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Abstract

Foundation models encode rich representations that can be adapted to a desired
task by fine-tuning on task-specific data. However, fine-tuning a model on one
particular data distribution often compromises the model’s original performance
on other distributions. Current methods for robust fine-tuning utilize hand-crafted
regularization techniques to constrain the fine-tuning process towards the base
foundation model. Yet, it is hard to directly specify what characteristics of the
foundation model to retain during fine-tuning, as this is influenced by the com-
plex interplay between the pre-training, fine-tuning, and evaluation distributions.
We propose AutoFT, a data-driven approach for guiding foundation model fine-
tuning. AutoFT optimizes fine-tuning hyperparameters to maximize performance
on a small out-of-distribution (OOD) validation set. To guide fine-tuning in a
granular way, AutoFT searches a highly expressive hyperparameter space that in-
cludes weight coefficients for many different losses, in addition to learning rate
and weight decay values. We evaluate AutoFT on four natural distribution shifts,
which include domain shifts and subpopulation shifts. Our experiments show that
AutoFT significantly improves generalization to new OOD data, outperforming
existing robust fine-tuning methods. Notably, AutoFT achieves a new state-of-
the-art on the iWildCam benchmark, outperforming the previous best method by
4.6%.

1 Introduction
Foundation models have emerged as a powerful tool in machine learning, demonstrating unprece-
dented performance across a wide variety of data distributions (Radford et al., 2021a; Ilharco et al.,
2021; Jia et al., 2021). By pre-training on large and diverse datasets, these models learn representa-
tions that can serve as rich common-sense priors that complement task-specific data. We thus expect
fine-tuning to enhance the generalization capabilities of foundation models. However, fine-tuning
often degrades the performance of foundation models on out-of-distribution (OOD) data. This indi-
cates that conventional fine-tuning strategies can fail to utilize the prior knowledge embedded in the
foundation model.

This issue of conventional fine-tuning distorting beneficial foundation model priors has driven recent
research on developing robust fine-tuning methods. Such methods aim to produce an adapted model
that achieves good performance under distribution shifts by preserving the prior knowledge embed-
ded in the foundation model. Prior works have proposed various regularization techniques for this
purpose, such as ensembling models before and after adaptation (Wortsman et al., 2022b) or initially
fitting only the last layer (Kumar et al., 2022a). However, as these methods are primarily based on
human intuition, they may not fully account for the complex interplay between the foundation model
priors and the adaptation process.
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Figure 2: A summary of our data assumptions and evaluation protocol. The de facto approach is
to optimize hyperparameters on a validation dataset that shares the same distribution as the training
data. In contrast, AutoFT employs a small out-of-distribution (OOD) validataion set for hyperpa-
rameter optimization, enhancing the generalizability of the final model. We evaluate all fine-tuned
models on data from unseen distribution shifts.

We introduce AutoFT, a novel method for robust fine-tuning that aims to find the right tradeoff be-
tween the prior and the fine-tuning data through hyperparameter optimization. Our main insight is
that we can learn what characteristics of the foundation model to preserve during fine-tuning by
using a data-driven approach. Like existing robust fine-tuning methods, we fine-tune a foundation
model on task-specific data, and then evaluate the resulting model on a set of OOD distributions.
However, we additionally leverage a small OOD validation set with up to 1000 labeled examples
from one unseen distribution; we optimize fine-tuning hyperparameters for post-adaptation perfor-
mance on this OOD validation set. Importantly, the OOD validation set is only used for hyperparam-
eter optimization, not fine-tuning, and does not follow the same distribution as the OOD test sets.
We illustrate the intuition behind our approach in Figure 1 and our data assumptions in Figure 2.
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Figure 1: Overview of AutoFT. AutoFT is
a data-driven approach for effectively adapt-
ing to new data during fine-tuning, while pre-
serving pretrained model priors. AutoFT op-
timizes an expansive set of hyperparameters
on a small validation set.

We make two key alterations to standard hyperpa-
rameter optimization, which we find to be critical
for the setting of foundation model adaptation. First,
as mentioned above, we optimize hyperparameters
with respect to an OOD validation set rather than an
ID validation set. Second, we use a broader defini-
tion of “hyperparameter”: beyond the usual hyper-
parameters such as learning rate, we learn the fine-
tuning objective itself through weight coefficients
for several different loss functions and regularizers.
This larger hyperparameter search space gives Aut-
oFT more granular control over adaptation.

We rigorously evaluate AutoFT on a wide array
of real-world datasets and consider various types
of distribution shift, including subpopulation shift
and domain shift. Our experiments show that our
approach results in better generalization to unseen
OOD data. With only 1000 (or fewer) datapoints
from an OOD distribution, AutoFT outperforms ex-
isting robust fine-tuning methods across all bench-
marks. These gains in robustness are achieved with
minimal additional compute, requiring up to 5% more compute than standard fine-tuning in total.
Among other results, AutoFT achieves new state-of-the-art performance on the challenging iWild-
Cam benchmark (Beery et al., 2021; Koh et al., 2021), outperforming the prior best method by
4.6%.

2 Background: Hyperparameter Optimization

We begin by formalizing hyperparameter optimization, a procedure we extend for robustly fine-
tuning foundation models in Section 3. Hyperparameters are predefined properties of the learning
algorithm which are not learned during training, such as network architecture, learning rate, and
regularization strength. Since hyperparameters significantly impact the performance of the final
model, it is crucial to choose the right hyperparameters is crucial for any learning problem. The
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optimal hyperparameters are hard to know beforehand as they are influenced by many properties of
the problem setting, including the data distribution and desired performance metric.

Formally, we denote the the learning algorithm as LearnAlg and its hyperparameters as ϕ ∈ Φ,
where Φ is the hyperparameter space. We also denote the training and validation datasets as Dtr and
Dval, respectively. These datasets are disjoint, and are typically drawn from the same distribution.
We denote the resulting model as LearnAlg(ϕ,Dtr), to explicitly represent the dependence on both
hyperparameters ϕ and training data Dtr. The goal of hyperparameter optimization is to find hyper-
parameters that maximize some performance metric Perf(f,Dval) which depends on the model f
and the validation dataset Dval. Examples of performance metrics include top-1 accuracy, macro F1
score, and worst-region accuracy. We can formally state the hyperparameter optimization problem
as

ϕ∗ = argmax
ϕ∈Φ

E
[ Validation Set Performance︷ ︸︸ ︷
Perf(LearnAlg(ϕ,Dtr)︸ ︷︷ ︸

Learned Parameters

, Dval)
]
. (1)

Here, the expectation is taken over any randomness in the learning algorithm LearnAlg such as input
data shuffling or random initialization. The optimized hyperparameters ϕ∗ are subsequently used to
train the final model.

Prior hyperparameter optimization methods typically start with randomly initialized model param-
eters and use a validation set Dval, drawn from the same distribution as the training data, to adjust
hyperparameters. The problem of robust fine-tuning, however, begins with pre-trained model pa-
rameters and aims to achieve high performance on test data that diverges from the original training
data’s distribution. In the next section, we describe how we modify the standard hyperparameter
optimization loop for robustly fine-tuning pre-trained foundation models.

3 AutoFT: Robust Fine-Tuning via Hyperparameter Optimization
We consider the problem of hyperparameter optimization and model selection for OOD generaliza-
tion. To adapt hyperparameter optimization for robust fine-tuning, we utilize three core insights.
First, we consider a larger hyperparameter space. We extend the definition of “hyperparameter"
to include (per-layer) weight coefficients for nine varied loss functions and regularizers, learning
rates, and weight decays. Second, we perform hyperparameter optimization on an OOD validation
set rather than an ID validation set. Third, performance on one OOD distribution serves as a good
proxy for performance on other unseen OOD distributions. This eliminates the need to optimize
hyperparameters over an exhaustive list of OOD datasets, reducing the complexity and computa-
tional cost of hyperparameter optimization. AutoFT leverages a small held-out OOD set to guide
the hyperparameter optimization process.

Data assumptions. We consider the setting of adapting a foundation model to a new task by fine-
tuning on task-specific data, with the goal of achieving good performance across naturally-occuring
distribution shifts in the task-specific data. During training, we assume access to datasets from
related distributions: (1) a large fine-tuning dataset Dtr from the training distribution Ptr and (2) a
small held-out OOD validation set Dval from a shifted distribution Pval. We note that Dval is much
smaller than Dtr and is only used for hyperparameter optimization, not for fine-tuning. At test time,
we evaluate the model on several OOD test distributions Pood, which are different from both Ptr and
Pval, and are unseen during training and hyperparameter optimization.

Hyperparameter optimization for OOD generalization. Let f denote a pretrained foundation
model with parameters θ, which we will adapt to the task at hand by fine-tuning on Dtr. Let ϕ ∈ Φ
represent fine-tuning hyperparameters, and let LearnAlg(ϕ,Dtr) denote the fine-tuning algorithm
which produces adapted parameters. We optimize the hyperparameters ϕ such that the fine-tuned
model has good performance on the OOD validation set Dval:

ϕ∗ = argmax
ϕ∈Φ

E[Perf(LearnAlg(ϕ,Dtr), Dval)]. (2)

In this work, we consider stochastic gradient descent (SGD) as the fine-tuning algorithm LearnAlg
and classification accuracy as the performance measure Perf , but other algorithms and metrics can
be used as well. We summarize the hyperparameter optimization procedure in Algorithm 1.

Expanded hyperparameter space. For the purposes of robust fine-tuning, we consider a more
larger hyperparameter space Φ than what is typically considered in hyperparameter optimization.
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iWILDCam FMoW

Without Ensembling With Ensembling Without Ensembling With EnsemblingMethods
ID OOD ID OOD ID OOD ID OOD

Zeroshot 8.7 (-) 11.0 (-) 8.7 (-) 11.0 (-) 20.4 (-) 18.7 (-) 20.4 (-) 18.7 (-)
LP 44.5 (0.6) 31.1 (0.4) 45.5 (0.6) 31.7 (0.4) 48.2 (0.1) 30.5 (0.3) 48.5 (0.1) 30.7 (0.3)
FT 48.1 (0.5) 35.0 (0.5) 48.1 (0.5) 35.0 (0.5) 68.5 (0.1) 39.2 (0.7) 68.5 (0.1) 39.2 (0.7)

L2-SP 48.6 (0.4) 35.3 (0.3) 48.6 (0.4) 35.3 (0.3) 68.6 (0.1) 39.4 (0.6) 68.6 (0.1) 39.4 (0.6)
LP-FT 49.7 (0.5) 34.7 (0.4) 50.2 (0.5) 35.7 (0.4) 68.4 (0.2) 40.4 (1.0) 68.4 (0.2) 40.4 (1.0)
FLYP 52.2 (0.6) 35.6 (1.2) 52.5 (0.6) 37.1 (1.2) 68.6 (0.2) 41.3 (0.8) 69.0 (0.1) 41.9 (0.7)

AUTOFT 51.0 (0.5) 38.3 (0.5) 51.3 (0.5) 39.3 (0.5) 67.1 (0.3) 42.3 (0.5) 67.1 (0.3) 42.3 (0.5)

Table 1: AutoFT outperforms all baselines both with and without ensembling. Without ensembling,
AutoFT improves OOD performance by 3.7% on WILDS-iWildCam and 6.1% on WILDS-FMoW,
respectively. On WILDS-iWildCam, these improvements are preserved with ensembling, leading to
an increase of 2.2% in OOD macro F1.

The hyperparameter space includes weight coefficients for nine different loss functions and regu-
larizers: cross-entropy loss, hinge loss, entropy, confidence minimization on incorrect predictions,
L1 norm, L2 norm, L1 distance to initial parameters, L2 distance to initial parameters, and a con-
trastive image-text CLIP loss. We denote these weight coefficients as W = {w1, w2, . . . , w9}: each
wi determines how much each corresponding loss function or regularizer contributes to the total
loss. Denoting the i-th loss function or regularizer as Li, the total loss L is the weighted sum
L =

∑9
i=1 wiLi. We also include the learning rate η and weight decay δ as hyperparameters. The

complete set of hyperparameters is the tuple ϕ = (W,η, δ).

Hyperparameter optimization. We employ the Tree-structured Parzen Estimator (TPE) for hyper-
parameter optimization. TPE is a Bayesian optimization method that utilizes a probabilistic model
to sample the most promising hyperparameters to test, significantly reducing the computational bur-
den compared to random search. We use the optuna library, which has an efficient open-source
implementation of the TPE method (Akiba et al., 2019). Each hyperparameter is sampled from an
appropriately scaled distribution as follows:

wi ∼ LogUniform(wmin, wmax), η ∼ Uniform(ηmin, ηmax), δ ∼ Uniform(0.0, 1.0). (3)

We find that in practice, (wmin, wmax) = (1e-4, 1e+2) is a good range for all wi. Given a model’s
conventional learning rate η∗, we set (ηmin, ηmax) = (10−2η∗, 102η∗).

4 Experiments
In this section, we present the main experimental findings for AutoFT. First, we show that AutoFT
improves the performance of fine-tuned models on several large-scale, synthetic and natural distribu-
tion shifts, including ImageNet, WILDS-iWildCam, WILDS-FMoW, and CIFAR. Then, we present
additional experiments in the low-data and transfer learning regimes. Finally, we investigate AutoFT,
transferability of learned hyperparameters across fine-tuning dataset and backbone, and the effect of
the choice of OOD validation distribution for hyperparameter optimization. These findings highlight
the effectiveness of AutoFT in enhancing fine-tuned model performance in a variety of settings. We
show detailed experimental settings in Appendix A.

4.1 Evaluation Under Distribution Shifts

Improvements on WILDS and CIFAR distribution shifts. We evaluate AutoFT on the WILDS-
FMoW and WILDS-iWildCam datasets in Table 1, which present real-world distribution shits aris-
ing in satellite imagery and wildlife conservation. We additionally report results on CIFAR-10-
derived distribution shifts in Table 2. Even on the more subtle CIFAR-10.1 and CIFAR-10.2 dis-
tribution shifts, we find that AutoFT outperforms fine-tuning on both metrics. AutoFT consistently
outperforms all baselines on novel OOD distributions. These gains in OOD performance are main-
tained when ensembling zero-shot and fine-tuned models, following the method by Wortsman et al.
(2022b). Weight ensembling results are with the mixture coefficient that yields the highest ID vali-
dation accuracy.

State-of-the-art performance on iWildCam. To assess whether performance gains by AutoFT
continue to hold on larger foundation models, we evaluate AutoFT with a larger ViT-L/14@336px
model. As shown in Table 3, AutoFT achieves significant gains in OOD performance of 3.6%
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Method CIFAR-10.1 CIFAR-10.2

Zero-shot 92.5 88.8
Fine-tuning 95.9 91.3
AUTOFT 97.5 93.5

WiSE-FT (best α) 98.0 94.4
AUTOFT (best α) 98.3 95.0

Table 2: AutoFT outperforms fine-tuning by
2.2% on CIFAR-10.2 and by 1.4% on CIFAR-
10.1, using only 100 samples from CIFAR-
10-C. AutoFT additionally outperforms WiSE-
FT with weight ensembling.

Architecture ID OOD

ABSGD ResNet50 47.5 (1.6) 33.0 (0.6)
ERM PNASNet 52.8 (1.4) 38.5 (0.6)
ERM ViTL 55.8 (1.9) 41.4 (0.5)

Model Soups ViTL 57.6 (1.9) 43.3 (1.0)
FLYP ViTL-336px 59.9 (0.7) 46.0 (1.3)

AUTOFT ViTL-336px 58.2 (1.0) 50.6 (0.5)

Table 3: AutoFT with weight ensembling attains
state-of-the-art OOD performance on the WILDS-
iWildCam benchmark with a ViT-L/14-336px
backbone, surpassing the top five entries on the
leaderboard (Koh et al., 2021). We observe simi-
lar performance gains by AutoFT using a smaller
ViT-B/16 architecture in Table 1.

PatchCamelyon SST2

k (shots) 4 16 32 4 16 32

Zeroshot 56.5 (-) 56.5 (-) 56.5 (-) 60.5 (-) 60.5 (-) 60.5 (-)
LP 60.4 (4.0) 64.4 (3.7) 67.0 (4.4) 60.8 (1.8) 61.9 (1.4) 62.9 (1.3)
FT 63.1 (5.5) 71.6 (4.6) 75.2 (3.7) 61.1 (0.7) 62.4 (1.6) 63.4 (1.9)
LP-FT 62.7 (5.3) 69.8 (5.3) 73.9 (4.6) 60.9 (2.4) 62.9 (1.9) 63.6 (1.4)
FLYP 66.9 (5.0) 74.5 (2.0) 76.4 (2.4) 61.3 (2.7) 65.6 (2.1) 68.0 (1.7)

AUTOFT 68.1 (5.1) 76.8 (2.9) 79.5 (2.0) 65.0 (3.8) 67.5 (1.1) 69.0 (1.1)

Table 4: AutoFT shows superior performance in binary few-shot classification. AutoFT outper-
forms FLYP by 3.1% and full fine-tuning by 4.3% in 32-shot classification on PatchCamelyon.

over the current leader on the WILDS-iWildCam benchmark (Koh et al., 2021), FLYP (Goyal
et al., 2022). AutoFT additionally outperforms the compute-intensive ModelSoups (Wortsman et al.,
2022a), which ensembles more than 70 models fine-tuned with LP-FT and different augmentations
and hyperparameters. AutoFT also outperforms LP-FT, a state-of-the-art baseline for fine-tuning.
Even with a smaller ViT-B/16 architecture, AutoFT outperforms all prior approaches.

4.2 Few-Shot Classification

In many real-world applications, fine-tuning often involves limited amounts of labeled, task-specific
data. Few-shot classification serves as an important benchmark for evaluating the utility of fine-
tuning approaches in these settings. Few-shot binary classification is a particularly challenging
task for adaptation, given the small number of training examples. We evaluate on 4, 16, and 32 shot
binary classification tasks from the PatchCamelyon and Rendered-SST2 datasets, following Radford
et al. (2021a). PatchCamelyon contains digital pathology images for the detection of metastatic
tissue. Rendered-SST2 focuses on optical character recognition for classifying text sentiment as
positive or negative.

AutoFT demonstrates strong generalization capabilities with limited data, outperforming all base-
lines on all few-shot tasks Table 4. For example, AutoFT outperforms FLYP by 3.7% and full
fine-tuning by 3.9% in a challenging 4-shot classification task on Rendered-SST2.

5 Conclusion
We introduce AutoFT, a novel data-driven approach for robust fine-tuning that optimizes 12 different
hyperparameters using a small validation set distinct from the fine-tuning distribution. AutoFT only
requires a small amount of data from one naturally occurring OOD distribution—data from a non-ID
distribution is often readily available or is possible to gather at a similar cost to that of the original
ID training data. Our empirical results demonstrate that AutoFT consistently outperforms existing
approaches for robust fine-tuning on 4 real-world distribution shifts, suggesting that it is an effective
approach for adapting foundation models. We hope that our work will inspire future research on
data-driven approaches for robust fine-tuning.
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A Experimental Setup
Distribution shifts. In our analysis, we focus on natural distribution shifts, defined by (Taori et al.,
2020) as shifts arising from real-world variations, such as changes in lighting, geography, and image
styles. This approach, in line with prior works on robust fine-tuning (Radford et al., 2021a; Worts-
man et al., 2022b; Kumar et al., 2022a; Goyal et al., 2022), emphasizes shifts that are representative
of real-world scenarios.

Our main results include four distribution shifts, including real-world distribution shifts arising in
wildlife recognition and satellite imagery, and two CIFAR-10-derived distribution shifts. We eval-
uate on The WILDS-iWildCam dataset (Beery et al., 2021; Koh et al., 2021; Sagawa et al., 2022)
presents distribution shifts arising from variations in camera trap locations, lighting conditions, and
animal behaviors across various geographic regions. The WILDS-FMoW dataset (Christie et al.,
2018; Koh et al., 2021; Sagawa et al., 2022) presents distribution shifts arising from changes in time,
geographic locations, and land use. Finally, we evaluate on two CIFAR-10 derived distribution shifts:
CIFAR-10 to CIFAR-10.1 and CIFAR-10.2, which involve subtle changes in image characteristics
and composition.

Foundation models and CLIP. We fine-tune pre-trained CLIP (Radford et al., 2021a) models,
including those provided in the open-clip repository (Ilharco et al., 2021). We use the CLIP
ViT-B/16 model from OpenAI as our default model, unless specified otherwise. Evaluation on
CIFAR-10 uses the CLIP ViT-L/14 model from OpenAI, in line with (Wortsman et al., 2022b).
Our SoTA results on WILDS-iWildCam use the CLIP ViT-L/14-336px model from OpenAI. We
use text templates used in prior work (Radford et al., 2021a; Wortsman et al., 2022b) to generate
zero-shot final layer weights for all datasets.

Effective robustness and weight ensembling curves. We use the effective robustness framework
by Taori et al. (2020) to evaluate model robustness based on accuracy exceeding a baseline trained
only on the reference distribution. Linearly interpolating the weights of a fine-tuned model and a
pretrained model (WiSE-FT) has been shown to improve both ID and OOD performance (Wortsman
et al., 2022a). Hence, we include weight ensembling as an additional point of comparison, and
interpolate the weights of models fine-tuned by each method with 10 mixing coefficients α.

Baselines. We compare AutoFT against several methods for adapting pretrained models. We in-
clude two standard transfer learning methods that minimize cross-entropy loss: linear probing (LP)
and full fine-tuning (FT). We also compare with recent works in robust fine-tuning: L2-SP (Li et al.,
2018b), which fine-tunes with an L2 regularization term towards pretrained weights; LP-FT (Kumar
et al., 2022a), which performs linear probing followed by full fine-tuning; and FLYP (Goyal et al.,
2022), which fine-tunes with the CLIP pretraining loss – a contrastive loss between image embed-
dings and class-descriptive prompt embeddings. We additionally evaluate all methods with weight
ensembling (WiSE-FT) (Wortsman et al., 2022b), which is shown to improve OOD performance in
an orthogonal way to other robust fine-tuning methods.

Training protocol. We closely follow the training details of Goyal et al. (2022) and Wortsman et al.
(2022b). All methods fine-tune models with an AdamW optimizer, cosine learning rate scheduler,
and a batch size of 512 for ImageNet and 256 for all other datasets. All baseline hyperparameters,
such as learning rate, weight decay, and warmup length, are tuned through grid search. All methods,
including AutoFT, perform early stopping based on in-distribution (ID) validation accuracy. We pro-
vide a comprehensive breakdown of the hyperparameter sweeps in the supplementary material. We
emphasize that none of these methods, including AutoFT, observes any of the test OOD distributions
during training. Finally, we report average metrics over 5 runs with 95% confidence intervals.

A.1 Datasets

Below, we summarize the datasets we use for evaluation, including the fine-tuning dataset (ID), the
validation dataset for hyperparameter optimization, and the test OOD datasets.

• CIFAR-10 (Krizhevsky et al., 2009) contains 60,000 images across 10 classes. We use CIFAR-10
for fine-tuning, 100 examples from CIFAR-10-C for validation, and the CIFAR-10.1 (Recht et al.,
2018; Torralba et al., 2008) and CIFAR-10.2 (Lu et al., 2020) as OOD test sets.
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• ImageNet (Deng et al., 2009) contains over a million images in 1000 categories. We use Ima-
geNet as our ID distribution, 15000 examples from ImageNet-C for validation, and five ImageNet
variations for the OOD datasets following prior works (Radford et al., 2021b; Wortsman et al.,
2022b; Kumar et al., 2022a; Goyal et al., 2022): ImageNet-V2 (Recht et al., 2019), ImageNet-
R (Hendrycks et al., 2021a), ImageNet-A (Hendrycks et al., 2021b), ImageNet-Sketch (Wang
et al., 2019), and ObjectNet (Barbu et al., 2019).

• WILDS-iWildCam (Beery et al., 2021; Koh et al., 2021; Sagawa et al., 2022) is an animal image
classification dataset with 182 classes. Differences in camera specifications and attributes such as
background and lighting distinguish ID and OOD. We use the ID train set from Koh et al. (2021)
as the fine-tuning dataset, the OOD validation set for hyperparameter optimization, and the OOD
test set for evaluation.

• WILDS-FMoW (Christie et al., 2018; Koh et al., 2021; Sagawa et al., 2022) contains remote
sensing imagery from satellites. Each image is to be classified into one among 62 categories,
including labels like “impoverished settlement” and “hospital”. The ID and OOD datasets differ
in time of acquisition and geographic location. We use the ID train set for fine-tuning, the OOD
validation set for hyperparameter optimization, and the OOD test set for evaluation.
In all of the transfer learning datasets described below, we use a subset of the ID validation set for
hyperparameter optimization. In other words, we do not use an external “OOD” set for hyperpa-
rameter optimization.

• Caltech101 (?) contains images of objects from 101 different categories, including “dragonfly,”
“grand piano,” and “saxophone.”

• StanfordCars (?) features a collection of car images categorized by model, make, and year, where
the task is to classify them into one of 196 types, such as “Ford Mustang Convertible 1967” or
“Toyota Prius Hatchback 2009.”

• Flowers102 (?) consists of flower images from the UK, with the objective of classifying each
image into one of 102 species, such as “oxeye daisy” or “hibiscus.”

• PatchCamelyon (?) provides digital pathology images for binary classification, with the goal of
identifying metastatic tumor tissues.

• Rendered SST2 (Radford et al., 2021a) is a dataset for optical character recognition, where the
task is to classify text sentiment as “positive” or “negative.”

A.2 Training Details

Baselines. We closely follow the training details in Goyal et al. (2022). For all datasets excluding
ImageNet, we conduct a hyper-parameter sweep across five learning rates (1e-2 to 1e-6) and five
weight decay rates (0.0 to 0.4), using a batch size of 256. On ImageNet, we perform a hyperpa-
rameter sweep over three learning rates (1e-4, 1e-5, 1e-6) and two weight decay rates (0, 0.1) with
a larger batch size of 512. Additionally, L2-SP demands tuning a separate regularization term λ
ranging from 1e-1 to 1e-4.

We select the baseline hyper-parameters based on the highest ID validation performance. For
datasets without a standard validation set, we split the training data into an 80:20 ratio to create
one.

In the few-shot setting with varying k values (4, 16, 32), we report results averaged over 50 runs,
each with k training and validation examples randomly drawn from the full datasets. This compen-
sates for the higher variance due to smaller data sizes.

AutoFT. As described in Section 3, AutoFT learns weights for nine different losses on a log-uniform
range [10−4, 10]. AutoFT additionally searches for learning rate in the log-uniform range [10−2 ·
η∗, 102 ·η∗], where η∗ is the conventional learning rate used in prior works on fine-tuning (Wortsman
et al., 2022b; Kumar et al., 2022a; Goyal et al., 2022), and weight decay values in the log-uniform
range [0.0, 1.0].

We report the number of inner-loop gradient steps and Optuna trials) we use in hyperparameter
optimization as follows. On WILDS-iWildCam and WILDS-FMoW, we run AutoFT with 10 in-
ner steps, 500 Optuna trials, and 1000 validation examples. On CIFAR-10, we run AutoFT with
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Algorithm 1 Hyperparameter Optimization Loop
Input Hyperparameter optimizer HPO
Input ID training data Dtr, OOD validation data Dval
for ϕ← HPO.Sample() do
fft ← LearnAlg(Dtr, ϕ) // Fine-tune model
p← Perf(fft, Dval) // Evaluate performance
HPO.Update(ϕ, p) // Pass performance to HPO

end for
ϕ∗ ← HPO.Best() // Get best hyperparameters
θ∗ ← LearnAlg(Dtr, ϕ

∗) // Fine-tune final model

10 inner steps, 100 Optuna trials, and 100 validation examples. On Flowers102 and StanfordCars,
we run AutoFT with 50 inner steps, 500 Optuna trials, and use 500 and 1000 validation examples
for hyperparameter optimization, respectively. These meta-hyperparameters are selected based on
performance on a held-out ID validation set. We emphasize that in the transfer learning experi-
ments (e.g., Flowers102 and StanfordCars), we use ID validation sets for hyperparameter evluation,
and do not use a separate OOD validation set. For the iWildCam SoTA results, we fine-tune the
ViT-L/14@336px model with loss weights learned on the smaller ViT-B/16 backbone with Aut-
oFT. Thus these results may underestimate AutoFT’s potential. There is potential for even better
performance if AutoFT is applied directly to the ViT-L/14@336px backbone.

For the k few-shot classification setting, where k ∈ {4, 16, 32}, we use a k-shot validation set for
hyperparameter optimization. On all k-shot SST2 and PatchCamelyon experiments, we run with 10
inner-loop gradient steps and 50 Optuna trials. Due to the noise , in the few-shot binary classification
setting, we select the best hyperparameters from 5 AutoFT runs based on validation performance.

B Related Work
Transfer learning. Transfer learning is an effective way to obtain performant task-specific models
given limited data. Early works found that features learned from pre-training on a large dataset can
serve as good initial parameters for new tasks (Oquab et al., 2014; Yosinski et al., 2014; Sharif Raza-
vian et al., 2014). Within this paradigm, many works have proposed regularization techniques for
fine-tuning (Zhang et al., 2020; Xuhong et al., 2018; Lee et al., 2019a; Jiang et al., 2019; Li et al.,
2020; Aghajanyan et al., 2020; Gouk et al., 2021; Shen et al., 2021; Karani et al., 2021) or different
ways of selectively freezing some pre-trained parameters (Kirkpatrick et al., 2017; Lee et al., 2019b;
Guo et al., 2019; Ramasesh et al., 2020; Liu et al., 2021; Royer and Lampert, 2020; Eastwood et al.,
2021; Evci et al., 2022; Eastwood et al., 2022; Cohen et al., 2022; Touvron et al., 2022; Lee et al.,
2022; Kumar et al., 2022b). Specifically motivated by the fact that foundation models can be more
robust than naively fine-tuned models, recent works have focused on improving OOD performance
after fine-tuning (Wortsman et al., 2022b; Kumar et al., 2022a; Wortsman et al., 2022a). We consider
the same problem setting, but instead of using a hand-designed regularization method, we learn the
fine-tuning procedure in a data-driven way, based on performance on a small OOD validation set.

AutoML and hyperparameter optimization. Our work leverages high-level ideas from the broader
literature on meta-learning and hyperparameter optimization. Such methods have proposed to opti-
mize different parts of the training pipeline, including general hyperparameters (Hutter et al., 2011;
Bergstra and Bengio, 2012; Feurer et al., 2015; Li et al., 2017, 2018b), network architectures (Zoph
and Le, 2016; Zoph et al., 2018; Liu et al., 2018; Real et al., 2019; Xu et al., 2019), augmentation
policies (Cubuk et al., 2019; Lim et al., 2019; Hataya et al., 2020; Cubuk et al., 2020), and opti-
mizers (Andrychowicz et al., 2016; Wichrowska et al., 2017; Metz et al., 2022; Chen et al., 2023).
However, most of these works optimize for generalization within the training distribution, and do
not consider robustness to distribution shifts. Existing works that optimize a training procedure for
OOD generalization consider a structured few-shot adaptation setting (Li et al., 2018a; Zhang et al.,
2021), limiting their scalability to large datasets. Our work learns how to best adapt a foundation
model to a new task by optimizing hyperparameters on an OOD validation set.
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