average of the seen ones during the training process has the same representation on
every students in test set. So it is not suitable for calculating DOA. In Table 2, we use “-” to indicate
this inapplicability.
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Results. The comparison results are listed in Table 2. We have the following key observations:

• ID-Based CDMs with a simple postprocessing such as the strategy of mean or finding the nearest
representation may solve the problem of open student learning environment to some extent. However,
they still don’t produce satisfactory results and fall significantly short compared to the outcomes
of other models. For IDCD and ICDM, which is specifically designed for open student learning
environment, they perform better than the standard CDMs in most of the cases,

• DFCD consistently outperforms the other models on all datasets and scenario. This demonstrates
that DFCD is more effective in the open student learning environment scenario in CD. And it is worth
mentioning that DFCD has such a great performance gap between other models especially in the
unseen exercise and knowledge scenario, this may be because the CD designed for open student
learning environment like IDCD and ICDM focus mainly on the unseen student. Due to the fusion of
textual features and response-relevant features, DFCD has a strong adaptability and interpretability in
all scenarios of the open student learning environments.

Ablation Study. To showcase the contributions of each component in DFCD, we conduct an
ablation study on DFCD, which is divided into the following three versions: DFCD-w.o.TE: This
version removes the text semantic embeddings. DFCD-w.o.RE: This version removes the response-
relevant embeddings. DFCD-w.o.attn: This version removes the attention module when fuse the
text semantic embeddings and response-relevant embeddings, the fusion ratio is simply set to 0.5 on
both embeddings. As shown in Table 6, DFCD surpasses almost all the versions in both prediction
and interpretability performance. This suggests that these components, when combined, enhance
DFCD. When each component is removed individually, either the prediction performance decreases
or the interpretability performance suffers, indicating that textual features and response-relevant
features is both important for the performance of the DFCD and the fusion method of these two
representations is also crucial. The DOA@10 on MOOC-Radar is higher in all scenarios when
removing the response-relevant features. This may be because there are 696 concepts. To align with
previous methods, we select DOA@10, but it may not adequately represent all concepts.

(a) NeurIPS2020 (b) XES3G5M (c) MOOCRadar

Figure 3: Comparison of DFCD with different integrated CDMs. US means the scenario of unseen
student, UE means the scenario of unseen exercise, and UC means the scenario of unseen concept.

Versatility Analysis. To showcase the versatility of DFCD, we incorporate the fused features
generated by DFCD into the commonly used CDM. In this experiment, we compare our proposed
SimpleCD with NCDM Wang et al. (2020a) and KaNCD Wang et al. (2023). For brevity, we
abbreviate unseen students as US, unseen exercises as UE, and unseen concepts as UC. As shown
in Figure 3, the proposed SimpleCD demonstrates superior performance in open student learning
environment compared. This improvement might be attributed to the overly simplistic interaction
function in NCDM, which may falls due to the weak knowledge problem Wang et al. (2023), resulting
in limited information acquisition. In open student learning environment with inherently scarce data,
this leads to significantly poor performance. While KaNCD suffers from excessive parameters, which
may makes it overfitting to historical response logs much more seriously Li et al. (2024). The less
parameters and the ability on effective information acquisition of SimpleCD contribute to the higher
performance in open student learning environment scenario.

Generalization Analysis. To assess the efficacy of DFCD’s generalization ability, we conduct
experiments on three datasets with varying test size pt = {0.1, 0.2, 0.3, 0.4, 0.5}. As pt increases
which is consistent with Gao et al. (2021), the generalization ability of CDMs is tested more
stringently. As depicted in Figure 11, with an increasing pt, the number of response logs used for
training decreases. However, DFCD consistently outperforms IDCD and ICDM in the open student
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learning environment scenario, indicating that DFCD can provide more accurate diagnosis results
with fewer response logs. Moreover, DFCD decrease more slightly with the increasing pt than others.
This is particularly suitable for current online education platform, where students often have limited
response logs. And we also conduct the experiment on cold-start scenario where response logs per
new students are sparse. We compare our DFCD with the SOTA model BetaCD Bi et al. (2023) and
show a competitive result with it in Table 7.

Diagnosis Result Analysis. Indeed, students can naturally be grouped into categories based on their
scores, such as those with low and high correct rates. This classification reflects intrinsic differences
in their mastery levels. Details can be found in Appendix D.11. As shown in Figure 14, DFCD
displays a long strip trend, with the color of the points on the strip gradually changing from lighter to
darker shades. This indicates that DFCD successfully captures both the historical and new students’
Mas trends. In contrast, the color distribution of IDCD is relatively loose, suggesting it may fail to
accurately capture students’ Mas information. Moreover, the mastery levels of new students inferred
by DFCD are more reliable, as new students with similar correct rates (colored in green) cluster
closely with historical students (colored in blue) of comparable rates.

5.3 HYPERPARAMETER ANALYSIS

The Effect of Text Embedding Model. As shown in Figure 13 in Appendix D.10, in most scenarios
and datasets, text-embedding-ada-002 and bge-m3 demonstrate superior performance, likely due to
their extensive training data, which supports them to better capture semantic information. Details can
be found in Appendix D.10. Other hyperparameter analysis can be found in Appendix D.9.

The Effect of Dimension d. The dimension d determine the dimension of the transformed text
semantic embeddings and response-relevant embeddings. As shown in Figure 12(a)(b)(c), the
performance achieve the highest point at 64 or 128 in most cases, so it is recommended to set the d
either 64 or 128 to achieve the best results in the model’s performance.

The Effect of Different Graph Encoder. We evaluate the impact of different graph encoders on
DFCD in Figure 12(d)(e)(f). Attention-based encoders (e.g., GAT, GT) outperform GCN, as open
learning environments resemble the inductive setting in graph representation learning. While MLP
achieves decent results due to our strong fused representation, but the addition of the graph structure
can catch more information of the relation between students, exercise and concept and perform better
in such a complex open student learning environment. GT generally excels as it considers all nodes,
not just local neighborhoods like GAT, making it our recommended default encoder.

The Effect of Mask Ratio. The mask is used for graph encoder for the purpose of the robustness
of models. As shown in Figure 12(g)(h)(i), there is an improvement when using the mask in the
models. And the performance become stable after the threshold of 0.3. Based on these observations,
it is advisable to set the mask ratio within the range of 0.2 to 0.3 to achieve optimal performance.

6 CONCLUSION AND DISCUSSION

Conclusion. This paper proposes an dual fusion cognitive diagnosis framework (DFCD), where most
existing CDMs can be integrated. For the first time, we identify that directly utilizing exercise text
features may not benefit CDMs and can even degrade their performance. Therefore, we leverage
LLMs as refiners to enhance the textual content. Via DFCD, we fuse the textual features with
response-relevant features and integrating existing CDMs to achieve remarkable performance in
open student learning environments on three real-world datasets. Our work enables the CDM to
better grasp the semantic meaning of exercise through leveraging LLMs’ inference capabilities and
provides a way to combine textual information and response information which allows CDM for a
more comprehensive understanding of student performance by utilizing multiple data sources.

Discussion. In the future, we plan to incorporate additional textual features, such as students’
family economic conditions or teacher quality, to further enhance the relevance and precision of the
student profile. We also aim to explore more prompt combinations or introduce suitable fine-tuning
techniques to help large language models filter out noise within the textual features, thereby reducing
potential biases. Additionally, we plan to extend DFCD to be effective in other scenarios of intelligent
education, making our model applicable to a wider range of cases.
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7 STATEMENT

7.1 ETHICS STATEMENT

In this paper, we have adhered to the ethical guidelines outlined in the ICLR Code of Ethics
https://iclr.cc/public/CodeOfEthics. Specifically, the research presented does not
involve human subjects or raise concerns related to privacy, security, or legal compliance. The
datasets used in this study are publicly available, and their use complies with all applicable licenses
and terms of use.

7.2 REPRODUCIBILITY STATEMENT

We have taken several steps to ensure the reproducibility of the results presented in this paper. Detailed
descriptions of datasets and implementation are provided in Sections 5.1 of the main paper. We
also provide our data and code in the anonymous repository at https://anonymous.4open.
science/r/DFCD-8710.
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APPENDIX

A NOTATIONS

Table 3: The notions involved in this paper.
Notation Definition

CD Cognitive Diagnosis.
CDMs Cognitive Diagnosis Models.
Mas The diagnostic result of CDMs, i.e., mastery levels of students.
SO The set of observed students.
EO The set of observed exercises.
CO The set of observed concepts.
SU The set of unobserved students.
EU The set of unobserved exercises.
CU The set of unobserved concepts.
rse The ground truth score of student si practice exercise ej .

B DETAILS ABOUT THE MOTIVATION STUDY

Here, we will provide some details about the motivation study.

Details about middle subfigure in Figure 1. We empirically find that directly replacing the ID-
embeddings with text embeddings may not benefit CDMs and can even degrade their performance.
In this study, we focus on vectorized the exercise text via cutting-edge text embedding modules.
To demonstrate this, we conduct experiments on three widely used CDMs using four types of text
embeddings, namely text-embedding-ada-002 Brown et al. (2020), BGE-M3 Chen et al. (2024),
M3E-base Wang Yuxin (2023), and Instructor-base Su et al. (2022). Here, we utilize AUC as the

(a) NeurIPS2020 (b) XES3G5M (c) MOOCRadar

Figure 4: Directly utilized text embedding may not benfit CDMs.

evaluation metric like previous works Wang et al. (2020a). We find that in all datasets, using the
original ID-embedding performs better than almost all text embeddings. This further validates our
conclusion.

Details about right subfigure in Figure 1. In this study, we first utilize the text-embedding-ada-002
to vectorized the exercise text from NeurIPS2020 dataset. We employ t-SNE Van der Maaten &
Hinton (2008), a renowned dimensionality reduction method, to map the text embeddings onto a
two-dimensional plane. Then, we use a scatter plot to visualize all the exercises in a two-dimensional
space, coloring them by different concepts. To make the plot clear and understandable, we select the
eight concepts that cover the most exercises as examples.

The visualization of exercise text embeddings. We employ t-SNE Van der Maaten & Hinton (2008)
to map the exercise text semantic embeddings onto a two-dimensional plane. By shading the scatter
plot according to the corresponding correct rates of exercise, with deeper shades of color indicating
higher correct rates, we achieve a visual representation of the exercise’ text feature distribution. The
exercise text embeddings are relatively loose in the distribution of accuracy, which cause exercises
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with high accuracy are not clustered together. This distribution will also lead to difficulties in using
the exercise text embeddings later, which is also one of the reasons why we use exercise-refiner.

(a) NeurIPS2020 (b) XES3G5M (c) MOOCRadar

Figure 5: The visualization of exercise text features.

C DETAILS ABOUT THE DFCD

C.1 EXERCISE REFINER

You will serve as an assistant to help me summarize the key challenge of the exercise and 
which kinds of ability the exercise want to test the students.

Requirements:
1. Please provide your answer in JSON format, following this structure:
{

"summarization": "briefly summarize the content of this question according to the
concept"
}
2. Please ensure that the "summarization" is no longer than 30 words.
3. Do not provide any other text outside the JSON string.

I will provide you with the basic information (content and concept) of that exercise
Here are the instructions:
1. The basic information will be described in JSON format, with the following attributes:
{

"content": "the text description of the exercise",
"concept": "concept related to the exercise"

}

2. The information I will give you:
BASIC INFORMATION: a JSON string describing the basic information about the exercise.

Exercise System Prompt Exercise Generation Prompt Exercise Supplement Prompt

{
"summarization": This question tests the student's ability

to compare and order fractions. The student needs to 
understand the concept of equivalent fractions and be able 
to find a common denominator to compare the fractions.
}

{
“Content”: How much bigger is  3/8 than 1/3             

A   2/24             B   2/5       C 1/24     D 4/11
“concept”: Ordering Fractions

}

Example

Figure 6: Prompt of refining exercises.

Mental Multiplication and Division
Multiplying and Dividing Negative Numbers
Adding and Subtracting Negative Numbers
Factors and Highest Common Factor
Multiples and Lowest Common Multiple
Multiplying Fractions
Basic Arithmetic
Dividing Fractions

(a) Before Refinement

Mental Multiplication and Division
Multiplying and Dividing Negative Numbers
Adding and Subtracting Negative Numbers
Factors and Highest Common Factor
Multiples and Lowest Common Multiple
Multiplying Fractions
Basic Arithmetic
Dividing Fractions

(b) After Refinement

Figure 7: t-SNE visualization comparing the exercise embeddings via OpenAI from the NeurIPS2020
dataset before and after refinement. (a) before refinement (b) after refinement.
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Table 4: The quantitative metrics about clustering comparison with the knowledge concepts semantic
feature before and after refinement. In each row, an entry with the best value is marked in bold.

Metric Before Refinement After Refinement

Silhouette Score↑ -0.3535 -0.2434
Davies-Bouldin Index↓ 17.7826 9.2424

Calinski-Harabasz Index↑ 7.4457 12.0039

Here, we first provide the detailed prompt of refining exercises in Figure 6. Detailed analysis can be
found in Section 4.1. As shown in Figure 7, we can see that after refinement by the exercise refiner,
exercises with the same concept are clustered more closely together, indicating that their represen-
tations better reflect the expert-labeled concepts. Moreover, we also provide detailed quantitative
metrics in Table 4 about inter-cluster and intra-cluster distances comparison before and after the
refinement to offer a more rigorous perspective. Following is brief introduction of our measurement.

• Silhouette Score: Measure the compactness of each point within its cluster and its separation from
the nearest cluster. A value closer to 1 indicates better clustering performance.

• Davies-Bouldin Index: Measure the ratio of inter-cluster distance to intra-cluster distance. A
smaller value indicates smaller intra-cluster distances and larger inter-cluster distances, signifying
better clustering performance.

• Calinski-Harabasz Index: It calculates the ratio of intra-cluster variance to inter-cluster variance. A
larger value indicates smaller intra-cluster variance and larger inter-cluster variance, signifying better
clustering performance.

C.2 CONCEPT REFINER

You will serve as an assistant to help me extend the detailed description of the knowledge 
concept.

Requirements:
1. Please provide your answer in JSON format, following this structure:
{

"summarization": "briefly summarize this knowledge concept according to the related 
exercise"
}
2. Please ensure that the "summarization" is no longer than 50 words.
3. Do not provide any other text outside the JSON string.

I will provide you with the basic information (title) of that concept and also some related 
exercises of this knowledge concept.
Here are the instructions:
1. The basic information will be described in JSON format, with the following attributes:
{

"title": "the title of the knowledge concept",
}
2. Each related exercise will be described in JSON format, with the following attributes::
{

"content": "the text description of the exercise",
    "accuracy": "accuracy rate of students on this exercise"
}

2. The information I will give you:
BASIC INFORMATION: a JSON string describing the basic information about the exercise.
RELATED EXERCISE: a list of JSON string describing some related exercises of this 
knowledge.

Concept System Prompt Concept Supplement PromptConcept Generation Prompt

{
"summarization": Angles are measured in degrees, with 

a full turn being 360 degrees. Half a turn is 180 degrees,
and three-quarters of a turn is 270 degrees.
}

1.
{

"title": Angles,
}
2.
{

"content": How many degrees are there in half a turn?    
A  180° B 90° C 50° D 30°

"accuracy": 0.8016
},
{

"content": How many degrees are there in three-
quarters of a turn?  A 75° B  90° C 180° D 
270°

"accuracy“: 0.6956
}

Example

Figure 8: Prompt of refining concepts.

Here, we first provide the detailed prompt of refining concepts in Figure 8. Apparently, the concept
name “Angles” may belong to multiple domains. However, through our designed prompt, we have
successfully refined the concept of “Angles”.

C.3 POSITIVE MLP

In educational measurement Sympson (1978), the interaction function must meet the monotonic-
ity assumption, meaning that more capable students should have higher accuracy rates. Akin to
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NCDM Wang et al. (2020a), we employ MLP and use ReLU to ensure non-negative weights, thereby
fulfilling the monotonicity assumption, referred to as Positive MLP.

C.4 TIME COMPLEXITY OF DFCD
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(a) NeurIPS2020
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Figure 9: Training speed comparision with IDCD and ICDM.

In this subsection, we present a detailed time complexity analysis of our proposed DFCD. For brevity,
we do not include the time complexity of the integrated CDMs, as it can easily add to the overall time
complexity of DFCD. Suppose that we have obtain the refined textual feature of students, exercises
and concepts. We set the default graph encoder as GT. Firstly, we introduce some notions for clarity.
d is the latent dimension transformed after projectors. L denotes the GT layer used in the graph
encoder, dl denotes the dimension of textual features, and F denotes the total number of students,
exercises, and concepts. As the Textual-Projector and Response-Projector each have three MLPs,
the total time complexity is O(3dld+ 3Fd). The time complexity of personalized attention module
is O(3Fd2). The main time complexity of graph convolution is O(LFd2). So the ultimate time
complexity of DFCD is O(LFd2 + 3dld+ 3Fd+ 3Fd2). Therefore, the running speed of DFCD is
related to the size of Fd2, where F depends on the nature of the dataset, and d is a variable parameter.
The smaller d is, the slower the speed. In fact, as shown in Figure 9, our proposed DFCD has a faster
training speed than ICDM, though it is slightly slower than IDCD. However, it achieves a higher
AUC compared to both. Notably, after training, we can infer the mastery level of 126 newly
arrived students with 1,024 response logs in just 64 ms.

D EXPERIMENTAL DETAILS

D.1 DATASETS INTRODUCTION AND DATA PREPROCESSING

• NeurIPS2020 Wang et al. (2020b): NeurIPS2020 comes from the public competition dataset of the
NeurIPS 2020 Education Challenge. This competition mainly provides data on students’ response
logs to Eedi math problems in two school years (September 2018 to May 2020). Eedi provides
diagnostic questions for students in elementary school through high school (approximately ages 7 to
18). Each diagnostic question is a multiple choice question with 4 possible answer choices, only one
of which is correct. This competition mainly has 4 tasks. We choose the datasets of the 3rd and 4th
tasks which include the English contextual information about the exercises and concepts, and the text
information of the exercises does not exist in the datasets of tasks 1 and 2.

• XES3G5M Liu et al. (2024b): XES3G5M is a large-scale knowledge tracing benchmark dataset
which consists of student interaction logs collected from a K-12 online learning platform in China.
It contains rich auxiliary information about questions and their associated knowledge components.
It contains the rich Chinese contextual information including tree structured KC relations, question
types, textual contents and analysis.

• MOOCRadar Yu et al. (2023): MOOCRadar is a dataset for supporting the developments of
cognitive student modeling in MOOCs. It provides the relevant learning resources, structures, and
contents about the students’ exercise behaviors. It also contains the Chinese contextual information
about the exercises and concepts.

For the above datasets, we randomly selected 2,000 students in each dataset. This number is already
a relatively large number for cognitive diagnosis tasks which can well support the training of the
different cognitive diagnosis algorithms and evaluate their performance. At the same time, in order to
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ensure that each selected student has enough exercise data to support his or her cognitive diagnosis,
we only select students who answered more than 50 questions. It is worth noting that since the
knowledge concepts of XES3G5M are displayed by tree structure, in order to avoid ambiguity, we
only use the knowledge concepts of leaf nodes. We provide the three downloaded datasets, the result
of refined text embeddings and the detailed code for data preprocessing in the anonymous repository
at https://anonymous.4open.science/r/DFCD-8710.

D.2 EVALUATION METRICS

Classification Metrics. Due to the unavailability of actual student mastery levels, we utilize inferred
mastery levels by CDMs to predict student performance on exercises, as it is a binary classification
problem (right or wrong). Following previous work, we use AUC and ACC as evaluation metrics.

Degree of Agreement. The underlying intuition here is that, if sa has a greater accuracy in answering
exercises related to ck than student sb, then the probability of sa mastering ck should be greater than
that of sb. Namely, Massa,ck > Massb,ck . DOA is defined as equation 11

DOAk = 1
Z

∑
a,b∈S

δ (Massa,ck ,Massb,ck)
∑M

j=1 Qjk∧φ(j,a,b)∧δ(raj ,rbj)∑M
j=1 Qjk∧φ(j,a,b)∧I(raj ̸=rbj)

, (11)

where Z =
∑

a,b∈S δ(Massa,ck ,Massb,ck), Qjk indicates exercise ej’s relevance to concept ck,
φ(j, a, b) checks if both students sa and sb answered ej , raj represents the response of sa to ej , and
I(raj ̸= rbj) verifies if their responses are different, δ(raj , rbj) is 1 for a right response by sa and a
wrong response by sb, and 0 otherwise.

D.3 EVALUATION IN DFCD

(a) (b)

0 1 1 -1
-1 1 10
-1 -11 0

0 Unobserved 
Interaction 1/-1 Used for

Training 1/-1 Used for 
Inferring 1/-1 Used for

Testing

0 1 1 -1
-1 1 10
-1 -11 0

1 0 0 -1
-1 1 10
0 01 -1

Infer

Figure 10: (a) Standard Scenario. (b) Unseen Student Scenario. we give example of Evaluation in
unseen student scenario and the processes for other scenarios in open student learning environments
are similar. For brevity and aesthetics, we omit the validation set.

Here, we provide an example about evaluation in DFCD of unseen student scenario, which is shown
in Figure 10.

D.4 SELECTION OF LLMS

In exercise-refiner and concept-refiner, we use OpenAI’s large language model GPT-3.5-Turbo.
Although OpenAI’s GPT-4 has superior performance in terms of text generation quality, it is relatively
expensive to use. Since the task of this paper is not that complicated, using GPT-3.5-Turbo can also
achieve a relatively satisfactory result. The overall inference cost of GPT-3.5-Turbo in the task is
about 3-4 US dollars, which is very cost-effective. At the same time, we also try Google’s Gemini
Pro Team et al. (2023). Although Gemini Pro is not as good as GPT-3.5-Turbo in terms of text
generation quality, the performance on the task of this paper did not drop too much. And due to the
free-use of Gemini Pro, it may also be a good choice.
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Table 5: Overall prediction performance in standard scenario. Details are the same as Table 2.
Datasets NeurIPS2020 XES3G5M MOOCRadar

Metric AUC ACC DOA@10 AUC ACC DOA@10 AUC ACC DOA@10

MIRT 77.79 70.72 - 79.47 83.45 - 92.52 91.23 -

NCDM 75.44 68.61 72.33 71.18 81.15 62.80 81.87 88.60 76.94
RCD 77.84 70.83 74.27 78.83 83.25 72.29 OOM OOM OOM

KSCD 78.07 71.23 58.53 71.80 81.75 57.92 91.05 87.92 49.79
KANCD 75.74 68.85 71.25 72.16 82.17 58.35 87.13 89.22 73.58

DCD 75.93 69.71 73.09 52.66 81.75 55.02 63.90 88.97 55.22
IDCD 77.33 70.24 74.27 76.28 82.60 70.40 92.18 91.28 80.93
ICDM 77.16 70.33 64.29 74.49 82.07 63.64 92.96 91.36 73.14

DFCD 78.11∗ 71.20 74.37 79.34 83.48 72.53 92.97 91.61∗ 81.01

D.5 EXPERIMENT FOR STANDARD SCENARIO

Baselines. We conduct a comparison of DFCD against other baselines and utilize the hyperparameter
settings described in their respective original publications. Among them, ICDM and IDCD can also
be used in standard scenario, so we also add them in the baselines. As these two models has been
introduced in the Section 5.2, introduction will not be given again. Due to the Mas inferred by MIRT
being non-interpretable (i.e., the dimensions do not correspond to the number of concepts), we follow
previous work Chen et al. (2023) by presenting MIRT results but not comparing them.

• MIRT Sympson (1978) is a representative model of latent factor CDMs, which uses multidimen-
sional θ to model the latent abilities. We set the latent dimension as 16 which is the same as Wang
et al. (2020a)

• NCDM Wang et al. (2020a) is a deep learning based CDM which uses MLPs to replace the
traditional interaction function (i.e., logistic function).

• KaNCD Wang et al. (2023) improves NCDM by exploring the implicit association among knowledge
concepts to address the problem of knowledge coverage.

• KSCD Ma et al. (2022) explores the implicit association among knowledge concepts and leverages
a knowledge-enhanced interaction function.

• RCD Gao et al. (2021) leverages GNN to explore the relations among students, exercises and
knowledge concepts. We utilize the student-exercise-concept component of RCD to construct the
relation graph.

• DCD Chen et al. (2023) utilize students’ response records to model student proficiency, exercise
difficulty and exercise label distribution concepts.

Details. In line with prior CDM studies Wang et al. (2020a), in the standard scenario, we partition the
data into train and test data and assess our model’s performance on the test data. The test size is also
set to 0.2, following the setting of the open student learning environment scenario. To ensure fairness
in comparison, we adhere to the hyperparameter settings as specified in their original publications.
Details can be found in Appendix D.6. MIRT are non-interpretable models, namely latent factor
CDMs, the Mas it learns cannot be correlated directly with specific knowledge concepts. Therefore,
it is not suitable for calculating DOA. In Table 5, we use “-” to indicate this inapplicability. If CDMs
signify out-of-memory on an NVIDIA 3090 GPU, we use the term “OOM” to denote this occurrence.

Results. The comparison results are listed in Table 5. As we can see, despite DFCD is primarily
tailored for the open student learning environment scenario in CD, it performs competitively with or
even outperforms most of the current state-of the-art CDMs in predictive performance. Moreover,
DFCD demonstrates commendable interpretability performance across all three datasets.

D.6 IMPLEMENTATION AND BASELINES’ DETAILS

This section delineates the detailed settings when comparing our method with the baselines and
state-of-the-art methods in both standard scenario and open student learning environments. All
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experiments are run on a Linux server with two 3.00GHz Intel Xeon Gold 6354 CPUs and one
RTX3090 GPU. All the models are implemented by PyTorch Paszke et al. (2019). For all methods
that involve using Positive MLP as the interaction function, we adopt the commonly used two-layer
tower structure with hidden dimensions of 512 and 256.

In the following, we elaborate on some details regarding the utilization of compared methods.

Baselines in Standard Scenario.

• MIRT Sympson (1978) is a representative model of latent factor CDMs, which uses multidimen-
sional θ to model the latent abilities. We set the latent dimension as 16 which is the same as Wang
et al. (2020a)

• NCDM Wang et al. (2020a) is a deep learning based CDM which uses MLPs to replace the
traditional interaction function (i.e., logistic function). We adopt the default parameters which are
reported in that paper.

• RCD Gao et al. (2021) leverages GNN to explore the relations among students, exercises and
knowledge concepts. Here, to ensure a fair comparison, we solely utilize the student-exercise-concept
component of RCD, excluding the dependency on concepts.

• KaNCD Wang et al. (2023) improves NCDM by exploring the implicit association among knowledge
concepts to address the problem of knowledge coverage. Here, we adopt the default parameters
reported in that paper. For instance, the latent dimension is set to 20, and the default type is selected
as GMF.

• KSCD Ma et al. (2022) also explores the implicit association among knowledge concepts and
leverages a knowledge-enhanced interaction function. Here, we adopt the default parameters reported
in that paper. The latent dimension is set to 20, and the default interaction function utilizes its
proposed one on NeurIPS2020 and XES3G5M. We set the interaction function to NCDM because
KSCD encounters out-of-memory issue on MOOC-Radar.

Baselines in Open Student Learning Environments.

• IDCD Li et al. (2024): It propose an identifiable cognitive diagnosis framework based on a novel
response-proficiency response paradigm and its diagnostic module leverages inductive learning
representations which can be used in the open student learning environment.

• ICDM Liu et al. (2024a): It utilizes a student-centered graph and inductive mastery levels as the
aggregated outcomes of students’ neighbors in student-centered graph which enables to infer the
unseen students by finding the most suitable representations for different node types.

The implementation of MIRT, NCDM and KaNCD comes from the public repository https:
//github.com/bigdata-ustc/EduCDM. For RCD, IDCD, ICDM and KSCD, we adopt the
implementation from the authors in https://github.com/bigdata-ustc/RCD ,https:
//github.com/CSLiJT/ID-CDF, https://github.com/ECNU-ILOG/ICDM and
https://github.com/BIMK/Intelligent-Education/tree/main/KSCD_Code_
F.

D.7 ABLATION STUDY

Here, we provide the complete result of the ablation study in Table 6. The analysis can be found in
Section 5.2.

D.8 GENERALIZATION ANALYSIS

Here, we provide the complete result of generalization experiment in Figure 11 and Table 7. The
analysis can be found in Section 5.2. Generalization analysis indicates that even in environments
where data is sparse or not well-structured, the model’s performance remains robust, thereby expand-
ing its applicability. This generalization allows the model to perform well across a wide range of
conditions, making it versatile and suitable for various educational contexts, including those where
data may be incomplete or inconsistent.

21

https://github.com/bigdata-ustc/EduCDM
https://github.com/bigdata-ustc/EduCDM
https://github.com/bigdata-ustc/RCD
https://github.com/CSLiJT/ID-CDF
https://github.com/CSLiJT/ID-CDF
https://github.com/ECNU-ILOG/ICDM
https://github.com/BIMK/Intelligent-Education/tree/main/KSCD_Code_F
https://github.com/BIMK/Intelligent-Education/tree/main/KSCD_Code_F


1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table 6: Overall prediction performance of ablation study for DFCD in open student learning
environment scenario. Details are as same as Table 2.

Dataset NeurIPS2020 XES3G5M MOOCRadar

Metric AUC ACC DOA@10 AUC ACC DOA@10 AUC ACC DOA@10

Unseen Student

DFCD-w.o.TE 78.02 71.28 74.23 77.78 83.12 72.20 92.67 91.53 82.24

DFCD-w.o.RE 78.12 71.08 74.14 77.72 83.04 72.07 92.90 91.35 82.64
DFCD-w.o.attn 78.11 71.31 74.26 77.80 83.10 72.17 92.90 91.60 81.32

DFCD 78.19 71.39 74.33 77.81 83.18 72.21 92.91 91.68 82.15

Unseen Exercise

DFCD-w.o.TE 77.72 71.14 74.13 75.90 82.41 72.06 91.97 91.52 82.02

DFCD-w.o.RE 74.59 68.38 74.11 68.21 81.06 71.71 85.94 89.16 82.37
DFCD-w.o.attn 77.74 71.27 74.10 76.10 82.56 71.91 91.92 91.51 81.96

DFCD 77.76 71.31 74.17 76.11 82.62 72.29 91.98 91.61 81.93

Unseen Concept

DFCD-w.o.TE 77.67 70.80 74.07 78.82 83.38 72.03 92.55 91.33 82.34

DFCD-w.o.RE 76.80 69.72 74.13 76.83 82.45 72.03 91.84 90.76 82.67
DFCD-w.o.attn 77.63 70.63 73.85 78.46 83.30 72.02 92.88 91.50 80.81

DFCD 77.68 70.83 74.14 78.83 83.41 72.14 92.89 91.56 80.56

Table 7: The performance comparison with DFCD and BetaCD in cold-start scenario where new
student response logs are sparse. Size means the size of response logs per new student.

Datasets NeurIPS2020 XES3G5M

Metric Size BetaCD DFCD BetaCD DFCD

AUC
3 69.17 68.42 72.05 71.43
5 69.71 68.81 72.64 72.01
10 71.23 71.46 73.25 73.22

ACC
3 64.14 63.53 82.40 81.53
5 64.56 64.53 82.47 81.54
10 65.13 65.81 82.41 81.78

RMSE
3 46.95 47.21 36.47 37.16
5 46.80 46.84 36.38 37.09
10 46.36 46.26 36.28 36.85

D.9 HYPERPARAMETER ANALYSIS

Here, we provide the complete result of hyperparameter experiment in Figure 12. The analysis can
be found in Section 5.3.

D.10 TEXT EMBEDDING ANALYSIS

To demonstrate the impact of different text embedding models on DFCD across different datasets and
scenarios, we select four competitive text embedding models currently available:

• Text-embedding-ada-002 Brown et al. (2020): As OpenAI’s leading text embedding model, it
outperforms most embedding models in tasks such as text search, code search, and sentence similarity.
It is widely recognized as one of the best text embedding model available today.

• BGE-M3 Chen et al. (2024): A multi-lingual, multi-functionality, multi-granularity text embedding
model through self-knowledge distillation. It can support more than 100 working languages, leading
to new state-of-the-art performances on multi-lingual and cross-lingual retrieval tasks.
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Figure 11: Comparison with other CDMs in different test sizes.

• M3E-base Wang Yuxin (2023): This open-source model is evaluated on a large-scale sentence-
pair dataset that includes 22 million samples across domains such as Chinese Wikipedia, finance,
healthcare, law, news, and academia. M3e-base is primarily designed for Chinese contexts, making it
suitable for the XES3G5M and MOOCRadar datasets, which include Chinese exercise text.

• Instructor-base Su et al. (2022): This model introduces INSTRUCTOR, a novel method for
computing text embeddings based on task instructions. It generates text embeddings tailored to
various downstream tasks and domains without further training, aligning with our application’s
requirements.

As shown in Figure 13, in most scenarios and datasets, text-embedding-ada-002 and bge-m3 demon-
strate superior performance, likely due to their extensive training data, which supports them to better
captures semantic information. Their versatility across multiple languages and functions makes them
effective for both English exercise text in the NeurIPS2020 dataset and Chinese exercise text in
the XES3G5M and MOOCRadar datasets. M3e-base, being primarily suited for Chinese contexts,
performs well on the Chinese exercise text in XES3G5M and MOOCRadar datasets but shows weaker
performance on the English exercise text in NeurIPS2020 dataset. The instructor-base model, which
relies heavily on instruction guidance, may only perform well in specific scenarios. While it is
possible that a more suitable instruction could improve its performance in the specific scenarios, but
this falls outside the scope of our study and will not be further discussed.

D.11 DIAGNOSIS RESULT ANALYSIS

Here, we provide the complete result of visualization of diagnosis result in Figure 14. Indeed, students
can naturally be grouped into categories based on their scores, such as those with low and high correct

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

(a) NeurIPS2020 (b) XES3G5M (c) MOOCRadar

(d) NeurIPS2020 (e) XES3G5M (f) MOOCRadar

(g) NeurIPS2020 (h) XES3G5M (i) MOOCRadar

Figure 12: Comparison of DFCD with different hyperparameters. US means the scenario of unseen
student, UE means the scenario of unseen exercise, UC means the scenario of unseen concept.

(a) NeurIPS2020 (b) XES3G5M (c) MOOCRadar

Figure 13: Comparison of DFCD with different text embedding module. US means the scenario of
unseen student, UE means the scenario of unseen exercise, UC means the scenario of unseen concept.

rates. This classification reflects intrinsic differences in their mastery levels. Details can be found in
Appendix D.11. We employ t-SNE Van der Maaten & Hinton (2008), a renowned dimensionality
reduction method, to map the inferred Mas by CDMs onto a two-dimensional plane. By shading
the scatter plot according to the corresponding correct rates, with deeper shades of color indicating
higher correct rates, we achieve a visual representation of the students’ Mas distribution. Notably,
historical students are colored in blue, while newly arrived students are colored in green. We compare
our DFCD with IDCD in three different open student learning environment scenarios. As shown
in Figure 14, DFCD displays a long strip trend, with the color of the points on the strip gradually
changing from lighter to darker shades. This indicates that DFCD successfully captures both the
historical and new students’ Mas trends. In contrast, the color distribution of IDCD is relatively
loose, suggesting it may fail to accurately capture students’ Mas information. Moreover, the mastery
levels of new students inferred by DFCD are more reliable, as new students with similar correct rates
(colored in green) cluster closely with historical students (colored in blue) of comparable rates.
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Figure 14: t-SNE scatter plots for DFCD and IDCD on the NeurIPS2020 dataset. Blue color is used
to mark observed students, exercises, and concepts, while green is used to mark unobserved students,
exercises, and concepts. The intensity of the color represents the correct rate.
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