
Approximate Shifted Laplacian Reconstruction for Multiple
Kernel Clustering

Jiali You
Southwest University of Science and

Technology
Mianyang, China

yjl1015004@163.com

Zhenwen Ren∗
Southwest University of Science and

Technology
Mianyang, China

Guangdong Laboratory of Artificial
Intelligence and Digital Economy (SZ)

Shenzhen, China
Nanjing University
Nanjing, China

rzw@njust.edu.cn

Quansen Sun
Nanjing University of Science and

Technology
Nanjing, China

sunquansen@njust.edu.cn

Yuan Sun
Sichuan University
Chengdu, China

sunyuan_work@163.com

Xingfeng Li
Nanjing University of Science and

Technology
Nanjing, China

lixingfeng@njust.edu.cn

ABSTRACT
Multiple kernel clustering (MKC) has demonstrated promising per-
formance for handing non-linear data clustering. Positively, it can
integrate complementary information of multiple base kernels and
avoid kernel function selection. However, negatively, the main chal-
lenging is that the kernel matrix with the size n × n leads to O(n2)
memory complexity and O(n3) computational complexity. To miti-
gate such a challenging, taking graph Laplacian as breakthrough,
this paper proposes a novel and simple MKC method, dubbed as ap-
proximate shifted Laplacian reconstruction (ASLR). For each base
kernel, we propose the r -rank shifted Laplacian reconstruction
scheme by considering the energy losing of Laplacian reconstruc-
tion and the clustering information preserving of Laplacian decom-
pose simultaneously. Then, by analyzing the eigenvectors of the
reconstructed Laplacian, we impose some constrains to tame its
solution within a Fantope. Accordingly, the byproduct (i.e., the most
informative eigenvectors) contains the main clustering information,
such that the clustering assignments can be obtained relying on
simple k-means algorithm. Owe to the Laplacian reconstruction
scheme, the memory and computational complexity can be reduced
to O(n) and O(n2), respectively. As experimentally demonstrated
on eight challenging MKC benchmark datasets, the results verify
the effectiveness and efficiency of ASLR.
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1 INTRODUCTION
Clustering aims at partitioning data points into different clusters
according to some similarity measures, such that ones falling in the
same cluster are similar to each other and dissimilar to those of other
clusters [5]. Although linear clustering methods have achieved im-
pressive performances, the global linearity assumption is somewhat
strong, such that they often fail in dealing with nonlinear data. It
is widely known that single kernel clustering (SKC) methods are
commonly used to explore structure of nonlinear data. Usually, they
convert data matrix X into kernel matrix K, by mapping data points
from the original feature space R to a reproducing Hilbert space H.
However, the most suitable kernel function and parameters for a
specific dataset are difficult to determine in advance, especially in
real-life applications.

Regarding the problem mentioned above, multiple kernel cluster-
ing (MKC) has demonstrated its promising performance in recently
years. As a convention, it needs to build a kernel pool consisting
of multiple base kernels. Without loss of generality, these kernels
can be different types of kernels, such as linear kernel, polynomial
kernel and Gaussian kernel, etc, or different parameter kernels, such
as the Gaussian kernels with bandwidth 0.1, 1 and 10, etc. Overall,
these existing methods can roughly be divided into two categories,
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including kernel k-means (KKM) ones and spectral clustering (SC)
ones. Along the KKM line, theseworks [4, 11] usually learn a consen-
sus kernel matrix by integrating these candidate base kernels, and
then perform KKM algorithm to obtain the clustering assignments.
In addition, along the SC line, these works [16, 19] transform each
kernel to an affinity graph (or Laplacian matrix) via many graph
learning methods, such as kernelized subspace learning, adaptive
local structure learning, and non-negative matrix factorization, etc.
And then, the SC algorithm is employed to obtain clustering results.
However, most of the above methods have to face O(n2) memory
complexity and O(n3) computational complexity, due to the kernel
matrix with the size n × n.

For handling median or large-scale MKC tasks, late-fusion learn-
ing is a widely used paradigm [8, 10, 20], which adopts a “two-stage”
learning scheme. It firstly performs tiny singular value decomposi-
tion to output a lower-dimensional partition matrix for each base
kernel, and then fuses these partitions to obtain a resulting partition.
Essentially, the first step is a dimensionality reduction preprocess-
ing, which reduces the kernel matrix from n × n tom × n,m ≪ n.
Taking the partition matrixes as input, recently, some works [18, 25]
introduce a dynamic anchor sampling strategy to reduce the sample
size. By observing that the above-mentioned “two-stage” paradigm
disconnects the processes of information compression and cluster-
ing representational learning. That is, they do not simultaneously
consider the energy losing and the clustering information preserv-
ing, at the first step. From another point of view, each entry of a
kernel matrix (e.g., ki j ) stands for the similarity between a pair of
points (i.e., xi and xj ). However, these late-fusion methods simply
treat kernel matrix as plain data, such that the abundant graph
information hidden in kernel matrix is ignored.

To address the above issues, in this paper, we propose a novel
and simple method for MKC tasks, namely approximate shifted
Laplacian reconstruction (ASLR). Specifically, due to the complete
theoretical characteristics of spectral graph, we treat each kernel
matrix as affinity graph rather than plain data, and then construct
its corresponding normalized graph Laplacian and candidate r -
rank shifted Laplacian in advance. Accordingly, we reconstruct
the approximate shifted Laplacian to exploit the comprehensive
information of all the candidate r -rank shifted Laplacians. After that,
we project the learned shifted Laplacian onto Fantope to encourage
the most informative eigenvalues of the learned shifted Laplacian
holding more prominent cluster characteristics. As a result, the
most informative vectors are fed into k-means algorithm to obtain
the resulting cluster assignments. In summary, the contributions of
this paper are:

• Taking graph Laplacian as breakthrough, this paper proposes
to transform each base kernel matrix into a r -rank shifted
Laplacian matrix, such that the memory and computational
complexity of the proposed ASLR can be reduced to O(n)
and O(n2), respectively.

• This paper proposes an approximate shifted Laplacian re-
constructing scheme, which can integrate the main energy
and clustering information of each candidate r -rank shifted
Laplacian simultaneously. Therefore, the clustering perfor-
mance is largely improved.

• This paper develops Fantope projection to encourage the
most informative eigenvalues of learned shifted Laplacian
to hold more prominent cluster characteristics.

• Compared with many state-of-the-art MKC methods in term
of running time and clustering performance, the superiority
of the proposed ASLR is demonstrated by conducting some
extensive experiments.

2 RELATEDWORKS
2.1 Spectral Graph Theory
For a data matrix X, the k-nearest affinity matrix is denoted as
S ∈ Rn×n , and the edge between each sample-pair (e.g., xi and xj )
is typically defined by a Gaussian kernel, i.e.,

si j =
 exp

(
−
∥xi−xj ∥

2
2

2σ 2

)
if xi and xj are neighbors

0 otherwise
(1)

where σ is the kernel bandwidth parameter and k is the number of
neighbors for each vertex. Thereupon, the degree matrix is given by
D = diag(d̃1, . . . , d̃i , . . . , d̃n ), where d̃i =

∑n
j=1 si j , the Laplacian

matrix of G is denoted as

L = D − S (2)

and the normalized Laplacian of G is denoted as

LN = D−1/2(D − S)D−1/2 = I − D−1/2SD−1/2 (3)

Accordingly, the eigenvalues of LN is given by 0 = δ1 ≤ δ2 ≤

· · · ≤ δn , and the {δi }
n
i=1 is usually called the spectrum of LN.

As we known, the problem of spectral clustering (also known as
normalized cut) can be formulated as

min
F∈Rn×c

Tr (F⊺LNF) s.t. F⊺F = I (4)

where the optimal clustering indictor matrix F can be obtained
by extracting the c eigenvectors of LN relating to its c smallest
eigenvalues (i.e., δ1,δ2, · · · ,δc ).

2.2 Laplacian Reconstruction
To fully explore the complementary information of different graphs,
linearly combines the candidate Laplacians and learns an optimal
one which can best suit for clustering [23]. Zhou et al. propose
to search the optimal Laplacian from the neighborhood of candi-
date Laplacians [24]. Moreover, the weight values are guided by a
predefined affinity matrix. Mathematically, it is given by

min
F⊺F=Ic ,g,W,Λ

Tr (F⊺ (In − WΛW⊺) F)

+

O∑
o=1

(In − WΛW⊺) − L(o)g

2
F
+ αg⊺Mg

s.t. L(o)g =

m∑
i=1

giL
(o)
i (o ∈ [O]), ∥g∥1 = 1,

g ≥ 0,W ∈ Rn×c ,W⊺W = Ic , 0 ≤ Λii ≤ 1

(5)

whereWΛW⊺ can be seen as the graph affinitymatrix, (In−WΛW⊺)
forces the learned Laplacian matrix Lg to be symmetric and positive
semi-definite (SPSD), L(o)i is the o-th (o ∈ [O]) Laplacian matrix, and
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Figure 1: Overview of the proposed method (Taking the data of two views as an example). Two semantic parts are concerned,
including the multi-view information preservation and subspace structure preservation. Following the solid arrows, it can be
observed that kernel matrices are firstly generated from the original data. Then, eigen-decomposition are employed to obtain
robust representations. Further, the unified subspace representation is computed via utilizing the complementary information of
multiple views. Following the dash arrows, the clustering details are delivered from kernel matrices to the robust representations,
then to the consensus subspace structure. Next, the subspace structure guides the generation of purposive robust representations
as a feedback. Better self-representations are obtained along with the loop.
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Figure 2: Eigen-value distribution of the Inverse Polynomial
kernel matrix corresponding to the first view of Dermatology
dataset. The eigen-values are sorted from large to small. The
bar plot shows the times of each eigen-value to the first one.
Meanwhile, the curve plot presents the calculative sum of the
sorted eigen-values.

features are designed by non-professionals or even arbitrarily,
leading to information redundancy. These data of poor quality
severely affects the performances of MSC algorithms. Kernel
matrix is an another natural form of data observation and
can be directly adopted as input by simply substituting X
in the aforementioned models. But this does not remove the
information redundancy and improve data quality, as shown
in Fig. 2.

III. THE PROPOSED ALGORITHM

A. Objective

In order to remove the redundancy in the two types of
inputs, i.e. original data observations and corresponding kernel
matrices, we firstly define several kernel mappings {�s(·)}S

s=1.
For v-th view, the kernel matrices are computed as

K(v)
s (i, j) = �s(x

(v)
i )>�s(x

(v)
j ) , (5)

in which i, j 2 {1, 2, · · · , n} represents the sample indexes.
This way, m corresponding kernel matrices are obtained as
{Kp}m

p=1 , s.t. m = S ⇤ V . However, the generated kernel
matrices contains a large volume of redundant details. Fig. 2
shows the eigen-value distribution of the Inverse Polynomial
kernel matrix corresponding to first view of Dermatology. As
claimed in section 4.2 of [44], the eigen-vector corresponding
to a larger eigen-value carries more discriminative information.
If taking the eigen-value to roughly measure the volume of
discriminative information in a corresponding eigen-vector, we
can see that top-50 eigen-vectors keep more than 80% kernel
details. Nevertheless, there are 6 classes in Dermatology. But
top-6 eigen-vectors only contain 51.44% kernel details. In
sum, two observations can be concluded:

1) The relationships among data samples are only contained
in a small proportion of eigen-vectors, while most of
eigen-vectors are redundant and should be removed.

2) It is not ideal to fix the size of the robust data represen-
tations as Rk⇥n. Instead, matrices of size Rc⇥n where
c > k should be employed.

Therefore, we employ the eigen-vectors corresponding to
c largest eigen-values as the robust data representation, con-

Figure 1: Eigen-value distribution of a symmetric positive
semi-definite matrix (SPSD) matrix [9], e.g., kernel matrix K.
The eigen-values are sorted from large to small. Note here
that the eigen-vector corresponding to a larger eigen-value
carries more discriminative information.

M is the priori-knowledge matrix to guide learning the weighting
g.

3 PROPOSED APPROXIMATE SHIFTED
LAPLACIAN RECONSTRUCTION (ASLR)
METHOD

For MKC, given a set of n samples drawn from c crispy clusters,
one can build a base kernel pool by employing multiple kernel
functions [16]. From the graph theory, it is well understood that a
kernel matrix can be deemed as the affinity graph. Mathematically,
the i-th (1 ≤ i ≤ m) base kernel is defined as K(i) ∈ Rn×n and
its corresponding normalized Laplacian matrixes is given by L(i)N
accordingly.

3.1 Shifted Graph Laplacian
The major advantage of spectral clustering, i.e., Eq. (4), is that it
genteelly transforms the data points from the feature space to an
indicator space where the cluster properties are more prominent.
Note here that, in Laplacian matrix LN, the necessary cluster infor-
mation is embedded in its c smallest eigenvectors, whereas the best
low-rank approximation of a SPSD matrix can be reconstructed
relying on its few largest eigenvectors (see Fig. 1). Thus, the best
low-rank approximation of LN primarily encodes noise, rather than
cluster information. That is, the cluster information and Laplacian
reconstructing are a contradiction. In other words, by minimizing
∥L−

∑m
i=1 дiL

(i)
N ∥2F , L can preserve the main energy of all {L(i)N }mi=1,

but the cluster information is partly ignored.
Therefore, in order to preserve the cluster information in the low-

rank approximation, we can transform the normalized Laplacian to
shifted Laplacian [3, 7], formulated as

LS = 2I − LN = I + D−1/2KD−1/2 (6)

The following theorem makes LS feasible to reflect the cluster
information and perform matrix reconstruction.
Theorem 1: [3] If (δ ,u) is an eigenvalue-eigenvector pair of nor-
malized Laplacian LN, then (2 − δ ,u) is an eigenvalue-eigenvector of

shifted Laplacian LS. And, LS is a symmetric and positive semi-definite
matrix and its eigenvalues lie in [0, 2].

3.2 Approximate Shifted Laplacian
Reconstruction

Theorem 1 implies that the c smallest eigenvalues of LN correspond
to the c largest eigenvalues of LS. Therefore, the solution F of Eq.
(4) is formed by the c largest eigenvectors of LS. That is, the best r -
rank approximation of LS can encode its cluster information when
performing Laplacian decompose; meanwhile it can hold the main
energy when performing Laplacian reconstruction. To facilitate
reading, we rewrite LS as L throughout this paper.

Accordingly, we treat each kernel matrix K(i) as affinity graph
K in Eq. (6), rather than plain data. Here, to remove the redun-
dancy edges, it is customary to employ a parameter k to control the
number of neighbors of one vertex (graph sparsity). Then, shifted
Laplacian L can be rewritten as the best r -rank approximation part
and the redundancy part, i.e.,

L(i) =U(i)Λ(i)(U(i))⊺

=
[

U(i)
r U(i)

r

] [ Λ(i)
r 0

0 Λ(i)
r

] [
U(i)
r U(i)

r

]⊺
=U(i)

r Λ(i)
r (U(i)

r )⊺ + U(i)
r Λ(i)

r (U(i)
r )⊺ = L(i)r + L(i)r

(7)

where 0 stands for an all-zeros matrix with size (n−r )× (n−r ), Λ(i)
r

is the r largest eigenvalues of L (i.e., δ1,δ2, · · · ,δr ), and U(i)
r is the

corresponding r eigenvectors of Λ(i)
r . Similarly, Λ(i)

r and U(i)
r are the

rest (n − r ) eigenvalues (i.e., δr+1,δr+2, · · · ,δn ) and eigenvectors,
respectively. Therefore, for each kernel induced affinity garph K(i),
the r -rank eigenvectors can be obtained, where c ≤ r ≪ n, which
encode the cluster information and main reconstruction energy
of its corresponding shifted Laplacian L(i). At the initial stage, we
let r to be greater than c for extracting extra information from
each Laplacian. In theory, we can reconstruct the optimal shifted
Laplacian matrix L via

min
L

∥L −

m∑
i=1

giL
(i)
r ∥2F s.t. g⊺1 = 1, g ≥ 0, L ⪰ 0 (8)

where the SPSD constraint is imposed to guarantee that the learned
matrix L to be an approximate Laplacian matrix.

Denote λp (L), p = 1, · · · ,n as the eigenvalues of shifted Lapla-
cian matrix L in the decreasing order. According to Theorem 1,
ideally, these eigenvalues can be segmented into

λp (L)
{
= 2, p = 1, · · · , c
< 2, p = c + 1, · · · ,n. (9)

To encourage the c largest eigenvalues of L holding the main
energy and clustering information, we consider the energy losing
of Laplacian reconstruction and the clustering information preserv-
ing of Laplacian decompose simultaneously. That is, we should
maximize the sum of the c largest eigenvalues, i.e.,

max
c∑

p=1
λp (L) (10)
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According to [2], it can be rewritten as
c∑

p=1
λp (L) ⇒ max Tr(LQ)

s.t. Q ∈ Rn×n , Tr(Q) = c,Q⊤ = Q, 0 ⪯ Q ⪯ 1

(11)

Such a problem is a Fantope projection problem [2], which projects
the reconstructed shifted Laplacian L onto Fantope i.e., Tr(Q) =

c,Q⊤ = Q, 0 ⪯ Q ⪯ 1. Note here that since maxTr(LQ) can be
approximate tomin ∥L−Q∥2F . That is, ideally, L should be the same
as Q; therefore, we can transform the constraint of Q to L, i.e.,
Tr(L) = c, L⊤ = L, 0 ⪯ L ⪯ 1.

Hereto, the final objective function can be integrated as

min
L,g

∥L −

m∑
i=1

giL
(i)
r ∥2F = ∥L −

m∑
i=1

giU
(i)
r Λ(i)

r (U(i)
r )⊺ ∥2F

s.t. g⊺1 = 1, 1 ≥ g ≥ 0, L ⪰ 0,
Tr(L) = c, L⊺ = L, 0 ⪯ L ⪯ 1

(12)

In summary, the advantages of ASLR are three-fold:
• It is a simple and effective MKC method with lower memory
and computational costs, compared to the existingMKC ones.
And, it can be easily upgraded to a parameter free version.

• It considers the energy losing of Laplacian reconstruction
and the clustering information preserving of Laplacian de-
compose simultaneously for the first time.

• It involves two parameters, i.e., the rank of Laplacian r and
the number of neighbors k , which are integer guided by the
number of clusters (i.e., c), while the parameters of the exist-
ing methods always involve some free decimal parameters.
That is, our method is easy to tune. For simplicity, we can
tune r ’s rate from 0.1 to 1 with step 0.1, multiplying the
number of samples n; and tune k’s scale from 1 to n/c , mul-
tiplying the number of clusters c . This property is important
since there are few labeled data in clustering tasks.

4 OPTIMIZATION
4.1 Coordinate Descent Solver of Proposed

ASLR
The final problem (12) is convex and can be effectively solved by a
coordinate descent algorithm. Here, the proposed algorithm con-
sists two steps: g-step and L-step.
▶ g-step: Fixing L, we update the weighting vector (i.e., g) of all

candidate r -rank shifted Laplacians {L(i)r }mi=1 via

min
g

1
2
∥L −

m∑
i=1

giL
(i)
r ∥2F s.t. g⊺1 = 1, 1 ≥ g ≥ 0 (13)

Mathematically, this problem can be rewritten as

min
g

1
2

m∑
i=1

m∑
j=1

gigjTr(L
(i)
r L(j)r ) −

m∑
i=1

giTr(LL(i)r )

s.t. g⊺1 = 1, 1 ≥ g ≥ 0

(14)

which can be further reduced as following:

min
g⊺1=1,g≥0

1
2

g⊺Ag − g⊺b (15)

where ai j = Tr(L(i)r L(j)r ) and bi = Tr(LL(i)r ) (i = 1, 2, · · · ,m, j =
1, 2, · · · ,m). Such a problem can be effectively solved relying on a
standard quadratic programming (QP) problem [14].
▶ L-step: Fixing g, we update the reconstructed shifted Laplacian

L via
min

L
∥L − H∥2F s.t. Tr(L) = c, L⊺ = L, 0 ⪯ L ⪯ 1 (16)

where H =
∑m
i=1 giU

(i)
r Λ(i)

r (U(i)
r )⊺ , and L is the product by project-

ing H onto Fantope [2]. Then, such a problem can be effectively
solved by Theorem 2.
Theorem 2 For a symmetric affinity matrix Q ∈ Rn×n , the spectral
decomposition of Q is denoted as M = UDiag(δ)U⊺ . The following
Fantope projection problem

min
Q

1
2 ∥Q − M∥2F s.t. Tr(Q) = c,Q⊺ = Q, 0 ⪯ Q ⪯ 1 (17)

has optimal solution given by Q∗ = UDiag(ρ∗)U⊺ , where ρ∗ is the
solution to

min
ρ

1
2
∥ρ − δ ∥22 , s.t. 0 ≤ ρ ≤ 1, ρ⊺1 = c (18)

Proof. For two symmetric matrices Q ∈ Rn×n and M ∈ Rn×n ,
and let ρ1 ≥ ρ2 ≥ · · · ≥ ρn and δ1 ≥ δ2 ≥ · · · ≥ δn be the
ordered eigenvalues of Q and M, respectively. Due to the fact that
Tr (Q⊺M) ≤

∑n
i=1 ρiδi shown in [13], we can obtain

∥Q − M∥2F =Tr (Q
⊺Q) + Tr (M⊺M) − 2Tr (Q⊺M)

=

n∑
i=1

ρ2i +
n∑
i=1

δ2i − 2Tr (Q⊺M)

≥

n∑
i=1

(
ρ2i + δ

2
i − 2ρiδi

)
= ∥ρ − δ ∥22

Note here that the above equality holds when Q admits the spec-
tral decomposition M = UDiag(δ)U⊺ . Additionally, the constraints
0 ⪯ Q ⪯ 1, Tr(Q) = c are equivalent to 0 ≤ ρ ≤ 1, ρ⊺1 = c , respec-
tively. Thus Q∗ = UDiag(δ∗)U⊺ is optimal to problem (17) with δ∗
being optimal to problem (18). After that, we can obtain the final
solution, Q∗ = (Q∗ + (Q∗)⊺)/2, to satisfy the balance constraint
Q⊺ = Q. ■

Finally, problem (18) can be efficiently solved via the capped
simplex projection algorithm [22]. Note here that a by-product
U ∈ Rn×c (i.e., H = UDiag(δ)U⊺) can be obtained when solving
problem (16), which is fed into k-means algorithm for obtaining the
resulting cluster labels. The pseudo-code of ASLR is depicted as in
Algorithm 1, and the source code has uploaded as supplementary
files for the purpose of reproducibility.

4.2 Computational Complexity and
Convergence Study

The proposedAlgorithm 1 consists of two simple steps, i.e., updating
the reconstructed shifted Laplacian L and updating the weighting
vector g. Their computational complexities are O(rn2) and O(m2),
respectively. In addition, this algorithm only needs to storage U(i)

r
for the i-th kernel matrix, rather than the whole kernel matrix, such
that the memory complexity is O(mrn). Thus, since c , r andm are
small numbers, the overall memory and computational complexity
can be approximately O(n) and O(n2), respectively.
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Algorithm 1 Algorithm of the proposed ASLR method.

Input: Kernel pool {K(i)}mi=1, rank r and neighbors k .
Initialize: g = ones(m, 1)/m.

1: for i = 1 :m do
2: Construct the k-nearest neighbor graph of K(i).
3: Calculate the degree matrix D(i) and shifted Laplacian matrix

L(i) of the base kernel K(i) using Eq. (6).
4: Calculate the approximated r -rank Laplacian matrix L(i)r by

using Eq. (7).
5: end for
6: while not converge do
7: Update the reconstructed Laplacian L using Eq. (16) and

obtain the largest k eigenvectors (i.e., V) of L.
8: Update the weighting value vector g using Eq. (15).
9: end while
10: Perform k-means algorithm on U.
Output: The cluster assignments of multiple kernel data.

Table 1: Summaries of the used MKC benchmark datasets.

Dataset Category Samples Clusters Kernels Size
n c m

BBCSport Sport news 554 5 2 4.40M
ProteinFold Protein sequence 694 27 12 44.5M
Flower17 Flower 1360 17 3 94.3M
Caltech101 Object 1530 102 25 0.32G
UCI-Digit Handwritten digit 2000 10 3 83.9M
Mfeat Handwritten digit 2000 10 12 0.37G
CCV Video event 6773 20 6 1.04G
Flower102 Flower 8189 102 4 1.98G

Theoretically, the two sub-problems are convex, since one is a
Fantope projection problem [2], another is a quadratic program-
ming problem [12]; meanwhile, thewhole problem is lower bounded.
Therefore, Algorithm 1 will reduce the objective function mono-
tonically until convergence [4].

5 EXPERIMENT
5.1 Datasets and Experimental Setting
To report the performance fairly and roundly, eight widely used
MKCbenchmark datasets are employed, including BBCSport, Flower17,
ProteinFold, Caltech101, UCI-Digit, Mfeat, CCV and Flower102
[16, 25]. These used datasets are widely used to evaluate MKC
performance in existing references, and collected from various cat-
egories, such as news article, protein sequence, image and video,
and the number of kernels, clusters, samples and categories show
considerable variations. Their attributes are summarized in Table 1.

For kernel method, adopting different kernel functions of con-
structing kernelsmay result in various experimental performances [17].
However, MKL can perform automatic kernel selection and inte-
grate complementary information of multiple base kernels. Usu-
ally, we can construct multiple base kernels according to the data
attribute in advance (please refer to the second paragraph INTRO-
DUCTION section 1). For example, if we chose a Gaussian kernel, it

CCV

Flower17

Flower102

Mfeat

Caltech101

UCI-digit

Figure 2: Some images of the used image datasets.

is a good choice to set its band parameter as the mean of Euclidean
distance between all sample pairs. In this work, the used kernel
datasets are public benchmark ones, it shall be fair to compare
various methods with these datasets [11, 21].

As mentioned in INTRODUCTION section, no matter KKM-
based methods or SC-based methods, k-means is an essential step,
and its performance is sensitive to the initial cluster centers. There-
fore, for each k-means step of all comparison methods, we repeat
50 times (each with a new set of initial cluster) and report the re-
sult with the smallest k-means distortion. The clustering metric,
accuracy (ACC), normalized mutual information (NMI) and purity
(PUR), are adopted to measure the clustering performance.

5.2 Comparison Methods
We compare our ASLR with the following state-of-the-art methods:

• Average multiple kernel k-means (AMKC): Kernel k-
means is performed on a uniformly weighting kernel.

• Best single kernel k-means (BSKC): Kernel k-means al-
gorithm is performed on each base kernel separately, and
then the best score is reported.

• Robustmultiple kernelk-means (RMKKM) [4]: RMKKM
introduces an ℓ21 induced norm to reduce the influencers of
large noise or outlier.

• Optimal neighborhood kernel clustering (ONKC) [11]:
ONKC enhances the representability of the learned neigh-
borhood kernel by construing a guidance matrix in advance.

• Multi-view clustering via late fusion alignment maxi-
mization (MVC-LFA, LFA for short) [21]: LFA maximally
aligns the consensus partition with each weighted base par-
titions to improve the consistency for clustering.

• Multi-view learning with adaptive neighbors (MLAN)
[15]: MLAN performs clustering and local adaptive structure
learning simultaneously.
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Table 2: Clustering results of different methods. The best and second best results are highlighted in red and blue, respectively.
The last line shows the average running time. Note that ‘-’ indicates the results are unavailable due to the long execution time.

Dataset Metrics AMKC BSKC RMKKM ONKC MLAN LFA LMVSC ONMSC MCLES CoALa MKC-CSA ASLR

BBCSport
ACC 66.18 76.65 63.79 68.20 70.58 77.45 66.84 93.75 88.24 90.98 88.42 95.22
NMI 53.92 59.38 39.62 54.64 65.34 55.63 50.21 81.85 76.77 76.75 72.16 85.95
PUR 77.20 79.59 67.83 77.76 74.44 76.27 85.47 93.75 88.24 89.79 88.42 95.22

ProteinFold
ACC 30.69 34.58 30.98 37.90 28.38 40.49 29.25 38.18 32.71 39.27 35.30 41.41
NMI 40.95 42.33 38.78 46.93 27.86 48.96 37.09 47.87 41.96 47.92 43.90 49.26
PUR 37.17 41.21 36.60 45.24 31.84 46.85 31.84 46.11 39.19 45.25 40.63 47.25

Flower17
ACC 51.02 42.05 48.38 60.88 53.38 61.16 62.28 65.81 62.28 62.43 66.76 68.75
NMI 50.18 45.14 50.73 58.58 55.38 60.79 61.71 64.56 61.71 61.59 63.37 65.45
PUR 51.98 44.63 51.54 61.69 55.07 62.32 62.72 67.35 62.72 61.11 68.75 71.40

Caltech101
ACC 35.55 33.13 29.67 37.32 26.33 38.39 24.18 39.74 31.50 36.24 35.29 42.48
NMI 59.90 59.06 55.86 61.41 43.25 61.65 52.65 63.55 54.42 59.75 56.51 64.26
PUR 37.12 35.09 31.70 39.08 28.56 40.28 28.31 41.96 33.27 39.16 37.65 44.44

Mfeat
ACC 95.20 86.00 65.30 97.05 96.55 95.15 96.70 96.50 96.70 95.05 97.30 97.52
NMI 89.83 75.78 62.67 97.05 92.89 95.00 92.74 92.53 92.74 94.78 93.63 93.71
PUR 95.20 86.00 66.25 72.05 96.55 95.05 96.70 96.50 96.70 94.12 97.30 98.10

UCI-Digit
ACC 88.75 75.40 40.45 91.05 95.45 88.60 75.45 96.15 79.15 94.68 81.15 97.50
NMI 80.59 68.38 46.87 83.96 91.38 88.25 69.87 91.48 78.67 89.54 83.39 94.14
PUR 88.75 76.10 44.20 91.05 95.45 88.90 78.25 96.15 88.30 93.72 84.80 97.50

CCV
ACC 19.74 20.08 17.88 22.70 20.09 27.56 26.46 20.68 - 26.16 32.59 33.44
NMI 17.16 17.73 15.44 18.70 15.90 20.59 21.25 17.10 - 20.06 27.66 31.43
PUR 23.98 23.48 21.57 24.90 21.90 30.71 29.59 24.05 - 29.64 35.39 35.55

Flower102
ACC 27.29 33.12 28.17 41.56 24.19 42.16 37.06 43.73 - 40.06 42.18 43.00
NMI 46.32 48.99 48.17 59.13 34.94 60.48 52.48 60.52 - 58.65 60.29 60.38
PUR 32.27 38.78 27.61 47.64 31.15 50.44 42.31 51.29 - 44.14 45.88 49.87

Average running time 3.87 5.43 62.38 44.62 10.22 11.76 27.47 13.16 - 32.06 15.48 7.15

• Large-scale multi-view subspace clustering (LMVSC)
[6]: LMVSC takes a sampling strategy to select some anchors
for handing scalable multi-view subspace clustering.

• Optimal neighborhoodmulti-view spectral clustering
(ONMSC) [24]: ONMSC learns a Laplacian matrix by search-
ing a neighborhood of multiple candidate Laplacians.

• Multi-view clustering in latent embedding space (MCLES)
[1]: MCLES partitions the multi-view data in a latent embed-
ding space by simultaneously learning the cluster indicator
matrix and the global structure.

• Convex-combination of approximate Laplacians (CoALa)
[7]: CoALa integrates noise-free approximations of multi-
ple similarity graphs to construct a low-rank subspace for
multimodal data clustering.

• Multiple kernel clustering with compressed subspace
alignment (MKC-CSA) [25]: MKC-CSA reduces the sam-
ple dimensionality by dynamic sampling the kernel matrix.

In summary, all these comparison methods consist of: (1) SKC
method, includingAMKC; (2)MKCmethods, including BSKC, RMKKM,
ONKC, LFA, ONMSC and MKC-CSA; and (3) multi-view clustering
(MVC) methods, including MLAN, MCLES and LMVSC. For these
MVC methods, we treat the kernel matrix as plain data, and fed
it into their corresponding algorithms. For fair comparison, the
parameters of these comparison methods are carefully tuned by
following the suggested experimental settings provided by their

original papers. Note here that the extra diverse information term
of ONMSC is omitted (i.e., α = 0) for fair comparison. The source
code of ASLR will be public available upon acceptance.

5.3 Experimental Clustering Results
The experimental results are reported in Table 2, and the following
observations can be obtained:

• Our ASLR achieves the best clustering results on most of
the used benchmark datasets. Remarkably, it performs better
than the recently proposed MKC-CSA, showing its effective-
ness and superiority. Therefore, the results clearly show that
ASLR is a promising MKC method, which can be used to
cluster nonlinear data.

• In general, SKCmethods are worse thanMKCmethods. How-
ever, in some cases, MKC method, e.g., BSKC and RMKKM,
are even slightly worse than the SKC method e.g., AMKC.
This indicates that adequately exploiting multiple kernels
still needs good techniques.

• Compared to MLAN, MCLES and LMVSC, they treat the
kernel as plain data rather than graph, such that the latent
graph information cannot be utilized fully. Furthermore, due
to the abuse of linear assumption, they have limitations for
clustering nonlinear data. Whereas, ASLR treats kernel as
affinity graph.
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Figure 3: The sensitivity study of ASLR with the variations of r and k on Flower102 and UCI-Digit datasets. Note here that
scale and rate stand for the rate of neighbors and the scale of rank, respectively, i.e., k = scale ∗ c and r = rate ∗ n.

• Compared to CoALa, it employs shifted Laplacians to learn a
low-rank subspace that best preserves the overall cluster in-
formation of multiple graphs. However, it does not consider
the property of the Laplacian eigenvalues, resulting in subop-
timal results. This demonstrates the potency of the proposed
Fantope projection (i.e., Tr(L) = c, L⊺ = L, 0 ⪯ L ⪯ 1).

• The performance of our ASLR is superior to that of ONMSC.
Although ONMSC also focus on reconstructing a Laplacian
matrix to improve clustering performance, it does not con-
sider the energy losing of Laplacian reconstruction and the
clustering information preserving of Laplacian decompose
simultaneously.

• In term of the average running times, our ASLR has a lower
time cost compared to the MKC competitors. Note here that,
our ASLR and MKC-CSA have similar computational com-
plexity, but ASLR has a faster convergence speed. The main
reasons are that (1) ASLR is a lightweightmethod, which only
involves two optimization sub-problems, while other meth-
ods involves four, five or more sub-problems; (2) ASLR recon-
structs Laplacian matrix via a r -rank approximate Laplacian
rather than a full-rank approximation, such that the mem-
ory and computational complexity can be reduced to O(n)
and O(n2), respectively; and (3) ASLR has satisfactory con-
vergence theoretically and experimentally, which usually
converges in less than 5 iterations.

5.4 Effectiveness Study of Approximate r -rank
Shifted Laplacian Reconstruction

In order to demonstrate the effectiveness of approximate r -rank
shifted Laplacian reconstruction, we evaluate the clustering per-
formance when r = n and r < n, where r = n indicates the ap-
proximate reconstruction is disabled. As shown in Fig. 4, r is fixed
to r = n and r < n successively, and the rate of neighbors (i.e.,
scale) is tuned from the ranges [0.1, 0.2, · · · , 1] with step 0.1, i.e.,
k = scale ∗ c . It can be observed that the clustering ACC when
r < n significantly and consistently outperforms that when r = n.
The reason is that the r top large eigenvalues indicate the most in-
formative parts of the learned shifted Laplacian, and can hold more
prominent cluster characteristics. Whereas, the small eigenvalues
may correspond to noise hidden in kernel data. Moreover, recall
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Figure 4: The clustering ACC in terms of r = n and r < n w.r.t.
different neighbor rate (i.e., rate) on four datasets.

that the experimental results in Table 2, ASLR has a lower run-
ning time and higher clustering score, compared to ONMSC, this is
mainly due to the proposed r -rank shifted Laplacian reconstruction.
Therefore, the approximate r -rank shifted Laplacian reconstruction
is a powerful method to filter noise and reduce running cost.

5.5 Parameter Sensitivity and Convergence
In Algorithm 1, two parameters are required to be set properly, i.e.,
the numbers of neighbors k and the rank of shift Laplacian r . For
simplicity tuning k and r , we introduce two auxiliary parameters,
scale and rate, to stand for the rate of neighbors and the scale
of rank, respectively. That is, k = scale ∗ c and r = rate ∗ n.
Subsequently, by using a grid search scheme, we tune scale and
rate from the ranges [0.5, 1, · · · , 10] and [0.05, 0.1, · · · , 1]with step
size 0.5 and 0.05, respectively. Take the Flower102 and UCI-Digit
datasets for example, the clustering performance variations against
k and r are illustrated in Fig. 3. We observe that: (1) the proposed
method works well within a wide range of k and r values, and can
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be easily tuned; (2) a small r can gain better or similar performance
relative to a big r , thus the effectiveness of approximate Laplacian is
demonstrated; (3) a relatively small k can lead to better performance
than a big k , that is, the sparse ‘prepruning’ of kernel matrix can
remove the redundancy edges and improve the representational
ability of graph; and (4) the scores are not very smooth, the main
result is that k-means is sensitive to the initialized cluster centers,
it results in an undulatory standard deviation.

To demonstrate the convergence of algorithm experimentally,
we record the objective function value at each iteration on the
BBCSport, Caltech101, Flower17 and UCI-Digit datasets in Fig. 5.
From the experimental study, the objective function value decreases
monotonically as the number of iterations increases, usually con-
verging to less than 5 epochs. Thereby demonstrating that fewer
iteration steps can force the algorithm converges faster and sta-
bly, which promotes the proposed ASLR more efficient than other
competitors.
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Figure 5: Convergence curves of ASLR on four datasets.

6 CONCLUSION
While the recently proposed MKC methods are able to handle non-
linear data clustering, we have to face the brutal problem of high
memory and computational complexity. In addition, to mitigate the
problem, the existing MKC methods usually treat kernel matrix as
plain data, and then reduce its dimensionality simply, leading to
unsatisfying performance. This paper proposes a novel and simple
MKC method i.e., ASLR. It treats each kernel matrix as a affinity
graph, and proposes an approximate r -rank shifted Laplacian recon-
struction scheme to learn a consensus Laplacian matrix. Meanwhile,
it projects the consensus Laplacian onto a Fantope to obtain the
optimal eigenvectors for k-means purpose. Experimentally, its ef-
fectiveness and efficiency are well demonstrated by conducting
convincing experiments on benchmark datasets, in comparison
with state-of-the-art methods.
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