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Abstract001

Human mobility prediction is vital for urban002
services, but often fails to account for abrupt003
changes from external events. Existing spa-004
tiotemporal models struggle to leverage tex-005
tual descriptions detailing these events. We006
propose SeMob, an LLM-powered semantic007
synthesis pipeline for dynamic mobility pre-008
diction. Specifically, SeMob employs a multi-009
agent framework where LLM-based agents au-010
tomatically extract and reason about spatiotem-011
porally related text from complex online texts.012
Fine-grained relevant contexts are then incor-013
porated with spatiotemporal data through an014
innovative progressive fusion architecture pro-015
posed. The rich pre-trained event prior con-016
tributes enriched insights about event-driven017
prediction, and hence results in a more aligned018
forecasting model. Evaluated on a dataset con-019
structed through our pipeline, SeMob achieves020
maximal reductions of 13.92% in MAE and021
11.12% in RMSE compared to the spatiotem-022
poral model. Notably, the framework exhibits023
pronounced superiority especially within spa-024
tiotemporal regions close to an event’s location025
and time of occurrence.026

1 Introduction027

Human mobility prediction is an important part of028

urban services optimization, including intelligent029

routing and dynamic traffic management (Li et al.,030

2024; Moon and Cho, 2025). While established031

methods capture routine mobility patterns by histor-032

ical data and predefined graph structures (Yin et al.,033

2021; Liu et al., 2023; Wang et al., 2024a), they034

struggle to interpret and adapt to abrupt changes035

caused by various external events, as shown in Fig-036

ure 1(a). The unique nature of urban spatiotempo-037

ral dynamics stems from the complexity of human038

motivations and the diversity of events driving mo-039

bility (Gong et al., 2024; Han et al., 2025; Bontorin040

et al., 2025), making their underlying semantics041

difficult for standard models to capture. Informa-042
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Figure 1: Challenges in event-based mobility predic-
tion. (a) Spatiotemporal models, effective during reg-
ular days, can exhibit higher errors than the simpler
LSTM. (b) Complex event semantics drive pattern vari-
ance, even in similar event types.

tion detailing driving events is largely conveyed 043

through textual descriptions, commonly originat- 044

ing from sources such as official websites and so- 045

cial media (Mihalcea et al., 2024; Pappalardo et al., 046

2023). A significant gap therefore exists in lever- 047

aging the understanding embedded in the language 048

to improve the responsiveness and accuracy of mo- 049

bility prediction. 050

Approaches transforming text information to nu- 051

merical data or discrete categories often fail to 052

capture context-dependent variations (Liang et al., 053

2024). An example in Figure 1(b) demonstrates 054

superficially similar events can trigger markedly 055

different mobility responses. Descriptive texts as- 056

sociated with event backgrounds offer a promising 057

avenue for unraveling the intricate mechanism of 058

human behaviors and societal changes. Exploring 059

the integration of qualitative insights from such de- 060

scriptions may enable models to capture complex, 061
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Figure 2: SeMob framework. Multi-agents iteratively collect spatiotemporally relevant texts for TST multimodal
prediction and refine the text filtering logic using prediction feedback.

non-linear influences missed by purely quantitative062

approaches. However, harnessing textual data in063

this domain confronts notable challenges.064

A primary difficulty involves the effective ex-065

traction and representation of pertinent semantics066

from textual sources. Mobility-related events suf-067

fer from a notable scarcity of relevant textual data,068

limiting the depth of contextual analysis (Wang069

et al., 2024b; Han et al., 2024). Furthermore, ex-070

isting models that combine textual and temporal071

data (Liu et al., 2024; Cao et al., 2024; Hu et al.,072

2025) lack consideration of spatial dimension. Cur-073

rent fusion approaches typically align temporal se-074

quences with the corresponding series descriptions075

but fail to incorporate external semantic informa-076

tion meaningfully. Creating effective methods to077

fuse unstructured textual representations with con-078

tinuously updated structured spatiotemporal data079

remains a key research objective (Zou et al., 2025).080

We introduce a novel pipeline SeMob to inte-081

grate event insights into human spatiotemporal mo-082

bility prediction. The multi-agent framework in083

SeMob extracts and reason about relevant informa-084

tion from online sources. This task extends beyond085

simple keyword matching; it requires a deep un-086

derstanding of how textual elements relate to spa-087

tiotemporal forecasts and calls for advanced analyt-088

ical reasoning. These agents simulate traffic anal-089

ysis workflows to identify event-related text. The090

extracted text is then paired with the correspond-091

ing spatiotemporal data to create context-aware092

mobility datasets that improve prediction accuracy.093

Furthermore, the LLM agent drives an iterative 094

refinement process for text extraction. An agent 095

in the workflow compares model predictions with 096

ground truth mobility flow, thereby uncovering 097

crucial, previously overlooked logical connections. 098

Through this iterative analysis of unstructured text, 099

the agent further identifies patterns linking textual 100

cues to prediction discrepancies and provides valu- 101

able, hard-to-acquire textual insights. 102

Fusing extracted textual information with struc- 103

tured spatiotemporal data is another key challenge 104

in enhancing mobility forecasting. In SeMob, we 105

propose a progressive fusion method that combines 106

contextual insights from Text, temporal informa- 107

tion, and Spatio-Temporal data from mobility sen- 108

sors (TST). Such integration significantly improves 109

prediction performance, and can serve as a unified 110

framework for addressing tasks within dynamic ur- 111

ban environments where external events frequently 112

reshape mobility patterns. The architecture is de- 113

signed to be lightweight and efficient, supporting 114

the minute-level responsiveness required for real- 115

time applications. Our contribution can be summa- 116

rized as follows: 117

• We design a multi-agent framework for au- 118

tomated extraction and reasoning of event- 119

related textual context from online sources 120

for urban mobility analysis. 121

• We create a unique context-enriched dataset 122

for mobility forecasting, aligning event- 123

related textual narratives with fine-grained 124

spatiotemporal mobility data. 125
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• We propose a progressive fusion architecture126

that dynamically weights multimodal inputs127

and our findings demonstrate the significant128

benefits of integrating textual information for129

event-related mobility prediction.130

2 Preliminaries131

Let N be the total number of sensors in a mon-132

itored urban area. The sensor network is repre-133

sented by a graph G = (V, E ,A), where V =134

{v1, . . . , vN} is the set of N sensors, E is the set of135

edges representing connectivity, and A ∈ RN×N136

is an adjacency matrix encoding spatial relation-137

ships (e.g., based on pairwise geodesic distances)138

among sensors.139

Traditional Spatiotemporal Mobility Prediction140

At any given time step t, the historical mobility141

flow signals from all N sensors over the past T142

time slices are denoted by a tensor X[t−T+1:t] ∈143

RN×T = (xt−T+1,xt−T+2, . . . ,xt)
⊤. Each xi ∈144

RN captures the flow data across all N sensors at145

time slice i.146

Traditional spatiotemporal mobility prediction147

is to learn a mapping function f that, given the148

historical flow data X[t−T+1:t] and the sensor net-149

work graph G, predicts the mobility flows for the150

subsequent T ′ time slices:151

f : (X[t−T+1:t],G) 7→ X̂[t+1:t+T ′]152

where X̂[t+1:t+T ′] ∈ RN×T ′
is the sequence of153

predicted future flow signals.154

Event-driven Spatiotemporal Mobility Predic-155

tion We consider an event occurring at a specific156

venue, where VM ⊂ V is a subset of M sensors157

(M ≤ N ) identified as being affected by the event.158

At any given time step t within the event’s im-159

pact window, the historical mobility flow signals160

for these M affected sensors over the past T time161

slices are denoted by X
(M)
[t−T+1:t] ∈ RM×T . Each162

sensor is associated with a set of spatial relation-163

ship features relative to the event venue, forming164

a matrix D ∈ RM×KD , where KD is the number165

of distinct spatial features (e.g., distance to venue,166

orientation relative to venue). Additionally, event-167

specific textual information Tevent is established168

and finalized prior to the event day.169

Extending from traditional spatiotemporal mo-170

bility prediction, the mapping function needs to171

condition further on venue-related features D and172

event information Tevent. Event-driven spatiotem- 173

poral mobility prediction is to learn a mapping 174

function g that maps historical affected sensor 175

flows X(M)
[t−T+1:t], venue-related features D, event 176

information Tevent, and the broader network G to 177

the predicted T ′-slice future flows X̂
(M)
[t+1:t+T ′] ∈ 178

RM×T ′
: 179

g : (X
(M)
[t−T+1:t],D, Tevent,G) 7→ X̂

(M)
[t+1:t+T ′] 180

This formulation models practical scenarios that 181

aim to enhance real-time mobility predictions dur- 182

ing the event by leveraging comprehensive event- 183

specific information gathered beforehand. 184

3 Methodology 185

The overall architecture of SeMob, detailing the 186

workflow and the specific roles of agents, is illus- 187

trated in Figure 2. 188

3.1 Multi-agent Framework 189

Agents extract, filter, and reason about event texts 190

relevant to spatiotemporal mobility through the 191

following specialized modules: 192

Information Retrieval Module This mod- 193

ule gathers multi-dimensional event information 194

through two specialized agents: Event Info Ex- 195

tractor (EI) and Tweet Analyzer (TA). EI gathers 196

basic event information from the official venue cal- 197

endar database, such as time and location. This 198

agent summarizes the event content and conducts 199

a preliminary analysis of the event scale and target 200

audience. TA uses the basic information provided 201

by EI to construct retrieval keywords for search- 202

ing relevant tweets from the month preceding the 203

event. After filtering tweets for relevance, TA ex- 204

tracts detailed event information (such as opening 205

ceremonies) and gauges public interest in the event. 206

Mobility Reasoning Module Events affect mo- 207

bility on various spatiotemporal scales, requiring 208

careful filtering of relevant information. This mod- 209

ule employs a Mobility Analyzer (MA) agent to 210

reason texts with high spatiotemporal relevance 211

to potential mobility impacts. For any given day 212

of events under analysis, the MA considers both 213

current-day and recent proximate events. It applies 214

a predefined information-mobility correlation logic 215

to identify textual evidence of spatiotemporal traf- 216

fic patterns around venues during event periods. 217

The output comprises texts detailing these impact 218

3



Event Texts

T
o

k
en

iz
er

Text 

Encoder

Prediction Timestamps

T
im

es
ta

m
p

E
m

b
ed

d
in

g

C
o

n
te

x
t 

A
tt

en
ti

o
n

q

[C
L

S
] 

1

[C
L

S
] 

k

…

S
te

p
_

1

S
te

p
 T

’

…

k, v

*

Spatiotemporal 

Encoder

𝑬𝒈𝒍𝒐𝒃𝒂𝒍

S
te

p
_

1

S
te

p
 T

’

…M

𝑬𝒔𝒕 𝑫

*
qk

E
v

en
t 

In
fu

si
o

n

v

P
ro

je
ct

io
n

History Flow of G

Affected flow

(1) Dynamic Contextual Encoding

(2) Contextual Mobility Projection

Spatiotemporal

Influence

Matrix

*Training Frozen Multiplication Concatenation

10:00, 10:05, 10:10, 10:15 …

The 17th Korea 

Times Music 

Festival …

Figure 3: TST architecture. We first (1) synthesizes
dynamic event signatures by fusing textual embeddings
with evolving temporal contexts and (2) integrates spa-
tiotemporal data with these signatures for fine-grained,
context-aware mobility predictions.

patterns, associated core event information, and219

relevant public reactions.220

Evaluation Module Developing a perfect infor-221

mation screening logic a priori is challenging even222

for domain experts. The Evaluator in this mod-223

ule analyzes instances where mobility predictions224

surrounding a venue exhibit significant errors for225

specific time periods or locations. By examining226

these cases, the agent identifies potentially over-227

looked information or misjudged impact factors.228

This analysis is fed back into the system, updating229

the screening logic for similar scenarios.230

3.2 Multimodal Fusion231

The TST module achieves event-driven spatiotem-232

poral mobility prediction through a two-stage pro-233

gressive fusion of multimodal signals, as shown in234

Figure 3.235

Dynamic Contextual Encoding. The first stage236

distills a sequence of dynamic event signatures,237

Eglobal ∈ RT ′×dg , by contextualizing an initially238

static textual essence with temporal information239

for T ′ prediction steps. We begin by sourcing240

K distinct categories of event-related text, which241

are identified by the multi-agent workflow in sec-242

tion 3.1. These texts are represented as a content243

embedding matrix C ∈ RK×dh , where each row244

corresponds to the [CLS] token from a tunable245

RoBERTa encoder (Liu et al., 2019). For each fu-246

ture prediction step t ∈ [1, T ′], an embedding of its247

corresponding timestamp, ettime ∈ Rdt , provides248

the specific temporal context. To integrate textual 249

information under this temporal setting, we em- 250

ploy fattn: a context-driven attention mechanism. 251

fattn uses ettime as a query to process the static 252

category embeddings C (which serve as keys and 253

values), producing a temporally-focused textual 254

summary. This summary reflects how the diverse 255

textual facets combine under the temporal lens of 256

step t. The event signature for this step, Et
global, 257

is then formed by concatenating ctsum with ettime, 258

followed by an FFN transformation: 259

Et
global = W [fattn(e

t
time,C)⊕ ettime] + b (1) 260

where ⊕ denotes concatenation. W and b are the 261

learnable parameters. The collection of T ′ step- 262

specific event signatures sequence Eglobal offers a 263

dynamically evolving, temporally-contextualized 264

representation of the event across the entire predic- 265

tion horizon. 266

Contextual Mobility Projection. To infuse the 267

event-aware information into the spatiotemporal 268

data, we design a cross-modal integration mech- 269

anism. For M affected sensors, their initial spa- 270

tiotemporal embeddings Est (from a pre-trained 271

spatiotemporal encoder on network G) and spatial 272

features D are concatenated to form per-sensor 273

local spatiotemporal context representations Sloc. 274

We employ two linear layers, fq and fk to trans- 275

form Eglobal and Sloc into two compact embed- 276

dings: fq(Eglobal) and fk(Sloc). Spatio-temporal 277

influence weights A ∈ RM×T ′
are then computed 278

by matrix multiplication followed by softmax: 279

AT = Softmax
(
fq(Eglobal) · (fk(Sloc)

T

√
dk

)
(2) 280

where dk is the dimensionality of keys and queries. 281

For each sensor i and future step t, the event- 282

infused representation Zi,t combines its initial spa- 283

tiotemporal embedding Ei
st with Vi scaled by the 284

influence weight Ai,t. The value embedding Vi is 285

given by fvalue(E
i
st), where fvalue is a learnable 286

projection preserving the input feature dimension. 287

Zi,t = Ei
st +Ai,t · σ(Vi) (3) 288

where σ is .The event-infused representations for 289

M sensors are subsequently processed by a one- 290

layer FFN to project into the final multi-step mo- 291

bility flow predictions X̂ ∈ RM×T ′
. Through 292

cross-modal integration, we extend the predictive 293

capability to dynamically incorporate semantics 294

for fine-grained, context-sensitive spatiotemporal 295

forecasting under information-driven dynamics. 296
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4 Experiments297

4.1 Experiment Setup298

Data Preparation The multi-agent workflow299

framework retrieves information from venue300

databases and analyzes tweets posted within 30301

days prior to each event1. 911 events of various302

types occurring over a full year are collected for303

analysis. To capture the corresponding mobility304

dynamics, we then collect traffic flow data from305

the Caltrans Performance Measurement System306

(PeMS2) at a 5-minute temporal resolution. Our307

study centers on venues selected for their proximity308

to major road networks. We gather data from sen-309

sors located within the 2km, 3km, 4km, and 5km310

radii of each venue, enabling a detailed assessment311

of spatial event impacts. Furthermore, to exam-312

ine temporal impacts, the sensor data is analyzed313

within time windows spanning from two, three, or314

four hours before each event to a corresponding315

duration afterward. The dataset is partitioned by316

chronological order and event type. More details317

are provided in Appendix A.318

Baselines and Evaluation We evaluate our319

model against nine leading traffic forecasting base-320

lines on large-scale road networks (Liu et al., 2023;321

Wang et al., 2024a): (1) temporal-only methods:322

LSTM (Fu et al., 2016) and PatchTST (Nie et al.,323

2023); (2) GNN-RNN based models: DCRNN (Li324

et al., 2018) and AGCRN (Bai et al., 2020); (3)325

GNN-TCN based models: STGCN (Yu et al.,326

2018) and GWNET (Wu et al., 2019); (4) attention-327

based method: ASTGCN (Guo et al., 2019);328

(5) ordinary differential equation based model:329

STGODE (Fang et al., 2021); and (6) dynamic330

graph based approach: DSTAGNN (Lan et al.,331

2022). These spatiotemporal models are trained on332

the entire road network graph within the broader333

region where the venue is located, while testing334

performance specifically on affected sensors dur-335

ing event windows. The evaluation metrics are336

mean square error (MSE) and mean absolute error337

(MAE). We utilize 12 historical steps to predict338

12 future steps (predicting the next hour based on339

the previous hour), consistent with established pre-340

diction benchmarks. More details can be found in341

Appendix B.342

1x.com/search-advanced
2pems.dot.ca.gov

4.2 Main Results 343

The performance of our method compared to spa- 344

tiotemporal models is shown in Table 1.We can 345

observe from the experimental results that: 346

Event-specific information yields superior per- 347

formance. Our approach significantly outper- 348

forms traditional methods that rely solely on time 349

series data and spatial relationships. Incorporated 350

by event context, the model achieves maximal re- 351

ductions of 13.92% in MAE and 11.12% in RMSE 352

relative to the best-performing baseline spatiotem- 353

poral model. Evaluation on datasets partitioned 354

by event type reveals slightly greater performance 355

enhancements compared to chronological parti- 356

tioning. Such partitioning facilitates more bal- 357

anced learning across event categories, allowing 358

the model to capture category-specific mobility 359

patterns more effectively. 360

Spatiotemporal sensitivity confirms the impor- 361

tance of event context. Detailed in Appendix C, 362

conventional models exhibit degraded performance 363

and heightened sensitivity closer to event venues 364

and times. The observed degradation in accuracy 365

indicates that human mobility during events be- 366

comes diverging from regular patterns and proving 367

challenging for models to predict accurately. Con- 368

versely, our proposed method leverages relevant 369

texts to achieve pronounced superiority precisely 370

within these highly affected spatiotemporal scales. 371

4.3 Ablation Study 372

We compare our full model against six distinct vari- 373

ants targeting fusion strategies and multi-modal en- 374

coders: (1) w/ EF: early fusion via concatenation; 375

(2) w/ LF: late fusion post-independent feature ex- 376

traction; (3) w/o TT: replacing dynamic contextual 377

encoding fusion with concatenation; (4) w/o TS: 378

interaction between the global representation and 379

spatiotemporal data substituted with concatenation; 380

(5) w/o Finetune: frozen pre-trained text encoders; 381

and (6) w/o STE: processing spatiotemporal data 382

without pre-trained encoders. The experiments uti- 383

lize data within 3km of event locations across 2h, 384

3h, and 4h windows and the results are shown in 385

Table 2. Our progressive fusion strategy demon- 386

strates superiority over early and late fusion, re- 387

vealing limitations of simple feature concatenation 388

for capturing complex text-spatiotemporal relation- 389

ships. Performance degradation when removing 390

dynamic contextual encoding and global-sensor 391

5
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Methods

By Time By Type
2h 3h 4h 2h 3h 4h

MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

LSTM 30.05 41.44 27.65 40.23 27.12 39.71 30.33 42.60 27.73 41.10 27.16 40.45
PatchTST 31.22 41.90 27.86 41.00 27.25 40.74 31.55 43.86 27.95 42.09 27.29 41.57
DCRNN 30.06 41.23 29.06 41.01 28.55 40.88 30.76 42.78 29.43 42.12 28.76 41.77
AGCRN 32.43 47.06 30.62 49.23 30.33 52.62 31.44 45.51 29.19 46.37 28.82 47.71
STGCN 35.40 52.69 33.12 52.36 32.40 52.21 34.79 51.77 31.92 49.79 31.02 48.92
GWNET 29.03 39.92 27.01 38.61 25.64 37.35 29.13 40.83 27.77 39.33 25.69 37.88
ASTGCN 42.16 60.86 40.37 59.20 39.36 58.33 40.45 60.20 37.58 58.11 35.97 57.02
STGODE 35.21 51.95 32.96 50.37 31.88 49.58 34.64 51.62 31.93 49.56 30.63 48.53
DSTAGNN 30.77 42.01 29.71 41.85 29.27 41.78 31.18 43.64 29.60 42.87 28.95 42.56
TST 25.13 36.71 24.75 36.34 23.82 35.78 25.08 36.29 24.59 36.07 23.77 35.56

Table 1: Performance comparison of baselines using sensor data within 3 km of event locations. The best and
the second-best results are indicated by bold and underlined text respectively. Datasets are partitioned either
chronologically (’By Time’) or by event type (’By Type’).

interactions confirms the necessity of the multi-392

level interaction mechanisms for capturing cross-393

modal dependencies. The most significant drop394

occurs when utilizing a frozen decoder, which in-395

dicates adapting encoders is crucial for extracting396

spatiotemporally relevant semantic features rather397

than relying on generic representations. Excluding398

pre-trained spatiotemporal encoders also impairs399

predictive performance, affirming their value in400

capturing latent patterns. Interestingly, the perfor-401

mance decline is less severe than other ablations,402

suggesting the primacy of fused and adapted tex-403

tual information for event-related prediction.

Methods
2h 3h 4h

MAE RMSE MAE RMSE MAE RMSE

TST 25.08 36.29 24.59 36.07 23.77 35.56
w/ EF 26.87 38.86 25.42 37.63 24.29 36.47
w/ LF 26.98 39.12 25.46 37.82 24.32 36.58
w/o TT 25.97 38.03 25.09 37.00 24.11 36.19
w/o TS 26.19 38.69 25.29 37.74 24.24 36.57

w/o Finetune 27.04 38.95 25.50 37.70 24.34 36.51
w/o STE 25.86 37.90 24.89 36.94 23.96 36.07

Table 2: Ablation experiments on fusion strategies and
multi-modal encoders.

404

5 Discussion405

In this section, we discuss the following research406

questions (RQ) of the proposed pipeline:407

• RQ1: To what extent does the contextual in-408

formation enhance mobility prediction?409

• RQ2: What are the contributions of the roles410

and stages within the multi-agent framework411

to the forecast results?412

• RQ3: Can the system still effectively lever-413

age the textual context when the scale of the414

training events becomes smaller? 415

• RQ4: Why can our method enable the effec- 416

tive integration of event-related textual con- 417

text with spatiotemporal data? 418

Response to RQ1: Different categories of tex- 419

tual information provide varied yet consistently 420

beneficial contributions to prediction across spa- 421

tiotemporal scales. We investigate the contri- 422

butions of different textual features and present 423

visualizations in Figure 4. Although all textual cat- 424

egories enhance the predictive accuracy of the spa- 425

tiotemporal model, their specific impacts diverge. 426

Basic event information offers relatively stable per- 427

formance improvements across all spatiotemporal 428

granularities. Public reaction provides more spe- 429

cific advantages, yielding significant benefits for 430

forecasts closer to event venues and over extended 431

event windows. The inferred traffic conditions pri- 432

marily improve the prediction accuracy for sensors 433

near event venues. The localized efficacy of such 434

an inference may stem from the agent’s limited ca- 435

pability to analyze near-venue impacts. According 436

to the findings, synthesizing information from dif- 437

ferent textual sources is advantageous for capturing 438

complex, non-linear mobility patterns.
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Response to RQ2: Collaboration among special-440

ized agents generates high-quality textual con-441

text for model training. To validate the contribu-442

tions of inter-agent collaboration, we compare key443

workflow configurations. Results in Table 3 reveal444

that contextual information from source-specific445

agents provides significantly greater predictive util-446

ity when subsequently refined and analyzed by a447

Mobility Analyzer. Omitting this analytical synthe-448

sis may result in the direct use of less processed in-449

formation, which correlates with suboptimal down-450

stream performance. Furthermore, the MA’s strat-451

egy of considering recent event dynamics is impor-452

tant for generating effective training context. Dis-453

regarding such temporal information impairs the454

final prediction accuracy of models trained thereon.455

Crucially, results also demonstrate that the Eval-456

uator can refine the MA’s logic for text filtering457

and relevance assessment. The improvement in458

prediction accuracy after evaluation iterations re-459

flects the dynamic optimization, underscoring the460

critical role of the Evaluator in maintaining and461

enhancing the quality of the generated textual con-462

text. Collectively, these observations highlight that463

the multi-agent framework’s efficacy stems from464

its multi-stage collaborative process.

Methods
2h 3h 4h

MAE RMSE MAE RMSE MAE RMSE

TST 25.08 36.29 24.59 36.07 23.77 35.56
w/o MA 26.49 37.97 25.63 37.33 24.46 36.79
w/o RE 26.15 38.23 25.41 37.68 24.43 37.02
w/o Eval 26.03 37.86 25.34 37.32 24.05 36.03

Table 3: Performance comparison of different multi-
agent workflow configurations. "w/o MA" indicates
source information not processed through analysis of
the Mobility Analyzer. "w/o RE" represents Mobility
Analyzer variants operating without considering recent
events. "w/o Eval" represents systems without evalua-
tion agent refinement. Experiments utilize data within
3km of event locations across 2h, 3h, and 4h windows.

465

Response to RQ3: Yes. Even with limited data,466

our model can enhance the mobility prediction.467

We compare the performance of models trained468

with more limited quantities of training events, and469

present the results in Figure 5. Although models470

generally achieve better performance with a larger471

training dataset, even with only 60% of the training472

data, our model can still outperform the base model473

that solely utilize spatiotemporal data.474

24

25

26

27

28

29
MAE Across Different Training Data Sizes

2h
3h
4h
Base_2h
Base_3h
Base_4h

100806040
Data Size (%)

36

38

40

42

44
RMSE Across Different Training Data Sizes

Figure 5: Performance of different time windows across
training data sizes. ‘Base’ indicates the performance of
a spatiotemporal model without event information.

Response to RQ4: Multimodal fusion-guided 475

fine-tuning enables language models to extract 476

spatiotemporal dynamic-related features from 477

raw text. To quantitatively evaluate this capabil- 478

ity, we examine differences in [CLS] token atten- 479

tion patterns between pre-trained and fine-tuned 480

models on test set samples. Specifically, we mea- 481

sure the proportion of pre-defined spatiotemporally 482

relevant words found within the top-10 tokens most 483

attended by each model’s [CLS] token. The results 484

presented in Table 4 show that fusion-guided fine- 485

tuning redirects model attention towards granular 486

cues indicative of spatiotemporal variations.

Source
Pretrained Fine-tuned

Spatial Temporal Spatial Temporal

Event_info 36.87 32.96 79.32 75.42
Public 16.76 27.37 46.37 54.75

Table 4: Proportion (%) of pre-defined spatial and tem-
poral words within the top-10 ‘[CLS]‘-attended tokens
from pre-trained and fusion-guided fine-tuned models.

487

Figure 6 offers qualitative support, providing 488

two illustrative examples of [CLS] token attention 489

visualizations. Beyond the general redirection ev- 490

ident from Table 4, examples in Figure 6 further 491

reveal the fine-tuned model’s improved acuity in 492

identifying distinctive event characteristics (e.g., 493

categorizing sports events as "ice hockey" or en- 494

tertainment as "Disney" with thematic terms like 495

"enchant"). Such features inherently govern unique 496

spatiotemporal patterns. The attention shift after 497

fine-tuning provides more targeted and impactful 498

inputs for spatiotemporal mobility predictions. 499
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LA Kings Vs. Chicago Blackhawks

PM fan 
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Range ice
hockey
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0.001 0.005 0.007 0.009
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characteristics

Figure 6: Examples of [CLS] token attention. The visu-
alization contrasts the top 10 words most attended by
the [CLS] token from pre-trained (left) and fine-tuned
(right) models processing the same event information.

6 Related Work500

Human Mobility Spatiotemporal Prediction501

Dominant approaches in this field include time-502

series forecasting techniques (Fu et al., 2016; Zhou503

et al., 2021; Nie et al., 2023) and hybrid architec-504

tures combining Graph Convolutional Networks505

with sequence models (Li et al., 2018; Wu et al.,506

2019; Bai et al., 2020). Attention mechanisms507

and dynamic graphs represent further refinements508

for modeling evolving spatial interactions (Guo509

et al., 2019; Lan et al., 2022; Gravina and Bacciu,510

2024). These methods utilize structured data, con-511

sequently overlooking information in unstructured512

text (e.g., social media, event sites) critical for513

capturing event-driven mobility shifts. Although514

some studies have attempted to incorporate textual515

data by converting them into numerical or categor-516

ical features as input variables of spatiotemporal517

models (Tu et al., 2023; Han et al., 2024), such518

discretization often fails to preserve the semantic519

richness inherent in diverse event descriptions.520

Multimodal Fusion Cross-modal learning with521

textual data has successfully addressed numerous522

real-world audiovisual understanding tasks (Huang523

et al., 2024; Cai et al., 2024). Building on these ad-524

vances, recent research has extended text-based ap-525

proaches to time-series data interpretation through 526

LLMs (Gruver et al., 2023; Liu et al., 2024; Hu 527

et al., 2025). However, these methods rely on 528

extensive aligned datasets for pretraining, such 529

as text-image pairs or time-series-text description 530

pairs. However, for event-driven spatiotempo- 531

ral data, textual information remains scarce and 532

poorly aligned with fine-grained spatiotemporal 533

signals. Furthermore, the high-dimensional na- 534

ture of spatiotemporal data creates fundamental 535

alignment challenges with sequential textual rep- 536

resentations (Jin et al., 2023). Our work there- 537

fore advances multi-modal fusion techniques to 538

specifically address these limitations. Multimodal 539

fusion encompasses diverse strategies including 540

input-level, representation-level, and prediction- 541

level (Xu et al., 2023). Selecting an appropriate 542

fusion strategy is critical to meet the low-latency 543

requirements of operational mobility prediction. 544

Multi-Agent Framework The advancement of 545

LLMs powered agents has fostered significant ad- 546

vances in complex task resolution through human- 547

like capabilities, including retrieval augmenta- 548

tion (Asai et al., 2023), role-playing (Park et al., 549

2023) and communication (Park et al., 2024). By 550

coordinating diverse agent capabilities and roles 551

within multi-agent frameworks, systems can ad- 552

dress challenging problems through structured col- 553

laboration (Chan et al., 2023; Hong et al., 2024). 554

This paradigm has demonstrated remarkable effi- 555

cacy across domains such as healthcare (Qiu et al., 556

2024; Wang et al., 2025) and finance (Yu et al., 557

2024). Urban mobility analysis represents a col- 558

laborative task that requires information retrieval 559

and filtering. Our designed multi-agent workflow 560

facilitates this teamwork approach and can provide 561

effective descriptive data for prediction tasks. 562

7 Conclusion 563

In this paper, we first identify the critical challenge 564

of human mobility forecasting under event-driven 565

dynamics. We propose SeMob, an LLM-powered 566

semantic synthesis framework with a multi-agent 567

system for extracting mobility-relevant event infor- 568

mation and a progressive architecture for fusing 569

textual and spatiotemporal data. Experimental re- 570

sults demonstrate that SeMob achieves superior 571

forecasting accuracy, particularly within highly 572

event-affected spatiotemporal scales. 573
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Limitations574

While this study demonstrates a novel approach to575

the integration of textual data for the prediction of576

spatiotemporal mobility, certain limitations should577

be acknowledged. The framework’s effectiveness578

is most evident for large planned events with abun-579

dant textual data; its application to smaller or less-580

documented events with sparse text requires further581

exploration. Furthermore, this study does not in-582

clude a comparative evaluation of different LLM583

for the agent components.584

Ethics Considerations585

Potential Risks Although SeMob shows promis-586

ing potential to streamline event information587

screening and extract vital insights, we must rec-588

ognize its inherent constraints. The LLM agents in589

the pipeline may struggle when confronted with un-590

conventional mobility-related information, some-591

times resulting in partial analyses or outputs that592

require expert interpretation to avoid misunder-593

standing. Therefore, this system is not intended594

to replace the expertise of seasoned traffic man-595

agement professionals or to make autonomous op-596

erational decisions. It serves as a supplementary597

tool to provide data-driven perspectives that assist598

decision-making processes of traffic managers.599

Data Ethics and Privacy Compliance All data600

utilized in this work are processed with rigorous601

attention to privacy and ethical standards. Mobil-602

ity datasets from PEMS are inherently anonymous.603

Social media data, also sourced from public plat-604

forms, undergoes systematic anonymization of user605

identifiers to protect personal privacy. Our primary606

objective is to derive insights relevant to urban mo-607

bility, rather than analyze individual data points or608

behaviors; consequently, the dataset is curated to609

exclude sensitive or harmful content. Both mobil-610

ity and social media data are drawn from publicly611

accessible sources.612
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A Dataset Details878

The detailed information for our event-879

spatiotemporal dataset is shown in Table 5880

and 6. The dataset is partitioned chronologically881

and by event type. An 8:2 ratio is used for the882

training and testing sets. We strive to maintain883

this ratio split within each event type. Crucially,884

events from the same venue on the same day885

are kept together in a single set (training or test)886

to ensure they are not separated. This dataset887

predominantly features English-language content,888

which is representative of the primary language889

used in official event communications and public890

social media discussions within the geographical891

scope of our study. The dataset and code will be892

released upon acceptance.

Venue Events ME S2 S3 S4 S5

Crypto.com Arena
& LA Convention Center 210 2 22 40 63 87

Rose Bowl Stadium 77 2 13 23 29 37
Hollywood Bowl 86 1 12 23 31 44

The Greek Theatre 73 2 5 11 36 46
Dodger Stadium 87 2 21 42 64 82

Honda Center 110 4 16 43 76 131
Levi’s Stadium 19 2 9 23 35 43

Shoreline Amphitheatre 37 1 7 13 21 30
Oakland Arena 48 1 6 14 18 37

SAP Center 164 3 23 48 82 131

Table 5: Details of venues and surrounding sensor distri-
butions. ME represents the maximum number of events
within a day. S2, S3, S4, and S5 denote the number
of sensors within 2 km, 3 km, 4 km, and 5 km radius
around each venue, respectively. Levi’s Stadium, Shore-
line Amphitheatre, SAP Center, and Oakland Arena
are located in the Greater Bay Area, while others are
located in the Greater Los Angeles Area. The collected
dataset covers the entirety of 2019.

Type Number

Trade & Industry 56
Entertainment 62
Celebration 97
Public Service 78
Performing Arts 284
Sports 334

Table 6: Approximate distribution of event categories.
Note that events often belong to multiple categories; this
breakdown is only intended to visualize the diversity of
categories in our collected event set.

893

B Experimental Setting / Details 894

B.1 Baselines 895

• LSTM (Fu et al., 2016): A classic recurrent 896

neural network designed to capture temporal 897

dependencies through gating mechanisms. 898

• PatchTST (Nie et al., 2023): A Transformer- 899

based model that segments time series into 900

patches as input tokens, enabling the capture 901

of local semantic information and long-term 902

dependencies for forecasting. 903

• DCRNN (Li et al., 2018): A spatial-temporal 904

model that integrates diffusion graph convo- 905

lutions with recurrent neural networks to cap- 906

ture spatial dependencies modeled as a diffu- 907

sion process and temporal dynamics. 908

• AGCRN (Bai et al., 2020): An adaptive 909

graph convolutional recurrent network that 910

learns node-specific patterns and infers inter- 911

dependencies adaptively without a predefined 912

graph structure for traffic forecasting. 913

• STGCN (Yu et al., 2018): A spatial-temporal 914

graph convolutional network that employs 915

graph convolutions to capture spatial struc- 916

tures and 1D convolutions along the time axis 917

to learn temporal features. 918

• GWNET (Wu et al., 2019): A graph WaveNet 919

architecture that combines graph convolutions 920

for spatial feature learning with stacked di- 921

lated 1D causal convolutions for temporal de- 922

pendency modeling. 923

• ASTGCN (Guo et al., 2019): An attention- 924

based spatial-temporal graph convolutional 925

network that utilizes spatial and temporal at- 926

tention mechanisms alongside graph convolu- 927

tions to model dynamic spatial-temporal cor- 928

relations. 929

• STGODE (Fang et al., 2021): A model that 930

leverages graph neural networks within an 931

ordinary differential equation framework to 932

capture continuous-time spatial-temporal dy- 933

namics. 934

• DSTAGNN (Lan et al., 2022): A dynamic 935

spatial-temporal aware graph neural network 936

designed to capture evolving spatial depen- 937

dencies through dynamic graph generation 938
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and graph attention mechanisms for improved939

forecasting accuracy.940

Each experiment is independently repeated three941

times over 100 epochs, with training conducted on942

traffic data from the year preceding our collected943

dataset, and the average performance is reported.944

Model architecture and training configurations fol-945

low the recommended settings provided in the offi-946

cial code repositories.947

B.2 Implementation Detail948

The multi-agent system incorporates LLM capa-949

bilities through Qwen 33. Each agent within this950

framework utilizes Chain-of-Thought (Wei et al.,951

2022) and self-reflection (Shinn et al., 2023) tech-952

niques. The reflection process is designed to in-953

volve three self-iterative cycles of thought to refine954

the agent’s outputs.955

To fine-tune the text encoder, we adopt the956

LoRA approach (Hu et al., 2022) on a RoBERTa957

model (Liu et al., 2019). We experiment with958

LoRA ranks from the set {2, 4, 8}, keeping the959

scaling factor α at twice the rank for each, and960

explore dropout rates of {0.05, 0.1, 0.2}. Based961

on validation performance, we select a rank of 4962

(thus α = 8) and a dropout rate of 0.1 for LoRA963

fine-tuning. The spatiotemporal encoder leverages964

pre-trained GWNET embeddings (Wu et al., 2019),965

computed from large-scale regional traffic graphs.966

We employ Smooth L1 Loss (Girshick, 2015) as967

the objective function. Model training is conducted968

with 5 epochs using the Adam optimizer (Kingma969

and Ba, 2015). The initial learning rate is tuned970

from the values {1e-5, 1e-4, 1e-3, 5e-3}, with971

1e-3 being chosen for optimal performance. The972

batch size is set to 64. All experiments are con-973

ducted on an A800 80G GPU. The experiment is974

repeated three times and the average performance975

is reported.976

Table 7 summarizes the results across different977

combinations of text and spatiotemporal encoders.978

More accurate spatiotemporal models yield bet-979

ter representations when used as encoders. No-980

tably, the T5 model (Raffel et al., 2020), despite981

its larger parameter count, underperforms com-982

pared to RoBERTa and BERT (Devlin et al., 2019).983

A possible implication is that larger models may984

introduce unnecessary complexity and irrelevant985

representations, which could interfere with down-986

stream fusion and prediction tasks. In contrast,987

3chat.qwen.ai

since the input text has been distilled by a task- 988

specific agent system to retain only high-quality, 989

relevant information, a lightweight encoder is suf- 990

ficient to capture the necessary semantics. 991

Methods
2h 3h 4h

MAE RMSE MAE RMSE MAE RMSE

TST 25.08 36.29 24.59 36.07 23.77 35.56
w/ Bert 26.17 37.62 25.14 37.02 24.25 36.79
w/ T5 27.07 39.02 25.94 38.70 24.91 37.24

w/ DSTAGNN 25.77 37.12 24.84 36.68 23.86 35.92
w/ DCRNN 25.81 37.47 24.65 36.85 23.94 36.02

Table 7: Ablation experiments on encoder methods.
Experiments utilize data within 3km of event locations
across 2h, 3h, and 4h windows.

C Comparison of Baselines across 992

Spatiotemporal Scales 993

Detailed performance metrics across diverse spa- 994

tiotemporal scales are presented in Table 12- 14. 995

Figure 7 visualizes these results, demonstrating 996

a performance deterioration for most models in 997

the 2km to 3km spatial proximity. In contrast, the 998

rate of performance decrease stabilizes at a 5km 999

radius. Temporal analysis further reveals that a 1000

3-hour event window most significantly influences 1001

model accuracy relative to 3-hour and 4-hour inter- 1002

vals. 1003

3km-2h

3km-3h

3km-4h

4km-2h

2km-4h

2km-3h

2km-2h

4km-3h

4km-4h

5km-2h

5km-3h

5km-4h

3022 26

Figure 7: MAE of baselines across spatiotemporal
scales.

D Performance Metrics for Text 1004

Categories 1005

Tables 8 and 9 present the MAE and RMSE, respec- 1006

tively, for various text categories evaluated across 1007

distances and time intervals. 1008
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Category No_text Event_info Public Traffic TST

2km_2h 28.25 26.98 27.20 26.50 25.49
2km_3h 28.72 27.31 27.54 26.99 25.32
2km_4h 25.65 24.68 24.52 24.09 23.97
3km_2h 29.13 27.91 27.94 27.82 25.08
3km_3h 27.77 26.58 26.44 26.57 24.59
3km_4h 25.69 24.56 24.36 24.51 23.77
4km_2h 28.93 27.60 27.63 27.80 24.93
4km_3h 27.36 26.07 25.91 26.21 24.22
4km_4h 25.58 24.53 24.15 24.56 23.69
5km_2h 28.39 27.17 27.26 27.22 24.27
5km_3h 26.50 25.15 25.20 25.33 24.07
5km_4h 25.23 24.02 23.94 24.15 23.33

Table 8: MAE for different text information categories.

Category No_text Event_info Public Traffic TST

2km_2h 40.22 38.37 38.69 37.74 35.23
2km_3h 38.97 37.10 37.33 36.63 36.12
2km_4h 37.17 35.76 35.54 34.92 35.13
3km_2h 40.83 39.12 39.15 39.00 36.29
3km_3h 39.33 37.64 37.44 37.64 36.07
3km_4h 37.88 36.22 35.91 36.15 35.56
4km_2h 40.48 38.62 38.66 38.90 36.00
4km_3h 39.04 37.21 37.00 37.40 35.82
4km_4h 38.03 36.42 35.97 36.51 35.74
5km_2h 40.21 38.48 38.60 38.56 36.09
5km_3h 38.76 36.83 36.90 37.06 35.79
5km_4h 37.36 35.57 35.47 35.76 35.29

Table 9: RMSE for different text information categories.

E Efficiency Analysis1009

To evaluate the computational efficiency and prac-1010

tical applicability of our proposed model, we1011

compare its inference time against several high-1012

performing spatiotemporal methods, with results1013

shown in Table 10.

Model Inference Time (s) Parameters

GWNET-GLA 0.0717 374K
GWNET-GBA 0.0259 344K
DCRNN-GLA 0.2152 373K
DCRNN-GBA 0.1395 373K
DSTAGNN-GLA 0.2352 66.3M
DSTAGNN-GBA 0.0906 26.9M
Ours-GLA 0.2864 3.1MOurs-GBA 0.2297

Table 10: Model Efficiency comparison. We compare
our model with high-performance spatiotemporal mod-
els that capture both spatial and temporal dimensions.
Baseline model times reflect inference for a large re-
gion at a single time point, whereas ’Ours’ indicates
inference per time step for affected sensors near a single
venue. ’Parameters’ is the number of learnable parame-
ters. K: 103, M: 106. GLA: Greater Los Angeles Area,
GBA: Greater Bay Area.

1014

When examining these computational speeds, it1015

is essential to acknowledge the distinct operational1016

scopes: baseline spatiotemporal models typically1017

generate predictions for an entire large-scale re-1018

gion at a single time point, whereas our model’s re- 1019

ported inference time refers to processing data per 1020

time step for affected sensors specifically around a 1021

single venue. Despite handling multimodal inputs 1022

including pre-computed embeddings from broader 1023

regional spatiotemporal models along with event- 1024

specific textual features, our model demonstrates 1025

competitive inference speed. The observed pro- 1026

cessing time supports minute-level responsiveness, 1027

confirming its suitability for real-world dynamic 1028

mobility forecasting applications. It also operates 1029

with considerably fewer trainable parameters than 1030

the complex spatiotemporal model DSTAGNN. 1031

F Pre-defined Spatiotemporal Keywords 1032

Table 11 lists the pre-defined spatial and temporal 1033

keywords employed in our quantitative analysis in 1034

RQ4.

Category Keywords

Spatial Location, Venue, Arena, Stadium, Street,
Road, Avenue, Highway, Intersection, Dis-
trict, Zone, Area, Region, Downtown, Map,
Route, Address, Coordinates, Near, Vicin-
ity, Surrounding, Adjacent, Within, Across,
Along, Between, Entrance, Exit, Parking, Ra-
dius

Temporal Hour, Minute, Day, Week, Month, Morning,
Afternoon, Evening, Night, AM, PM, Clock,
Today, Date, Schedule, Timeline, Duration,
Period, Before, After, Early, Late, Start, End,
During, Arrival, Departure, Peak, Weekend,
Daily

Table 11: Pre-defined Spatial and Temporal Keywords.
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Methods

By Time By Type
2h 3h 4h 2h 3h 4h

MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

LSTM 28.77 39.53 26.49 37.82 25.92 37.84 30.24 41.76 27.83 39.92 27.20 39.89
PatchTST 29.94 40.89 27.54 38.31 26.05 38.97 31.42 43.12 28.90 40.38 27.33 41.01
DCRNN 28.83 39.45 27.46 39.25 27.52 39.08 30.73 42.23 29.01 42.05 28.67 41.13
AGCRN 30.07 41.73 27.35 41.45 26.00 38.32 31.10 43.43 28.46 42.60 27.47 41.32
STGCN 36.16 54.86 34.44 52.20 32.40 53.66 36.12 54.24 34.18 50.59 31.63 50.36
GWNET 29.01 38.19 27.56 37.07 24.74 35.77 28.25 40.22 28.72 38.97 25.65 37.17
ASTGCN 43.12 64.98 42.43 64.10 39.36 63.78 42.08 63.46 40.82 63.14 36.59 62.47
STGODE 35.97 54.11 33.70 51.49 31.88 51.03 35.97 54.08 33.47 51.06 31.24 49.96
DSTAGNN 29.45 40.33 28.62 39.99 28.14 39.97 31.05 43.20 29.90 42.50 28.86 41.94
Ours 25.55 35.37 25.57 35.05 24.04 35.19 25.49 35.23 25.32 36.12 23.97 35.13

Table 12: Performance comparison of baseline models using sensor data within 2 km of event locations.

Methods

By Time By Type
2h 3h 4h 2h 3h 4h

MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

LSTM 29.61 41.22 27.36 39.98 26.87 39.44 29.98 42.23 27.36 39.98 26.92 40.13
PatchTST 29.58 41.14 27.05 39.65 26.59 39.22 29.94 42.15 27.05 39.65 26.64 39.91
DCRNN 29.81 41.12 28.95 40.99 28.52 40.91 30.48 42.50 28.95 40.99 28.62 41.64
AGCRN 32.19 47.05 30.49 48.85 30.21 51.65 31.23 45.48 30.49 48.85 28.51 47.04
STGCN 35.53 52.30 33.16 51.42 32.42 51.04 34.93 51.49 33.16 51.42 30.91 48.07
GWNET 28.93 39.55 26.96 39.04 25.58 37.97 28.93 40.48 27.36 39.04 25.58 38.03
ASTGCN 42.09 59.46 40.35 57.29 39.37 56.16 40.59 57.91 40.35 57.29 35.86 53.16
STGODE 35.34 51.47 32.94 49.37 31.79 48.32 34.78 51.32 32.94 49.37 30.52 47.59
DSTAGNN 30.42 41.90 29.59 41.78 29.24 41.73 30.79 43.47 29.59 41.78 28.82 42.43
Ours 25.08 36.38 24.73 36.80 23.79 36.42 24.93 36.00 24.22 35.82 23.69 35.74

Table 13: Performance comparison of baseline models using sensor data within 4 km of event locations.

Methods

By Time By Type
2h 3h 4h 2h 3h 4h

MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

LSTM 28.40 39.85 26.41 38.84 25.98 38.40 29.06 41.23 26.75 39.84 26.24 39.24
PatchTST 28.37 39.77 26.03 38.52 25.60 38.16 29.03 41.14 26.44 39.57 25.97 39.11
DCRNN 28.81 39.97 28.12 39.98 27.77 39.99 29.81 41.74 28.64 41.15 28.04 40.83
AGCRN 30.62 44.59 28.64 45.72 28.32 47.48 30.10 43.73 27.71 43.99 27.32 44.39
STGCN 34.99 51.89 32.27 50.05 31.41 49.25 34.66 51.29 31.49 48.49 30.48 47.27
GWNET 28.02 39.25 26.29 38.03 25.12 36.84 28.39 40.21 26.50 38.76 25.23 37.36
ASTGCN 41.10 58.55 39.04 55.57 37.88 54.01 39.93 57.26 36.83 53.81 35.09 52.01
STGODE 34.81 51.06 32.09 48.04 30.78 46.52 34.51 51.13 31.53 48.24 30.09 46.79
DSTAGNN 29.41 40.72 28.74 40.74 28.46 40.78 30.12 42.68 28.78 41.90 28.23 41.59
Ours 24.40 35.74 23.37 35.55 23.34 35.08 24.27 36.09 24.07 35.79 23.33 35.29

Table 14: Performance comparison of baseline models using sensor data within 5 km of event locations.
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G Main Prompts1036

G.1 Prompts for Event Info Extractor1037

After acquiring metadata from the Venue Calendar1038

Database for the event day, the prompt given to the1039

Event Info Extractor is as follows:1040

Objective: Please analyze the following event
information and extract the key details in a
clear text format.

Required Output Structure: Please extract
and organize the following information in a
clear text format (using titles to separate each
section):
1. Event Type: Clearly define the category

of the event (such as sports event, concert,
music festival, exhibition, public activity,
etc.) and briefly explain its core features
or definition to help identify similar event
types.

2. Event Venue and Location Information:
Provide the name of the venue and its sig-
nificant features (such as capacity, facilities,
technical equipment, geographical advan-
tages or limitations), and describe the char-
acteristics of the surrounding area (such as
transportation convenience, commercial dis-
tricts, residential areas, natural landscapes,
etc.), to showcase how the venue may im-
pact the event.

3. Event Time: Provide the start time and
estimated duration; if the official duration is
not provided, reasonably estimate it based
on the typical duration for this type of event,
and explain the basis of your assumption.

4. Event Content: Summarize the main ac-
tivities, goals, and unique highlights of the
event, including key people, teams, or orga-
nizations involved, their background, fame,
or influence (such as international stars, lo-
cal celebrities, authoritative organizations,
etc.). If there are special segments (such
as fan meet-ups, opening ceremonies, etc.),
mention them.

5. Target Audience: Describe the characteris-
tics of potential participants, including age
range, interests (such as music lovers, tech-
nology enthusiasts), or professional back-
ground (such as students, professionals),
and analyze their motivation for attending

1041

(such as entertainment, learning), along
with the proportion of the audience.

6. Event Scale or Importance: Specify if
this is a "locally focused event," "region-
ally influential activity," or "nationally ap-
pealing event," or estimate the number of
participants based on the venue’s capacity
and event type (such as "about hundreds
of participants," or "estimated thousands in
attendance"). When estimating, consider
the venue’s maximum capacity as the upper
limit, the event’s appeal (e.g., regular ac-
tivities tend to attract fewer attendees com-
pared to well-known artists or major cham-
pionships), and the reasonableness of the
estimate.

Please think step-by-step.

Output: <basic event information>
1042

G.2 Prompts for Tweet Analyzer 1043

Using the event information provided by the Event 1044

Info Extractor, the agent constructs retrieval key- 1045

words by adhering to the following prompt: 1046

Please use the <basic event information> to
create a set of targeted Twitter search queries.
Your goal is to generate 5 distinct, logically
constructed search query strings. Each query
string must strictly adhere to the specific
structure:

(EventRelatedTermA OR
EventRelatedTermB OR ...)

AND
(LocationRelatedTermX OR

LocationRelatedTermY OR ...)

To populate this structure:

• The ’Event-Related’ component (terms
joined by OR) should relate to the event’s
name, any common variations or nick-
names, keywords representing key activ-
ities or the primary event type, and relevant
event-specific hashtags.

• The ’Location-Related’ component
(terms joined by OR) should relate to the
venue name or nicknames, the city, and
optionally, other crucial official location
identifiers (like a distinct district or campus
name if provided and applicable) to

1047
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maximize specificity.

Please think step-by-step.
1048

For each event, tweets are initially retrieved us-1049

ing five constructed queries and then deduplicated.1050

The retrieved tweets are subsequently analyzed by1051

the agent, guided by the following prompt:1052

Please filter the tweets related to <basic
event information> and analyze the following
batch of tweets with a focus on the follow-
ing aspects and provide a concise, structured
response:

1. Social Media Attention and Reasons:
Evaluate the attention trend and perfor-
mance of the event on social media, us-
ing descriptive language (e.g., "widely dis-
cussed," "moderate attention," or "limited
attention"), and explain the reasons (e.g.,
topic appeal, dissemination range, or time
factors).

2. Public Participation Willingness and
Audience Characteristics with Reasons:
Describe the strength of public willingness
to attend the event (e.g., "strong willing-
ness to participate," "some groups are in-
terested," or "willingness to participate is
unclear") and the characteristics of poten-
tial participants (e.g., age, interests, or pro-
fessional groups), and provide reasoning
(e.g., the nature of the event, convenience,
or alignment with target audiences).

3. Sentiment Distribution and Reasons:
Summarize the sentiment tendencies on
social media related to the event (e.g.,
"generally excited," "somewhat positive,"
"neutral," or "negative emotions domi-
nate") and analyze the reasons (e.g., event
highlights, controversy, or public expecta-
tions).

4. Main Discussion Topics: Extract and list
the main topics or keywords related to the
event in tweets or social media discussions
(e.g., event content, key individuals, or
points of controversy), keeping it brief.

Output: <social media analysis results>
1053

G.3 Prompts for Mobility Analyzer 1054

This agent processes information from the first two 1055

agents to conduct spatio-temporal text filtering per- 1056

tinent to traffic analysis, according to the prompt 1057

below: 1058

Role: You are a premier expert in California
traffic impact prediction, possessing exten-
sive professional experience and a profound
understanding of the state’s diverse cultural
fabric, unique urban road networks, and var-
ied residential patterns.

Objective: Conduct a preliminary analysis of
an event’s impact on surrounding road traffic
for a specific day.

Methodology: Please think step-by-step.
1. First, synthesize the <basic event informa-

tion>, relevant data from <recent events>,
and insights from <social media analysis
results>.

2. Second, utilize the specified <logic> to
structure your assessment.

3. Third, your analysis must explicitly con-
sider and apply your expert knowledge of
California’s unique urban characteristics
and residential behaviors.

Required Output Structure: Your report
detailing the preliminary analysis must be
formatted precisely as follows. Focus exclu-
sively on road traffic.

#Traffic conditions

• General Trend of Traffic Flow Changes:
Describe anticipated shifts in traffic vol-
ume (e.g., percentage increase), congestion
levels (e.g., severe, moderate, light), and
specific roadways likely to be affected.

• Impact Range: Estimate the geographi-
cal extent of traffic effects (e.g., radius in
miles/km from the event, specific intersec-
tions, affected freeway segments).

• Duration: Predict the timeframe of the traf-
fic impact, including estimated start, peak
congestion, and when traffic is expected to
normalize.

• Detailed Reasoning: Provide a thorough
step-by-step explanation for your conclu-

1059
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sions regarding the traffic conditions. Di-
rectly link your predictions back to the
#Filtered event info, #Filtered public re-
actions, the specified <logic>, and your
expert knowledge of California’s traffic
dynamics and cultural patterns. Explain
why these factors lead to the predicted out-
comes.

#Filtered event info
Present the key elements from the <basic
event information> and <recent events> that
were most influential in your traffic impact
assessment. Highlight specific details (e.g.,
precise location, timing relative to peak hours,
scale of event, relevant comparisons to past
events).

#Filtered public reactions
Summarize the salient points from the <so-
cial media analysis results> that significantly
shaped your predictions. Focus on aspects
indicating potential crowd size beyond offi-
cial estimates, geographic origin of attendees,
and overall public intent to travel to the event
area.

The output should be in JSON formats:
{"filtered event info": "...",
"filtered public reactions": "...",
"traffic conditions": "..."}

Output: <filtered event info>, <filtered pub-
lic reactions>, <traffic conditions>

1060

G.4 Prompts for Evaluator1061

The <logic> component consists of two parts:1062

<logic_global>, which outlines general screening1063

principles, and <logic_venue>, which provides1064

venue-specific guidelines. The prompt for the Eval-1065

uator agent to revise <logic_global> is as follows:1066

Objective: Analyze aggregated historical
prediction error statistics to identify systemic
weaknesses and patterns in the general infor-
mation screening logic. Propose updates to
enhance its overall accuracy and robustness
across diverse events and venues.

Input Data:
<Error_Patterns_By_Day_Of_Week>: Sta-

1067

tistical breakdown of errors by weekday.
<Error_Patterns_By_Time_Of_Day>: Sta-
tistical breakdown of errors by specific time
slots.
<Error_Patterns_By_Event_Type>: Statis-
tics on which types of events most fre-
quently exhibit high prediction errors.

Instructions: Identify systemic patterns that
indicate deficiencies in our current general
information screening <logic_global>. Your
goal is to understand why these broad er-
ror trends are occurring and how to refine
the logic that filters and weighs information.
Consider: What common characteristics link
the days, times, or event types with the high-
est error rates? What types of information
might be particularly relevant or deceptive
in these high-error contexts that our general
logic isn’t capturing well? Please think step-
by-step.

Output: Updated <logic_global>
1068

The prompt for the Evaluator agent to revise 1069

<logic_venue> is as follows: 1070

Objective: Analyze aggregated historical
prediction error statistics for a specific venue
to identify unique error patterns. Propose
targeted updates to create or refine a venue-
specific information screening logic.

Input Data:
<Venue_Name>: The specific venue being
analyzed.
<High_Error_Event_Profile_At_Venue>: A
statistical summary of events at this venue
that had the most severe prediction errors.
This includes: Common event types/scales
that consistently result in high errors at this
venue. Frequently problematic time periods.
Specific locations around the venue that are
repeatedly sites of significant prediction er-
rors.

Instructions: Identify error patterns of
this venue. Your goal is to determine
how information screening logic of this
venue <logic_venue> should be refined,
considering its unique <Venue_Profile>:

1071
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What common threads link the high-error
events, times, and locations detailed in the
<High_Error_Event_Profile_At_Venue>?
How might these relate to the venue’s phys-
ical characteristics, typical event portfolio,
or surrounding environment? Please think
step-by-step.

Output: Updated <logic_venue>
1072

The following sample demonstrates the revision1073

of the screening logic for improved real-world ac-1074

curacy:1075

Here is the analysis of prediction errors for
the Hollywood Bowl:

• Insufficient Pre-Event Window for Popu-
lar Concerts: Error curves clearly indicate
that the standard 1.5-hour pre-event win-
dow for anticipating traffic build-up is inad-
equate for popular weekend concerts. This
is due to attendees typically arriving much
earlier, often for pre-event activities like
picnicking. The system’s logic needs to be
triggered by a combination of event cate-
gory (e.g., pop concert), day of the week
(weekend), and indicators of high public
interest (e.g., expected attendance ratio, so-
cial media buzz).

• Inadequate Egress Time for Sold-Out
Events: For sold-out concerts, especially
considering the venue’s congested parking
and limited exit routes, the previously al-
located 45-minute post-event window for
traffic normalization is consistently proving
insufficient.

• Underestimation of Congestion on Key
Routes: Specific major access routes,
namely Highland Avenue (for ingress) and
Cahuenga Boulevard East (for both ingress
and egress), are persistently underestimated
in terms of congestion severity and duration
during these identified high-impact events.
The screening logic must more emphati-
cally flag these critical segments.

Based on these principles, the information
screening logic for this venue has been up-
dated as follows:

Updated Logic Rules:
1076

Adjusted Ingress Window for High-
Demand Weekend Concerts:
For events identified as popular pop concerts
occurring on Fridays, Saturdays, or Sundays
with high anticipated attendance, the system
will now recognize the onset of significant
ingress traffic impact starting two hours prior
to the official event commencement. Further-
more, predicted traffic volumes within the
1.5-hour window immediately preceding the
event start time will be considered substan-
tially more intense than under previous calcu-
lations.

Extended Egress Impact Period for High-
Demand Weekend Concerts:
For the same category of popular weekend
pop concerts with high anticipated atten-
dance, the duration of significant post-event
traffic impact is now projected to persist for
at least one hour following the event’s conclu-
sion. The initial thirty minutes of this period,
in particular, will be recognized as having
an intensified level of congestion and slower
dispersion rates.

Enhanced Flagging for Critical Road Seg-
ments During High-Impact Scenarios:
When conditions indicative of a ’Popular
Weekend Pop Concert with High Anticipated
Attendance’ are met (as per the updated
ingress and egress timing logic), the screen-
ing logic will now apply special high-alert
designators to specific, historically problem-
atic road segments. Notably, Highland Av-
enue will be flagged for heightened early
ingress congestion, and Cahuenga Boulevard
East will be flagged for severe and prolonged
congestion during both ingress and egress
phases. This ensures these critical arteries
receive priority attention in subsequent traffic
impact assessments.

1077
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