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Abstract

Source-free domain adaptation (SFDA) involves adapting a model originally trained using
a labeled dataset (source domain) to perform effectively on an unlabeled dataset (target do-
main) without relying on any source data during adaptation. This adaptation is especially
crucial when significant disparities in data distributions exist between the two domains and
when there are privacy concerns regarding the source model’s training data. The absence
of access to source data during adaptation makes it challenging to analytically estimate
the domain gap. To tackle this issue, various techniques have been proposed, such as un-
supervised clustering, contrastive learning, and continual learning. In this paper, we first
conduct an extensive theoretical analysis of SFDA based on contrastive learning, primarily
because it has demonstrated superior performance compared to other techniques. Moti-
vated by the obtained insights, we then introduce a straightforward yet highly effective
latent augmentation method tailored for contrastive SFDA. This augmentation method
leverages the dispersion of latent features within the neighborhood of the query sample,
guided by the source pre-trained model, to enhance the informativeness of positive keys.
Our approach, based on a single InfoNCE-based contrastive loss, outperforms state-of-the-
art SFDA methods on widely recognized benchmark datasets. The code for our implemen-
tation: https://github.com/JingWang18/SiLAN.
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1 Introduction

Supervised learning has proven successful in mimicking human behaviors in situations such as manipu-
lation Mnih et al. (2015), recognition Russakovsky et al. (2015), and understanding Fawzi et al. (2022),
primarily due to its accessibility to vast amounts of labeled data. However, this success hinges upon the
assumption that both the training and the test data originate from the same underlying probability distri-
bution, which often does not hold in various real-world scenarios. Consequently, model performance tends
to deteriorate when applied to novel (target) data domains – such as real-world images – whose underlying
data distribution markedly deviates from that of the training (source) domain (e.g., computer-generated
images). This divergence in data distribution is commonly referred to as domain shift Ben-David et al.
(2010). Domain adaptation (DA) tackles the performance degradation that stems from the domain shift, by
acquiring representations that remain invariant to such shifts Ganin & Lempitsky (2015).

Lately, a significant and practical challenge has emerged, known as source-free domain adaptation (SFDA).
This challenge revolves around the goal of developing the domain-invariant representation without using
any labeled source data during the adaptation. This shift in focus is motivated by real concerns related to
training data privacy and intellectual property Liang et al. (2020); Yang et al. (2021b); Huang et al. (2021a);
Zhang et al. (2022); Yang et al. (2022). The inability to access the source domain during adaptation adds
complexity to the task of estimating the degree of domain shift, making it challenging to learn a shared
representation that bridges divergent domains. In response to this, the concept of contrastive learning has
attracted significant attention. In this approach, discriminative clustering plays a crucial role in defining
the decision boundaries that guide the classification efforts, by utilizing these clustered groups. However,
in scenarios where labels are unavailable, the decision boundaries inferred from these clusters may not
consistently align with the actual classification boundaries based on the target labels.

Existing contrastive SFDA methods can be categorized into two types of approaches, based on how they
generate positive keys for contrastive learning, whether neighborhood-based or augmentation-based. The
neighborhood-based approaches rely on transferring neighborhood information from the source to the target
by initializing the model for target adaptation with a model pre-trained on the source domain Yang et al.
(2022). However, as the adaptation progresses and the model undergoes unsupervised clustering, the sig-
nificance of this source domain neighborhood information diminishes. Conversely, the augmentation-based
approach establishes a source-like set with a distribution aligned with the source domain during pre-training
for generating pseudo-labels. Subsequently, it employs contrastive learning with data augmentation to facili-
tate discriminative clustering during target adaptation Zhang et al. (2022). However, this method encounters
two significant problems. Firstly, like pseudo-labeling-based SFDA, its performance can be negatively af-
fected by the presence of noisy labels Liang et al. (2021a). Secondly, achieving an optimal tradeoff between
distribution alignment and contrastive clustering is challenging, especially when the source data is inacces-
sible during target adaptation.

The primary goal of our study is to conduct a thorough analysis of how the design of positive keys could
impact target domain classification performance. Moreover, we seek to explore how insights obtained from
this analysis can be utilized to enhance contrastive SFDA frameworks. This understanding is grounded in
empirical observations within the latent feature space, as illustrated in Figure 1. In this figure, we can observe
that target features extracted from the source pre-trained encoder exhibit significant dispersion because of
domain shift, leading to increased target classification errors. Despite this feature dispersion, it is worth
noting that nearby target features often share the same ground truth labels. These two observations are
elaborated upon as follows:

• Observations on Target Feature Dispersion: A domain shift induces a significant dispersion of
target features, as extracted from the source pre-trained encoder (as clear when comparing the t-SNE
plots for source data features and target data features). This dispersion reduces the discriminative quality
of the associated features, consequently making it difficult to effectively classify samples within the target
domain.

• Observations on Neighborhood Informativeness: Despite the reduced discriminability, which leads
to the lack of well-defined target feature clusters extracted from the source pre-trained encoder, neigh-
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Figure 1: t-SNE visualization of target features extracted by the source pre-trained encoder, revealing
significant feature dispersion due to domain shift. However, nearby target samples still tend to share similar
ground truths, motivating our in-depth exploration of contrastive clustering in SFDA.

boring target features still tend to belong to the same ground truth class. This suggests that valuable
information, w.r.t target ground truth, likely exists within the local vicinity of target features.

Motivated by these observations, we conduct a comprehensive analysis of the underlying principles of con-
trastive SFDA and explore aspects that have been overlooked in the existing contrastive SFDA frameworks.
To be specific, we identify three overlooked factors: 1) standard data augmentation techniques might not
effectively reduce the likelihood of the model misclassifying positive transformations; 2) increasing the num-
ber of nearest neighbors, i.e., larger k, results in smoother predictions but also leads to a greater overlap
of logit clusters; and 3) effective utilization of the source pre-trained model to leverage neighborhood la-
bel consistency for enhancing the informativeness of positive key generation has not yet been explored.
Subsequently, we introduce our Source-informed Latent Augmented Neighborhood (SiLAN) method, built
upon the acquired theoretical insights. This involves applying Gaussian noise to the latent features of the
neighborhood centroid of a target query sample, mirroring the source model’s standard deviation of latent
features from the neighboring target samples, to enhance positive key generation. This latent augmentation
is consistently applied during the positive key generation process for each target query sample, combining
the benefits of both neighborhood exploration and data augmentation. Aligning the standard deviation of
the random noise with that determined by the source pre-trained model allows contrastive clustering to ef-
fectively leverage the dispersion of the neighbors’ features, which is often regarded as potentially detrimental
to the model’s discriminability. Our empirical findings demonstrate that optimizing an InfoNCE-based con-
trastive loss Oord et al. (2018); Chen et al. (2020) alone, combined with our SiLAN augmentation method,
yields state-of-the-art performance across a range of benchmark SFDA datasets.

In summary, our paper’s contributions are outlined as follows:

• We hypothesize that domain shift causes significant dispersion in target features yet nearby points still
tend to share similar labels, explaining the success of contrastive clustering in SFDA.

• Our theoretical analysis of contrastive SFDA reveals that three often-overlooked factors, associated with
the aforementioned hypotheses, have significant implications for target classification performance.

• To address these three issues, we introduce SiLAN, a simple yet effective latent augmentation technique
explicitly designed to improve contrastive SFDA.
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• Experimental results support our theoretical findings, demonstrating that InfoNCE, when augmented
with SiLAN, achieves state-of-the-art performance in SFDA.

2 Related Work

2.1 Source-Free Domain Adaptation

The existing methods for SFDA can be grouped into two categories: contrastive and non-contrastive. Non-
contrastive methods rely on extra guidance, such as pseudo labels Liang et al. (2020; 2021b) or samples
generated through adversarial learning Li et al. (2020), from the source pre-trained model during adap-
tation. However, this additional guidance can potentially have detrimental effects on target classification
performance Li et al. (2020). In this paper, we focus on contrastive SFDA methods, which have shown better
performance. Attracting and Dispersing (AaD) Yang et al. (2022) identifies nearby samples to a target query
using neighborhood searching and directly uses their latent features as positive keys. Historical Contrastive
Learning (HCL) Huang et al. (2021a) introduces an instance-wise loss to enhance data-augmentation-based
contrastive learning for target adaptation. Divide and Contrast (DaC) Zhang et al. (2022) investigates con-
trastive clustering using augmented inputs, effectively applying it to SFDA. However, existing contrastive
SFDA methods overlook the alignment of different domains during target adaptation. In contrast, our
approach incorporates domain alignment into the contrastive clustering process, which is achieved while
optimizing a single contrastive loss.

2.2 Latent Augmentation

Data augmentation can change the semantics of input samples by causing major shifts in the latent space Up-
church et al. (2017). These techniques also vary based on data modality. Conversely, augmenting in the
latent space Cheung & Yeung (2020) offers diverse transformations with a lower risk of altering the seman-
tics of queries and is not dependent on the data modality. Common latent augmentation techniques include
interpolation, extrapolation, random translation, and adding Gaussian noise DeVries & Taylor (2017), which
have been shown effectiveness in various fields such as computer vision Liu et al. (2018); Stutz et al. (2019),
natural language processing Kumar et al. (2019), and graph representation learning Cheng et al. (2022). In
this paper, we investigate using latent augmentation to address challenges in contrastive SFDA. Specifically,
we tailor the variance of the random noise used in latent augmentation according to the feature cluster
variances from the source pre-trained model. This key technical distinction differentiates our method from
the existing latent augmentation approaches.

2.3 Contrastive Learning

Contrastive learning is an effective framework for training models to differentiate between samples, which
is versatile, and suitable for both supervised learning Khosla et al. (2020) and self-supervised learning
(SSL). Contrastive SSL methods utilize the InfoNCE-based loss to draw samples (positive keys) closer to a
query sample if they are similar, and to push away samples (negative keys) that are dissimilar, all within a
designated embedding space. These methods often require large batch sizes for an effective contrasting Chen
et al. (2020), additional memory banks for momentum updates He et al. (2020), or additional negative
sampling strategies Hu et al. (2021). In our study, we use an InfoNCE-based contrastive loss, applied to the
output logit space, to address SFDA challenges.

3 Source-Free Domain Adaptation

In this section, we outline the problem setup for SFDA and explain the implementation of contrastive learning
to solve it. We also define the concept of neighborhood in our study, a key element for our theoretical analysis
and proposed method.
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3.1 Problem Statement

In customized applications, users typically possess their own data and a model pre-trained on a large dataset
such as ImageNet Russakovsky et al. (2015), but do not have access to the model’s original training data.
SFDA methods aim to address this by enabling the model to adapt to the new data domain (target domain)
without needing access to the original training data domain (source domain).

Pre-training on a source domain We define a dataset from a source domain as DS := {(xi
s, yi

s)}N
i=1

where xi
s denotes the i-th data sample from the source dataset, and yi

s is its corresponding class label. The
objective of the pre-training stage is to derive a model fs := Fs ◦Gs (referred to as the source model) that
minimizes the classification error on the source data ϵDS

(fs) :=
∑N

i=1 P[fs(xi
s) ̸= yi

s], where G is a feature
extractor that encodes input samples into latent features, and F is a task-specific classifier.

Adaptation on a target domain Consider a dataset sampled from a target domain, denoted as DT :=
{xi

t}M
i=1, where xi

t refers to the i-th data sample from the target dataset. During adaptation, it is important
to note that class labels for all target samples are not accessible. In this stage, the goal is to have a
target model ft that minimizes the generalization error on the target data ϵDT

(ft) :=
∑M

i=1 P[fs(xi
t) ̸= yi

t],
possibly guided by the source pre-trained model fs without having access to the source data. One example
of leveraging the source pre-trained model fs is to initialize the parameters of the target model ft with those
of fs.

3.2 Contrastive SFDA

Contrastive learning is a widely recognized algorithm for SSL. It operates on the principle that if data samples
can be effectively clustered within a specific embedding space, the resulting model has the potential to exhibit
robust performance across various downstream tasks, provided that fine-tuning is conducted appropriately.

In the context of SFDA, we choose to formulate the contrastive objective within the output logit space
instead of the feature or embedding space used in SSL. This decision is motivated by the use of equal
number of classes for classification in both the source and target domains. Note that in our empirical
findings, there is no noticeable difference between performing distribution alignment on the output logit
space and the output probability space. To simplify the mathematical notations, we conduct all theoretical
analyses focusing on the alignment of output logits. For clarity, the output probability vector is the softmax
output of logit vector. For any input x, the sum of all elements in the output probability vector equals one,
i.e.,

∑Z
z=1[Softmax(ft(x))]z = 1, where Z denotes the number of classes.

In comparison to SSL, formulating in either the logit or probability space simplifies the direct clustering of
data samples according to the number of ground truth classes.

3.3 Definition of Neighborhood

To establish a neighborhood, we first define a feature bank BT := {G(xi
t) |xi

t ∈ DT }M
i=1 where G is a feature

extractor initialized with the parameters of Gs and updated throughout the adaptation. Similar to the
neighborhood discovery used in unsupervised representation learning Huang et al. (2019); Van Gansbeke
et al. (2020), given a query sample, we define a neighborhood of the sample as its K-Nearest Neighbors
(K-NNs), with proximity determined by the cosine similarity between the features of the query sample and
those of another sample drawn from BT :

d(xi
t, xj

t ) := G(xi
t) · BT,j

||G(xi
t)|| · ||BT,j ||

. (1)

where BT,j denotes the j-th element of BT corresponding to the features of a data sample xj
t . Thus, the

neighborhood NK(xi
t) of xi

t comprises the top K similar samples with respect to feature similarity, defined
as:

NK(xi
t) := arg maxS⊂BT ,|S|=K

∑
x∈S

d(xi
t, x). (2)
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The centroid of the neighborhood, denoted as µK(xi), is the mean of the feature vectors of each sample
within NK(xi

t).

4 Theoretical Analysis of Contrastive SFDA

In this section, we engage in theoretical analysis concerning alignment errors when performing contrastive
learning in the output logit space. In the meantime, we forge links between these error terms and the ground
truth labels of target samples in the context of SFDA. This theoretical analysis not only sheds light on the
crucial aspects of SFDA that necessitate attention from the research community, but it also clarifies the
existing research gaps that our work endeavors to fill. All the proofs can be found in the appendix.

4.1 The Behavior of Contrastive Loss in SFDA

We start by closely examining how InfoNCE-based contrastive loss can be applied to address SFDA problems.
For brevity, we use the term transformation to encompass the process of generating positive samples x+ from
the query x, whether through neighborhood searching or data augmentation. The transformations of other
samples within the same mini-batch are used as negative samples x−.

Cosine similarity is commonly used in SSL to formulate contrastive loss within a high-dimensional embedding
space. However, when applying contrastive loss in the output logit space for SFDA, further clarification is
necessary. To provide a clearer understanding of this modification, we begin our discussion by redefining an
upper bound for the contrastive loss formulated in the output logit space. This refinement allows us to focus
on analyzing the alignment of output predictions through contrastive loss, using Euclidean distance as our
measure.
Proposition 1. When formulated in the output logit space, the InfoNCE-based contrastive loss, denoted
as Lcont, serves as an upper bound for the misalignment associated with two distinct alignment errors in
predictions.

m∑
i=1

(
log(m− 1) + || ft(xi)− ft(x+

i ) ||22
2τ

− 1
m− 1

∑
j ̸=i

||ft(xi)− ft(x+
j )||22

2τ

)
≤ Lcont.

Here, τ represents the temperature parameter, m is the mini-batch size, x+
j denotes a negative sample x−

given the query xi, and Lcont is defined as follows:

Lcont = −
m∑

i=1
log

ef⊤
t (xi)ft(x+

i
)/τ∑

j ̸=i ef⊤
t (xi)ft(x+

j
)/τ

.

The proof for the proposition is provided in Appendix B.1. According to Proposition 1, minimizing the
InfoNCE loss involves reducing the alignment error between the predictions of the query sample and its
positive key x+, while introducing misalignment with the predictions of transformations applied to other
samples within the same mini-batch. Therefore, optimizing the InfoNCE loss formulated in the logit space
leads to the formation of discriminative clusters, however, it does not guarantee the alignment of these
clusters with the ground truth.

4.2 What Has Been Missing in Contrastive SFDA

Now, let us begin establishing a connection between the prediction alignments introduced by contrastive loss
and the target classification error in a task involving Z classes. With z denoting an index, which corresponds
to a specific ground truth class, for a group of output logits. Cz represents a set of target samples belonging
to class z and having predictions that are close to each other in the output logit space. Within each Cz, there
exists a subset Cδ

z that exclusively comprises samples predicted to be class z and exhibits no overlapping
with any other Cl for l ̸= z. Therefore, we can reasonably assume that there exists an Euclidean space in
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which the logits of this subset of samples can be enclosed within a ball Cδ
z of diameter δ. The set of positive

keys, whose logits can confidently be considered to lie within this ball, can be represented as:

S+
z = {x+ ∈ Cz : ∀x ∈ Cδ

z , ||ft(x+)− ft(x)||22 ≤ δ},

and a set of negative keys, whose logits are confirmed to exist outside the ball, is denoted as:

S−
z = {x− ∈ Cz : ∀x ∈ Cδ

z , ||ft(x−)− ft(x)||22 > δ}.

To establish a coherent connection between the target classification error and the prediction alignment errors,
we introduce a definition for the target classification error concerning the logit groups and their associated
ground truth:

ϵDT
=

Z∑
z=1

(P[ft(xt) ̸= z,∀xt ∈ Cz] + P[z ̸= yt,∀xt ∈ Cz]), (3)

The first term represents the probability of misclassification by the classifier ft for a given group class z
within the logit group Cz. The second term indicates the probability that the ground truth for a sample
xt within the logit group Cz does not align with the group class z. This notation for classification error is
inspired by the theoretical framework developed within the context of contrastive SSL Huang et al. (2021b).

Assuming that near-perfect prediction alignments, as introduced in Proposition 1, can be achieved by mini-
mizing Lcont, we can derive an upper bound for the error defined in Equation 3 as follows:
Lemma 2. If Cδ

z ∩ Cδ
l = ∅ holds for any l ̸= z, then the error ϵDT

defined on the groups of logits is upper
bounded by:

ϵDT
≤ Rδ +

Z∑
z=1

(
P[ft(x+) ̸= yt,∀x+ ∈ S+

z ] + P[ft(x−) = yt,∀x− ∈ S−
z ]
)

,

where Rδ = ∪Z
z=1(Cz−Cδ

z)
∪Z

z=1Cz
and (Cz − Cδ

z) may overlap with (Cl − Cδ
l ) for any l ̸= z.

The proof for the lemma is provided in Appendix B.2. Lemma 2 suggests that the target classification
error, as defined in Equation 3, is affected by the overlap between Cz and Cl for any l ̸= z, as well as the
misclassification of the transformations x+ and x−. Given the connection between the prediction alignments
introduced by contrastive loss and the target classification error, we will now explore how the two types of
transformations, namely, neighborhood searching and augmentation, contribute to reducing the upper bound
provided in Lemma 2.

Data augmentation. Augmentation-based contrastive SFDA methods augment data in the input space
and use the logits of the augmented view as the positive key for contrastive clustering Zhang et al. (2022).
However, solely relying on the augmented view transformed in the input space has limitations in mitigating
the overlap of clusters Huang et al. (2021b). Standard data augmentation without distribution alignment in a
contrastive SFDA framework may not effectively address misclassifications of positive keys due to insufficient
information about the target ground truth – the first oversight.

Neighborhood searching. It involves using the logits of the query’s K nearest neighbors, located in
the latent feature space w.r.t the model parameters, as the positive key for contrastive clustering. However,
mitigating the misclassification of transformations through neighborhood searching, akin to K-NN classifiers,
requires an intensive search to find the most suitable K for the given task and data. Increasing the number
of nearest neighbors, i.e., larger K, results in smoother predictions but also leads to a greater overlap of
logit groups, i.e., higher Rδ Wu et al. (2002) – the second oversight. Existing methods Yang et al. (2022)
assume that the informativeness of a query’s neighborhood can be achieved by initializing the model f with
the parameters of the source model fs. However, as the model is updated for contrastive clustering, the
initially informative neighborhood information from fs diminishes. This underscores the necessity for a more
effective utilization of fs during adaptation to enhance the informativeness of query neighborhoods and to
further reduce the risk of misclassifying transformations – the third oversight.

In summary, existing contrastive SFDA methods can mitigate either Rδ (with data augmentation) or the
misclassification of transformations (with neighborhood searching), but they cannot handle both of them.
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5 The Proposed Framework

In this section, we present our source-informed latent augmented neighborhood (SiLAN), which leverages the
advantages of both neighborhood searching and augmentation to address the previously mentioned oversights.

5.1 Source-informed Latent Augmentation

To clarify the proposed work, we introduce an additional feature bank denoted as BS := {Gs(xi
t) |xi

t ∈
DT }M

i=1. During adaptation, Gs remains unchanged and is used to search the source-informed neighborhood
Ns

K(xi
t) for a given target query xi

t. For a given xi
t, we independently and identically (i.i.d) sample random

noise ξ ∈ RH from N (0, σs
K

2(xi
t)), where σs

K
2(xi

t) is the variance of Ns
K(xi

t), and H is the dimension of a
feature vector. We then add ξ to the latent features of the query’s neighborhood (w.r.t the current target
model ft) centroid, denoted as µt

K(xi
t), to generate positive keys:

ĥ := Gt(µt
K(xi

t)) + ξ. (4)

Note that ĥ follows a Gaussian distribution, i.e., ĥ ∼ N (Gt(µt
K(xi

t)), σs
K

2(xi
t)).

5.2 InfoNCE-based Contrastive Framework

To illustrate the integration of SiLAN into existing contrastive SFDA frameworks, we specifically employ the
InfoNCE contrastive framework Oord et al. (2018); Chen et al. (2020); He et al. (2020) as an example. We
adhere to the settings of existing contrastive SFDA methods, formulating it within the output logit space
for each mini-batch of size m:

LSiLAN = −
m∑

i=1
log

e[Ft(Gt(xi
t))]⊤Ft(ĥi)/τ∑

j ̸=i e[Ft(Gt(xi
t)]⊤Ft(ĥj)/τ

(5)

where Gt and Ft represent the feature extractor and task-specific classifier of ft, respectively. ĥj denotes the
augmentation of other samples in the same mini-batch, and τ is the temperature parameter. Note that the
focus of our work is to examine the informativeness of the dispersion of Ns

K in the latent space. Consequently,
we refrain from incorporating additional techniques, such as momentum update He et al. (2020), to enhance
contrastive clustering, despite their potential to improve the performance.

From an intuitive perspective, optimizing a contrastive objective with positive keys defined by Ft(ĥi) can
be likened to applying forces that attract the predictions of ĥi, which are informed by Ns

K(xi
t), towards the

logit group where the query sample xi
t belongs to. In the meantime, this optimization exerts a repelling

effect on those ĥj that are located outside the logit group, pushing them away from it.

5.3 Integrating SiLAN into InfoNCE during Adaptation

To clarify the integration of our SiLAN into the InfoNCE contrastive framework, we provide a detailed
description of the integration process in Algorithm 1, which outlines the target adaptation phase when
incorporating SiLAN.

5.4 Unveiling Rationale for Latent Augmented Neighborhood

Diversifying data augmentation techniques in the input space enhances the concentration of augmented
data Wang & Liu (2021), thereby reducing Rδ. Yet, it introduces notable variations in the latent space due
to minor changes in input, posing a risk of altering the semantics of queries. To address this, we propose
performing latent augmentation on the query’s neighborhood centroid for positive key generation.

To understand the rationale behind our latent augmentation on the query’s neighborhood centroid, let us
first examine a general case where random noise ξ0 ∼ N (0, σ2) is added to the latent features of µK(x).
Such augmentation enriches the diversity of the neighborhood by allowing the transformation to traverse
around a Gaussian profile whose radius is determined by its standard deviation σ. A larger σ promotes
extensive exploration, capturing diverse but potentially irrelevant data variations. Conversely, a smaller σ
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Algorithm 1: SiLAN-Enhanced InfoNCE for Target Adaptation
Input: mini-batch target data xt ∈ DT ; source model Fs(Gs(·)); neighbor number K; temperature τ

and maximum epoch N .
1 Initialization: Ft(Gt(·))← Fs(Gs(·)) and n = 0 ;
2 while n ≤ N − 1 do
3 Find K-NNs for xt using Gt to form their target neighborhoods Nt

K(xt);
4 Find K-NNs for xt using Gs to form their source-informed neighborhoods Ns

K(xt);
5 Compute centroids for target neighborhoods: µt

K(xt) = 1
K

∑K
i=1 N

t,i
K (xt);

6 Compute variances for source-informed neighborhoods:

σs
K

2(xt) = 1
K

∑K
j=1

(
Gs

(
Ns,j

K (xt)
)
− 1

K

∑K
i=1 Gs

(
Ns,i

K (xt)
))2

;
7 Sample noises from a Gaussian with variance σs

K
2(xt): ξ ∼ N (0, σs

K
2(xt));

8 Augment the latent features for the positive keys to guide contrastive clustering:
ĥ = Gt(µt

K(xt)) + ξ;
9 Optimize the model parameters for Ft(Gt(·)) to minimize the InfoNCE loss LSiLAN :

−
∑m

i=1 log e
[Ft(Gt(xi

t))]⊤Ft(ĥi)/τ∑
j ̸=i

e
[Ft(Gt(xi

t)]⊤Ft(ĥj )/τ
;

10 n = n + 1;
11 end

restricts exploration to local and fine-grained variations within a specific logit group. This flexibility enables
the model to adapt to varying degrees of data complexity and distribution shifts, making it well-suited for
reducing misclassification of the transformation in contrastive SFDA.

Moreover, traversing augmentations around Gaussian profiles enhances contrastive clustering by pushing
non-overlapping logit group regions apart, ensuring well-separated features. This improved separability
aligns with the desired behavior as established by the theoretical findings in the subsequent lemma. To
be specific, for a query sample within a logit group Ci, traversing its augmentations around the Gaussian
profile (while aligning their predictions with that of the query through a contrastive objective) will stretch
the non-overlapping region Cδ

i and extend its boundary. Conversely, traversing the augmentations of its
negative samples, which likely do not belong to the same category (diverging their predictions from that of
the query), will push Cδ

i farther away from other logit groups to which these negative samples belong, as
illustrated in Figure 2. This adaptive process encourages the model ft, optimized by a contrastive loss, to
dynamically reduce Rδ during adaptation.

To clarify the subsequent lemma, consider Gopt
t as a target feature extractor that converges on a contrastive

objective with augmentation traversing a Gaussian profile with σ. To quantify the gap between clusters post-
convergence, we employ the concept of calculating the effective region of a Gaussian beam as introduced
in Hogg & Lang (2013). Following their approach, we denote the noise variance per augmentation in the
extraneous noise as σ2

ext
1 from the overlapping regions.

Proposition 3. If Cδ
z ∩ Cδ

l = ∅ holds for any z ̸= l, and the assumption that the representation of a query
sample in the feature space remains close to those of its positive augmentations and far away from those of
its negative samples holds, then for all z ̸= l and i ̸= j (where xi ∈ Cδ

z and xj ∈ Cδ
l ), their distance in the

latent feature space has a lower bound as we take the limit σ2
ext → 0, as follows:

|Gopt
t (xi)−Gopt

t (xj)| ≥ 3.1704σ.

The proof for the proposition is provided in Appendix B.3. Here, the optimal aperture radius for a Gaussian
profile approximates 1.5852σ. In the optimal scenario, the Gaussian profile maximizes its transformation-
to-noise ratio under the assumption that σ2

ext is close to 0.
1Extraneous noise is a term derived from physics that refers to a transient portion of a wave, which does not belong to the

ambient waves, nor does it originate from the source being studied. It is important to distinguish this concept from the notion
of random noise used for augmentation.
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Cluster 1
Cluster 2

source neighbors

C2
δ

C1
δ

query samples

Cluster 1Cluster 2

C2
δ

C1
δ

Figure 2: The transformation of a query sample traverses a Gaussian profile defined by source-informed
neighbors in the latent space, initiating a pull-and-push effect to reduce feature overlaps among logit groups.

Similarly, let F opt
t denote the target classification head, which is linear in our work. With Proposition 3 in

consideration, we can derive a lower bound for the gap between any two logit groups in the output space
when a Gaussian profile is used to augment the query’s neighborhood features:
Lemma 4. ∀z ̸= l and i ̸= j, if the linear classifier F opt is L-bi-Lipschitz continuous, Cδ

z ∩ Cδ
l = ∅ holds for

any z ̸= l where xi ∈ Cδ
z and xj ∈ Cδ

l , and σ2
ext → 0:

|fopt
t (xi)− fopt

t (xj)| ≥ 3.1704σ

L
,

where fopt
t = F opt

t (Gopt
t (·)) and the Lipschitz constant L depends on the number of parameters of Ft(·).

The proof for the lemma is provided in Appendix B.4. Lemma 4 suggests that when the parameters of
ft(·) converge on the contrastive loss with SiLAN augmentation for positive keys, the augmented views of
the query’s neighborhood centroid within a Gaussian profile can ensure a lower bound, dependent on the
standard deviation of the Gaussian and the number of parameters of the linear classifier, for the minimum
gap among the non-overlapping regions of the logit groups.

Therefore, we can conclude that a better separation among logit groups (larger non-overlapping regions)
can be achieved by using a Gaussian profile with a higher standard deviation for SiLAN, as stated in
Lemma 4. However, if the Gaussian profile extends beyond the boundaries of the query’s logit group in
the latent feature space (when σ is too large), the augmentation might traverse outside the logit group.
This introduces ambiguity into contrastive clustering, leading to more errors in mislabeling transformations.
To be specific, a large σ for the augmentation might cause the predictions of positive keys to fall outside
the query’s logit group, leading to an increase in

∑Z
z=1(P[ft(x+) ̸= yt,∀x+ ∈ S+

z ]). Meanwhile, it could
result in the predictions of negative keys falling within the query’s logit group, leading to an increase in
P[ft(x−) = yt,∀x− ∈ S−

z ]).

5.5 Informativeness of σ

Recalling the phenomenon highlighted in Observations on Neighborhood Informativeness, which suggests
that the dispersed neighbors derived from Ns

k(xt) carry valuable insights into the ground truth of xt (as
nearby points share the same labels), the incorporation of this information becomes significant in the pro-
cess of discriminative clustering. Therefore, it is crucial to perform SILAN in a manner that covers these
neighbors to reduce the likelihood of mislabeled augmentations. To achieve this, expanding the scope of
the Gaussian profile’s influence based on the query’s neighborhood as determined by the source model is
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necessary. Specifically, the radius of the Gaussian profile should be determined by Ns
K(xt), thereby setting

σ to σs
K .

In summary, the optimal value for σ should be large enough to create a substantial gap among logit groups,
making them more distinguishable, while avoiding the generation of an excessive number of ambiguous
augmentations. Interestingly, the dispersion of Ns

K(xt) that adversely impacts discriminability onDT actually
proves beneficial in determining the optimal value of σ for the proposed SiLAN.

6 Experiments

6.1 Experiments on Toy Dataset

In this section, we demonstrate the effectiveness of SiLAN on a toy dataset, the moon dataset, which simulates
domain shift by rotating data sample orientations. The source domain features an interleaving half circle
with 1000 data points, and the target domain replicates this structure with a 30-degree rotation around the
mean. Both domains incorporate Gaussian noise with a standard deviation of 0.1 and are generated using
distinct random seeds. The experimental setup includes a 5-layer fully connected network. As depicted in
Figure 3, the source-only model encounters challenges in accurately classifying numerous points, while our
SiLAN method excels in achieving accurate classification.

(a) Source Only (b) SiLAN

Figure 3: (Best viewed in color.) Decision boundaries derived from moon dataset w/wo SiLAN.

Table 1: Comparison of SFDA methods using ResNet-50 on Office-31. The best results are highlighted.
Method A )D A )W D )W D )A W )D W )A Avg.

ResNet-50 He et al. (2016) 68.9 68.4 96.7 62.5 99.3 60.7 76.1
SHOT Liang et al. (2020) 94.0 90.1 98.4 74.7 99.9 74.3 88.6
NRC Yang et al. (2021a) 96.0 90.8 99.0 75.3 100.0 75.0 89.4
3C-GAN Li et al. (2020) 92.7 93.7 98.5 75.3 99.8 77.8 89.6

HCL Huang et al. (2021a) 94.7 92.5 98.2 75.9 100.0 77.7 89.8
AaD Yang et al. (2022) 96.4 92.1 99.1 75.0 100.0 76.5 89.9

SF(DA)2 Hwang et al. (2024) 95.8 92.1 99.0 75.7 99.8 76.8 89.9
SiLAN (Ours) 97.1 95.8 98.9 76.4 100.0 76.9 90.7

Table 2: Comparison of the SFDA methods on Office-Home (ResNet-50).
Method Ar )Cl Ar )Pr Ar )Rw Cl )Ar Cl )Pr Cl )Rw Pr )Ar Pr )Cl Pr )Rw Rw )Ar Rw )Cl Rw )Pr Avg.

ResNet-50 He et al. (2016) 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1
G-SFDA Yang et al. (2021b) 57.9 78.6 81.0 66.7 77.2 77.2 65.6 56.0 82.2 72.0 57.8 83.4 71.3

SHOT Liang et al. (2020) 57.1 78.1 81.5 68.0 78.2 78.1 67.4 54.9 82.2 73.3 58.8 84.3 71.8
NRC Yang et al. (2021a) 57.7 80.3 82.0 68.1 79.8 78.6 65.3 56.4 83.0 71.0 58.6 85.6 72.2
AaD Yang et al. (2022) 59.3 79.3 82.1 68.9 79.8 79.5 67.2 57.4 83.1 72.1 58.5 85.4 72.7
DaC Zhang et al. (2022) 59.5 79.5 81.2 69.3 78.9 79.2 67.4 56.4 82.4 74.0 61.4 84.4 72.8

SF(DA)2 Hwang et al. (2024) 57.8 80.2 81.5 69.5 79.2 79.4 66.5 57.2 82.1 73.3 60.2 83.8 72.6
SiLAN (Ours) 58.2 81.2 82.5 69.8 78.6 80.3 68.4 58.6 82.5 75.6 60.8 86.1 73.6
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Table 3: Comparison of the SFDA methods on VisDA2017 (ResNet-101).
Method plane bcycl bus car horse knife mcycl person plant sktbrd train truck Avg.

ResNet-101 He et al. (2016) 55.1 53.3 61.9 59.1 80.6 17.9 79.7 31.2 81.0 26.5 73.5 8.5 52.4
SHOT Liang et al. (2020) 94.3 88.5 80.1 57.3 93.1 94.9 80.7 80.3 91.5 89.1 86.3 58.2 82.9
HCL Huang et al. (2021a) 93.3 85.4 80.7 68.5 91.0 88.1 86.0 78.6 86.6 88.8 80.0 74.7 83.5

G-SFDA Yang et al. (2021b) 96.1 88.3 85.5 74.1 97.1 95.4 89.5 79.4 95.4 92.9 89.1 42.6 85.4
NRC Yang et al. (2021a) 96.8 91.3 82.4 62.4 96.2 95.9 86.1 80.6 94.8 94.1 90.4 59.7 85.9
AaD Yang et al. (2022) 95.2 90.5 85.5 79.2 96.4 96.2 88.8 80.4 93.9 91.8 91.1 55.9 87.1
DaC Zhang et al. (2022) 96.6 86.8 86.4 78.4 96.4 96.2 93.6 83.8 96.8 95.1 89.6 50.0 87.3

SF(DA)2 Hwang et al. (2024) 96.8 89.3 82.9 81.4 96.8 95.7 90.4 81.3 95.5 93.7 88.5 64.7 88.1
SiLAN (Ours) 97.5 90.1 85.8 80.4 97.6 95.5 92.0 82.9 96.5 95.3 92.6 53.4 88.3

6.2 Experiments on Benchmark Datasets

Datasets. We have evaluated our SiLAN on three benchmark datasets for SFDA:

• Office-31 Saenko et al. (2010), which consists of 4,652 images of 31 object classes captured from three
domains: Amazon (A), Webcam (W), and DSLR (D).

• Office-Home Venkateswara et al. (2017), which has 15,500 images of 65 classes from four domains:
Artistic (Ar), Clipart (Cl), Product (Pr), and Real-World (Rw).

• VisDA-C 2017 Peng et al. (2017), a large-scale dataset used for the 2017 ICCV visual DA challenge,
with 280K images of 12 object categories. The source domain contains synthetic images generated via 3D
model rendering, while the target domain consists of real images.

Experiment Setup. For fair comparisons with other SFDA methods, we maintain consistency in net-
work architecture, training techniques, and hyperparameters across all experiments. Specifically, we utilize
ResNet-50 for Office-31 and Office-Home, and ResNet-101 for VisDA-C. The classifier F consists of two
linear layers. We adopt the InfoNCE-based loss from SimCLR Chen et al. (2020) for contrastive learning.
The optimization uses an SGD optimizer with a momentum of 0.9, and the batch size is set to 32 for Office
datasets and 64 for VisDA-C. The learning rates for all experiments are fixed at 1e−3. Results for Office-31
and Office-Home are reported after 100-epoch training, while VisDA results are presented after 15-epoch
training. In Office-Home experiments, we apply regularization to the diagonal matrix of predictions in a
mini-batch, achieved through singular value decomposition Cui et al. (2020). The SiLAN hyperparameters,
including Kt and Ks, represent the number of neighbors determined by the target and source models, re-
spectively. They are set to 3 for most Office experiments and 15 for VisDA-C. The temperature parameter
τ for InfoNCE loss is set to 0.11 for most experiments.

Results. Results for Office-31, Office-Home, and VisDA-C 2017 are shown in Tables 1, 2, and 3, respectively.
The results for ResNet-X represent applying the source pre-trained model directly to target domain without
adaptation. Our framework achieves state-of-the-art performance across all three benchmarks compared to
other SFDA methods.

7 Conclusions

The present paper provided a thorough analysis of SFDA methods based on contrastive learning, revealing
that their effectiveness depends on the degree of overlap among logit groups and the informativeness of
augmentations for positive key generation. Building on these insights, we introduced a novel latent augmen-
tation method to address the limitations of existing contrastive SFDA methods. This method utilized the
dispersion of latent features around query samples, guided by the source pre-trained model, to reduce logit
group overlaps and improve positive key generation. The proposed method, relying on a single InfoNCE
loss, demonstrated superior performance compared to existing SFDA methods across various benchmark
datasets. Our research contributed to the understanding of applying contrastive learning in the context of
SFDA and provides a practical solution to enhance model generalization in the absence of source data.
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A Ablation Studies

A.1 Number of Nearest Neighbors for Nt
K and Ns

K .

During target adaptation, we distinguish the number of nearest neighbors for Nt
K determined by the target

model as Kt and for Ns
K determined by the source model as Ks. As discussed earlier, selecting a small

value for Kt can enhance clustering but may introduce less smooth predictions, susceptible to noise from
inconsistent neighbors. Conversely, choosing a large value of Kt yields smoother predictions but increases
the overlap among logit groups. The value of Ks should be determined empirically to find a balance. It
should ensure a sufficiently large standard deviation for traversal around Ns

K while avoiding excessive values
that introduce augmentations whose predictions lie in other logit groups. We conduct this ablation study
on Office-31 to adapt the model pre-trained on Amazon to Webcam. As shown in Table 4, our framework is
robust to the choices of both Kt and Ks within a reasonable range.

A.2 Standard Deviation of Ns
K .

The impact of Ks on the standard deviation of latent features within Ns
K is evaluated through experiments

on the Office-31 dataset. In this ablation study, a model trained on Amazon is adapted to Webcam. Table 4
presents the average standard deviations of the features extracted from all samples in Webcam using the
converged model, with varying values of Ks, under the column Noise Std.
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Table 4: Ablation study for the number of nearest neighbors, Kt and Ks, on the adaptation performance on
Office-31 using ResNet-50.

Office-31 Amazon )Webcam
Kt Ks Result Noise Std. Kt Ks Result Noise Std.
2 2 92.7 0.049 3 2 93.6 0.078
2 3 93.2 0.068 3 3 94.6 0.105
2 4 93.0 0.059 3 4 94.0 0.085
2 5 92.8 0.052 3 5 93.2 0.071
4 2 92.8 0.058 5 2 92.2 0.032
4 3 93.4 0.062 5 3 93.2 0.068
4 4 93.2 0.056 5 4 93.4 0.070
4 5 93.9 0.078 5 5 93.2 0.072

A.3 Temperature for Contrastive Loss.

The strength of penalties on negative keys in the contrastive loss is governed by the temperature parameter
τ . A small temperature increases the penalization of negative samples, pushing their latent features farther
away from those of the query, as highlighted in Wang & Liu (2021). Conversely, a large temperature results
in more compact latent features within each logit group, but reduces sensitivity to negative samples in
clustering. To empirically evaluate the effect of τ , experiments are conducted on Office-31 with Ks and
Kt set to 3, respectively. The results, illustrated in Figure 4, demonstrate the impact of τ on the target
classification performance.
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Figure 4: Ablation experiments on Office-31 using ResNet-50 to evaluate how classification performance
varies with temperature parameter τ .

A.4 Ablation on SiLAN’s Impact on InfoNCE Loss.

In this ablation study, we evaluate the effectiveness of SiLAN in improving the InfoNCE baseline using
the Office-Home dataset. We compare the classification accuracies in the target domain for models trained
with and without the use of SiLAN for positive key generation to guide InfoNCE contrastive clustering. The
results, as shown in Table 5, demonstrate that SiLAN significantly improves the performance of the InfoNCE
baseline, highlighting its robustness.

A.5 General Guidance for Hyperparameter Selection

Our InfoNCE-based SiLAN introduces three additional hyperparameters: the number of the source-informed
kNNs Ks, the number of target kNNs Kt, and the logit temperature for contrastive loss τ . In this section, we
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Table 5: Comparing the InfoNCE baseline performance with and without SiLAN on Office-Home using
ResNet-50.

Method Ar → Cl →
Cl Pr Rw Ar Pr Rw

InfoNCE+K-NNs 55.6 76.4 80.6 66.4 75.2 76.4
InfoNCE+SiLAN (Ours) 58.2 81.2 82.5 69.8 78.6 80.3

Method Pr → Rw →
Ar Cl Rw Ar Cl Pr

InfoNCE+K-NNs 66.2 53.8 80.5 72.8 56.8 83.5
InfoNCE+SiLAN (Ours) 68.4 58.6 82.5 75.6 60.8 86.1

will offer general guidance for setting values for these hyperparameters based on the results of the sensitivity
analysis obtained from Appendices A.1, A.2, and A.3.

To identify the optimal set of hyperparameters, we recommend the following systematic approach: begin by
determining the number of target kNNs, denoted as Kt. This parameter determines the mean of the Gaussian
for our latent augmentation, directly influencing the effectiveness of contrastive clustering. In general, Kt

can be roughly estimated based on the number of samples per class in the target dataset; a smaller target
dataset should use a smaller Kt. For instance, our experiments show that the optimal Kt ranges from 3 to 5
for Office datasets, each containing about 200 images per class. However, for VisDA-2017, which comprises
around 23K images per class, the optimal Kt is 15. Therefore, to determine the optimal Kt, we suggest a
search range from 2 to 8 for a target dataset with 100 to 1K samples per class, and a search range from 10
to 20 for a target dataset with more than 20K images per class.

Subsequently, the number of the source-informed kNNs, denoted as Ks, which determines the standard de-
viation of the Gaussian for our SiLAN, could be decided based on Kt. Our analysis in Section 5 indicates
that Ks should be large enough to contain the farthest source-informed neighbor that may share the same
ground truth as the target query. However, it should not be excessively large to avoid including features
with inconsistent ground truth in the positive key generation. We found that the standard deviation of these
source-informed kNNs’ features is a reliable indicator for selecting Ks to define the optimal latent augmen-
tation region. As detailed in Appendix A.2, a larger standard deviation of the latent feature vectors of the
source-informed kNNs generally correlates with better performance on target classification tasks. Typically,
the largest standard deviation occurs when Ks is approximately equal to Kt. Therefore, a preliminary
strategy could be setting Ks equal to Kt, with the optimal Ks lying within the range of Kt ± 2.

Finally, the temperature τ for contrastive logits should be determined similarly to self-supervised learning
frameworks, as regardless of the mathematical space in which clustering occurs, this parameter influences
the degree of penalization applied to hard negative samples Wang & Liu (2021). Unlike unsupervised
representation learning, which aims for a universal representation across tasks, our contrastive objective
operates in the output logit space, favoring a small value for τ (similar to identifying the temperature in
knowledge distillation frameworks Hinton et al. (2015)). In our experiments, the optimal value for τ falls
between 0.07 and 0.15. Therefore, a search range between 0.05 and 0.2 is recommended for practitioners.

A.6 Computational Analysis

In this section, we conduct a detailed runtime analysis on our SiLAN and compare it with other advanced
SFDA methods. To be specific, we conducted a runtime analysis comparing the one-epoch training time
and overall convergence runtime of AaD Yang et al. (2022) of our SiLAN with other SFDA methods. To
demonstrate scalability with respect to dataset size and model complexity, we performed this computational
analysis on both the small-scale dataset Office-31 using ResNet-50 and the large-scale dataset VisDA-2017
using ResNet-101. All experiments were conducted on a machine equipped with an Nvidia V100 GPU.
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Table 6: Time Analysis of One-Epoch Target Adaptation on Office-31 AD (ResNet-50).

Method One-Epoch Time (sec) One-Epoch Performance (%)
NRC Yang et al. (2021a) 21.4 85.3
DaC Zhang et al. (2022) 40.5 80.6
AaD Yang et al. (2022) 19.8 84.4

SiLAN (ours) 20.6 84.9
AaD+SiLAN (ours) 20.2 (+0.4) 85.6 (+1.2)

Table 7: Convergence Time Analysis for Target Adaptation on Office-31 AD (ResNet-50).

Method Convergence Time (sec) Best Performance (%)
NRC Yang et al. (2021a) 856.7 96.0
DaC Zhang et al. (2022) 1417.5 94.2
AaD Yang et al. (2022) 714.9 96.4

SiLAN (ours) 618.9 97.1
AaD+SiLAN (ours) 584.5 (−130.4) 97.5 (+1.1)

Table 8: Time Analysis of One-Epoch Target Adaptation on VisDA-2017 Dataset (ResNet-101).

Method One-Epoch Time (sec) One-Epoch Performance (%)
NRC Yang et al. (2021a) 469.2 79.2
DaC Zhang et al. (2022) 632.8 82.4
AaD Yang et al. (2022) 453.6 82.6

SiLAN (ours) 465.9 84.5
AaD+SiLAN (ours) 462.3 (+8.7) 86.8 (+4.2)

Moreover, as our SiLAN can also serve as a general latent augmentation method to enhance other SFDA
methods, we have included a runtime analysis for the scenario where our SiLAN latent augmentation is
applied to improve the informativeness of the latent features of the neighbors for AaD (referred to as
AaD+SiLAN ). In this analysis, we present the performance gain and additional runtime compared to AaD
alone, providing practitioners with the information needed to balance performance gains against runtime
considerations.

Tables 6, 7, 8, 9 illustrate that our SiLAN, NRC, and AaD exhibit similar target adaptation times per epoch,
whereas DaC requires substantially more time due to its adaptive process and self-training steps, such as
pseudo label generation and re-training. This observation aligns with the fact that AaD, NRC, and our
SiLAN are all rooted in neighborhood searching and involve aligning predictions between query predictions
and those of the neighbors. Meanwhile, our SiLAN, along with AaD and NRC, typically converge within
about 10 epochs for the VisDA-2017 dataset, whereas DaC requires around 20 epochs. Notably, on the small-
scale Office-31 dataset, our SiLAN achieves faster convergence compared to other methods. We hypothesize
that this is because SiLAN, serving as an augmentation method, significantly enhances model convergence,
particularly in situations where data is scarce. The total convergence time for target adaptation is also
provided for comparison.

Therefore, we conclude that despite our SiLAN having a similar one-epoch runtime compared to NRC and
AaD, its use as latent augmentation leads to faster convergence compared to other SFDA methods, resulting
in overall runtime benefits.

A.7 SiLAN as A General Latent Augmentation Method
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Table 9: Convergence Time Analysis for Target Adaptation on VisDA-2017 Dataset (ResNet-101).

Method Convergence Time (sec) Best Performance (%)
NRC Yang et al. (2021a) 4692.8 85.9
DaC Zhang et al. (2022) 12656.3 87.3
AaD Yang et al. (2022) 4536.2 87.1

SiLAN (ours) 3727.2 88.3
AaD+SiLAN (ours) 3236.1 (−1300.1) 89.7 (+2.6)

In this ablation study, we demonstrate the versatility of our proposed SiLAN as a general latent augmentation
method for source-free domain adaptation (SFDA) frameworks. To validate this, we incorporate SiLAN into
advanced SFDA methods, namely HCL Huang et al. (2021a), A2Net Xia et al. (2021), AaD Yang et al.
(2022) and NRC Yang et al. (2021a). While both AaD and NRC utilize the predictions of query neighbors
to optimize the model, their implementation details vary.

Among them, HCL Huang et al. (2021a) is a contrastive SFDA framework built upon pseudo-labeling, and
A2Net Xia et al. (2021) is an adversarial SFDA framework. Additionally, AaD Yang et al. (2022) features
a more advanced contrastive learning objective tailored for solving SFDA problems, while NRC Yang et al.
(2021a) utilizes a hierarchical neighborhood searching strategy.

The results, presented in Table 10, clearly indicate that our proposed SiLAN augmentation significantly im-
proves the performance of both AaD and NRC. To be specific, our proposed SiLAN enhances the performance
of HCL, A2Net, NRC, and AaD by 0.6%, 2.0%, 1.2%, and 2.6%, respectively. These results demonstrate
that SiLAN is an effective latent augmentation method for addressing SFDA problems across various SFDA
frameworks.

Table 10: Ablation studies of integrating SiLAN into various SFDA frameworks for enhanced performance
on VisDA2017 (ResNet-101).

Method plane bcycl bus car horse knife mcycl person plant sktbrd train truck Avg.
ResNet-101 He et al. (2016) 55.1 53.3 61.9 59.1 80.6 17.9 79.7 31.2 81.0 26.5 73.5 8.5 52.4
HCL Huang et al. (2021a) 93.3 85.4 80.7 68.5 91.0 88.1 86.0 78.6 86.6 88.8 80.0 74.7 83.5

A2Net Xia et al. (2021) 94.0 87.8 85.6 66.8 93.7 95.1 85.8 81.2 91.6 88.2 86.5 56.0 84.3
NRC Yang et al. (2021a) 96.1 90.8 83.9 61.5 95.7 95.7 84.4 80.7 94.0 91.9 89.0 59.5 85.3
AaD Yang et al. (2022) 95.2 90.5 85.5 79.2 96.4 96.2 88.8 80.4 93.9 91.8 91.1 55.9 87.1

SiLAN (Ours) 97.5 90.1 85.8 80.4 97.6 95.5 92.0 82.9 96.5 95.3 92.6 53.4 88.3
HCL+SiLAN (Ours) 94.6 85.4 83.2 67.3 94.2 86.5 86.3 80.8 88.2 85.2 83.4 74.6 84.1

A2Net+SiLAN (Ours) 97.2 91.2 87.4 66.8 96.9 96.9 88.0 80.9 93.5 93.3 91.1 53.2 86.3
NRC+SiLAN (Ours) 97.2 90.5 84.3 63.8 96.7 95.4 86.2 85.1 95.6 93.2 90.2 59.8 86.5
AaD+SiLAN (Ours) 98.4 91.8 86.2 80.6 96.3 95.7 94.4 87.5 95.8 94.2 93.4 62.1 89.7

A.8 Sensitivity Analysis on The Effect of The Source Pre-Training

In this sensitivity analysis, we evaluate how the quality of the source pre-trained model impacts target
classification performance. We select source pre-trained models based on their performance on the source
dataset’s test sets, consistent with common practice in other SFDA methods.

To validate this approach, we conduct sensitivity analysis on the mid-scale Office-Home dataset using ResNet-
50. We maintain consistency by using the same target dataset (Artistic) while varying the source domain
datasets (Clipart, Product, and Real-World). Figure 5 illustrates the experimental results of the sensitivity
analysis conducted on the effect of the source model pretraining on the target-domain classification perfor-
mance. The left subfigure of Figure 5 illustrates the relationship between test performance on the source
test set and the number of epochs used to pre-train the model on the source dataset. On the other hand,
the right subfigure demonstrates how the quality of the source pre-trained model, measured by the number
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of epochs used for pre-training on the source dataset, influences the classification performance in the target
domain after adaptation convergence. The results indicate that, in the context of our SiLAN approach,
selecting models that exhibit superior performance on the source test set as the source pre-trained model
generally leads to optimal target adaptation outcomes.

The diversity of the source dataset also influences target adaptation performance. For instance, the synthetic
(source) domain in the VisDA-2017 dataset includes 152,397 images generated from 3D models across 12
object categories. These images feature diverse shapes, colors, textures, and sizes. In contrast, real (target)
domain images vary in backgrounds, lighting, occlusions, and object poses. This diversity poses challenges for
domain adaptation algorithms, requiring effective generalization across disparities for optimal target domain
performance.

(a) Performance on Source Test Set. (b) Performance on Artistic After Adaptation.

Figure 5: Sensitivity analysis on the Office-Home dataset using ResNet-50 to evaluate how the quality of the
source pre-trained model impacts target-domain classification performance.

A.9 Additional Experiments on Vision Transformers

To demonstrate the effectiveness of our SiLAN across different backbone architectures, we performed exper-
iments on all benchmark datasets using the ViT-16-B vision transformer as our backbone, as suggested in
prior work Xu et al. (2021). The results, presented in Tables 11, 12, and 13, highlight the efficacy of our
SiLAN in addressing SFDA problems with a vision transformer backbone, outperforming existing ViT-based
SFDA methods.

Table 11: Comparison of SFDA methods using ViT-B-16 on Office-31.

Method A )D A )W D )W D )A W )D W )A Avg.
ViT-B-16 90.8 90.4 76.8 98.2 76.4 100.0 88.8

TVT Yang et al. (2023) 96.4 96.4 84.9 99.4 86.1 100.0 93.8
CDTrans Xu et al. (2021) 97.0 96.7 81.1 99.0 81.9 100.0 92.6

SiLAN (Ours) 95.3 97.2 88.1 99.6 89.2 100.0 94.6
CDTrans+SiLAN (Ours) 97.4 98.1 83.4 99.4 83.3 100.0 93.6

20



Published in Transactions on Machine Learning Research (04/2024)

Table 12: Comparison of the SFDA methods on Office-Home (ViT-B-16).

Method Ar )Cl Ar )Pr Ar )Rw Cl )Ar Cl )Pr Cl )Rw Pr )Ar Pr )Cl Pr )Rw Rw )Ar Rw )Cl Rw )Pr Avg.
ViT-B-16 61.8 79.5 84.3 75.4 78.8 81.2 72.8 55.7 84.4 78.3 59.3 86.0 74.8

TVT Yang et al. (2023) 74.9 86.8 89.5 82.8 88.0 88.3 79.8 71.9 90.1 85.5 74.6 90.6 83.6
CDTrans Xu et al. (2021) 68.8 85.0 86.9 81.5 87.1 87.3 79.6 63.3 88.2 82.0 66.0 90.6 80.5

SiLAN (Ours) 70.4 90.5 88.6 85.3 83.1 86.5 85.2 73.9 88.6 86.1 80.0 92.5 84.2
CDTrans+SiLAN (Ours) 72.1 86.2 85.4 81.7 88.5 86.9 82.4 81.1 87.9 84.5 78.2 90.4 83.8

Table 13: Comparison of the SFDA methods on VisDA2017 (ViT-B-16).

Method plane bcycl bus car horse knife mcycl person plant sktbrd train truck Avg.
ViT-B-16 97.7 48.1 86.6 61.6 78.1 63.4 94.7 10.3 87.7 47.7 94.4 35.5 67.1

TVT Yang et al. (2023) 92.9 85.6 77.5 60.5 93.6 98.2 89.4 76.4 93.6 92.0 91.7 55.7 83.9
CDTrans Xu et al. (2021) 97.1 90.5 82.4 77.5 96.6 96.1 93.6 88.6 97.9 86.9 90.3 62.8 88.4

SiLAN (Ours) 92.5 90.1 92.4 70.6 92.1 98.5 95.8 89.2 94.5 93.3 90.6 64.4 88.7
CDTrans+SiLAN (Ours) 96.8 92.5 86.2 75.2 98.5 95.5 95.8 90.6 98.2 92.1 87.5 63.2 89.3

B Proof

B.1 Proof of Proposition 1

Proposition 1. The InfoNCE-based contrastive loss, denoted as Lcont, serves as an upper bound for
achieving two distinct alignments in the output logit space. Formally,

m∑
i=1

log(m− 1) + ||ft(xi)− ft(x+
i )||22

2τ
+ 1

m− 1
∑
j ̸=i

−
||ft(xi)− ft(x+

j )||22
2τ

 ≤ Lcont,

where with τ being a temperature and m being the size of a mini-batch, Lcont is defined as,

Lcont = −
m∑

i=1
log

ef⊤
t (xi)ft(x+

i
)/τ∑

j ̸=i ef⊤
t (xi)ft(x+

j
)/τ

.

Proof. the InfoNCE loss defined in the output logit space is formulated as:

Lcont = −
m∑

i=1
log

ef⊤
t (xi)ft(x+

i
)/τ∑

j ̸=i ef⊤
t (xi)ft(x+

j
)/τ

=
m∑

i=1

(
(−f⊤

t (xi)ft(x+
i )/τ + log

(m− 1
m− 1

∑
j ̸=i

ef⊤
t (xi)ft(x+

j
)/τ
))

.

(6)

Then, we apply Jensen’s inequality to Equation 6:

Lcont ≥
m∑

i=1

(
− f⊤

t (xi)ft(x+
i )/τ + 1

m− 1
∑
j ̸=i

log
(

(m− 1) ef⊤
t (xi)ft(x+

j
)/τ
))

=
m∑

i=1

(
− f⊤

t (xi)ft(x+
i )/τ + 1

m− 1
∑
j ̸=i

f⊤
t (xi)ft(x+

j )/τ + 1
m− 1

∑
j ̸=i

log(m− 1)
)

=
m∑

i=1

(
log(m− 1)− f⊤

t (xi)ft(x+
i )/τ + 1

m− 1
∑
j ̸=i

f⊤
t (xi)ft(x+

j )/τ

) (7)
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Then, express cosine similarity between two functions in terms of Euclidean distance:

−u⊤v := ||u− v||22
2 − 1. (8)

Plugging Eqn 8 into Inequality 7:

m∑
i=1

(
log(m− 1) + ||ft(xi)− ft(x+

i )||22
2τ

+ 1
m− 1

∑
j ̸=i

−
||ft(xi)− ft(x+

j )||22
2τ

)
≤ Lcont, (9)

End of the proof.

B.2 Proof of Lemma 2

Lemma 2. If Cδ
z ∩ Cδ

l = ∅ holds for any l ̸= z, then the error ϵDT
defined on the groups of logits is upper

bounded by:

ϵDT
≤ Rδ +

Z∑
z=1

(P[ft(x+) ̸= yt,∀x+ ∈ S+
z ] + P[ft(x−) = yt,∀x− ∈ S−

z ]),

where Rδ = ∪Z
z=1(Cz−Cδ

z)
∪Z

z=1Cz
and (Cz − Cδ

z) may overlap with (Cl − Cδ
l ) for any l ̸= z.

Proof. Based on Huang et al. (2021b), our study refines the theoretical problem of target classification error
within the context of contrastive clustering. It decomposes the classification error, focusing on the groups of
output logits Cz where z ∈ [1, Z], as illustrated in Equation 3.

The first error term can only occur within the overlapping regions (i.e., intersections) between the groups of
logits generated through contrastive learning Huang et al. (2021b). Therefore, we have:

Z∑
z=1

P[ft(xt) ̸= z,∀xt ∈ Cz] ≤ P[∪Z
z=1Cδ

z ]. (10)

The informativeness of the group assignment depends entirely on the informativeness of the transformations
of queries when optimizing the contrastive loss. Thus, the upper bound of the second error term can be
established as:

Z∑
z=1

P[z ̸= yt,∀xt ∈ Cz] ≤
Z∑

z=1

(
P[ft(x+) ̸= yt,∀x+ ∈ S+

z ] + P[ft(x−) = yt,∀x− ∈ S−
z ]
)

, (11)

where the first term represents the error of assigning the logits of positive samples to a group that does
not correspond to the ground truth of the query; and the second term denotes the error that occurs when
assigning the logits of negative samples to the group to which the query should belong based on its ground
truth.

Incorporating Inequalities 10 and 11 into Equation 3, we have:

ϵDT
≤ P[∪Z

z=1Cδ
z ] +

Z∑
z=1

(
P[ft(x+) ̸= yt,∀x+ ∈ S+

z ] + P[ft(x−) = yt,∀x− ∈ S−
z ]
)

= 1− ∪
Z
z=1Cδ

z

∪Z
z=1Cz

+
Z∑

z=1

(
P[ft(x+) ̸= yt,∀x+ ∈ S+

z ] + P[ft(x−) = yt,∀x− ∈ S−
z ]
)

.

End of the proof.
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B.3 Proof of Proposition 3

Proposition 3. If Cδ
z ∩ Cδ

l = ∅ holds for any z ̸= l, and the assumption that the representation of query
samples in the feature space will stay close to their positive augmentations and be far away from their
negative samples holds, then ∀z ̸= l and i ̸= j (where xi ∈ Cδ

z and xj ∈ Cδ
l ), their distance in the latent

space is lower bounded when we take the limit σ2
ext → 0 as follows:

|Gopt
t (xi)−Gopt

t (xj)| ≥ 3.1704σ,

Proof. Inspired by the methodology introduced in Hogg & Lang (2013) for calculating the effective region
of a Gaussian beam, we introduce the concept of the Gaussian beam to estimate the effective region of our
SiLAN augmentation, whose effect is within a Gaussian profile. Here, all the possible augmented views,
originating from a query sample x, center at the mean µK(x) of the neighborhood of the query.

Hence, a radial profile with radius R and centroid µK(x) can be employed to represent the effective region
of the potential augmented views from SiLAN:

AR(R) =
∫ R

0
ĥ(r)2πrdr,

where ĥ(r) is a radial profile function well-sampled and determined by SiLAN and the feature extractor
parameters.

Assuming perfect alignment is achieved after Gopt
t converges on the contrastive objective, meaning positive

augmentations (keys) lie in the same cluster as the query while negative keys do not lie in the query’s cluster,
then, the gap between any two distinct clusters will be determined by the augmentation that belongs to one
cluster and is nearest to the other cluster. In summary, under perfect alignment, there is no overlap between
the Gaussian profiles of samples from different clusters. Thus, we have:

|Gopt
t (xi)−Gopt

t (xj)| ≥ 2R.

Then, considering the extraneous noise with variance σ2
ext, the total variance in the informative radius, with

respect to µk(x), out to R can be written as:

σ2
total(R) = AR(R) + πR2σ2

ext,

where πR2 is the aperture area given R, containing possible augmented views centered at µk(x).

The transformation-to-noise ratio T/N , which is similar to the definition of signal-to-noise ratio to quantify
Gaussian beam Hogg & Lang (2013), as a function of radius R can be written as:

T/N = AR(R)√
AR(R) + πR2σ2

ext

=
∫ R

0 ĥ(r)2πrdr√∫ R

0 ĥ(r)2πrdr + πR2σ2
ext

.

After adding random noise ξ, we have a 2D Gaussian for the source profile centered at µK(x):

ĥ(r) = 1
2πσ2 e

−r2

2σ2 ,

where σ is the standard deviation of the profile. Then,

T/N = 1− e
−R2

2σ2√
1− e

−R2
2σ2 + πR2σ2

ext

.
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Taking ∂(T/N)
∂R = 0 and the limit as σ2

ext → 0, we have the optimum radius R ≈ 1.5852σ.

By incorporating R ≈ 1.5852σ into the inequality, we have:

|Gopt
t (xi)−Gopt

t (xj)| ≥ 3.1704σ,

End of the proof.

B.4 Proof of Lemma 4

Lemma 4. ∀z ̸= l and i ̸= j, if the linear classifier F opt is L-bi-Lipschitz continuous, Cδ
z ∩ Cδ

l = ∅ holds for
any z ̸= l where xi ∈ Cδ

z and xj ∈ Cδ
l , and σ2

ext → 0:

|fopt
t (xi)− fopt

t (xj)| ≥ 3.1704σ

L
,

where fopt
t = F opt

t (Gopt
t (·)).

Proof. As the classifier F is linear and L-bi-Lipschitz continuous, we have:

|fopt
t (xi)− fopt

t (xj)| = |F opt
t (Gopt

t (xi))− F opt
t (Gopt

t (xj))|

≥ 1
L
|Gopt

t (xi)−Gopt
t (xj)|.

From Proposition 3, we have |Gopt
t (xi)−Gopt

t (xj)| ≥ 3.1407σ, thus

|fopt
t (xi)− fopt

t (xj)| ≥ 1
L

3.1407σ

End of the proof.

C Further Intuitive Insights into The Theoretical Work

In this section, we aim to provide practitioners with a clearer understanding of our proposed SiLAN. To
achieve this, we offer more intuitive explanations and visual illustrations to clarify the purpose and outcomes
of our theoretical work.

C.1 Intuition of Proposition 3

Proposition 3 establishes a theoretical lower bound for the L1 distance between the latent features of data
samples belonging to different logit clusters. This bound is derived under the assumption that the classi-
fication model is optimized by a contrastive loss to align the query predictions with those of our SiLAN
augmentations, while intentionally misaligning the query predictions with those of the data samples within
the same mini-batch.

This analysis presupposes that perfect alignment occurs after Gopt
t converges on such a contrastive objective.

In other words, positive augmentations (keys) are positioned within the same cluster as the query, while
negative keys do not lie within the query’s cluster. As illustrated in Figure 6, the gap between any two
distinct clusters (i.e., |Gopt

t (xi)−Gopt
t (xj)| where xi and xj belong to different logit clusters) is determined

by the augmentation nearest to one cluster but belonging to the other.

It is important to recall that our SiLAN augmentation introduces Gaussian noise, incorporating guidance
from the kNNs found by the source pre-trained model to the centroid of the query neighborhood found by

24



Published in Transactions on Machine Learning Research (04/2024)

gaussian Profile

query sample

R

R

Non-overlapping region of different clusters

Figure 6: The minimum gap between the non-overlapping regions of two clusters has a lower bound deter-
mined by the radius of the Gaussian profile.

the current target model. Mathematically, the augmented features used to generate the positive keys for
contrastive clustering can be represented as:

ĥ := Gt(µt
K(xi

t)) + ξ. (12)

Here, xi
t denotes the target query sample, while µt

K(xi
t) denotes the centroid of its kNN neighborhood.

The noise ξ for the augmentation (extraneous noise introduced in Proposition 3), drawn from a Gaussian
distribution N (0, σs

K
2(xi

t)), is determined by the variance of the kNNs as determined by the source pre-
trained model.

Thus, employing our SiLAN-augmented neighbors as positive keys for contrastive clustering enables the
establishment of a lower bound on the distance between logit clusters, as our SiLAN induces a Gaussian
profile for the positive augmentation. Proposition 3 utilizes a geometric approach Hogg & Lang (2013) to
calculate the effective region of a Gaussian beam (in our case, the centroid of the query’s target neighbors
serves as the center of this Gaussian beam) in computational optics to determine this lower bound.

C.2 Intuition of Lemma 4

Proposition 3 establishes the theoretical lower bound of the L1 distance between latent features belonging
to different logit clusters. However, our primary interest lies not in the cluster distance within the latent
feature space, but rather in the distance lower bound between the output logits of different clusters. A larger
distance lower bound in the output logit space facilitates the derivation of decision boundaries for target
classification.

This distance lower bound in the latent feature space can be straightforwardly extended to the output logit
space if the classifier is linear. Hence, we employ a linear fully-connected classifier in all our experiments to
ensure consistency between our theoretical framework and empirical implementations.
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C.3 Derivation Details of Equation 3

In this section, we provide additional details regarding the derivation of the error term represented by
Equation 3, which forms the cornerstone of our theoretical analysis.

To initiate our analysis, we first reinterpret the classification error on the target domain ϵDT
=

number of misclassified samples
total number of samples by considering it as the probability of the model’s predictions failing to align

with the true labels of corresponding samples, given the current target classification model ft. The classifica-
tion error quantifies the ratio of the misclassified instances to the total number of instances. Mathematically,
this is represented as:

ϵDT
= number of misclassified samples

total number of samples =
∑N

i=1
(I(ft(xi )̸=yi]))

N = P [ft(XT ) ̸= YT ].

Here, I is the binary indictor that equals one when ft(xi) ̸= yi.

Instead of evaluating misalignment based solely on individual sample indices, we refine this analysis to focus
on samples within each cluster z (where the number of clusters corresponds to the number of neurons in the
last fully connected layer of the classifier). Thus, we express the classification error as:

ϵDT
=
∑Z

z=1(Pz(ft(Xz
T ̸= Y z

T ))).

Here, Xz
T and Y z

T indicate the target samples and their labels with cluster z. Therefore, after model conver-
gence and cluster formation, errors or misalignments can occur due to two main factors:

• Incorrect cluster assignment, where the model assigns a sample to the wrong cluster (P [z ̸= yt],∀xt ∈
Cz).

• Overlapping between clusters leading to ambiguous model predictions for samples within cluster z
(P [ft(xt ̸= z)],∀xt ∈ Cz).

By re-examining the classification error in the context of possible errors during the cluster formation process
as Equation 3, we can then proceed with the subsequent analysis to investigate how contrastive clustering
influences the performance of target classification.

C.4 Interconnections Among Three Theoretical Insights on Contrastive SFDA

In Section 4.2, we identified three overlooked factors in existing contrastive SFDA methods based on our
theoretical analysis. Here, we clarify the interconnections among these insights and elucidate how our
exploration of them informs our proposed solution to enhance the contrastive SFDA framework.

In summary, examining Insights 1 and 2 provides the foundational understanding necessary to address Insight
3 effectively. Insight 1 highlights the inadequacy of relying solely on data augmentation for generating positive
keys in contrastive SFDA. This realization motivates us to explore latent augmentation as an alternative way
for positive key generation. Expanding on Insight 1, our empirical observations from latent t-SNE analysis
shown in Figure 1 indicate that generating target features through the source pre-trained model, which also
initializes the target adaptation model, provides valuable information for target-domain classification beyond
mere initialization. This information, as highlighted in the two observations in the introduction, indicates
that neighboring target data points, determined in the latent feature space by the source pre-trained model,
still share the same labels. As a result, we explore Insight 2 to examine whether we can capture this crucial
information by controlling the range of neighborhood searching. To be specific, we investigate how the
number k of kNN influences contrastive SFDA.

Insight 3 highlights an overlooked problem, which can be addressed through a straightforward solution derived
from the analyses of Insights 1 and 2: incorporating guidance from the kNNs identified in the source-pre-
trained model-determined latent feature space directly into the latent augmentation process to generate the
positive key for contrastive clustering given a query sample. Our subsequent studies in Sections 5.4 and 5.5
demonstrate the significance of the standard deviation of the Gaussian noise for such latent augmentation,
as it determines the range of neighborhood searching. Thus, by utilizing the standard deviation derived
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from the kNNs of the source pre-trained model to control the range of latent Gaussian augmentation, we
enable the model update to identify neighborhoods in the target domain that exhibit consistent ground
truth alignment with the current target query sample. In simpler terms, employing positive keys generated
in this manner steers the clustering process toward samples sharing the same ground truth. In essence, our
derivations of Insights 1, 2, and 3 are interrelated and complementary, leading us to our final solution.

To sum up, addressing insight 3 involves setting the standard deviation of the Gaussian used to generate
positive keys in the latent space (Insight 1) for contrastive clustering to match the standard deviation of the
neighborhood determined by the source pre-trained model (Insight 2). This neighborhood comprises samples
sharing the same ground truth as the query target sample. Conducting latent augmentation based on this
profile is crucial, as it offers additional guidance regarding the target ground truth to contrastive clustering.
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