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ABSTRACT

Current regulations on powerful AI capabilities are narrowly focused on “foun-
dation” or “frontier” models. However, these terms are vague and inconsistently
defined, leading to an unstable foundation for governance efforts. Critically, pol-
icy debates often fail to consider the data used with these models, despite the clear
link between data and model performance. Even (relatively) “small” models that
fall outside the typical definitions of foundation and frontier models can achieve
equivalent outcomes when exposed to sufficiently specific datasets. In this work,
we illustrate the importance of considering dataset size and content as essential
factors in assessing the risks posed by models both today and in the future. More
broadly, we emphasize the risk posed by over-regulating reactively and provide
a path towards careful, quantitative evaluation of capabilities that can lead to a
simplified regulatory environment.

1 THE SHORTCOMINGS OF TODAY’S AI GOVERNANCE

As AI has made its way to wider audiences, it has continued its rapid pace of development, giving
everyday users highly specialized computing tools and capabilities. This raises questions for gov-
ernments, academics, and commercial labs about whether certain AI capabilities or behaviors should
be deemed as too “risky” for public access (Dragan et al., 2024).

Today’s AI governance efforts have coalesced around the terms “frontier”, “foundation”, “dual-use”,
and “general purpose” to describe the largest, most capable of these models. In governance docu-
ments, models described by these terms are subject to additional scrutiny and regulatory interest.
Despite general agreement for the types of AI-accelerated risks that regulations aim to curtail, there
is less clarity and consensus on concrete definitions for such models. In an effort to define the char-
acteristics of these large, capable models, a number of policy documents have focused on parameter
counts and/or FLOPs, measures of model size and compute requirement (European Union, 2024).

We argue that this approach is short-sighted for three reasons. First, there is no consistent definition
of “frontier”, “foundation”, “dual-use”, and “general purpose” models. This lack of definitional
clarity has led to a governance landscape with misguided quantities, such as FLOPs and parameters
counts, and ceilings for what constitutes a covered capability; we elaborate on this in Section 2.1.
Second, advances in efficient machine learning means that models require fewer parameters and
FLOPs to achieve the same outcomes, resulting in capable models that fall below regulatory ceilings.
Finally, the focus on the largest and most compute-intensive models ignores the fact existing, smaller
models can be just as capable as their larger counterparts. These factors culminate in inadvertent
loopholes that powerful capabilities can slip through, rendering expensive regulatory efforts not only
useless but potentially detractory from beneficial uses of AI technologies.

The broader field of machine learning has recognized the role of data as a direct indicator of model
performance (Hoffmann et al., 2022b; Ng et al., 2021), suggesting that dataset quality and size
should also be included as factors in conversations surrounding model capabilities. In this paper, we
first discuss the limitations of the current model-focused governance ecosystem. Then, we demon-
strate the value of a data-focused approach to AI governance. In particular, we present experiments
corroborating the role that dataset size plays in model capability. Finally, we propose legal and
technical approaches to AI governance rooted in our understanding of the data-model relationship.
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2 DEFINITIONAL CHALLENGES AND FLAWED LIMITS IN AI GOVERNANCE

Much of the conversation around AI regulation has centered itself around the prevention of behaviors
that are deemed to be “harmful” or otherwise detrimental to society (Dafoe, 2018; Hoffman & Frase,
2023). The mention of “harm” is too often unqualified and does not address the capabilities of
existing technologies that may already be capable of much of the malicious behavior discussed in
AI policy circles today. For example, AI for biological agent design is widely cited as a potential
harm (Callaway, 2024), yet computational drug discovery has been the norm since the 1980s and
has enabled the discovery of drugs such as ritonavir, a medication critical in treating both HIV and
COVID-19 (Van Drie, 2007). The conversation surrounding the use of AI to further societal harms
must contextualize the additional marginal risk posed by these methods when compared to existing
technologies such as search engines or statistical inference algorithms.

The AI governance ecosystem’s difficulty in defining and identifying harm extends into fragmented
efforts to define modern machine learning capabilities and the factors that make them powerful.
In the following sections, we demonstrate the shortcomings and inconsistencies of these model-
focused AI governance efforts, while identifying key drivers of AI risk that are currently overlooked
in modern AI policy.

2.1 AN UNSTABLE DEFINITION FOUNDATION

The use of the terms “foundation”, “frontier”, “dual-use”, and “general purpose” to describe ma-
chine learning models has arisen in the past few years in an effort to isolate classes of models seen
as posing the greatest risk of harm to public safety. In 2021, Stanford University researchers in-
troduced “foundation models” as a term of art in “On the Opportunities and Risks of Foundation
Models” (Bommasani et al., 2022). The paper uses the term to describe machine learning models
trained using self-supervised learning methods on large sets of data to the point that they demonstrate
emergent behaviors during inference.

The term “foundation model” has spread swiftly throughout the AI research community to a point of
saturation where any model trained on a subjectively large set of data can be termed “foundational.”
More recently, the terms “frontier model,” introduced in “Frontier AI Regulation: Managing Emerg-
ing Risks to Public Safety” (Anderljung et al., 2023) and “dual-use model,” found in the “Executive
Order on Safe, Secure, and Trustworthy Development and Use of Artificial Intelligence” (The White
House, 2023) and the EU AI Act (European Union, 2024), have arisen as similar descriptions of
large, cutting-edge models with an increased potential for harm. The cross-cutting motivation of
regulatory efforts has been that these types of models can pose serious risks to the general public
and should be governed as such.

Different regulatory bodies have similar motivations for controlling AI models that they perceive
as enabling risky behaviors. Despite shared goals, these efforts are not aligned with respect to
the definitions they utilize to bound powerful AI capabilities. In Table 1, we highlight impactful
papers and policies that have shaped international AI governance. In particular, we highlight the
inconsistencies between how influential works which first introduced various terms and thresholds
disagree from their actualization in policy proposals.

Terminology such as “foundation” and “frontier” are terms of art that have non-static and con-
tentious definitions, suggesting that utility-based terminology such as “general purpose” may be
better regulatory terms instead. Furthermore, a leading approach is to to bound “risky” AI models in
terms of the amount of computation required to train them. As we demonstrate in Section 2.2, these
thresholds do not appropriately bound “risky” AI models—a driving goal for regulatory efforts. Ad-
ditionally, the documents that discuss training on “large” amounts of data do not define how many
data points meet the bar, leaving leeway for bound parties to argue exemptions.1

2.2 CAPABILITY AND MODEL SIZE ARE NOT STRICTLY CORRELATED

Today’s AI governance efforts regularly seek to define frontier models by their size and therefore by
setting a regulatory threshold on the number of parameters included in a model. The rationale behind

1Historically, the computing paradigm of “big data” suffered from similar criticisms with no concrete
amount or volume of data being defined for the purpose of strict regulation.
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Bommasani et al. (2022) Foundation ✓ ✓ – –
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Alstott (2023) Frontier – – > 1026 –

The White House (2023) Foundation, “Dual-Use”1 ✓ ✓ > 1026 > 10B

Romney et al. (2024) Frontier, General Purpose – – > 1026 –

European Union (2024) General Purpose ✓ ✓ > 1025 > 1B
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Wiener et al. (2024) Frontier – – > 1025 / 1026 –

Table 1: Variance in model definitions across policy documents.

this approach is a set of experiments that demonstrate that models with larger numbers of parameters,
with all other factors held constant, suddenly perform drastically better on downstream tasks they
are not explicitly trained for (Wei et al., 2022). This phenomenon was termed “emergence” and
drove fears that sufficiently large models can perform well on tasks that pose risks to public safety.

Discussions prioritizing model size as a viable threshold are fixating on a superficial, easy-to-obtain
quantity that is ultimately a red herring. In reality, model capacity and generalizability are char-
acteristics that are innately difficult to quantify and measure. Not only are current generalization
benchmarks lacking in accurate definitions for model capabilities (Raji et al., 2021; Ge et al., 2023),
but it is common for smaller, more task-focused models to perform better than large, broad-purpose
models on specific downstream tasks, as demonstrated below.

We use the task of image segmentation as an example where smaller models can outperform their
larger counterparts. Specifically, we examine RefCOCO (Kazemzadeh et al., 2014), a common
image segmentation dataset used to train vision-language models (VLMs), and two models which
attain near-state-of-the-art performance on it, PaliGemma (Beyer et al., 2024) and UniLSeg (Liu
et al., 2023). PaliGemma is a large VLM consisting of 3.0 × 109 parameters (Google, 2024). On
the other hand, UniLSeg consists of only 1.7×108 parameters—an order of magnitude smaller than
PaliGemma. Yet, UniLSeg achieves a mean intersection-over-union of 81.7 versus PaliGemma’s
73.4 on RefCOCO, which is a massive gain of ∼11.3% in performance.3 Figure 1 additionally
demonstrates the performance of two more near-state-of-the-art models, UNINEXT (Yan et al.,
2023) and HIPIE (Wang et al., 2023), on RefCOCO for completeness.

To further underline this point, we visualize the accuracy of top open-source language models on
the Massive Multitask Language Understanding benchmark (Hendrycks et al., 2020) as a function of
model parameter count in Figure 1. Low parameter counts do not imply incapability, demonstrating
again that parameter counts alone are an insufficient quantity to define capability frontiers. More
parameters are helpful insofar they can fit an appropriately larger amount of data—the two concepts
must be bundled to properly circumscribe AI capabilities.

2.3 A MISPLACED FOCUS ON FLOPS

Definitions of foundation and frontier models (see Table 1) include regulatory thresholds defined
by cumulative training FLOPs. Much analysis on the issue of FLOPs as a regulatory threshold
was conducted by Hooker (2024). We extend this analysis in the following section and show that
established FLOPs thresholds have no basis in outcomes or technical reality.

2Despite using the words “dual-use”, the definition provided in the document are more aligned with accepted
definitions of “general purpose.”

3Model performance numbers are obtained from their respective papers and Papers With Code. Parameter
counts are derived from the respective papers.
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Figure 1: The effectiveness of a model isn’t solely determined by its size or computational com-
plexity. (Left) Despite PaliGemma having an order of magnitude more parameters than UniLSeg, it
performs 9.4 mIoU points worse on the common RefCOCO (val) benchmark. (Right) Larger models
do not necessarily perform better than smaller ones on the common MMLU benchmark.

Some of the largest models in existence today are sufficient to employ in harmful activities (OpenAI,
2024b;a), yet all fail to meet American FLOPs thresholds (see Table 2), raising questions about the
threshold’s usefulness. These same models are covered under the the EU’s proposed threshold of
1025 for AI models. However, a fractured environment in which a model regulated in France might
not be subject to the same regulations in the United States will lead to confusion.

These thresholds further exacerbate the perception that frontier capabilities can only arise from large
models trained with a large amount of computation on larger datasets. As we further demonstrate in
this section, even smaller models trained with fewer resources on smaller datasets can set a capability
frontier. In fact, research incentives necessitate the creation of methods that reduce computational
needs for model training—a trend that is contrary to regulatory assumptions.

Optimizations reverse trends. One way to visualize the futility of FLOPs thresholds is via recent
works such as those on efficient sparse training (Chen et al., 2021) (Figure 2 (left)) or other archi-
tectural improvements (Zhu et al., 2024). They demonstrate that model performance can, in some
cases, be decoupled from computational cost—models can train faster and more accurately with
fewer parameters and FLOPs. Further research demonstrates decoupling in the opposite direction,
i.e., efficient training can occur in compute-constrained environments. Models distributed across
multiple machines can be trained with a fraction of parameters while equaling performance at the
cost of increased FLOPs (Huh et al., 2024). In summary, policies solely relying on FLOP ceilings
to bound “frontier” models are relying on simplified computing proxies that may not correlate to
desired outcomes of controlling the spread of “risky” models.

Public disclosure of metrics such as FLOPs is beneficial, however, most well-known commercial AI
models do not publicly disclose the amount of FLOPs utilized in the course of training their models.
Open-source models, by definition, have exact FLOPs counts available. Below, we provide estimates
of FLOPs for a variety of large vision and language models, both commercial and open-source. For
proprietary models, these estimates are based on assessments from third-parties rather than concrete
disclosures from the respective AI companies.

Efficient methods develop rapidly. AI research progresses rapidly and the development of effi-
cient methods is an entire subfield with deep financial incentives. The amount of FLOPs needed
for a given model architecture to reach a target performance threshold generally tends to drop sig-
nificantly over a short period of time as the machine learning community identifies software and
hardware optimizations for widely-used models.

To illustrate this point concretely, we consider various vision transformers6 trained on the ImageNet-
1K classification benchmark (Russakovsky et al., 2014). In less than a year, the ML research com-
munity increased the achieved top-1 accuracy on the benchmark from 81.8% to 84.4% while reduc-
ing the required FLOPs by 42% from 17.6 to 10.2 GFLOPs (see Figure 2 (right)). This trend holds
true for large language models as well (Dao & Gu, 2024).

6DeiT, PVTv2, CaiT, CoAtNet, XCiT, Swin, MViTv1, MViTv2. Numbers are gathered from the MViTv2
paper and are on models using a comparable amount of computation.
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Model Model Type Estimated FLOPs

LWM (Liu et al., 2024) Open-source vision model 5.6× 1022 4

Gemma-7B (Gemma Team, 2024) Open-source LLM 2.5× 1023 (Ruan et al., 2024)

Qwen-72B (Bai et al., 2023a) Open-source LLM 1.3× 1024 (Rahman et al., 2024)

Falcon-180B (Almazrouei et al., 2023) Open-source LLM 3.8× 1024 (Rahman et al., 2024)

Claude-2 Proprietary LLM 3.9× 1024 (Rahman et al., 2024)

Llama-3-70B Open-source LLM 6.3× 1024 (Rahman et al., 2024)

ChatGPT-4 Proprietary LLM 2.2× 1025 (McGuinness, 2023)

Gemini 1.5 (Gemini Team, 2024) Proprietary LLM 5.0× 1025 (Rahman et al., 2024)

LVM-3B (Bai et al., 2023b) Open-source vision model 7.6× 1021 5

Table 2: Large commercial and open-source AI models and their estimated FLOPs.

Figure 2: FLOPs are insufficient determinants of capability. (left) Pixelfly, a recent advancement
in efficient model training, can maintain performance on ImageNet across many types of models
while reducing their parameter counts and training FLOPs 68% and 200% on average, respectively.
Each pair of dots represents a Mixer-S/B and ViT-S/B model and its Pixelfly variant. (right) The
pace of FLOP count reduction is rapid as leading methods on the ImageNet benchmark drop FLOPs
be 42% in one year while increasing accuracy.

Test-time compute replace train-time compute for better performance. Jones (2021) showed
that a 10x increase in train-time compute eliminates about 15x test-time compute. Despite this, Al-
phaGo (Silver et al., 2016), Pluribus (Brown & Sandholm, 2019), and OpenAI’s o1 (OpenAI, 2024c)
all achieved drastically better performance over their respective baselines via test-time, compute-
intensive search strategies. If this trend continues, then models trained for shorter amounts of time
can achieve much better performance than their computationally expensive counterparts through the
introduction of test-time computation strategies.

3 DATA IS MISSING FROM THE CONVERSATION

Machine learning capabilities are not singularly determined by their model architecture. Rather, ma-
chine learning capabilities are defined by both the model and the data provided. We define “data” as
any information a model is exposed to, whether it is during training or deployment. This paper aims
to center data in AI governance conversations. We suggest that models alone are not harmful; rather,
the unique combination of models exposed to specific datasets (whether during training or inference)
and subsequently being used for specific purposes may pose a risk to public safety (Baldridge et al.,
2024).
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Traditionally, training data (both pre-training and fine-tuning) was the only source of information
that a model would have access to before making a prediction. However, models can now incorporate
new, unseen data during inference through frameworks such as prompting and Retrieval-Augmented
Generation (RAG) (Lewis et al., 2020). Therefore, both the training and deployment data are relevant
when considering how a model incorporates information in its outputs.

3.1 BIG DATA TO USABLE INFORMATION

The rapid rise of AI since approximately 2010 can largely be attributed to (1) advancements in
computational hardware in accordance with Moore’s Law, and (2) a focus on large quantities of
data. Models are useless without data, and the availability of “foundational” datasets, such as Im-
ageNet (Deng et al., 2009) and Common Crawl,7 brought modern machine learning capabilities to
bear. AI datasets today, created through Internet scraping, are often orders of magnitude larger.

Dataset size is a key component in “scaling laws,” or predictions of performance within a family of
models as a function of variables in a training recipe. Research in this area finds strong relationships
between model performance and amount of training data, amount of computation, and model param-
eters (Kaplan et al., 2020; Hoffmann et al., 2022a; Zhai et al., 2022; Google, 2023). Additionally,
both Hoffmann et al. (2022a) and Google (2023) find that model and optimal dataset size scale at
equal proportions as training compute increases.

However, even an optimal training recipe with an appropriate amount of data, parameters, and com-
pute does not necessarily produce a useful model. The dataset content is a crucial factor. A model
“trained on the internet” can unsurprisingly exhibit the same bias (Fleisig et al., 2024) and toxic-
ity (Liang et al., 2023) present in the data and also fall short in other areas: it may fail at logical
reasoning (Berglund et al., 2023), algebraic computation, or following a user’s instructions, to name
a few examples. In a limiting argument, a multi-trillion parameter model trained only on Shake-
speare novels may never be able to reason about chemical weapon design.

To address this, models are fine-tuned on higher-quality, curated data. Popular techniques that rely
on high-quality data include instruction tuning (e.g., reinforcement learning from human feedback,
or RLHF (Ouyang et al., 2022)), training models to use tools or act as agents (Schick et al., 2023),
or supervised fine-tuning for a specific task, such as generating images in a particular artistic style.

There is evidence that with the right data and training regime, models in the millions or single digit
billions of parameters can perform comparably, if not better, than counterparts orders of magnitude
larger in many domains (Yu et al., 2023; Yuan et al., 2024; Eldan & Li, 2023). In fact, once a model
is sufficiently large, focusing on improving the quality and utilization of data can yield greater gains
in performance for a task over simply increasing the size of the model. For example, the Retrieval
Augmented Fine-Tuning (Zhang et al., 2024) framework has been shown to improve the question-
answering performance of a 7B parameter Llama2 language model over that of GPT-3.5, which
otherwise significantly outperforms it out-of-the-box.

4 DATA-CENTRISM OPENS NEW ANALYTIC FRONTIERS

Modern machine learning methods are useful beyond traditional data querying and correlation tools
such as search engines in part due to their ability to retrieve, compile, and organize data even when
given unspecific queries. Below we outline two distinct features that are uniquely enabled by the
combination of ML models and data: (1) retrieval, where a model outputs information retrieved
directly from its data, and (2) derivation, where a model compiles or synthesizes items from provided
data to generate new information. These features enable new ways to interact with complex data that
would otherwise be difficult to manage, offering potential benefits as well as risks, which we explore
further below.

4.1 RETRIEVAL

As our ability to collect and maintain digital information has soared over the last few decades,
retrieving the right results for a certain query has become a core technological focus. Billions of

7https://commoncrawl.org/the-data/
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dollars have been spent towards developing efficient data representations for search engines (Brin &
Page, 1998; Dean & Ghemawat, 2008) and databases (Corbett et al., 2012; Shvachko et al., 2010),
and towards creating the algorithms to find and retrieve these results. Now, AI models trained on
large amounts of data have become both capable encoders and retrievers of data (in addition to
generators, as we describe in the section on derivation). This becomes a problem when a model has
been exposed to specific data points that would be considered sensitive if directly retrieved, such
as credit card numbers or classified information. The retrieval itself could occur either through (1)
a model memorizing and then reproducing points in training data, or (2) retrieving from a large
amount of data provided at test time, such as a company’s internal database. Below, we describe
these two cases in more detail.

Retrieval from training data. Datasets contaminated with outliers have historically relied on
dataset volume to dilute outlier effects. This leads to the misconception that a small quantity of
“harmful” data points can be negated by massive amounts of otherwise commonplace data. Unfor-
tunately, this intuition does not translate to modern machine learning methods. Large models are
known to memorize some parts of training data and reproduce them if queried correctly (Carlini
et al., 2022). Therefore, large models can retrieve, and therefore utilize, harmful data even if it is
present in a negligible quantity.

However, memorization does not occur across data equally: prior work shows that “average” training
samples are less likely to be memorized, whereas outlierse and duplicated data points are more likely
to be memorized (Feldman & Zhang, 2020; Feldman, 2020; Carlini et al., 2022). As certain types of
data, such as child sexual abuse material, are outliers on the Internet (Thiel, 2023), memorization of
such data poses an inherent risk in the downstream usage of affected models, especially combined
with the powerful retrieval abilities of current models. Nasr et al. (2023) is another example of
work where ChatGPT was used to retrieve training data which comprised personally identifiable
information of dozens of individuals.

Retrieval from previously unseen data. An AI system may also be exposed to entire new do-
mains of data during inference that were not present during training. Models can utilize new, unseen
data through prompting or integration with external databases. Models’ ability to effectively inter-
pret new domains without prior training marks a significant shift in how we store and use informa-
tion. Instead of creating expensive, specialized systems to process data like financial documents or
hospital records, modern general-purpose models can understand and work with novel data formats
they have never encountered before while requiring minimal engineering effort.

Many of today’s large models are being specifically designed to respond flexibly to new tasks and
prompt formats. In-context learning (Brown et al., 2020) allows users to provide example input-
output pairs of a task to a large model which can equip it to solve novel instances of that task. Further,
modern AI systems may be used to efficiently sift through large amounts of data at inference time—
even if they have not seen it before—using frameworks such RAG (Gao et al., 2024). In RAG, given
a user query, an answer can be generated by efficiently searching a database for relevant concepts
and making sense of this new information to return a relevant response (Yasunaga et al., 2023;
Kong et al., 2024; Blattmann et al., 2022). As these systems can now return sensitive examples
not seen before by dynamically augmenting their knowledge or understanding new tasks from test-
time examples, they can therefore be used in the furtherance of actions that pose risks to society
by drastically lowering the boundary to both finding and exploiting risk-posing information (Barrett
et al., 2023).

4.2 DERIVATION

As AI capabilities increase, a growing concern is the generation of original or derivative information
that is more revealing than the data provided to the model. For example, if a system is given two
entry-level textbooks in physics and chemistry, respectively, and uses independent concepts from
either to build a toy rocket, we term the process of arriving at the toy rocket instructions “derivation.”

This feature is especially present in modern machine learning methods when compared to technolo-
gies such as databases due to their ability to synthesize unrelated pieces of information on the fly.
While retrieved content is often straightforward to recognize and check—i.e., it may be quickly
obvious that a generated phone number is real, and possible to check if a particular image was con-
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tained within training or deployment-time data—derived content is more nuanced and difficult to
measure, and thus may present a greater concern.

Under this category, multiple pieces of otherwise mundane information could be compiled to form
information that is now sensitive. For instance, a language model trained for code generation could
be provided a description of a vulnerability and be used to generate code for exploiting it. Models
have already begun to present synthesis capabilities in different arenas, such as for code generation
of programming languages with low data availability (Mora et al., 2024) and the generation of
Mathematics Olympiad-level geometric proofs as part of larger pipelines (Trinh et al., 2024).

The maximal extent to which current models are capable of derivation is not yet clear as methodolo-
gies for inducing such capabilities are constantly evolving. For example, although modern language
models have shown nascent indicators of capability to generate novel research ideas in fields such
as natural language processing, the ideas they generate lack diversity and may not be tractable (Si
et al., 2024). Modern image generation models struggle to synthesize images precisely adhering
to descriptions of unique combinations of objects and their attributes previously unseen in training
data (Huang et al., 2023). Our intent in this section is not to establish a measure for models’ deriva-
tion capability but rather to bring attention to derivation as a unique capability offered by modern
ML models.

5 AVENUES FOR DATA-FORWARD REGULATION

Given our analysis above, the inclusion of data in nascent AI governance conversations can sim-
plify the regulatory overhead by enabling the use of existing legal frameworks and the creation and
execution of novel, data-backed evaluation schemes. Specifically, there are numerous policies and
laws surrounding the appropriate use of data in contexts that are deemed to be of risk to the public.
Instead of reinventing these policies using a new set of definitions that are model-specific, expand-
ing and modifying them to account for the use of data by powerful models might offer a simpler
path towards effective evaluation frameworks in areas where definitions alone are vague, leading to
simpler regulations.

5.1 APPLYING EXISTING DATA-FOCUSED LEGAL AND REGULATORY APPROACHES

Significant work has been and continues to be done to mitigate malicious model outputs or behav-
iors. Thus far, model creators have relied on identifying malicious outputs or behaviors through red
teaming and safety training (Ganguli et al., 2022; Wei et al., 2023).

However, some classes of outputs or behaviors that are deemed risky could more easily be stemmed
by careful curation of datasets. Unique information such as the relationship between a person and
their social security number, or specific instances of child sexual abuse material, is extremely un-
likely to be generated if that data is never provided to a model.

There exists a range of legal and regulatory frameworks that cover many categories of model outputs
that are of greatest concern, including personal identifiable information, child sexual abuse mate-
rial, and classified content. Data-centrism prevents models from acquiring the capacity for harmful
behaviors prior to the expenditure of computation. Since existing regulations can be applied, AI
governance can be achieved without the need for new regulatory frameworks.

5.2 TECHNOLOGICAL LEVERS FOR DATA-FORWARD REGULATION

Although research has shown that certain model capabilities emerge once sufficient model size and
compute are attained (Wei et al., 2022), establishing regulatory thresholds is ill-defined given just
these two metrics. As discussed in Section 3, models provided with the right data can perform
comparably to, if not better than, larger and more compute intensive alternatives. Further, a model
must first be paired with sensitive information for it to make use of it. That is, the model does not
exist in a vacuum, and a data-forward approach that prioritizes data content and quality filtration
over model size and computation could yield greater benefits in mitigating risks posed by the use of
models. Here, we briefly outline examples of existing techniques and argue for the development of
new methods.
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Existing data filtration. Modern web-scale datasets are extremely large, numbering in the billions
to trillions of data points. As such, human review of every data point is not possible from either a
labor or monetary perspective. However, the volume of data does not permit the abdication of
responsibility or duty to curate datasets responsibly. In response, methods have been proposed to
partially or fully automate the filtration process (Albalak et al., 2024). Content can be filtered based
on fixed patterns such as blacklisted source URLs or key words, however, these methods can be
rigid and insensitive to the nuance of usage context. Large vision and language models such as
CLIP (Schramowski et al., 2022) and Meta’s Llama Guard (Inan et al., 2023) have been used to
classify whether data points are risky under human-defined criteria and can be more sensitive to
context than blacklist-based methods. However, these methods are far from perfect—offering an
important avenue for future research.

Quantifying risk for workloads. In addition to data filtration schemes, a rigorous evaluation
framework for powerful AI models that is inclusive of both models and data is needed. Many
approaches are feasible, and we detail an evaluation framework under development that attempts to
solidify this discussion into a quantifiable benchmark.

For example, imagine asking a model a question in a setting where accuracy of the answer matters,
say “what materials make up Saturn’s rings?” Short, broken answers such as “rock, water” would be
regarded as unreliable or incorrect as opposed to an answer that demonstrates mastery of grammar
and facts such as “The rings of Saturn are primarily composed of countless small particles of ice
and rock. These particles range in size from tiny grains of dust to larger chunks that can be several
meters across.”

For a specific type of output, there is likely a minimum size threshold for a model to be capable of
learning the syntax of that output domain (Chen et al., 2024). The initial stage of model training
is focused on acquiring fluency—object detection models learn what the shape and proportion of a
valid detection looks like, and language models learn the underlying structure and grammar of the
languages over which they operate. In this stage, models are parameter-bound—the largest gains
in fluency are likely to come from making models bigger. However, once a model has passed this
hypothesized stage to learn the syntax “well enough,” we posit that the model is now data-bound
and improvements to performance, or correctness, are more likely to come from improvements to
the content and utilization of data rather than just from arbitrary scaling (Wei et al., 2022; Yu et al.,
2023; Eldan & Li, 2023).

This inherent relationship between fluency and correctness can be used as a powerful tool to regulate
AI capabilities in a data-parameter inclusive fashion. For any arbitrary task, the performance of a
model on that task can be plotted on a fluency-correctness curve. Once all workloads are plotted,
the resulting risk profile can be adjudicated and a resulting judgment—whether a reduction in the
parameter count of the model or a specific pruning of the training dataset is necessary—can be made
by the model developers.

Ultimately, such an evaluation framework can aid in the development of regulatory system through
which the government and model developers can safely, privately, and precisely iterate on removing
the ability of models to aid in risky tasks prior to model release.

5.3 INCENTIVIZING DATA GOVERNANCE TOOLS AND PRACTICES

Just as existing policies and regulations advocate for the standardization of model documentation,
such as model or system cards (Mitchell et al., 2019), data-centrism motivates the standardization
of dataset documentation. Comprehensive approaches for doing so have been proposed already,
such as Datasheets for Datasets (Gebru et al., 2021) or Data Cards (Pushkarna et al., 2022). These
documentation formalisms currently detail dataset properties regarding content, structure, prepro-
cessing, distribution, and intended or potential use cases. Given the common practice of aggregating
datasets from multiple sources, mechanisms for documenting and tracking the provenance of dataset
contents, such as Data Provenance Cards (Longpre et al., 2023), would greatly ease verification of
information available to a model. Further, standardized ontologies (Zeng et al., 2024) that categorize
and rank “risky information” can be applied to each dataset in a provenance card, which can then be
used as a first approximation of potential retrieval and derivation capabilities.
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In practice, red teaming (Perez et al., 2022; Bai et al., 2022) has become the standard to evaluate
whether models intended for release pose a risk to public safety. However, red teaming is, as of
yet, not standardized. Further, with the rapid increase in the amount of models that need to be
assessed, there exists no mechanism through which the potential of models to perform specific tasks
can be estimated before training them. The development of a technical framework for measuring the
dynamics of the performance of a model family for a given task as a function of both model scale
and quality of training data, particularly one that can identify inflection points at which a model’s
performance becomes bound by its data rather than its size, would be an important tool for more
precisely identifying when models could feasibly be used in the furtherance of behaviors that harm
society.

6 CONCLUSION: EVOLVING AI GOVERNANCE ALONGSIDE AI
TECHNOLOGY

Despite rapid growths in both model and dataset sizes in recent years, AI policies have hinged on
thresholds, definitional concepts, and qualifiers that limit their medium-to-long term liability. For a
technology that will be with us for the foreseeable future, we can, and should, approach governance
in a more deliberate manner, with a clear understanding of what enables these capabilities to be
powerful in the first place.

Similar to how an arbitrarily large engine, no matter how specifically quantified, would be useless
without defining the kind of fuel used with it, the AI policy landscape mistakenly focuses on a small
set of model-based thresholds, particularly FLOP and parameter counts. Neither fully define how
powerful a machine learning model may be without an understanding of the data that accompanies
them. Furthermore, the lack of definitional clarity with what constitutes a “frontier”, “foundation”,
“dual-use”, or “general purpose” model complicates governance efforts. More generally, these two
trends in governance further propagate the outdated idea that the largest, most compute intensive
models are those which drive AI risk. As we reach a point where smaller models, when paired with
large, foundational datasets or small, high-quality datasets, can perform as well as larger models,
this narrow approach creates loopholes and unfairly penalizes otherwise beneficial technologies.

Centering data offers a more durable approach to AI governance, particularly as trends in quantifi-
able measures of model capability are difficult to predict. A focus on data also provides an opportu-
nity to better research, define, and respond to benefits and risks posed by AI, a debate that remains
nebulous in both policy and technical circles. Centering data also provides avenues for existing reg-
ulations surrounding sensitive types of data to apply while also clearing the way for new evaluation
methods to quantify the use of data and models together. Expanding model-based regulations to
focus additionally on their paired data builds a stronger foundation that is less prone to collapse.

While a pivot in the governance landscape may be daunting, a focus on data provides the opportu-
nities and incentives for government, academic researchers, civil society, and the private sector to
develop new tools and approaches that lead to meaningful policies.
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A ASSUMPTIONS AND LIMITATIONS

Given the rapid pace of AI development, we acknowledge the limits of our core analytic assump-
tions, grounded in the current state-of-art in the field, that drive the analysis and recommendations
in this work. If these building blocks are outpaced by future developments, then this work should be
revisited.

Assumption 1: Powerful models are unable to reason without memorizing information. Large
models can perform well by both learning generalizable semantics over their training data, but also
through the rote memorization of data or concepts. Currently, there exists no class of powerful
machine learning models which are able to “reason” about the world without having memorized any
data during its training period. Put another way, there are no reasoning agents that are derived in
a manner that is completely detached from data. One can argue that such a model, should it exist,
would fit the definition of “artificial general intelligence” as it could generalize to any new set of
data without inherent data priors.

Assumption 2: Dataset distillation methods are still over the horizon. The field’s understand-
ing of the amount of data points needed for a model to achieve proficiency on specific tasks is still
evolving. This area of research is termed “dataset distillation” and aims to reduce the number of data
points necessary to achieve target metrics (Wang et al., 2020; Zhao et al., 2021). Further, it remains
unclear what exactly constitutes a “data point,” especially with modern methods like transformers,
which rely on tokens, the amount of which varies with different tokenization methods (Sennrich
et al., 2016; Schuster & Nakajima, 2012). We aim to establish one rigorous definition of “data
point” in future work, as well as analysis of how many data points define emergent capability.

In a limiting argument, should data distillation methods improve to the point where models can learn
generalizable knowledge without any data at all, this work would need to be revisited.
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