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Abstract. This paper introduces a U-Net-Transformer hybrid model
designed for the MICCAI FLARE 2025 Abdominal CT Organ Segmen-
tation on Laptop Challenge. The model achieves both efficiency and
performance through the integration of depthwise separable convolu-
tions and transformer layers within the bottleneck. Our method incor-
porates quantized soft labels for improved boundary accuracy, aggres-
sive multi-category data augmentation for enhanced robustness, class-
weighted loss function and class-specific post-processing for precise seg-
mentation of organs. On the online validation set, the pseudo-labeling
model achieves mean Dice 0.9110 and NSD 0.9575, while the CPU-
inference model achieves 0.8912 and 0.9518, respectively. Average in-
ference time over 50 public validation cases is 19.3s per volume. These
findings highlight the potential for practical deployment of the model in
clinical environments with limited computational resources.

Keywords: Medical image segmentation - Abdomen - Computed to-
mography - Semi-supervised learning - U-Net - Transformer

1 Introduction

Accurate segmentation of abdominal organs in medical imaging is important for
various downstream clinical applications. While deep learning has substantially
advanced segmentation accuracy, most state-of-the-art models rely on GPU re-
sources for inference, limiting their practicality in clinical environments. Thus,
there is a pressing need for methods optimized for low-resource settings, partic-
ularly for deployment on laptops.

The FLARE 2025 Abdominal CT Organ Segmentation on Laptop Challenge
addresses this issue by investigating whether state-of-the-art abdominal segmen-
tation models can be adapted for CPU-only environments without sacrificing
accuracy. Unlike previous years, this challenge prohibits cascaded approaches
to encourage single-model designs that are both computationally efficient and
accurate. Participants are tasked with developing a model to segment 13 organs
and the background, using 50 labeled training images, 2,000 unlabeled images,
and 50 publicly labeled validation images. Pseudo-labels generated by the win-
ning models of FLARE 2022 [13] are available for the 2000 images, including
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contributions from team aladdinb [9], awarded for best segmentation accuracy,
and team blackbean [25], recognized for overall performance.

Advances in abdominal organ segmentation have been driven by deep con-
volutional networks, transformer-based architectures, and hybrid models that
capture both local texture and global context, with U-Net variants and 3D ex-
tensions serving as robust baselines. These methods remain computationally
demanding, raising challenges for deployment in CPU-only clinical workflows.
For example in 2022, while the aladdinb team’s [9] model achieved the highest
Dice score using nnU-Net [10], their approach proved inefficient for the speed
and low-resource constraints even for the FLARE 2022 challenge, which allowed
the use of 2GB GPU memory. While the blackbean team’s [25] model was effi-
cient, they employed a localization-to-segmentation 2-stage framework which is
not allowed this year, and also required a GPU.

Motivated by the need for designing a one-shot, accurate, and lightweight
segmentation model, this paper proposes an efficient model architecture tailored
for CPU deployment, alongside a carefully designed data processing pipeline.
Our approach aims to strike a balance between computational efficiency and
segmentation accuracy, making it viable for real-world use cases such as laptop-
based inference in clinical environments. The key methodological contributions
of our work are as follows:

1. Employing quantized soft labels to achieve sub-voxel boundary accuracy, and
allowing the combination of multiple model predictions for pseudo-labeling.

2. Applying aggressive data augmentation strategies across spatial, intensity,
and coarse block categories to improve model robustness and generalization.

3. Applying a class-weighted loss function and a class-specific small object fil-
tering in post-processing tailored to each organ.

4. Model design integrating the performance advantages of the U-Net and
transformer while balancing with inference speed on CPU.

2 Method

2.1 Pre-processing

All volumes are first reoriented into the "RAS" format. For training the larger
pseudo-label annotator model, volumes are resampled to (0.8, 0.8, 2.5) mm voxel
spacing to preserve resolution. For the smaller inference model, volumes are re-
sampled to (1.6, 1.6, 2.5) mm voxel spacing, as well as center-cropped on the
right-left and anterior-posterior axes into (256, 256) voxels to improve computa-
tional speed. As we constrain the size of the first two dimensions, we only need
to apply a 1-D sliding window over the inferior-superior axis, thus computation
time is now linear to volume size instead of cubic.

CT images CT images are preprocessed by reorienting and resampling to the
desired voxel spacing using trilinear interpolation. Image intensities are clipped
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to the foreground intensity range of [-974.0, 295.0], derived from the joint 0.05
and 99.5 percentiles of foreground voxels across 50 ground-truth images and
2000 pseudo-labels generated by aladdinb. Intensities are then z-score-normalized
using a mean of 95.958 and a standard deviation of 139.964. Due to potential
inaccuracies in pseudo-labels, z-score statistics for normalization are computed
solely from ground-truth foreground voxels.

Quantized soft labels Our method introduces quantization to soft labels,
allowing practical use of soft labels on volumetric data, which would have been
too bulky to process otherwise.

For the 50 ground-truth labels, we first reoriented and resampled them to
the target voxel spacing. Integer labels are then converted to one-hot encoded
representations, enabling the use of trilinear interpolation in terms of probabili-
ties, which more accurately preserves sub-voxel boundaries compared to nearest-
neighbor interpolation.

Pseudo-labels from aladdinb and blackbean models are first filtered to ensure
the labels only span from 0 to 14, replacing out of range integers with the back-
ground 0 class. Then, we take the mean ensemble of labels in one-hot form, after
which their probabilities are renormalized. In contrast, due to computational
constraints and inherent uncertainty in pseudo-label accuracy, nearest-neighbor
interpolation is used for these 2000 labels.

However, the resulting expansion from single-channel uint8 integer labels to
14-channel float32 soft labels significantly increased computational demand dur-
ing training. To alleviate this, we quantized the soft labels to uint8 precision
by multiplying probabilities by 255 and truncating the results. We redistribute
residual mass by adding 1 to the largest-residual classes until the per-voxel chan-
nel sum is 255. Prior to loss computation, these quantized labels are converted
back to float32 format on the GPU.

2.2 Proposed method

To accommodate for the FLARE 2025 CPU inference constraint, we developed a
custom architecture that balances accuracy and computational efficiency. After
exploring several U-Net-based designs incorporating residual convolution blocks,
transformer modules, and various normalization schemes, we settled on the fol-
lowing configuration as shown in Fig. 1.

Drawing inspiration from Inception v3 [22], our architecture integrates multi-
scale representations using factorized convolutions. In the annotation model, we
begin with a 3 x 3 x 3 convolution to a number of hidden channels, followed
by group normalization [28] with each channel as a group, effectively instance
normalization, and a GELU [8] activation. Hidden layer activations are subse-
quently processed in parallel by both standard and dilated 3 x 3 x 3 convolu-
tions, effectively creating factorized receptive fields equivalent to 5 x 5 x 5 and
7 x 7 x 7 kernels, followed by normalization and activation, each to half the num-
ber of hidden channels. Channel-wise normalization complements channel-based
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Fig. 1. U-Net based architecture with residual connections, transformer layers at the
bottleneck bridge and multiscale convolution feature concatenation.
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dropout [23], promoting channel independence. We set the hidden channels to
be smaller than the number of channels in the residual stream to reduce compu-
tation per convolution, but the concatenation of multiscale feature maps gives a
total of 2x hidden channels to mix with the final point-wise convolution, thus
also achieving the representational capacity of channel expanding blocks.

At the encoder-decoder bottleneck, convolutional blocks alternate with trans-
former [24] blocks. Transformer blocks reshape the volume into a linear sequence
and apply multi-head attention followed by SwiGLU [20] blocks instead of con-
ventional MLP layers. Activations are pre-normalized via layer normalization,
and dropout is applied conventionally in i.i.d. form. The bottleneck stage offers
a global field of view via the transformer layers with the semantically rich latents
extracted from previous convolution layers.

We perform upsampling and downsampling using convolutions or transposed
convolutions with 2 x 2 x 2 kernels and stride 2. To further stabilize training,
group normalization [28] is applied to residual streams with groups of 8 chan-
nels, chosen to balance computational efficiency and representation capability
before downsampling or upsampling. Initial patch embeddings of size 2 x 2 x 1
reduce input dimensionality, while transposed convolutions near the output re-
store resolution to the original size with 16 channels. A final 3 x 3 x 3 convolution
removes checkerboard artifacts to generate predictions for the 14-class segmen-
tation task. Similarly, a 3 x 3 x 3 convolution is used when merging the U-Net
skip connections across the same resolution with the upsampled activations.

Table 1 show the specifications of the small inference model while Table 2
show the specifications of the large annotation model. The resolution column
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Table 1. Small inference model, 8.38M parameters

Resolution Layers Channels Hidden Channels Dropout
256, 256, 64 - 1|14 - 0
128, 128, 64 4x2 32 24x2 0.0125
64, 64, 32 6x2 64 48%2 0.025
32, 32, 16 6x2 128 96x2 0.0375
16, 16, 8 24 256 192x2 0.05
Table 2. Large annotation model, 37.98M parameters
Resolution Layers Channels Hidden Channels Dropout
224,224, 112 - 1|14 - 0
112, 112, 112 6x2 48 32x2 0.05
56, 56, 56 6x2 96 64x2 0.1
28, 28, 28 6x2 192 1282 0.15
14, 14, 14 18 384 2562 0.2

show the spatial size of the activations on each level of the encoder and decoder.
The encoder and decoder are symmetric so the number of layers are denoted with
x2. There is 1 input channel and 14 output channels for each class. Inside the
convolution block, the convolutions would apply a channel reduction towards
the hidden channel dimension, but the concatenation allows the total hidden
channels to be twice as large. Finally, dropout is applied increasingly in a linear
fashion in deeper levels with more channels.

For our small inference model, we note that the largest computational load
comes from the 3D convolutions. We replace full convolutions with a point-
wise convolution for channel mixing, followed by depthwise convolutions for
spatial mixing, to create the efficient convolution layers. Channel-wise group
normalization and GELU activation are applied in the same manner. Because
depthwise convolutions are also channel-independent, this change is consistent
with our architecture design. We eliminate dilated convolutions and replace
artifact-smoothing layers with conventional point-wise convolutions to reduce
cost. Transformer layers are retained in the bottleneck as the sequence length is
only 2048 after downsampling, and short enough so that global attention is not
a significant computational load.

2.3 Post-processing

By visualizing the model predictions against the ground truth of the public val-
idation labels, we observe the following common mistakes made by our large
annotation model. Firstly, there are boundary discrepancies around the organs,
confusion with the background or with other organs. However, it contributes
only to a small part of the errors. More significantly, if the patient had surgery
to remove certain organs, any false positive prediction of the organ would render
a 0 Dice score for the organ. Moreover, due to anatomical variations and poten-
tially tumors, the model sometimes cannot segment organs with peculiar shapes
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accurately, instead breaking into several convex components in the prediction,
thus choosing to keep the largest connected component only could be detrimen-
tal to overall performance. As two-stage cascaded models are not allowed in this
year’s competition, we cannot do localization followed by segmentation, which
causes false positives to occur in far away regions in full-body validation scans.

Based on the empirical observations of the raw predictions, we choose to take
a two-pronged approach to tackle the errors. We reduce the weight of the loss of
the background class to 0.05, thus increasing the proportion of false positives, and
remove small objects to clean the predictions. As organs differ greatly in size, we
use a per-class threshold for the small object filtering. Table 3 shows the other
class-specific loss weights, as well as the small-object voxel threshold applied
for each model on their corresponding spacing resolution. The loss weights are
computed by the log-scale of the prevalence of organ class voxels, with the largest
organ, the liver, fixed to weight 1.0, and the smallest organ, the right adrenal
gland fixed to weight 2.0.

Table 3. Class specific training loss weights, and voxel thresholds for small object
removal post processing.

Loss Small Large
Class Weight Threshold Threshold
Background 0.05 - -
Liver 1.00 10000 10000
Right Kidney 1.35 1000 1000
Spleen 1.33 1000 1000
Pancreas 1.48 1000 1000
Aorta 1.48 1000 1000
Inferior Vena Cava 1.50 1000 1000
Right Adrenal Gland 2.00 50 100
Left Adrenal Gland 1.97 100 100
Gallbladder 1.66 300 500
Esophagus 1.78 100 100
Stomach 1.27 1000 1000
Duodenum 1.52 500 1000
Left Kidney 1.35 500 1000

2.4 Pseudo-label update

After training our teacher annotation model, we update the pseudo-labels by
making predictions with (0.8, 0.8, 2.5) spacing and aforementioned postprocess-
ing on the 2000 unlabeled data, with 0.75 overlap of sliding windows to ensure
multiple views on regions of interest. To avoid false positives in full-body scans,
we only update the region within a 2 cm margin of the foreground bounding
box of the aladdin5 and blackbean labels. We take the mean ensemble of the 3
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sources of pseudo-labels. We use trilinear interpolation to (1.6, 1.6, 2.5) spac-
ing to take advantage of the higher resolution teacher annotations. Finally, we
normalize and quantize the labels to uint8.

3 Experiments

3.1 Dataset and evaluation measures

The dataset is curated from more than 40 medical centers under the license
permission, including TCIA [2], LiTS [1], MSD [21], KiTS [6,7], autoPET [5,4],
AMOS [11], AbdomenCT-1K [19], TotalSegmentator [27], and past FLARE chal-
lenges [16,17,18]. The training set includes 2050 abdomen CT scans where 50 CT
scans with complete labels and 2000 CT scans without labels. The validation and
testing sets include 250 and 300 CT scans, respectively. The annotation process
used ITK-SNAP [30], nnU-Net [10], MedSAM [14,15], and Slicer Plugins [3,15].
In additional to use all training cases for model development, we also added a
coreset track where participants can select 50 cases from the training set for
model development in an automatic way.

The evaluation metrics encompass two accuracy measures—Dice Similarity
Coefficient (DSC) and Normalized Surface Dice (NSD)—alongside one efficiency
measures—runtime. These metrics collectively contribute to the ranking com-
putation. During inference, GPU is not available where the algorithm can only
rely on CPU.

3.2 Implementation details

Environment settings The development environments and requirements are
presented in Table 4.

Table 4. Development environments and requirements.

System Ubuntu 22.04 LTS
CPU 2x AMD EPYC 9B14 96-Core Processor
RAM 512.8 GB

Programming language Python 3.12

Deep learning framework PyTorch 2.7, MONALI 1.5.0, torchvision 0.22.0
numpy 1.26.4, nibabel 5.3.2, scikit-image 0.24.0,

Specific dependencies scipy 1.14.1, matplotlib 3.10.1, huggingface-hub 0.24.6,
pandas 2.2.2; tqdm 4.67.1

Code https://github.com /LCJKwan/FLARE25-Task2-Harmonics
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Data augmentations During training, random spatial cropping is performed
with maximum dimensions of (224,224, 112) for the pseudo-labeler model and
(256,256, 64) for the small inference model. Crops are subsequently symmetri-
cally padded to dimensions divisible by 16. Extensive augmentation techniques
are then applied to enhance dataset variability and model generalization. Aug-
mentations are categorized into spatial, intensity-based, and coarse transforma-
tions, with one randomly selected augmentation per category applied to each
training sample.

Spatial augmentations are randomly selected according to predefined proba-
bilities. With probability % no augmentation is applied. With probability %,
random affine transformations are employed, comprising rotations within +20°
and scaling within +£10%. With the remaining probability %, a random 3D elas-
tic deformation is applied in conjunction to the affine transformation. Elastic
transformations create a deformation field by Gaussian smoothing, with ker-
nel with ¢ randomly sampled between 1.5 and 2.0, and of voxel displacements
ranging from 8 to 16. Translation augmentations are added in the right-left and
anterior-posterior axes for 20 voxels while training the small inference model, as
the large 256 voxel coverage is larger than most volumes, thus random cropping
does not act as translation augmentation here. Global shearing, flipping, and
large rotations are excluded due to anatomical implausibility.

Intensity augmentations are selected to improve robustness to variations in in-
tensity profiles and scanner differences. With probability %, no intensity aug-
mentation is performed. With probability 1—10 each, one of six possible augmen-
tations of the following are applied: Gaussian smoothing, Gaussian sharpening,
Gaussian noise addition, bias field addition, contrast adjustment, or histogram
shifting. Default settings provided in MONAI 1.5.0 are used.

Coarse augmentations encourage model resilience against local information loss
and promote reliance on contextual neighborhood information. With a probabil-
ity of %, no coarse augmentation is applied. Otherwise, with probability % each,
either coarse dropout or coarse shuffle is randomly applied. Coarse dropout ran-
domly replaces intensities in 1 to 4 blocks, each of size between (16,16, 16) and
(32,32, 32) voxels, with random values between the maximum and minimum in-
tensity of the volume. Coarse shuffle randomly shuffles intensities within each of
8 to 16 blocks, each sized between (6,6,6) and (12,12,12) voxels.

Training protocols Training protocols are detailed in Tables 5 and 6. We use
the AdamW optimizer with learning rate 0.0001 and weight decay of 0.002. We
apply a cosine learning rate scheduler as well. We use the Dice loss adapted for
soft labels [26] along with focal loss [12] with a 1:2 ratio.

We allow models to train for 2400 epochs on the ground truth images in
total along with the pseudo-labels, as ground truth labels are of higher quality.
Concretely, we repeat ground truth labels by 12x per epoch when training the
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Table 5. Training protocols for the inference model.

Network initialization PyTorch 2.7.0 defaults

Batch size 4

Patch size 256 x256x64

Total epochs 600 pseudo + 2400 ground truth
Optimizer AdamW

Initial learning rate (Ir) 0.0001

Lr decay schedule Cosine annealing

Weight decay 0.002

Autocast precision float32

Training time 38.6 hours

Loss function 1xSoft Dice [26] + 2xFocal [12]
Number of model parameters 8.38M

Number of flops 147.33G3

large model with 200 epochs on the pseudo-labels, and 4x per epoch when
training on the small inference model with 600 epochs on the pseudo-labels. We
use a batch size of 4 for both the annotation and inference model.

We employ mixed precision training with PyTorch autocasting for the large
annotation model to bfloat16, while we train the small inference model natively
in float32, because bfloat16 does not offer speed gains on CPU inference.

We used fvcore for the flops estimation of our models, but we also wrote our
rough estimates for the elementwise add, multiply, sum, divide, SiLU, GELU,
unflatten, and scaled dot product attention operations as these are not supported
in the fvcore package.

4 Results and discussion

4.1 Quantitative results on validation set

Tables 7 and 8 provides detailed segmentation performance results for each or-
gan class, reporting both the Dice Similarity Coefficient (DSC) and Normalized
Surface Dice (NSD) scores. We use a sliding window overlap of 0.75 for the anno-
tation model, and 0.2 for the smaller inference model, according to the overlap
in the use case of pseudo-label annotation or CPU inference.

The large annotator model achieves a higher mean DSC of 0.9077 and mean
NSD of 0.9506 on the public validation set, and 0.9110 DSC and 0.9575 NSD on
the online validation set. The smaller inference model obtains a mean DSC of
0.8884 and mean NSD of 0.9452 on the public validation set, and 0.8912 DSC
and 0.9518 NSD on the online validation set. The large model consistently out-
performs the smaller one across all organ classes, which indicates that the larger
model’s additional capacity and training strategies effectively capture more com-
plex anatomical details.
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Table 6. Training protocols for the annotation model.

Network initialization PyTorch 2.7.0 defaults

Batch size 4

Patch size 224x224x112

Total epochs 200 pseudo + 2400 ground truth
Optimizer AdamW

Initial learning rate (Ir) 0.0001

Lr decay schedule Cosine annealing

Weight decay 0.001

Autocast precision bfloat16

Training time 22.5 hours

Loss function 1xSoft Dice [26] + 2xFocal [12]
Number of model parameters 37.98M

Number of flops 2545.86G”

Specifically, the organs that achieve the highest DSC scores include the liver,
spleen and right kidney. Similarly, the NSD scores reflect strong surface segmen-
tation performance, especially for the liver, spleen, pancreas and the aorta. On
the contrary, small and anatomically complex organs such as the duodenum,
the gallbladder and the adrenal glands yield comparatively lower DSC and NSD
scores, with higher standard deviation as well.

4.2 Qualitative results on validation set

Fig. 2 visualizes the qualitative results for our pseudo-labeler and inference mod-
els. Case 48, 44, 15, 45, 21 are selected to represent the Oth, 25th, 50th, 75th,
and 100th percentiles of mean DSC respectively from the public validation set,
as segmented by the inference model. The slice number is chosen by a maximiz-
ing combination score over the number of different organs, total organ area, and
area of inference model incorrect predictions.

For cases #48 and #44, we observe the existence of false positive predictions
in both the pseudo-labeler and inference model, which suggests that the inference
model inherited some of the false positive errors from the pseudo-labels. For case
#15, we observe a false negative of a small organ label in the same inherited error
fashion. For case #45 and #21, there are no significant errors but the borders
of the label predictions may not match the ground truth exactly. Overall, we
observe that our methods struggle relatively more for small organs, sometimes
hallucinating or missing small parts for predictions with low DSC scores.

4.3 Ablation studies

Firstly, we compare using 0.2 overlap and 0.75 overlap for the inference model.
It achieves 0.8883 mean DSC and 0.9450 mean NSD for the public validation set
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Table 7. Quantitative evaluation results of the small inference model.

Target Public Validation Online Validation Testing
DSC(%) NSD(%) [DSC(%) NSD(%)|DSC(%) NSD (%)
Liver 97.06 & 1.50 98.12 £ 3.43 | 96.52 98.16
Right Kidney 94.68 + 11.50 96.11 4+ 11.34| 95.37 97.09
Spleen 95.97 &£ 5.08 97.20 4+ 8.41 | 96.40 98.09
Pancreas 88.94 + 5.00 97.46 £ 3.65| 86.07 95.83
Aorta 94.84 + 2.00 98.77 + 3.54| 95.05 98.99
Inferior vena cava | 89.88 £+ 7.07 92.01 + 8.84 | 89.98 92.66
Right adrenal gland|78.48 + 15.99 92.72 + 16.88| 82.82 96.11
Left adrenal gland |80.75 + 16.49 92.88 + 19.33| 82.47 95.57
Gallbladder 84.87 £ 23.98 87.06 4+ 24.87| 86.73 89.01
Esophagus 85.52 + 8.82 94.61 £ 9.20 | 82.19 92.96
Stomach 91.70 £+ 11.92 95.33 4+ 10.62| 93.07 96.25
Duodenum 80.57 £ 13.59 93.02 £ 8.65 | 79.07 91.64
Left kidney 91.72 4+ 15.73 93.44 £+ 16.09| 92.78 94.97
Average 88.84 £ 13.78 94.52 4+ 13.14| 89.12 95.18

Table 8. Quantitative evaluation results of the large annotation model.

Public Validation

Online Validation

Target DSC(%)  NSD(%) |DSC(%) NSD(%)
Liver 97.45 £ 1.50 98.11 £ 3.35| 97.66  98.84
Right Kidney 95.60 + 9.17 96.18 £ 10.92| 96.86  97.91
Spleen 97.01 &£ 2.79 97.87 £ 6.16 | 95.27  96.50
Pancreas 90.00 £ 5.65 97.64 £ 4.87| 87.94 96.90
Aorta 96.67 £+ 1.33 99.27 £ 2.12| 96.95  99.38
Inferior vena cava |91.19 + 8.51 91.71 £ 9.61 | 92.23  93.30
Right adrenal gland|85.08 4+ 12.67 91.71 + 9.61 | 88.38 97.99
Left adrenal gland [84.62 + 17.38 95.14 + 14.61| 87.52 97.22
Gallbladder 85.18 + 26.40 93.96 £+ 19.40| 86.05  87.81
Esophagus 89.54 £ 4.22 87.15 £ 26.99| 84.57  93.40
Stomach 92.45 £ 13.11 97.05 &£ 3.77 | 94.10  96.66
Duodenum 83.68 + 11.42 93.58 £ 15.01| 82.09  92.69
Left kidney 91.60 + 18.23 93.30 + 8.26 | 94.68  96.13
Average 90.77 + 13.33 95.06 £+ 13.40| 91.10  95.75
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Fig. 2. Qualitative results of the pseudo-labeler and the inference model chosen by the
0", 25" 50", 75" 100" percentiles of the inference model DSC scores.
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with 0.75 overlap, which is not higher than 0.8884 mean DSC and 0.9542 mean
NSD with 0.2 overlap. This shows that our inference model is able to create
good segmentation predictions in a one-shot manner for most of the volume,
thus saving computation. Next, we ablate the post-processing of class-specific
small object filtering, which reduces the performance to 0.8850 mean DSC and
0.9412 mean NSD, demonstrating the effectiveness of the strategy.

Further ablation studies are done by training the model for 200 epochs
on pseudo-labels and 2400 epochs on ground truth, as well as autocasting to
bfloat16, to save training time. The ablation models are all trained on the (1.6,
1.6, 2.5) mm resolution and run inference with the same settings as the inference
model. We report the mean DSC and mean NSD on the public validation set.

The model benefits from longer training times and full precision training as
the inference model trained with 200 instead of 600 pseudo-label epochs achieves
0.8813 mean DSC and 0.9378 mean NSD, lower than the one trained with 600
pseudo-label epochs. Pseudo-label update by our labeler model also contribute
to performance gains, as training with only aladdin and blackbean soft labels
result in 0.8778 mean DSC and 0.9352 mean NSD. We find that using transformer
layers at the bottleneck allow a small benefit as replacing them with convolution
layers result in 0.8797 mean DSC and 0.9360 mean NSD.

We compare the effect of model architecture and the number of parameters,
by training a pseudo-labeler model with the settings of the inference model
on (1.6, 1.6, 2.5) mm resolution instead of (0.8, 0.8, 2.5) mm resolution, and
(256, 256, 64) patch size instead of (224, 224, 112), for 200 pseudo-label epochs
and 2400 ground truth epochs. With 37.98M parameters compared to 8.38M
parameters, and more than 17x the flops, it achieves 0.8908 mean DSC and
0.9447 mean NSD, higher than that of our final inference model. Comparison
with the small model suggests that size and architecture optimizations may cause
only a minor performance loss. In contrast, comparison with the original pseudo-
labeler scores indicates that the lower resolution is the main reason for the >1%
drop in mean DSC.

4.4 Segmentation efficiency results on validation set

After obtaining the inference model, we tested it on our local laptop with Intel
(R) Core (TM) Ultra 9 185H, 2300MHz, 16 Cores, 22 Logical Processors, by
running a Docker container allocated with 8GB RAM on CPU. We note that
scans 10 and 50 are particularly large and require extensive RAM to compute.
After investigation, it is revealed that the internals of the MONAI Spacingd class
are not memory-optimized compared to the PyTorch interpolate function.
Thus, we augmented our inference pipeline with a switch between the MONAI
implementation with normal scans, or to use our manual implementation of data
processing and inversion, for a small potential performance degradation. The fail-
safe is used when the product of number of voxels of the original volume times
the number of expected voxels after interpolation exceeds 1.5 x 10'®. Averaged
over the 50 cases, the inference model uses 19.3s per image, with mean (system)



14 Kwan, Chung

Table 9. Quantitative evaluation of segmentation efficiency in terms of the running
time on selected online validation images. Evaluations were run on a local laptop: Intel
(R) Core (TM) Ultra 9 185H, 2300MHz, 16 Cores, 22 Logical Processors.

Case ID Image Size Preprocessed Size Sliding Windows Running Time (s)

0007 (512, 512, 215) (256, 256, 172) 4 19.88
0027 (512, 512, 169) (213, 213, 169) 4 15.89
0029 (512, 512, 171) (204, 204, 171) 4 16.20
0036 (512, 512, 91) (226, 226, 109) 2 8.35
0058 (512, 512, 56) (256, 256, 111) 2 8.37
0063 (512, 512, 361) (241, 241, 181) 4 21.78
0071 (512, 512, 108) (256, 256, 108) 2 9.84
0164 (512, 512, 114) (256, 256, 227) 5 20.14
0189 (512, 512, 89) (199, 199, 177) 2 14.57
0190 (512, 512, 101) (238, 238, 201) 4 17.08

CPU utilization of 39.07%, median CPU utilization of 49.67%, mean RAM of
4354 MiB and median RAM of 4544 MiB.

4.5 Results on final testing set

This is a placeholder. We will send you the testing results during MICCAI
(2025.9.27).

4.6 Limitation and future work

The potential of quantized soft labels has yet to be fully explored. Due to time
constraints during development, we were not able to experiment with training
multiple pseudo-labelers, pseudo-label uncertainty analysis, and different reso-
lutions. Soft labels are able to aggregate information from multiple sources, pre-
serve sub-voxel information, and function as regularization like label smoothing.
There is a higher ceiling of label quality in using soft labels, thus we anticipate
that further work in this direction will unlock new levels of model performance
and robustness.

Our models struggled with organ shapes exhibiting significant deviations
from typical anatomy, sometimes fragmenting predictions. Although morpho-
logical post-processing was considered as a potential solution, applying it to 13
organ classes in large volumetric data in practice proved infeasible within the
pseudo-label training or CPU-based inference pipelines. Incorporating morpho-
logical priors or streamlined morphological processing represents a promising
direction for future exploration.

Additionally, our larger models at higher resolution consistently outperformed
smaller ones by approximately 1-2% Dice score. Therefore, adapting larger mod-
els for efficient inference, possibly through weight and activation quantization,
could be advantageous. However, due to limited software support for quantiza-
tion of 3D convolution modules and quantization-aware training, we leave this
strategy for future work.



CPU-Efficient U-Net-Transformer with Quantized Soft Labels 15

5 Conclusion

We proposed a computationally efficient abdominal organ segmentation method
optimized for CPU-based abdominal CT segmentation. Our approach uniquely
integrates quantized soft labels, comprehensive data augmentation, class-specific
loss weights and post-processing, all with an efficient UNet-Transformer hybrid
architecture. The proposed pseudo-label annotation model demonstrates com-
petitive performance, achieving 0.9110 mean DSC and 0.9575 mean NSD on
the online validation dataset. The efficient inference model achieves 0.8912 DSC
and 0.9518 NSD as well, indicating robust generalization and practical appli-
cability. Future directions include enhanced pseudo-label refinement, extended
applications of soft labels, exploring morphological priors, and model quanti-
zation strategies to further improve segmentation accuracy and computational
efficiency.

Acknowledgements The authors of this paper declare that the segmentation
method they implemented for participation in the FLARE 2025 challenge has
not used any pre-trained models nor additional datasets other than those pro-
vided by the organizers. The proposed solution is fully automatic without any
manual intervention. We thank all data owners for making the CT scans publicly
available and CodaBench [29] for hosting the challenge platform.

Disclosure of Interests

The authors declare no competing interests.

References

1. Bilic, P., Christ, P., Li, H.B., Vorontsov, E., Ben-Cohen, A., Kaissis, G., Szeskin, A.,
Jacobs, C., Mamani, G.E.H., Chartrand, G., Lohofer, F., Holch, J.W., Sommer, W.,
Hofmann, F., Hostettler, A., Lev-Cohain, N., Drozdzal, M., Amitai, M.M., Vivanti,
R., Sosna, J., Ezhov, 1., Sekuboyina, A., Navarro, F., Kofler, F., Paetzold, J.C.,
Shit, S., Hu, X., Lipkova, J., Rempfler, M., Piraud, M., Kirschke, J., Wiestler, B.,
Zhang, Z., Hiilsemeyer, C., Beetz, M., Ettlinger, F., Antonelli, M., Bae, W., Bellver,
M., Bi, L., Chen, H., Chlebus, G., Dam, E.B., Dou, Q., Fu, C.W., Georgescu, B.,
i Nieto, X.G., Gruen, F., Han, X., Heng, P.A., Hesser, J., Moltz, J.H., Igel, C.,
Isensee, F., Jager, P., Jia, F., Kaluva, K.C., Khened, M., Kim, I., Kim, J.H., Kim,
S., Kohl, S., Konopczynski, T., Kori, A., Krishnamurthi, G., Li, F., Li, H., Li, J.,
Li, X., Lowengrub, J., Ma, J., Maier-Hein, K., Maninis, K.K., Meine, H., Merhof,
D., Pai, A., Perslev, M., Petersen, J., Pont-Tuset, J., Qi, J., Qi, X., Rippel, O.,
Roth, K., Sarasua, I., Schenk, A., Shen, Z., Torres, J., Wachinger, C., Wang, C.,
Weninger, L., Wu, J., Xu, D., Yang, X., Yu, S.C.H., Yuan, Y., Yue, M., Zhang,
L., Cardoso, J., Bakas, S., Braren, R., Heinemann, V., Pal, C., Tang, A., Kadoury,
S., Soler, L., van Ginneken, B., Greenspan, H., Joskowicz, L., Menze, B.: The liver
tumor segmentation benchmark (lits). Medical Image Analysis 84, 102680 (2023)
7



16

10.

11.

12.

13.

Kwan, Chung

. Clark, K., Vendt, B., Smith, K., Freymann, J., Kirby, J., Koppel, P., Moore, S.,

Phillips, S., Maffitt, D., Pringle, M., Tarbox, L., Prior, F.: The cancer imaging
archive (tcia): maintaining and operating a public information repository. Journal
of Digital Imaging 26(6), 1045-1057 (2013) 7

Fedorov, A., Beichel, R., Kalpathy-Cramer, J., Finet, J., Fillion-Robin, J.C., Pujol,
S., Bauer, C., Jennings, D., Fennessy, F., Sonka, M., et al.: 3d slicer as an image
computing platform for the quantitative imaging network. Magnetic Resonance
Imaging 30(9), 1323-1341 (2012) 7

Gatidis, S., Frith, M., Fabritius, M., Gu, S., Nikolaou, K., La Fougére, C., Ye, J.,
He, J., Peng, Y., Bi, L., et al.: The autopet challenge: Towards fully automated
lesion segmentation in oncologic pet/ct imaging. Nature Machine Intelligence (in
presss) (2024) 7

Gatidis, S., Hepp, T., Frith, M., La Fougére, C., Nikolaou, K., Pfannenberg, C.,
Scholkopf, B., Kiistner, T., Cyran, C., Rubin, D.: A whole-body fdg-pet/ct dataset
with manually annotated tumor lesions. Scientific Data 9(1), 601 (2022) 7
Heller, N., Isensee, F., Maier-Hein, K.H., Hou, X., Xie, C., Li, F., Nan, Y., Mu,
G., Lin, Z., Han, M., Yao, G., Gao, Y., Zhang, Y., Wang, Y., Hou, F.; Yang, J.,
Xiong, G., Tian, J., Zhong, C., Ma, J., Rickman, J., Dean, J., Stai, B., Tejpaul,
R., Oestreich, M., Blake, P., Kaluzniak, H., Raza, S., Rosenberg, J., Moore, K.,
Walczak, E.; Rengel, Z., Edgerton, Z., Vasdev, R., Peterson, M., McSweeney, S.,
Peterson, S., Kalapara, A., Sathianathen, N., Papanikolopoulos, N., Weight, C.:
The state of the art in kidney and kidney tumor segmentation in contrast-enhanced
ct imaging: Results of the kits19 challenge. Medical Image Analysis 67, 101821
(2021) 7

Heller, N., McSweeney, S., Peterson, M.T., Peterson, S., Rickman, J., Stai, B.,
Tejpaul, R., Oestreich, M., Blake, P., Rosenberg, J., et al.: An international chal-
lenge to use artificial intelligence to define the state-of-the-art in kidney and kidney
tumor segmentation in ct imaging. American Society of Clinical Oncology 38(6),
626-626 (2020) 7

Hendrycks, D., Gimpel, K.: Gaussian error linear units (gelus) (2023) 3

Huang, Z., et al.: Revisiting nnu-net for iterative pseudo labeling and effi-
cient sliding window inference. In: Ma, J., Wang, B. (eds.) Fast and Low-
Resource Semi-supervised Abdominal Organ Segmentation, Lecture Notes in Com-
puter Science, vol. 13816. Springer, Cham (2022). https://doi.org/10.1007/
978-3-031-23911-3_16 2

Isensee, F., Jaeger, P.F., Kohl, S.A.A., Petersen, J., Maier-Hein, K.H.: nnU-
Net: a self-configuring method for deep learning-based biomedical image seg-
mentation. Nature Methods 18, 203-211 (2021). https://doi.org/10.1038/
s41592-020-01008-z 2, 7

Ji, Y., Bai, H., GE, C., Yang, J., Zhu, Y., Zhang, R., Li, Z., Zhanng, L., Ma,
W., Wan, X., Luo, P.: Amos: A large-scale abdominal multi-organ benchmark for
versatile medical image segmentation. Advances in Neural Information Processing
Systems 35, 36722-36732 (2022) 7

Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollar, P.: Focal loss for dense object
detection. In: 2017 IEEE International Conference on Computer Vision (ICCV).
pp. 2999-3007 (2017). https://doi.org/10.1109/ICCV.2017.324 8, 9, 10

Ma, J., He, J., et al.: Unleashing the strengths of unlabelled data in deep
learning-assisted pan-cancer abdominal organ quantification: the flare22 challenge.
The Lancet Digital Health 6(11), e815—e826 (2024). https://doi.org/10.1016/
$2589-7500(23)00170-4 1


https://doi.org/10.1007/978-3-031-23911-3_16
https://doi.org/10.1007/978-3-031-23911-3_16
https://doi.org/10.1007/978-3-031-23911-3_16
https://doi.org/10.1007/978-3-031-23911-3_16
https://doi.org/10.1038/s41592-020-01008-z
https://doi.org/10.1038/s41592-020-01008-z
https://doi.org/10.1038/s41592-020-01008-z
https://doi.org/10.1038/s41592-020-01008-z
https://doi.org/10.1109/ICCV.2017.324
https://doi.org/10.1109/ICCV.2017.324
https://doi.org/10.1016/S2589-7500(23)00170-4
https://doi.org/10.1016/S2589-7500(23)00170-4
https://doi.org/10.1016/S2589-7500(23)00170-4
https://doi.org/10.1016/S2589-7500(23)00170-4

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

CPU-Efficient U-Net-Transformer with Quantized Soft Labels 17

Ma, J., He, Y., Li, F., Han, L., You, C., Wang, B.: Segment anything in medical
images. Nature Communications 15, 654 (2024) 7

Ma, J., Yang, Z., Kim, S., Chen, B., Baharoon, M., Fallahpour, A., Asakereh, R.,
Lyu, H., Wang, B.: Medsam2: Segment anything in 3d medical images and videos.
arXiv preprint arXiv:2504.03600 (2025) 7

Ma, J., Zhang, Y., Gu, S., An, X., Wang, Z., Ge, C., Wang, C., Zhang, F., Wang,
Y., Xu, Y., Gou, S., Thaler, F., Payer, C., Stern, D., Henderson, E.G., McSweeney,
D.M., Green, A., Jackson, P., McIntosh, L., Nguyen, Q.C., Qayyum, A., Conze,
P.H., Huang, Z., Zhou, Z., Fan, D.P., Xiong, H., Dong, G., Zhu, Q., He, J., Yang,
X.: Fast and low-gpu-memory abdomen ct organ segmentation: The flare challenge.
Medical Image Analysis 82, 102616 (2022) 7

Ma, J., Zhang, Y., Gu, S., Ge, C., Ma, S., Young, A., Zhu, C., Meng, K., Yang, X.,
Huang, Z., Zhang, F., Liu, W., Pan, Y., Huang, S., Wang, J., Sun, M., Xu, W, Jia,
D., Choi, J.W., Alves, N., de Wilde, B., Koehler, G., Wu, Y., Wiesenfarth, M., Zhu,
Q., Dong, G., He, J., the FLARE Challenge Consortium, Wang, B.: Unleashing
the strengths of unlabeled data in pan-cancer abdominal organ quantification: the
flare22 challenge. Lancet Digital Health (2024) 7

Ma, J., Zhang, Y., Gu, S., Ge, C., Wang, E., Zhou, Q., Huang, Z., Lyu, P., He, J.,
Wang, B.: Automatic organ and pan-cancer segmentation in abdomen ct: the flare
2023 challenge. arXiv preprint arXiv:2408.12534 (2024) 7

Ma, J., Zhang, Y., Gu, S., Zhu, C., Ge, C., Zhang, Y., An, X., Wang, C., Wang, Q.,
Liu, X., Cao, S., Zhang, Q., Liu, S., Wang, Y., Li, Y., He, J., Yang, X.: Abdomenct-
1k: Is abdominal organ segmentation a solved problem? IEEE Transactions on
Pattern Analysis and Machine Intelligence 44(10), 6695-6714 (2022) 7

Shazeer, N.: GLU variants improve transformer. CoRR abs/2002.05202 (2020)
4

Simpson, A.L., Antonelli, M., Bakas, S., Bilello, M., Farahani, K., van Ginneken,
B., Kopp-Schneider, A., Landman, B.A., Litjens, G., Menze, B., Ronneberger, O.,
Summers, R.M., Bilic, P., Christ, P.F., Do, R.K.G., Gollub, M., Golia-Pernicka,
J., Heckers, S.H., Jarnagin, W.R., McHugo, M.K., Napel, S., Vorontsov, E., Maier-
Hein, L., Cardoso, M.J.: A large annotated medical image dataset for the develop-
ment and evaluation of segmentation algorithms. arXiv preprint arXiv:1902.09063
(2019) 7

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the in-
ception architecture for computer vision. In: 2016 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR). pp. 2818-2826 (2016). https:
//doi.org/10.1109/CVPR.2016.308 3

Tompson, J., Goroshin, R., Jain, A., LeCun, Y., Bregler, C.: Efficient object lo-
calization using convolutional networks. In: 2015 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). pp. 648-656 (2015). https://doi.org/
10.1109/CVPR.2015.7298664 4

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
L.u., Polosukhin, I.: Attention is all you need. In: Guyon, 1., Luxburg, U.V., Bengio,
S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in
Neural Information Processing Systems. vol. 30. Curran Associates, Inc. (2017) 4
Wang, E., Zhao, Y., Wu, Y.: Cascade dual-decoders network for abdominal organs
segmentation. In: Ma, J., Wang, B. (eds.) Fast and Low-Resource Semi-supervised
Abdominal Organ Segmentation, Lecture Notes in Computer Science, vol. 13816.
Springer, Cham (2022). https://doi.org/10.1007/978-3-031-23911-3_18 2


https://doi.org/10.1109/CVPR.2016.308
https://doi.org/10.1109/CVPR.2016.308
https://doi.org/10.1109/CVPR.2016.308
https://doi.org/10.1109/CVPR.2016.308
https://doi.org/10.1109/CVPR.2015.7298664
https://doi.org/10.1109/CVPR.2015.7298664
https://doi.org/10.1109/CVPR.2015.7298664
https://doi.org/10.1109/CVPR.2015.7298664
https://doi.org/10.1007/978-3-031-23911-3_18
https://doi.org/10.1007/978-3-031-23911-3_18

18

26.

27.

28.

29.

30.

Kwan, Chung

Wang, Z., Popordanoska, T., Bertels, J., Lemmens, R., Blaschko, M.B.: Dice semi-
metric losses: Optimizing the dice score with soft labels. In: Greenspan, H., et al.
(eds.) Medical Image Computing and Computer Assisted Intervention — MICCAI
2023. Lecture Notes in Computer Science, vol. 14222, pp. 479-489. Springer, Cham
(2023). https://doi.org/10.1007/978-3-031-43898-1_46 8, 9, 10

Wasserthal, J., Breit, H.C., Meyer, M.T., Pradella, M., Hinck, D., Sauter, A.W.,
Heye, T., Boll, D.T., Cyriac, J., Yang, S., Bach, M., Segeroth, M.: Totalsegmen-
tator: Robust segmentation of 104 anatomic structures in ct images. Radiology:
Artificial Intelligence 5(5), 230024 (2023) 7

Wu, Y., He, K.: Group normalization. In: Computer Vision — ECCV 2018: 15th
European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part
XIII. p. 3-19. Springer-Verlag, Berlin, Heidelberg (2018). https://doi.org/10.
1007/978-3-030-01261-8_1 3, 4

Xu, Z., Escalera, S., Pavao, A., Richard, M., Tu, W.W., Yao, Q., Zhao, H., Guyon,
I.: Codabench: Flexible, easy-to-use, and reproducible meta-benchmark platform.
Patterns 3(7), 100543 (2022) 15

Yushkevich, P.A., Gao, Y., Gerig, G.: Itk-snap: An interactive tool for semi-
automatic segmentation of multi-modality biomedical images. In: Annual Inter-
national Conference of the IEEE Engineering in Medicine and Biology Society. pp.
3342-3345 (2016) 7


https://doi.org/10.1007/978-3-031-43898-1_46
https://doi.org/10.1007/978-3-031-43898-1_46
https://doi.org/10.1007/978-3-030-01261-8_1
https://doi.org/10.1007/978-3-030-01261-8_1
https://doi.org/10.1007/978-3-030-01261-8_1
https://doi.org/10.1007/978-3-030-01261-8_1

CPU-Efficient U-Net-Transformer with Quantized Soft Labels 19

Table 10. Checklist Table. Please fill out this checklist table in the answer column.

Requirements Answer
A meaningful title Yes
The number of authors (<6) 2
Author affiliations and ORCID Yes
Corresponding author email is presented Yes
Validation scores are presented in the abstract Yes
Introduction includes at least three parts: Ves
background, related work, and motivation

A pipeline/network figure is provided Fig. 1
Pre-processing Page 2
Strategies to improve model inference Page 3
Post-processing Page 5
The dataset and evaluation metric section are presented Page 7
Environment setting table is provided Table 4
Training protocol table is provided Table 5, 6
Ablation study Page 10
Efficiency evaluation results are provided Table 9
Visualized segmentation example is provided Fig. 2
Limitation and future work are presented Yes

Reference format is consistent Yes




