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ABSTRACT

Fixed beamforming based on uniform linear microphone arrays of-
ten suffers from non-optimal performance for broadband signals.
This paper addresses the issue by jointly optimizing the array geom-
etry and spatial filters through a neural network based model. The
model, composed of two feed forward neural networks, is optimized
in an end-to-end manner. It satisfies the distortionless constraint
in the look direction. Experimental results show that the proposed
model outperforms the previous state-of-the-art fixed beamformer
with overall better scores. Moreover, the proposed model can con-
trol the tradeoff between Directivity Factor (DF) and White Noise
Gain (WNG) in a flexible way.

Index Terms— linear microphone arrays, directivity factor,
white noise gain, neural network, array geometry

1. INTRODUCTION

Broadband beamformers are widely applied in many areas such as
radar, sonar, microphone arrays and radio astronomy [1–5]. Con-
ventionally, sensors with uniform spacing are deployed in broad-
band beamformers. However, they have limitations in processing
broadband signals. For example, uniformly spaced microphone ar-
rays with limited array aperture and microphones may not function
well in all the frequency bands ranging from a few hundred to a
few thousand Hertz [6]. Spatial aliasing can happen if the inter-
microphone spacing is larger than half of the wavelength for high
frequency bands. Meanwhile, a compactly arranged microphone ar-
ray can be sensitive to white noise and microphone imperfections for
low frequency bands [7–9]. Therefore, uniform arrays often do not
yield optimal performance for broadband signals.

Much research has shown that non-uniform arrays have superior
performance than their uniform counterparts [10–12]. With non-
uniform arrangement of microphones, the dilemma of spacing for
both high and low frequency bands can be mitigated. In [6], a robust
superdirective broadside beamformer was proposed through both
stochastic and analytic optimization. This beamformer optimized
array filters along with the non-uniform geometry. Its optimization
objectives are either maximum directivity or frequency invariance.
In [13], the array geometry optimization is reformulated from mixed-
integer programming to convex optimization by relaxing some of
the constraints and pre-select a set of potential microphone posi-
tions. The optimal microphone positions can be chosen from the
pre-selected positions. However, mixed-integer problems are NP-
hard. As a result, the computational complexity of the algorithm
in [13] grows exponentially. It requires careful adjustment between
solution optimality and computation feasibility.

Fixed beamformers have been employed for broadband beam-
forming as they are data independent and can be used in different
acoustic environments. During the last decade, fixed beamformers
like Differential Microphone Arrays (DMAs) have been popular in
broadband beamforming due to their relative frequency-independent
behaviour and high directivity gain [7]. Compared with other fixed
beamformers such as Delay-and-Sum (DS) and superdirective beam-
formers, DMAs have more balanced DF and WNG values. They are
inspired by the spatial derivative of the acoustic pressure field [14]
and thus have compact apertures.

DMAs of different geometry have been investigated, such as lin-
ear [7,15], circular [16,17] and concentric circular [18,19]. Recently,
DMA beamformers based on Particle Swarm Optimization (PSO)
techniques [20] have successfully optimized the geometry for linear
microphone arrays [21, 22]. We can observe that it is common to
have microphone spacing larger than 1 cm even among DMAs. The
DMA beamformer proposed in [22] focuses on frequency-invariant
beampatterns by combining subarrays. In [21], a DMA beamformer
proposed exhibited a better DF and WNG tradeoff than traditional
approaches. However, the distortionless constraint is not guaranteed
in its look direction. This can cause power distortion across differ-
ent frequency bins, which undermines the quality of the broadband
signal perceived. The white noise amplification phenomenon in low
frequency bins also persists in these PSO-based DMA beamformers.

To address the above-mentioned issues in broadband beam-
forming, we propose a novel model called Neural Optimization of
Non-Uniform Linear Array (NONULA) for fixed beamformers. The
placement of microphones are not constrained to pre-defined loca-
tions. Maximum array size and minimum inter-microphone spacing
are considered. Our contributions include: (i) To the best of our
knowledge, NONULA is the first model that optimizes linear array
geometry with neural networks. (ii) NONULA is the first end-to-
end neural network-based model for simultaneous array geometry
and filter optimization. (iii) NONULA can obtain overall better
DF and WNG performance than previous models. (iv) NONULA
facilitates designers with a choice of balance between DF and WNG
in a flexible manner.

The rest of the paper is organized into five more sections. In
Section 2, the employed signal model of beamforming is explained.
In Section 3, various performance measures utilized in our study are
presented. In Section 4, we first describe the existing PSO models
that can optimize geometry for linear microphone arrays. Then we
propose the NONULA model in details. Simulation results of pre-
vious models and our proposed NONULA model are discussed in
Section 5. Section 6 summarizes the characteristics of the proposed
NONULA model.IC
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2. SIGNAL MODEL

We consider a non-uniform linear array comprised of M omnidirec-
tional microphones. Denote δk as the distance from the kth micro-
phone to the first microphone and δ1 = 0. The steering vector can
be expressed as [1]

d(ω, cos θ) = [1 e−ȷωτ2 cos θ · · · e−ȷωτM cos θ]T , (1)

where ȷ =
√
−1, ω = 2πf , τk = δk/c, θ is the azimuth angle of

the source signal, f is the temporal frequency and c is 340 m/s. We
assume the source signal is from the endfire direction at θ = 0.

Under anechoic conditions with far field assumption, the re-
ceived signal vector y(ω) by the microphone array is expressed as

y(ω) = [Y1(ω) Y2(ω) · · · YM (ω)]T

= d(ω, cos θℓ)X(ω) + v(ω), (2)

where Yk(ω) is the signal received at the kth microphone, θℓ repre-
sents the look direction, X(ω) is the source signal and v(ω) is the
noise vector.

To estimate X(ω) from the observed y(ω), a complex linear
filter h(ω) is applied in beamforming. We have

X̂(ω) = hH(ω)y(ω)

= hH(ω)d(ω, cos θℓ)X(ω) + hH(ω)v(ω), (3)

where X̂(ω) is the estimate of X(ω) from beamforming. The dis-
tortionless constraint requires that

hH(ω)d(ω, cos θℓ) = 1 ∀ω (4)

3. PERFORMANCE MEASURES

Beampattern quantifies the input-output behaviour of a microphone
array given a source signal from the direction θ [23]. It is defined as

B[h(ω), θ] = hH(ω)d(ω, cos θ). (5)

The robustness of a microphone array to sensor imperfections such
as sensor noise and positional errors can be quantified by White
Noise Gain (WNG) [24]. It is expressed as

WNG[h(ω)] =
|B[h(ω), θℓ]|2

hH(ω)h(ω)
. (6)

Another performance measure commonly used together with WNG
is Directivity Factor (DF). It evaluates the directivity of a micro-
phone array in the presence of isotropic noise field. The formula of
DF is

DF[h(ω)] =
|B[h(ω), θℓ]|2

hH(ω)Γ0,π(ω)h(ω)
, (7)

where Γ0,π(ω) is a M × M matrix. The elements in Γ0,π(ω) are
given by

[Γ0,π(ω)]ij = sinc[ω(δi − δj)/c], (8)

where sinc(x) = sinx/x.
When multiple measures are employed simultaneously for a

physical system, naturally multi-objective optimization scenario
arise. To compare the performance of different beamforming tech-
niques in a multi-objective manner, we can adopt a weighted sum
approach with respect to both WNG and DF [25]:

Js(ω) = DF[h(ω)] + WNG[h(ω)] · rw, (9)

where Js(ω) is the multi-objective score for ω and rw is the weight-
ing coefficient for WNG.

4. MODELS FOR GEOMETRY OPTIMIZATION

4.1. PSO Models

The ideal beampattern of an N th-order DMA is:

BN (θ) =

N∑
n=0

aN,n cosn θ, (10)

where N is the order of derivative and aN,n is the nth coefficient of
the beampattern.

Conventionally, null-constrained approach is an effective way
to design DMA beampatterns [7]. An N th-order DMA can have N
distinct null directions, where the DMA beampattern is 0 in those di-
rections. The matrix D(ω) can be constructed with null constraints:

D(ω) =


dH(ω, cos θℓ)
dH(ω, cos θ1)

...
dH(ω, cos θN ),

 (11)

where θ1, · · · , θN are N distinct null directions. This yields

D(ω)h(ω) = i, (12)

where i = [1 0 · · · 0]T is a binary vector of length N + 1 that has
zero entries everywhere except for the first entry.

Given M > N + 1, a minimum-norm solution of (12) can be
obtained:

hMN(ω) = DH(ω)[D(ω)DH(ω)]−1i, (13)

which maximizes WNG for DMA. This is also called the Maximum
WNG (MWNG) differential beamformer [26].

To optimize the geometry of DMA, PSO techniques [21, 22]
have been used to decide the geometry vector δ = [δ1 · · · δM ].
In [21], two tradeoff parameters δw and δd are also employed to fur-
ther refine the filters h(ω):

h(ω) = Γ−1
w (ω)DH(ω)[D(ω)Γ−1

w (ω)DH(ω) + δdI]
−1i, (14)

where Γw(ω) = [Γ0,π(ω) + δwI]. However, δd breaks the distor-
tionless constraint when it is not zero.

The PSO algorithm in [21] starts with randomly initializing
many candidate solutions for δ, δw and δd. They together form
particles. A fitness function F is defined to evaluate and compare
particles. In each iteration, the best particle, i.e., the best candidate
solution, is picked from all the particles. Its information is utilized
to guide the update of other particles. This update process repeats in
every iteration until the specified number of iteration is reached. One
of our baselines is a modified implementation of this PSO algorithm.

4.2. NONULA

The NONULA model proposed by us consists of two feed forward
neural networks: SpacingNet and FilterNet. Fig. 1 demonstrates the
workflow of NONULA. Denote inter-microphone spacing as η =
[η1 η2 · · · ηM−1], where ηk = δk+1 − δk. Initially, the spac-
ing input ηinit is fed into SpacingNet. The output of SpacingNet
is then used to calculate the steering vector d(ω, cos θℓ). Subse-
quently, both d(ω, cos θℓ) and the filter input are fed into FilterNet.
If the termination condition is not met, SpacingNet and FilterNet
will repeatedly optimize the spacing and filter output. In this pro-
cess, the spacing and filter input will remain the same to make the
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Fig. 1. Workflow diagram of NONULA

convergence of optimization easier. The weights of SpacingNet and
FilterNet and d(ω, cos θℓ) are updated in each iteration.

SpacingNet and FilterNet both have 5 layers: the input layer,
three hidden layers and the output layer. SpacingNet uses ReLu as
the activation function in hidden layers, whereas FilterNet uses com-
plex ReLu [27, 28]. ReLu is the default activation function in many
neural networks by virtue of easy training and good performance.
Complex ReLu is necessary for facilitating the complex representa-
tion in the filter. The size of input and output layers is M − 1 for
SpacingNet and M for FilterNet. SpacingNet also has the softmax
activation in the final layer. Multiplying softmax outputs by the total
array length allocates spacing between microphones.

Denote the minimum spacing as ηmin and the maximum array
aperture as Lmax. Denote the optimized spacing and filter output
of SpacingNet and FilterNet as s and H respectively. To satisfy the
constraint of ηmin and Lmax, we allocate L = Lmax − ηmin ×
(M − 1) as the maximum size for spacing allocation. The actual
spacing is η = s + ηmin · 1, where 1 is a vector of 1’s having
the same length as s. To satisfy the distortionless constraint, H is
obtained after dividing hH(ω)d(ω, cos θℓ) in every frequency bin
for normalization.

The loss function J of NONULA is the mean of negative multi-
objective score plus the penalty of under-achieved DF and WNG
factors across all the interested frequency bins:

J =
1

Nω

∑
ω

[
− Js(ω) + (σr(DFtgt(ω)− DF[h(ω)])+

(σr(WNGtgt(ω)− WNG[h(ω)])
]
, (15)

where Nω is the number of frequency bins, σr(·) represents the
ReLu activation function, DFtgt(ω) and WNGtgt(ω) are the target
DF and WNG for frequency ω. The NONULA model is trained by
minimizing (15) with gradient descent.

5. EXPERIMENTAL RESULTS

We use two baseline models in our experiments. The first one is
a PSO-based endfire non-uniform linear array [21]. To have a fair
comparison, we implemented this model without distortion in the
look direction [29]. Henceforward we refer to this implementation
as ‘PSO DMA’. The other baseline models is the uniform DMA [26].
In particular, the uniform DMA is derived from (13) and it employs
the second-order supercardioid beampattern. The two null directions
of are 106◦ and 153◦. The uniform DMA filters are also utilized as
the initial filter input for NONULA. The initial spacing input is the
uniform spacing given L. ηmin is set to 1 cm.

To compare NONULA’s scores with PSO DMA, we conduct
two series of experiments. DFtgt(ω) is set to 13 dB to encourage

Table 1. Mean scores of NONULA and PSO DMA when rw = 1

L
M 8 10 12

NN PSO NN PSO NN PSO
13 16.51 12.50 17.46 13.45 18.21 14.25
18 16.68 13.44 18.63 14.98 19.50 16.25
23 16.77 13.95 18.60 15.89 20.14 17.18
28 17.01 14.25 18.77 16.15 20.26 17.81
33 16.87 14.44 18.88 16.67 20.30 18.11

Table 2. Mean scores of NONULA and PSO DMA when rw = 0.5

L
M 8 10 12

NN PSO NN PSO NN PSO
13 12.60 11.31 13.12 11.86 13.49 12.30
18 12.83 11.65 14.33 12.95 14.89 13.70
23 12.81 11.96 14.26 13.28 15.40 14.28
28 12.94 11.99 14.43 13.47 15.60 14.63
33 13.03 12.18 14.41 13.66 15.70 14.82

NONULA to outperform the uniform DMA. When rw = 1, we
set WNGtgt(ω) to 0 dB. This allows NONULA to focus on both
WNG and DF. When rw = 0.5, we set WNGtgt(ω) to −10 dB so
that NONULA can have a DF-centered design. NONULA and PSO
DMA are optimized with the same settings in frequency bands from
100 Hz to 8 kHz.

The detailed comparison between NONULA and PSO DMA are
demonstrated in Table 1 and 2. There are five choices for array length
L: 13, 18, 23, 28 and 33 cm. There are also three choices for the
number of microphones M : 8, 10 and 12. The table entries are
scores calculated from (9) and averaged across frequency bins. Each
column in tables is split into two sub-columns. The left sub-column
shows the mean scores for NONULA, whereas the right sub-column
for PSO DMA. We can observe that the mean scores of NONULA
are always higher than its corresponding mean scores of PSO DMA.
In the table, NONULA is dubbed as NN and PSO DMA is dubbed
as PSO for brevity.

The optimized array geometry from NONULA and PSO DMA
with two different settings are illustrated in Fig. 2 and 4. In Fig. 2,
the geometry optimized by NONULA has a more complicated lay-
out, whereas the geometry designed by PSO DMA forms only three
sub-arrays. This could be due to the fact that neural networks have
more power for optimization. With less microphones and smaller
array length, the complexity levels of geometry from NONULA and
PSO DMA are similar in Fig. 4. Notably, the subarrays in both
NONULA and PSO DMA have internal spacing around 0.02 m. This
corresponds with the half wavelength λ of the highest frequency we
are interested in, which is λ = 340/(8000 × 2) = 0.02125 m.
By having the spacing of sub-arrays less than λ, the whole micro-
phone array can effectively avoid spatial aliasing in high frequency
bins. Moreover, forming nested arrays with subarrays helps handle
broadband signals in both high and low frequency bins.

To have a better understanding of how NONULA’s behaviour
changes frequency-wise with respect to other techniques, we plot
Fig. 3 and 5 regarding the performance of DF and WNG. We ob-
serve that NONULA has the best overall DF values while maintain-
ing a good level of WNG values. For the DF-centered design in
Fig. 5, NONULA has a smarter tradeoff between DF and WNG
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Fig. 2. Optimized array geometry of NONULA (top) and PSO DMA
(bottom), when rw = 1, M = 12 and L = 0.33.

Fig. 3. Performance of NONULA compared with other techniques
when rw = 1, M = 12 and L = 0.33.

and achieves better DF performance. This characteristic is desirable
when customized performance is required. PSO DMA cannot en-
hance its WNG values in low frequency bins to the desired level,
whereas NONULA never goes below the target WNG value. The
uniform DMA also suffers from low WNG values in low frequency
bins and it is unstable at some frequency bins.

Since both NONULA and PSO DMA perform multi-objective
optimization, we plot Pareto fronts in Fig. 6 to better visualize their
performance. We use the negative scores as the training loss with-
out penalties. Both NONULA and PSO DMA are retrained at the
Mel scale, which better reflects perceptual distance in human hear-
ing. The Pareto front consists of the set of non-dominated DF and
WNG pairs. Each pair represents mean DF and WNG values of all
frequency bins with a fixed WNG weight rw. Different pairs are ob-
tained by varying rw from 0.1 to 1. Fig. 6 shows that the NONULA
Pareto front is above the PSO DMA one. This indicates that a better
solution always exists in NONULA when fixing one DF or WNG
value from PSO DMA. Moreover, the NONULA curve spans with
larger range. This illustrates that NONULA is more flexible in the
tradeoff between DF and WNG. The performance of PSO DMA is
limited to a small range of values.

6. CONCLUSION

This paper proposed a neural network based model that could opti-
mize both linear array geometry and fixed beamforming in an end-to-
end fashion. Compared with DMA-based techniques, our approach
exhibited superior robustness in the low frequency region. The pro-

Fig. 4. Optimized array geometry of NONULA (top) and PSO DMA
(bottom), when rw = 0.5, M = 8 and L = 0.18.

Fig. 5. Performance of NONULA compared with other techniques
when rw = 0.5, M = 8 and L = 0.18. NONULA has a smarter
tradeoff between DF and WNG when it is DF-centered.

Fig. 6. Pareto fronts of NONULA and PSO DMA when M = 12
and L = 0.33. Each pair of DFs and WNGs is averaged across
frequency bins. Models are trained at the Mel scale.

posed model outperformed PSO DMA consistently in various set-
tings with overall better scores while offered a more flexible tradeoff
between DF and WNG. This shows that neural networks are more
powerful tools for linear microphone array optimization.
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