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ABSTRACT

This paper presents ∀uto∃∨∧L, a novel benchmark for scaling Large Language
Model (LLM) assessment in formal tasks with clear notions of correctness, such
as truth maintenance in translation and logical reasoning. ∀uto∃∨∧L is the first
benchmarking paradigm that offers several key advantages necessary for scaling
objective evaluation of LLMs without human labeling: (a) ability to evaluate
LLMs of increasing sophistication by auto-generating tasks at different levels
of difficulty; (b) auto-generation of ground truth that eliminates dependence on
expensive and time-consuming human annotation; (c) the use of automatically
generated, randomized datasets that mitigate the ability of successive LLMs to
overfit to static datasets used in many contemporary benchmarks. Empirical
analysis shows that an LLM’s performance on ∀uto∃∨∧L is highly indicative of its
performance on a diverse array of other benchmarks focusing on translation and
reasoning tasks, making it a valuable autonomous evaluation paradigm in settings
where hand-curated datasets can be hard to obtain and/or update.

1 INTRODUCTION

Foundation Models such as Large Language Models (LLMs) have been demonstrated to successfully
perform many natural language tasks involving formal syntax such as autoformalization – utilizing
LLMs in converting natural language (NL) to formal syntax (FS) such as source code, math etc.,
(Wu et al., 2022; Liang et al., 2023; Guan et al., 2023), informalization – using LLMs to convert FS
to NL (e.g. code summarization), reasoning – using LLMs to perform sound reasoning or derive
proofs. Although these methods have been successful in small-scale scenarios, their effectiveness
in maintaining truth across NL and FS remains uncertain due to the difficulty in assessing truth
maintenance in such tasks. Multiple authors have noted that existing benchmarks and evaluation
methodologies for such tasks are susceptible to the Benchmark Contamination Problem due to their
use of static datasets, e.g, HumanEval (Chen et al., 2021; Wu et al., 2022; Han et al., 2022). One
effective method to mitigate this problem in existing benchmarks is creating new data (Xu et al.,
2024). However, scaling such datasets as LLMs evolve is a tedious and expensive process since their
data-generation task requires expert annotators to hand-generate well-balanced datasets. Moreover,
such benchmarks often rely on insufficient/incomplete measures of evaluation (e.g, BLEU scores
(Callison-Burch et al., 2006), ranking disparities in LLM-generated code on test cases in HumanEval
vs HumanEval+ (Liu et al., 2023a)), and thus, provide misleading signals on LLM capabilities.

This paper addresses three key desiderata for benchmarking LLM capabilities for truth maintenance
across NL and FS: (D1) Can we dynamically generate out-of-distribution datasets without relying on
human annotators? (D2) How do we accurately assess an LLM’s truth maintenance capabilities?
(D3) Can our metric serve as a predictor of LLM performance in FS-based tasks?

For §D1, we introduce a new approach that utilizes context-free grammars to generate well-balanced,
out-of-distribution datasets on the fly. For §D2, we perform closed-loop testing of LLM capabilities
using formal verifiers to automatically evaluate its truth maintenance capabilities. To answer §D3, we
show that our metrics can serve as predictors of LLM performance on other, well-known benchmarks.

Main contributions Our key contributions are as follows:

1. A new, dynamic approach for automatic synthesis of well-balanced test datasets that are
unlikely to be memorized or seen during the LLM’s training process.
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2. The utilization of formal verifiers such as theorem provers to provably validate syntax-
independent notions of correctness without having to exhaustively test over all possible truth
valuations of formal syntax involving logic.

3. ∀uto∃∨∧L: a scalable, plug-and-play assessment system for benchmarking new LLMs as
and when they are developed. Our system can be extended to any class of formal syntax that
uses a grammar and admits an equivalence checker.

4. We show that LLM performance on our metric serves as an effective indicator of LLM per-
formance on other metrics across a wide variety of tasks such as first-order logic reasoning,
etc. Thus, our metric offers a scalable and efficient surrogate for evaluating new LLMs in
such tasks where other metrics may be limited due to the unavailability of new datasets. Our
empirical evaluation shows that SOTA LLMs are unable to maintain truth effectively.

2 FORMAL FRAMEWORK

(Large) Language Models (L)LMs LMs are non-linear functions represented by (billons of) param-
eters θ that, given a set of input tokens x1, . . . , xn, typically representing NL, predict the output token
yi+1 using the distribution P (yi+1|x1, . . . , xn, y1, . . . , yi; θ). The input tokens contains context κ
(also known as a prompt) that provides the necessary information for the task (e.g., instructions, etc).
It is known that κ significantly impacts the response quality y1, . . . , yn (Sahoo et al., 2024).

Propositional Logic Propositional logic is a branch of logic that utilizes propositions and logical
operators (e.g., conjunction: ∧, etc) to construct sentences that can be used to perform reasoning
using the rules of logic. For example, propositions, p1 = It is raining, p2 = It is sunny can be used
to create a sentence P = p1 ∨ p2. If P is true and ¬p1 is observed, then one can use the rules of
inference to deduce that p2 is true (Huth & Ryan, 2004).

Equivalence in Propositional Logic Two sentences in propositional logic, P1 and P2, are equivalent,
P1 ≡ P2, iff their truth values agree for all possible assignments. E.g., ¬(p1 ∧ p2) ≡ ¬p1 ∨ ¬p2
since ∀p1, p2 ∈ {True,False} × {True,False}, ¬(p1 ∧ p2) = ¬p1 ∨ ¬p2.

First-order Logic (FOL) FOL differs from propositional logic in that sentences are constructed
using predicates, quantifiers, and objects. A popular example is the syllogism where, given two
first-order logic sentences ∀x. Man(x) → Mortal(x) and Man(Socrates), one can conclude that
Mortal(Socrates). A first-order logic sentence F can be interpreted using a universe U , a substitution
operator σ, and an interpretation function I (Russell & Norvig, 2020).

Equivalence in First-order Logic Two sentences, F1, F2 in first-order logic are equivalent, F1 ≡ F2,
iff they are equivalent under all possible models. E.g., ¬∀x. Man(x) ≡ ∃y. ¬Man(y).

Regular Expressions A regular expression (regex) is a sequence of characters that can be used to
determine whether a particular string matches the pattern or language induced by the regex. For
example, the regex 200(00)∗1 using Σ = {0, 1, 2} matches all strings possible using Σ that begin
with a two, followed by one or more pairs of zeroes, and end with a one (Hopcroft et al., 2001).

Equivalence between Regular Expressions Two regexes, R1 and R2 are equivalent, R1 ≡ R2, if they
represent the same language. It is known that R1 ≡ R2 if their corresponding minimal deterministic
finite automata (DFAs), D1, D2, are isomorphic, i.e., D1 ≃ D2 (Hopcroft et al., 2001).

We refer to sentences (strings) in first-order and propositional logic (regexes) as formal syntax FS in
this paper. We now provide a definition of (Auto/In)formalization in the context of LLMs and FS.
Definition 2.1 (Autoformalization: A). Given an LLM L, an NL description ψ and context κ,
autoformalization, AL(ψ, κ), is defined as using L to translate ψ to FS φ s.t. A−1

L (φ, κ′) ≡ ψ.

Example One possible autoformalization of “Every human drinks coffee but some are not dependent
on it” in FOL is ∀x. Human(x) =⇒ Drinks(x,Coffee) ∧ ∃y. x = y ∧ ¬Dependent(y,Coffee).
Definition 2.2 (Informalization: I). Given an LLM L, an expression φ in FS and context κ,
informalization, IL(φ, κ), is defined as using L to translate φ to NL ψ s.t. I−1

L (ψ, κ′) ≡ φ.

Example It is easily seen that informalization is the inverse of autoformalization. Therefore, the
FOL formula ∀x. Human(x) =⇒ Drinks(x,Coffee) ∧ ∃y. x = y ∧ ¬Dependent(y,Coffee) can be
informalized to the sentence “Every human drinks coffee but some are not dependent on it”.
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Note that we only require A−1(φ, κ) ≡ ψ and I−1
L (ψ, κ′) ≡ φ. It is possible that a different

LLM (or the same with a different seed) would autoformalize the same example to a syntacti-
cally different but semantically equivalent formula – ∀x. Human(x) =⇒ Drinks(x,Coffee) ∧
¬∀y. Human(y) =⇒ Dependent(y,Coffee). Similarly, an LLM can informalize differently. The
example above could be informalized by the same LLM to “All humans drink coffee but some are
not dependent on it”. Thus, it is not necessary thatAL(φ, κ) = IL(ψ, κ′) and vice versa. We assume
that the context κ, κ′ provided contains the prompt and any necessary vocabulary that is needed for
the task (e.g., Human(x) represents that x is a human, etc.). Henceforth, unless specified, we skip
κ, κ′ and L in the notation for A and I.

Given an LLM L, we define truth maintenance as L’s ability to be able to understand its own
translations. Given n ∈ N+, we use (A ◦ I)n(φ0), to refer to a sequence φ0 → ψ0 → . . . → φn
that is obtained using L when starting with FS φ0, where ψi = I(φi) and φi+1 = A(ψi).
Definition 2.3 (LLM Truth Maintenance w.r.t. (A ◦ I)n(φ0)). Given an LLM L and a sequence
(A ◦ I)n(φ0) obtained using L, we define truth maintenance as φi ≡ φj for any i, j ∈ {0, . . . , n}.

The Need for Truth Maintenance The ability of an LLM to maintain truth across (A ◦ I)n(φ0)
for FS such as first-order logic, etc., is foundational and underlies many aspects of the capabilities
of LLMs surrounding reasoning, semantically accurate translation, etc. In fact, for programming,
it has been shown that autoformalization can help with the reasoning abilities of LLMs since they
frame reasoning as generation of FS (Chen et al., 2021). Others (Wu et al., 2022) have made similar
observations and have highlighted the need for benchmarks and metrics for assessing the truth
maintenance capabilities of LLMs. In this paper, we further show through our empirical evaluation
that truth maintenance on these types of FS is indicative of performance on related tasks.

Naturally, LLMs may not autoformalize, reason, etc., correctly due to issues such as hallucination
(Ji et al., 2023), etc. For the example earlier, the LLM could autoformalize by omitting the x = y
statement to yield ∀x. Human(x) =⇒ Drinks(x,Coffee) ∧ ∃y.¬Dependent(y,Coffee). This seems
innocuous but changes the meaning since y is no longer required to be a human, and thus it interprets
as “All humans drink coffee, and, there are some elements of the universe that are not dependent on
coffee.” Such issues have profound implications in synthesizing specifications and/or programs. Thus,
an LLM must be able to understand its own generated output across NL and FS, and it is imperative
to create a benchmark that can faithfully assess the truth maintenance of LLMs w.r.t. (A ◦ I)n(φ0).

3 OUR APPROACH FOR ASSESSING TRUTH MAINTENANCE

We now describe our approach, ∀uto∃∨∧L, for autonomously assessing an LLM’s ability to maintain
truth w.r.t. (A ◦ I)n(φ0). ∀uto∃∨∧L provides dynamically generated datasets that can be scaled
arbitrarily by systematically generating out-of-distribution, well-balanced ground-truth data (§D1
– Sec. 1), provides §D2 by using intrinsic LLM capabilities to automatically assess (A ◦ I)n(φ0)
without requiring any labeled annotations and using formal verifiers to rigorously check and guarantee
the correctness of (A ◦ I)n(φ0) without having to engage in an exhaustive search process.

Dynamic Dataset Generation We use context-free grammars (CFGs) (Hopcroft et al., 2001) – a set
of production rules over terminal and non-terminal symbols – for dynamically generating datasets.

S → AB

A→ aA|ε
B → b

(a) CFG G for the language a∗b

S

A

a A

ε

B

b

(b) Parse tree when using G to obtain the string ab (d = 2).

An example CFG G with 3 production rules and the infix parse tree that is obtained by repeatedly
applying the rules to yield the string ab is illustrated above. The depth of this tree is often used to
measure the descriptional complexity d of a given string generated using the CFG. (Csuhaj-Varjú &
Kelemenová, 1993). CFGs can be used to dynamically generate arbitrarily large amounts of data.
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Figure 1: The ∀uto∃∨∧L pipeline for autonomous evaluation of LLM truth maintenance w.r.t. (A ◦ I)n(φ0).

Another advantage is that CFGs can be customized with minimal human effort to generate diverse
datasets whose ground-truth data possesses specific properties. For example, a dynamic dataset
that only consists of k–SAT sentences – propositional logic in the Canonical Normal Form (P 0

1 ∨
. . . ∨ P 0

k ) ∧ (P 1
1 ∨ . . . ∨ P 1

k ) ∧ . . . where P ji ∈ {px,¬px} – can be easily generated. We enrich the
generated sentence with context via a customizable Vocabulary Generation step, which automatically
provides the necessary vocabulary for performing the task (e.g., providing English meanings to allow
for human-like NL) by using terms from a vocabulary database or by using an LLM.

Automatic Truth Maintenance w.r.t. (A ◦ I)n(φ0) We develop a novel technique that can soundly
assess truth maintenance without any human annotations by evaluating φi → ψi → φi+1. Our
approach is based on the following intuition. Let I : φ → ψ be a non-deterministic function that
maps FS φ to NL ψ. Similarly, let A : ψ → φ be a non-deterministic function that maps NL ψ to
FS φ. In general, there are many possible correct informalizations (autoformalizations) of φ ∈ FS
(ψ ∈ NL). Thus, I andA are not injective (1:1) functions and thus I−1 andA−1 are not well-defined.

Our key observation is that if I and A come from the same system (e.g., an LLM), then we can
evaluate its truth maintenance by composing I and A. Let φ be any FS expression and let L be an
LLM. Now, if L preserves truth, then ψ = I(φ) will be an accurate NL representation of φ and
φ′ = A(ψ) will be a semantically equivalent FS representation of ψ. Since ψ is an NL description, it
is quite challenging to check whether I(φ) is indeed an accurate representation of φ without human
intervention. However, if L preserves truth, φ′ = A(I(φ)) will be semantically equivalent to φ
even if they are not syntactically identical. Thus, we only need to check if φ ≡ φ′. For example, let
φ0 = p1 ∧ p1, ψ0 = I(φ1) = “A conjunction of propositions p1 and p1 that can be simplified to
p1 using Idempotence.”, and φ′

1 = A(ψ0) = p1 for a sequence (A ◦ I)1(φ0). It is very difficult to
check if ψ0 is an accurate representation of φ0, but easy to check if φ0 ≡ φ1 using a formal verifier.

Formal Verification Since ∀uto∃∨∧L uses formal syntax φ as input and produces formal syntax φ′

as output, we can use formal verifiers to check whether φ ≡ φ′. As a result, ∀uto∃∨∧L avoids brittle
syntactic equivalence checks and exhaustive tests of semantic equivalence that require evaluations of
all possible truth valuations of formulas or executions of regexes.

∀uto∃∨∧L Overall Pipeline We use the above insights to automatically assess LLM truth main-
tenance by using the same LLM L to represent I and A respectively. Fig. 1 shows our overall
assessment process. Briefly, we use a CFG G to automatically generate a ground-truth FS expression
φ0. Next, we use a vocabulary generation process to generate a context for φ0. This can either
use abstract terms or use NL elements for more human-like scenarios (§D1). We then evaluate
(A ◦ I)1(φ0) by using an LLM L to first generate ψ0 = I(φ0, κ) using context κ designed for
informalization. The context of L is cleared (note that we only use the output of I(φ0)), and we use
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S → S ∧ S
S → (P ∨ P ∨ P )
P → ¬v|v

(a) 3–SAT

S → (S ∧ S)|(S ∨ S)
S → (¬S)
S → ¬v|v
(b) Propositional Logic

S → F |(∀f. S)|(∃f. S)
F → (F ∧ F )|(F ∨ F )
F → (¬F )|¬p|p
(c) First-order Logic

S → (S)K|ΣK
S → SΣK

K → ∗|ε
(d) Regular Expression

Figure 2: CFGs (described in Sec. 4) used for synthesizing the datasets in ∀uto∃∨∧L.

L to generate φ1 = A(ψ0, κ
′) using context κ′ designed for autoformalization. We then use a verifier

(e.g., Z3 (de Moura & Bjørner, 2008), Prover9 (McCune, 2010)) to assess if φ0 ≡ φ1 since both are
elements of FS. If φ0 ≡ φ1 then we can repeat the process by evaluating (A ◦ I)1(φ1) similarly.

Example: Consider example 2 in Fig. 1. ∀uto∃∨∧L uses the grammar in Fig. 2b to automatically
generate a ground truth FS sentence as φ0 = p1 ∧ p2 ∧ p1. We can use any vocabulary to generate
meaning for the propositions; p1 : It is raining today, p2 : It was sunny yesterday. Next, the LLM
L is prompted with Prompt 1 to perform informalization yielding NL ψ0 = A(φ0). L can perform
any simplification or other paraphrasing necessary. For example, L could informalize φ0 above to
ψ0 =“The weather status was sunny yesterday whilst it is raining today.” Notice that the LLM-
generated NL statement automatically reflects a simplification using the Commutative (a∧ b ≡ b∧ a)
and Idempotent (a ∧ a ≡ a) properties. Next, L is asked to autoformalize ψ0 without any context
other than the vocabulary to use and a prompt for autoformalization (Appendix F). In this case, the
LLM could return φ1 = A(ψ0) = p1 ∧ p2. We use a theorem prover such as Prover9 (McCune,
2010) to show that φ0 ≡ φ1 and thus assess L’s truth maintenance capabilities w.r.t. (A ◦ I)1(φ0).

4 DATASETS AND ASSESSMENT FRAMEWORK

∀uto∃∨∧L is open-source1, is written in Python 3, includes several pre-computed datasets, and is
easily customizable for adding new datasets, prompts, LLMs, etc. We now describe the datasets and
metrics that any newly developed LLM can be evaluated on by using ∀uto∃∨∧L out-of-the-box.

Pre-generated Datasets and Dynamic Dataset Generator We provide 5 datasets using the grammars
in Fig. 2. All datasets are arranged based on the descriptional complexity d (# of operators for logic,
parse tree depth for regex) with around 500 samples per complexity for a total of 20k samples per
dataset. Other dimensions for categorization are available as metadata.

(Fig. 2a) k–SAT(n) Dataset (|D∗| ∼ 10k) The terminal v is replaced with a vocabulary of n
propositions p1, . . . , pn. This dataset is used for prompt calibration due to its toy structure.

(Fig. 2b) Propositional Logic: PL(n) Dataset (|D∗| ∼ 19k) Similar to k–SAT, this dataset also
replaces terminals by randomly selecting from a list n propositions.

(Fig. 2c) First-order Logic: FOL(np, no) Synthetic (S), English (E) Datasets (|D∗| ∼ 19k each)
The terminals p are replaced with predicates of the form p(v1, . . . , vn) where pi is a predicate name
selected from a list of np predicates, vi is either an object o from a list of no objects or is a free
variable f ∈ {x1, x2, . . .} that is appropriately annotated within the scoping rules. The objects and
predicate names are auto-generated synthetically for the synthetic version of the dataset. The English
version of the dataset uses VerbNet (Schuler, 2005) for predicate names and Faker (Faraglia, 2024)
for object names. The English dataset allows for informalization to produce more abstract sentences
that closely resemble the NL statements in SOTA autoformalization datasets. For example, an FS
statement Boom(Richard) ∧ Exercise(Yolonda) yields a more natural NL statement such as “The
expression states that Richard does not experience a boom, and Yolonda does not engage in exercise”.

(Fig. 2d) Regular Expression: RE(n) Dataset (|D∗| ∼ 18k) The vocabulary Σ is the set {0, . . . , n−
1} where n is a user-specified constant.

Dataset Diversity Our overall dataset’s total number of unique samples |D∗| is ∼ 85k. We also
provide zero-shot and 2-shot prompts for each dataset, making the total dataset size 170k for off-
the-shelf evaluation and continual assessment of any new LLMs. Similarly, ∼85% of the samples in
all datasets are composed of unique CFG parse trees (trees obtained by sampling the CFG but not

1Source code (and appendix) is included in the supplement. We will make it public post acceptance.
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Prompt 1: Informalization (I) for Logic (others available in Appendix F)

Your task is to convert a ⟨Propositional Logic, First-order Logic⟩ formula, appearing after
[FORMULA], to a natural description that represents the formula. Only natural language
terms are allowed to be used and do not copy the formula in your description. Your
description should allow one to reconstruct the formula without having access to it, so make
sure to use the correct names in your description. Explicitly describe the predicates. You may
use terms verbatim as specified in the vocabulary below.

[VOCABULARY]
Operators: List of operators followed by their NL interpretations

Objects: The objects in the universe (if any)
Propositions: The propositions in the universe and their NL interpretations (if any)

Predicates: The predicates in the universe and their NL interpretations (if any)
Examples: Few-shot examples of the task (if any)

Example Prompt
Your task . . .

Operators: ∧ represents conjunction, ∨ represents disjunction, . . .
Propositions: p1 : It is raining, p2 : It was sunny yesterday

Formula: p1 ∧ p2 ∧ p1
Example Response: The sun was bright the day before whilst it is
raining today.

injecting the vocabularies). Expressions with the same parse tree but different vocabularies such as
p1 ∧ p2, p2 ∧ p1, ((p2) ∧ p1)), etc., compose ∼10% of our dataset. Such samples provide a robust
check against positional bias in the LLM. Additional information is presented in App. M.

Efficient Dynamic Dataset Generation As LLMs evolve, users can easily generate datasets in
∀uto∃∨∧L by simply providing CFGs and/or vocabularies. We provide a dataset generator (described
in App. B) that uses a user-provided CFG and vocabulary to dynamically generate user-controlled,
diverse datasets up to a user-specified metric such as number of operators, parse tree depth, etc. Our
generator is guaranteed to be able to generate any string that is representible using the CFG (App. B).

Robust Parser We use open-source libraries to robustly parse the LLM-generated output. We use
the Natural Language Toolkit (NLTK) library (Bird et al., 2009) for parsing logic and use Reg2Dfa
(Reg, 2017) for regexes. LLM output that cannot be parsed is said to be syntactically non-compliant.
Additionally, we also use scripts to ensure that the informalization step does not copy elements of FS
into NL (e.g., complete or any parts of FS) that would otherwise make autoformalization trivial.

Prompt Calibration As stated in Sec. 2, prompts are crucial for LLM performance. To ensure that
our results can be viewed in terms of LLM capabilities themselves and not a characteristic of using
“bad” prompts, we conducted extensive prompt engineering and ensured that at least one LLM
could perform ∀uto∃∨∧L with ≥ 95% accuracy on a constrained (but representative) grammar, e.g.,
3-SAT(12) (Fig. 7). For §A4, rather than asking for only a yes or no answer, we use Chain-of-Thought
(CoT) so that LLMs can utilize their generated outputs to improve their reasoning (Wei et al., 2022).

Evaluation Metrics ∀uto∃∨∧L automatically assesses LLMs and provides reports that help answer:

A1. Is performance on ∀uto∃∨∧L indicative of performance on other benchmarks We compute the
correlation and predictive power of ∀uto∃∨∧L w.r.t. other benchmarks.
A2. Are LLMs syntactically compliant? ∀uto∃∨∧L evaluates the ability of LLMs to generate
syntactically correct output by computing the ratio of generated FS that could be successfully parsed.
A3. Are LLMs able to maintain truth w.r.t. (A ◦ I)n(φ0)? We compute a quantitative measure of
LLM truth maintenance w.r.t. (A◦ I)n(φ0) by computing the accuracy of an LLM to yield FS φ1 s.t.
φ0 ≡ φ1 using the ∀uto∃∨∧L pipeline (we used n = 1 for our evaluation to keep costs low).
A4. Can LLMs be used as verifiers? ∀uto∃∨∧L evaluates whether an LLM L can be used to provide
the answer to φ0 ≡ φ1 instead of using a formal verifier during (A ◦ I)1(φ0).
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Figure 3: Correlation between scores on ∀uto∃∨∧L and static benchmarks from the literature. The Pearson
correlation coefficient (ρ) and the p-value (values ≤ 0.05 are statistically significant) are annotated in the top
left. ∀uto∃∨∧L scores use a comparable descriptional complexity d (App. K.4). R represents a reasoning task.
Grey hexagons (�) represent data from 10 other models (tabular data is included in Appendix).

5 ASSESSMENT OF SOTA LLMS ON THE ∀UTO∃∨∧L BENCHMARK

To motivate research in the area and showcase our framework’s strengths, we used ∀uto∃∨∧L to
evaluate 17 SOTA closed and open-source LLMs of various parameter sizes. For clarity, we plot
select models, grey out the data from the others, and refer the reader to App. N for a comprehensive
overview. We analyze §A1 using Fig.3 and Fig. 4. We analyze §A2, A3, and A4 using results obtained
by using ∀uto∃∨∧L on our generated datasets (Fig. 5). We present our analyses below.

§A1: Is performance on ∀uto∃∨∧L indicative of performance on other benchmarks Our hypothesis is
that the ability for truth maintenance on foundational concepts (propositional logic, first-order logic,
regexes, etc.) will be indicative of an LLM’s reasoning abilities. To evaluate this, we compare the
performance of LLMs on ∀uto∃∨∧L vs. performance in other benchmarks focused on FS-tasks such
as reasoning, autoformalization, etc. Our results (Fig. 3) indicate that there is a positive correlation
between LLM performance on ∀uto∃∨∧L and other logic-based benchmarks on a myriad of tasks
such as autoformalization, logical reasoning, code generation, etc.

We use 5 popular benchmarks: (a) FOLIO(R;{NL,FOL}) (Han et al., 2022), a popular logical
reasoning benchmark with ground truth in both NL and FS; (b) FOLIO({A/I}) evaluates if an LLM
can (auto/in)formalize NL (FS) accurately; (c) LogiEval(R;{PL,FOL}) (Patel et al., 2024) a reasoning
benchmark with ground truth in propositional and first-order logic; (d) HumanEval(A) (Chen et al.,
2021), a code autoformalization benchmark; (e) Big Bench Hard (BBH) (Suzgun et al., 2023). These
benchmarks are contrasted in Sec. 6, and example prompts of these benchmarks are included in
Appendix K. We ran 5 runs across all these benchmarks except BBH (due to resource limitations)
using the most comparable ∀uto∃∨∧L dataset. For BBH, we use the reported numbers in the literature
as scores for the models (sources are included in Appendix K).

Our results (Fig. 3) show that ∀uto∃∨∧L exhibits a strong, positive correlation ρ ≥ 0.7 with other
static benchmarks on FS-based tasks and even on reasoning tasks such as FOLIO. However, ∀uto∃∨∧L
evaluates truth maintenance capabilities of LLMs by automatically generating its own data and without
requiring any hand-annotation. Similar results using ∀uto∃∨∧L can be observed in LogiEval for
propositional logic. Our results only showcase a moderate correlation (0.5 ≤ ρ < 0.7) for the FOL
version of LogiEval. We investigated and found LogiEval is an imbalanced dataset where 80% of
samples are from the positive class. Furthermore, this imbalance is also present in the problem
difficulty with a heavy skew towards easy problems. This lead to lower overall performance (and
consequently predictive power) of models like GPT-4o-mini that actually try to reason and provide
no answers compared to models like LLama-3.1-8b that only answer yes. Similarly, ∀uto∃∨∧L also
serves as a predictor for autoformalization, as evident in our results on FOLIO (A) and HumanEval.

Definition 5.1 (Predictive Power: P|Y ). Given two benchmarks X and Y , where LLMs L1, L2 score
x1, x2 on X and score y1, y2 on Y respectively, the predictive power of Y w.r.t X , P|Y (X), is the
probability that x1 ≥ x2 if y1 ≥ y2. Formally, the predictive power P|Y (X) = P (x1 ≥ x2|y1 ≥ y2).

Predictive Power ∀uto∃∨∧L can be used as a performance predictor for other metrics. We evaluated
this capability using the predictive power as defined above. The probabilities were obtained using
Maximum Likelihood Estimation over ⟨∀uto∃∨∧L, X⟩ and ⟨X,∀uto∃∨∧L⟩ for a benchmark X .
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Figure 5: Zero-shot Pass@1 results (avg. over 10 batches, higher values better) from using ∀uto∃∨∧L to assess
LLMs w.r.t. §A2, §A3, §A4 on the packaged datasets (Sec. 4). The x-axis represents an increasing descriptional
complexity. Our prompt calibration, few-shot, other model results, etc. are included in the appendix.
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Figure 4: Predictive power of ∀uto∃∨∧L w.r.t other
benchmarks. Benchmark metrics appear after the colon.

Our results (Fig. 4) show that an LLM’s perfor-
mance on ∀uto∃∨∧L is a strong predictor of its
performance on FS-based benchmarks. Our met-
ric is also more robust at measuring truth mainte-
nance than length-dependent, NL-based metrics
like BLEU scores. For example, in a FOLIO(I)
informalization task, changing the generated NL
ψ =“the weather status was sunny yesterday
and is raining today” to ψ′ =“the weather sta-
tus was sunny yesterday and is not raining today”
still achieves a high BLEU(ψ′, ψ) score of 0.74
(BLEU(ψ,ψ) = 1) but does not maintain truth.
Even for such metrics, P|∀uto∃∨∧L > 0.5.

These results show that performance on ∀uto∃∨∧L is indicative of performance on other benchmarks.

§A2: Are LLMs syntactically compliant? As seen in Fig. 5, SOTA LLMs can perform (A ◦ I)1(φ0)
well when the formal syntax has low descriptional complexity (e.g., few operators in logic). But, as the
descriptional complexity increases, the ability of LLMs to autoformalize their own informalizations
decreases. One surprising result here is that for regexes, GPT-4o performs much worse than Phi and
LLama-3, which are much smaller models. We observed that GPT-4o tends to expand the Kleene
Star recursively, leading to invalid regexes. For logic, we observed that LLMs do not make mistakes
in the operators or symbols used but often misplace parentheses, creating malformed expressions.

§A3: Are LLMs able to maintain truth w.r.t. (A ◦ I)n(φ0)? Our results show that, except for the
prompt calibration task, LLMs cannot perform even (A◦I)1(φ0) well as the descriptional complexity
increases. One common failure is the lack of understanding of precedence and associativity rules for
the formal syntax. The evaluated LLMs often cannot place the correct operators in the correct scope,
leading to quick verification failures. We provide an analysis of failing cases in Appendix G.

Bounding the false positive rate of ∀uto∃∨∧L One key advantage of ∀uto∃∨∧L is that it is robust
against different informalizations of the same FS. Thus, when ∀uto∃∨∧L outputs that LLM maintains
truth (A ◦ I)n(φ0) on FS φ0, the intermediate NL = I(ψ0) is a semantically equivalent translation
of φ0. We now bound the probability of false positives that may occur due to hallucinations.

Given an LLM L, let φ0
IL(φ0)−−−−→ ψ0

AL(ψ0)−−−−−→ φ1 be an execution of the ∀uto∃∨∧L pipeline for
(A ◦ I)1(φ0) s.t. φ0 ≡ φ1 but ψ0 is not an accurate representation of φ0. We statistically analyze
the chance of ∀uto∃∨∧L providing such false positives. Let pI be the probability with which L
informalizes an FS expression I(φ0) = ψ0 s.t. ψ0 is an accurate representation of φ0. Similarly,
let pA be the probability of autoformalizing ψ0, A(ψ0) = φ1, s.t. φ1 is semantically equivalent to
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ψ0, i.e. φ0 ≡ φ1. Let pH be the probability that L hallucinates FS φ1 by autoformalizing ψ0 s.t.
φ1 ≡ φ0 even though ψ0 is not an accurate representation of φ0.

It can be seen that for a false positive to be output by ∀uto∃∨∧L, the sequence φ0 → ψ0 yields an
incorrect NL description, the sequence ψ0 → φ1 autoformalizes incorrectly and hallucinates in the
right way to produce φ1 ≡ φ0. The probability of such a sequence corresponds to L making two
mistakes, with the second mistake being such that it generated an expression equivalent to φ0. This
can be expressed as (1−pI)(1−pA)pH . For (A◦I)n(φ0), this probability is (1−pI)n(1−pA)npnH
since ∀uto∃∨∧L computes (A ◦ I)1(φi) if φi−1 ≡ φi (Sec. 3). As LLM technology improves, we
expect pI , pA → 1 and pH → 0. As a result, the probability of false positives provided by ∀uto∃∨∧L
decreases as n increases. This low likelihood of false positives is further confirmed empirically by
our analysis of correlation and predictive power w.r.t. other benchmarks presented above.

§A4: Can LLMs serve as verifiers? We use φ1 generated by GPT-4o (the best performing LLM) and
asked an LLM L to evaluate whether φ0 ≡ φ1 to check if its output matches that of a formal verifier.
It is clear from Fig. 5 that even in this setting (and despite using Chain-of-Thought), LLMs cannot
serve as verifiers for anything but toy expressions (low descriptional complexity), after which F1

scores fall sharply. Our results show that using LLM-as-a-judge is not ideal in applications where
truth maintenance is important. We found that LLMs generally struggle to provide correct answers
once formulae are larger in general. For smaller expressions, we found that LLMs have difficulties
with negations in logic. Due to space limitations, we present some examples and an analysis of the
kinds of syntactic structures that LLMs fail to verify correctly in the Appendix (App. L, Fig. 20).

5.1 EVALUATING LARGE REASONING MODELS (LRMS) USING ∀UTO∃∨∧L
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Figure 6: ∀uto∃∨∧L results on OpenAI o1 on a small
dataset |D| = 200. Dashed lines indicate accuracy.

LRMs are LLMs that also perform some reason-
ing steps (e.g., search) as a part of their genera-
tion process. We evaluated OpenAI’s o1, which
is the latest LRM available. Due to o1 being 6x
more expensive, we regenerated a small dataset
with 5 points per category (|D| = 200) and av-
eraged the results across 3 runs with zero-shot
prompts. Our results are shown in Fig. 6 and
it can be seen that even SOTA LRMs cannot
maintain truth effectively in (A ◦ I)1(φ0).

6 RELATED WORK

Logical Reasoning RuleTaker (Clark et al., 2020) and ProntoQA (Saparov & He, 2023) generate
datasets by using simple “if-then" and syllogisms rules to create reasoning questions. Similar
grammars are used by LogicNLI (Tian et al., 2021) and CLUTRR (Sinha et al., 2019). LogiEval
(Patel et al., 2024) uses fixed inference rules and LLMs to generate reasoning problems. While
these techniques are dynamic, they are limited in their ability to produce interesting reasoning
problems across different domains.∀uto∃∨∧L is multi-dimensional providing 5 different datasets,
allows multiple customization options, and can generate an infinite number of unique syntax trees.

FOLIO (Han et al., 2022) utilizes human experts to generate a set of reasoning questions based on
real-world text sources. They generate questions in both NL and FS for propositional and first-order
logic that require 7 levels of reasoning. A similar approach is employed by ReClor (Yu et al., 2020)
and (Srivastava et al., 2023). A key weakness of these approaches is their reliance on human experts..

Autoformalization HumanEval is a popular benchmark for evaluating LLM capabilities of autofor-
malizing source code. LLM autoformalizations are evaluated via hand-written test cases. It has been
shown by Liu et al. (2023a) through the HumanEval+ dataset that the test cases in HumanEval are
incomplete and can provide misleading rankings. StructuredRegex (Ye et al., 2020) used crowdsourc-
ing for generating regex datasets. In contrast, ∀uto∃∨∧L requires no human annotations and utilizes
formal verifiers for checking the truth maintenance and thus does not share such drawbacks.

FOLIO({A, I}) (Han et al., 2022) tests the (auto/in)formalization abilities of LLMs by using hand-
coded annotations of ⟨NL,FS⟩ pairs. However, as noted by the authors, they cannot check truth
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maintenance effectively and rely on an inference engine to compute truth values for each conclusion.
∀uto∃∨∧L uses theorem provers to check equivalence and thus is sound in its accuracy evaluation.

MALLS (Yang et al., 2023) is an autoformalization dataset for first-order logic that was generated
using GPT-4. Their use of LLMs for generating the data limits the diversity of the dataset since
and the authors suggest to only use this dataset for fine-tuning and not for evaluation. In contrast,
∀uto∃∨∧L generates correct FS and has a sound evaluation metric for truth maintenance.

Autoformalization approaches such LeanEuclid (Murphy et al., 2024), DTV (Zhou et al., 2024),
LINC (Olausson et al., 2023), SatLM (Ye et al., 2020), Logic-LM (Pan et al., 2023) and others
(Wu et al., 2022) utilize formal verifiers to provide sound evaluation metrics but utilize hand-coded
datasets that limit their use in evaluating newer LLMs unlike ∀uto∃∨∧L.

Informalization Wu et al. (2022) and ProofNet (Azerbayev et al., 2023) use static datasets to evaluate
LLM informalization capabilities. They use metrics such as BLEU scores that are known to not
be indicative of accuracy for FS-based tasks (Ren et al., 2020). Jiang et al. (2023) develop MMA,
a dataset of formal and informal pairs generated using GPT-4. They note that their dataset is an
approximate measure due to using LLMs without manual validation. In contrast, ∀uto∃∨∧L is
autonomous and provides sound measures of LLM capabilities w.r.t. truth maintenance.

7 CLOSING REMARKS

Conclusions This paper introduced ∀uto∃∨∧L, a new benchmark for autonomous assessment of LLM
truth maintenance. Our approach to dataset synthesis allows us to scale without any human labeling.
∀uto∃∨∧L autonomously evaluates (A ◦ I)n(φ0) and provides accurate results by using verifiers
to guarantee correctness over all inputs. Our framework is easily extensible and provides several
prepackaged datasets (and o.o.d. dataset generators) to quickly assess new LLMs. Furthermore, our
evaluation indicates that SOTA LLMs and LRMs are not performant in this task. Finally, we show
that our metric can be used as an indicator of performance on other FS-based tasks and thus can be
used as a surrogate benchmark for evaluating new LLMs as and when they are developed.

Broader Impact We introduce a new way to automatically assess whether LLMs can understand
their own generations and preserve their truth while automatically scaling datasets. ∀uto∃∨∧L can
be used to robustly evaluate the suitability and safety of using LLMs in FS-based tasks such as
autoformalization, code generation, etc. and can be used as a surrogate to estimate performance
when new LLMs are developed. Our work can pave the way for the development of new autonomous
techniques for evaluating LLMs in other, more free-structured syntax like conversational AI.

Limitations and Future Work One interesting extension of current work is to utilize the λ-calculus
to further expand the datasets that can be generated. Our framework assumes that the generated NL
uses the English vocabulary. Adding support for other languages is an interesting extension for future
work. Another limitation pertains to the use of formal verifiers. It is well-known that first-order
logic is undecidable (Huth & Ryan, 2004). We mitigate this by using FS verifiers loaded with the
appropriate timeout and logging mechanisms (0.66% of our results experienced a timeout). This can
be mitigated by using CFGs that generate decidable strings. One interesting application of ∀uto∃∨∧L
is to use the generated evaluations as datasets for back-translation to improve the autoformalization
capabilities of models (Jiang et al., 2023). Finally, using formal verifiers as tools which the LLM can
call is an interesting extension of our benchmark that would further facilitate the assessment of §A4.

Threats to Validity Our reported results for paid APIs are dependent on the model checkpoints used
to be available. Similar to existing LLM evaluation methodologies, one must use pass@k and other
detailed measures such as std. deviations to increase confidence. We report pass@1 due to the high
cost of pass@k for our complete dataset |D∗| ∼ 85k× 2 prompts but do report std. deviations across
10 runs (on a single batch of 2k samples) in App. H. As is the case with all approaches, our approach
assumes the soundness of the verifier programs and parsing libraries used. Software bugs in the
verifier program or parsing libraries could cause false signals to be output by ∀uto∃∨∧L. Our use of
open-source popular libraries such as Prover9, NLTK reduces our exposure to such risk.

Ethical Considerations Our work involves using LLMs for generating text. Naturally, it is imperative
to ensure that appropriate guardrails are in place to prevent offensive content from being generated
and/or displayed. We do not use any personally identifiable information in ∀uto∃∨∧L.
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A APPENDIX ORGANIZATION

Our anonymized code is provided with our paper submission. Due to space limitations (our complete
results are over 4GB), we have provided two of the batches of the zero-shot prompting results and
FOLIO and LogiEval datasets.

The appendix is organized as follows. Appendix Appendix B provides the algorithm used for dataset
generation. Appendix C discusses prompt tuning and validating our prompts on 3SAT. Appendix D
provides the parameters we used when generating the five datasets discussed in the paper. Appendix
E provides additional information on our experimental setup, including the computational resources
used. Appendix F discusses the prompts and provides examples. Appendix G is our detailed analysis
of the empirical results from the main paper. Appendix H discusses an experiment we ran to evaluate
the standard deviation error. Appendix I includes additional results from our zero-shot prompting
experiments using other metrics for categorization. Appendix J evaluates an experiment we performed
comparing few-shot prompting compared to zero-shot. Finally, Appendix K provides the experimental
setup of the benchmarks we evaluated, data values and sources of scores collected, the ∀uto∃∨∧L
scores used for comparison, and additional correlation results.

B DATASET GENERATION

In this section, we provide the algorithm for generating formal syntax (FS) expressions and show that
it can generate all possible expressions from the grammar and vocabulary.

Our approach, ∀uto∃∨∧L, generates datasets by constructing a context-free grammar (CFG) tree
using the grammars discussed in Section 4. Since it is intractable to generate the full tree, we control
the branching factor and randomly expand the branches of this tree to generate formulae.

Algorithm 1 Dataset Generation
1: Inputs: CFG G, vocabulary V , branching factor n, tree depth depth, sample count sample_count,

and categorization metric m.
2: Outputs: set of FS expressions φ
3: N ← {0 : [None]},Nt ← ⟨⟩
4: for d = 1, 2, . . . , depth do
5: N ′ ← sampleN(N [d− 1], n)
6: for ν ∈ N ′ do
7: Nν , Tν ← generateNChildren(ν,G, n)
8: N [d] += Nν
9: Nt ← Nt ∪ Tν

10: end for
11: end for
12: M ← categorizeExpressionsIntoDict(Nt,m)
13: φ← ⟨⟩
14: for k ∈ keys(M) do
15: Mk ← sampleCFGExpressions(M [k], sample_count)
16: φk ← buildFSExpressions(Mk,V)
17: φ← φ ∪ φk
18: end for
19: Return: φ

The dataset generation algorithm is shown in Algorithm 1. This algorithm constructs a CFG tree
by maintaining non-terminal nodes at each tree level ( N ) and all the leaf nodes (Nt), where each
terminal node represents a completed CFG expression (line 3). For generating nodes at a certain level
in the tree, n nodes from the previous level are sampled (line 5). Each node is branched n times
using the CFG to produce nodes at the current tree level, and all the leaf nodes are collected (lines 7
through 9). As a result, by iteratively performing this process for each tree level, we obtain a set of
leaf nodes (CFG expressions).

The leaf nodes are then categorized based on the specified metric (e.g., tree depth, number of operators,
etc.) (line 12). For each metric value, a fixed number of CFG expressions corresponding to that
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value are sampled (line 15). Using the vocabulary, an FS expression is constructed from each CFG
expression (line 16). Consequently, the final dataset of FS expressions contains an equal number for
each metric value (line 17). This set of FS expressions is the final result produced by the algorithm
(line 19).

The vocabulary is fixed in length, with a hyperparameter controlling the number of unique propositions
for propositional logic. Similarly, for first-order logic, the number of unique variables, constants, and
predicates are also hyperparameters. Also, regular expressions have a hyperparameter controlling
the alphabet size. When these expression components are needed for building the FS expression,
the exact one is selected using uniform random selection. In the special case of first-order logic
predicates, the grounded predicate is generated by randomly selecting a predicate and then selecting
constants depending on the predicate’s arity. In the case of the arbitrary vocabulary, the arity for a
predicate is randomly assigned. To add variables, each constant has a certain probability of being
replaced by a variable.

Guaranteed Expression Coverage The dataset generator (Algorithm 1) is guaranteed to generate all
possible formal syntax expressions that can be produced for a grammar and vocabulary. Let φ be
an FS expression that can be constructed using the rules from CFG G and the vocabulary V . Note
that φ corresponds to a CFG expression φCFG, derived by substituting the vocabulary with the CFG
symbols. Due to uniform selection, the probability of φ being generated from φCFG is greater than
zero. Furthermore, the CFG expression represents a leaf node in the CFG tree that can be reached by
applying the CFG rules in a specific sequence. Due to the random sampling of rules at each node,
there is a non-zero probability of generating this particular path in the tree. Thus, φ can be generated
using the dataset generator algorithm.

C 3-SAT PROMPT CALIBRATION

In this section, we discuss the KSAT results used to calibration the prompts.

We tested several prompts for 3-SAT to verify that our prompts are sufficient to prompt the LLM
to correctly perform informalization and autoformalization. Additionally, we verified that the
equivalence verification prompt prompted the LLMs to give an accurate yes-or-no answer. The
performance of all six LLMs on 3-SAT for §A2, §A3, and §A4 are shown in Figure 7.
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Figure 7: Zero-shot Pass@1 results (avg. over 10 batches, higher values better) for 3-SAT from using
∀uto∃∨∧L to assess LLMs w.r.t. §A2, §A3, §A4 (Sec. 4) on the packaged datasets. The x-axis is the
# of operators.

The best-performing models we tested (GPT-4o and GPT-4o-mini) achieved nearly perfect syntactic
compliance, accuracy, and equivalence verification even as the number of operators increased. This
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proves that the prompts we used in our experiments are sufficient for prompting the model for
performing the tasks for §A2, §A3, and §A4.

For the other LLMs tested, syntactic compliance and accuracy diminished as the number of operators
increased. However, when evaluating the equivalence of GPT-4o results, all LLMs achieved near-
perfect accuracy regardless of operator number. Due to most of GPT-4o results being positive cases,
the results support that LLMs can verify two equivalent 3-SAT formulae as equivalent.

D DATASET GENERATION HYPERPARAMETERS

In Table 1, we provide the hyperparameters used to generate the five datasets.

Table 1: Hyperparameters used for producing the five datasets.
Parameter Type Hyperparameter Value Description

General
depth 40 Maximum depth of the CFG tree.
n 200 Branching factor of produced CFG

tree.
sample_count 50 Number of CFGS for each metric

value to select.

First-Order Logic

free_variable_prob 0.25 Probability of a constant being re-
placed by a variable.

max_free_variables ∞ Maximum number of unique variables.
max_predicate_arity 2 Maximum predicate arity.
min_predicate_arity 1 Minimum predicate arity.
num_objects 12 Number of unique constants.
num_predicates 8 Number of unique predicates.

Propositional Logic num_propositions 12 Number of unique propositions.

Regular Expression alphabet_size 2 Alphabet size.

E EXPERIMENTAL SETUP

In this section, we will provide the details of our experimental setup for generating the datasets and
running ∀uto∃∨∧L for evaluating each LLM’s performance.

We ran our experiments using Python 3.10.13 with package versions shown in Table 2. We also
repackaged Prover9 (McCune, 2010) to improve performance where this repackaged version can be
found in our code base.

Table 2: Python package versions
used for empirical evaluation.

Python Package Version
openai 1.45.0
nltk 3.8.1
tqdm 4.66.4
anthropic 0.26.1
backoff 2.2.1
tiktoken 0.6.0
transformers 4.41.1
Faker 25.2.0
networkx 3.3

Dataset Generation: We generated five datasets using the
dataset generation algorithm with the hyperparameters shown in
Table 1 using the number of operators as the categorization metric
for all but regular expression, where we used CFG tree depth. We
generated 10 batches for each dataset, resulting in approximately
20k samples for each dataset with an equal distribution for each
operator number.

Evaluating and Verification: The closed-source models (GPT-
3.5-turbo, GPT-4o, and GPT-4o-mini) were accessed using their
API using a temperature of 0.1. The open-source models LLama-
3-8B-Instruct and Mistral-v0.2-7B-Instruct were locally hosted
on a server with a 13th Gen Intel(R) Core(TM) i9-13900K and
Nvidia RTX 4090 GPU using the model’s default parameters
with a temperature of 1. Similarly, Phi-3-medium-4k-instruct was
locally hosted on a server using a Nvidia A100-XM4-80GB GPU.
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Prompt 2: Few-Shot First-Order Logic Informalization Prompt

[TASK]
Your task is to convert a first-order logic formula, appearing after [FORMULA], to a natural
description that represents the formula. Only natural language terms are allowed to be used
and do not copy the formula in your description. Your description should allow one to
reconstruct the formula without having access to it, so make sure to use the correct names in
your description. Explicitly describe the predicates. You may use terms verbatim as specified
in the vocabulary below.

[EXAMPLE 1]
(¬p2 ∨ p1 ∨ ¬p2)
Disjunctive predicate logic expression consisting of three components: the negation of a
proposition labeled p2, the proposition p1, and again the negation of p2.

[EXAMPLE 2]
(¬¬p2 ∧ ¬(p3 ∨ p1))
The expression asserts that p2 is not false while both p3 and p1 are not true.

[VOCABULARY]
∨ represents disjunction
∧ represents conjunction
¬ represents negation
( and ) represent parentheses
propositions can be used verbatim
predicates can be used verbatim
∀ < x1 >< x2 > ... < xn > . represents universal quantification with x1... representing
free variables
∃ < x1 >< x2 > ... < xn > . represents existential quantification with x1... representing
free variables
The objects are: p5, x1
The parameterized predicates are: pred3(?p0, ?p1)
The free variables are: x1

[FORMULA]
∀x1 pred3(p5, x1)

Verification was performed on an AMD EPYC machine with 128
cores.

F PROMPTING

In this section, we provide the zero-shot and few-shot used in the main paper experiments.

The prompt for each dataset type provides the LLM with information on the problem type and the
vocabulary. For informalization, we prompt the model to produce just a natural language description.
We also provide the list of objects, predicates, propositions, and free variables in the formal syntax
expression. For autoformalization, the LLM is prompted to provide just the formal syntax expression
using the natural language description. Additionally, for first-order logic with a non-synthetic
grammar, we provide the predicate names and arity in the autoformalization prompt. Two examples
are provided for few-shot prompting.

For §A4, the prompt used for using an LLM to verify the equivalence of two formulae tells the
LLM about the type of datasets (e.g., propositional logic, first-order logic, and regular expression).
Using Chain-of-Thought prompting, the model is prompted to provide an explanation before giving a
yes-or-no answer in a parsable format. Below are examples of the exact prompts used.
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Prompt 3: Few-Shot First-Order Logic Autoformalization Prompt

[VOCABULARY]
Use ∨ to represent disjunction
Use ∧ to represent conjunction
Use ¬ to represent negation
Use ( and ) to represent parentheses
Use ∀ <free_variable_list> to represent universal quantification
Use ∃ <free_variable_list> to represent existential quantification
The <free_variable_list> consists of a sequence of space separate free variables with the last
variable immediately followed by a period. Examples: (1) all x1 x2. (2) exists x4.
Use <predicate>(<parameter_list>) to represent predicates (Names and parameters are
provided in the description)

[TASK]
Your task is to interpret the natural language (NL) description of a first-order logic formula
and represent it as formal syntax using the vocabulary specified in the [VOCABULARY]
block above. Only output the formula and no other text. The NL description appears
immediately following the [NL DESCRIPTION] tag.

[EXAMPLE 1]
Disjunctive predicate logic expression consisting of three components: the negation of a
proposition labeled p2, the proposition p1, and again the negation of p2.
(¬p2 ∨ p1 ∨ ¬p2)

[EXAMPLE 2]
The expression asserts that p2 is not false while both p3 and p1 are not true.
(¬¬p2 ∧ ¬(p3 ∨ p1))

[NL DESCRIPTION]
For all objects labeled x1, the predicate pred3 holds true with parameters p5 and x1.

G ANALYSIS OF MAIN PAPER RESULTS

In this section, we analyze the main empirical results of the paper. Our results clearly show that
current SOTA LLMs are not performant in the truth maintenance task, which is why ∀uto∃∨∧L is
needed. As the expression complexity increases, the syntactic compliance, accuracy, and ability
to verify equivalence diminishes. We describe some of the errors that cause the low accuracy for
propositional logic, first-order logic, and regular expressions.

G.1 PROPOSITIONAL LOGIC RESULTS

Informalization Errors: A common error was the LLM failed to describe the proposition names.
Another was the LLM failing to provide a complete description of the formula. For example, GPT-
3.5-turbo often described portions of the expression based on what propositions and operators it
contained. A common issue with GPT-4o, one of the best models, is that it often uses different
propositional symbols (see example 5 in Table 3). Finally, we also observed hallucinations were
the LLM attempted and failed to simplify the original formula (see example 4 in Table 3). These
interpretation errors resulted in the original meaning of the expression being lost.

Autoformalization Errors: We observed there were often syntactic issues where the description was
not fully translated into a formula or the parentheses did not match. An interesting result is that the
LLMs struggled to place the negation operator in the correct location. For example, GPT-4o often
describes ¬p ∧ ¬p as predicate p "negated twice and combined" but failed to regenerate the original
formula properly with this description.
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Prompt 4: Few-Shot Regex Informalization Prompt

[TASK]
Your task is to convert the regular expression appear after [REGEX], to a natural description
that represents the regular expression. Only natural language terms are allowed to be used
and do not copy the regular expression in your description. Your description should allow
one to reconstruct the regular expression without having access to it, so make sure to use the
correctly account for scoping. You may use terms verbatim as specified in the vocabulary
below.

[VOCABULARY]
you may use symbols from the vocabulary
you can use *

[EXAMPLE 1]
(1*)0*
The regex matches strings that starts with any number (including none) of the digit ’1’,
followed by any number (including none) of the digit ’0’.

[EXAMPLE 2]
(01*)
The regex matches strings that begin with a ’0’ followed directly by any number (including
none) of ’1’s.

[FORMULA]
0

Prompt 5:

Few-Shot Regex Autoformalization Formal [VOCABULARY]
Use * to represent zero or more duplications of the same expression
Use ( and ) to represent parentheses

[TASK]
Your task is to interpret the natural language (NL) description of a regular expression and
represent it as formal syntax using the vocabulary specified in the [VOCABULARY] block
above. Only output the regular expression and no other text. The NL description appears
immediately following the [NL DESCRIPTION] tag.

[EXAMPLE 1]
The regex matches strings that starts with any number (including none) of the digit ’1’,
followed by any number (including none) of the digit ’0’.
(1*)0*

[EXAMPLE 2]
The regex matches strings that begin with a ’0’ followed directly by any number (including
none) of ’1’s.
(01*)

[NL DESCRIPTION]
The regex matches strings that start with the digit ’0’.

G.2 FIRST-ORDER LOGIC RESULTS

Informalization Errors: Similar to propositional logic, we observed the LLM often failed providing
enough details resulting in incorrect formulas being generated. A significant source of errors we
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Prompt 6: Zero-Shot Propositional Logic Informalization Prompt

[TASK]
Your task is to convert a propositional logic formula, appearing after [FORMULA], to a
natural description that represents the formula. Only natural language terms are allowed to be
used and do not copy the formula in your description. Your description should allow one to
reconstruct the formula without having access to it, so make sure to use the correct names in
your description. Explicitly describe the predicates. You may use terms verbatim as specified
in the vocabulary below.

[VOCABULARY]
∨ represents disjunction
∧ represents conjunction
¬ represents negation
( and ) represent parentheses
propositions can be used verbatim
The propositions are: p5, p12, p4

[FORMULA]
(p5 ∨ ¬p12 ∨ ¬p4)

Prompt 7: Zero-Shot Propositional Logic Autoformalization Prompt

[TASK]
Your task is to interpret the natural language (NL) description of a propositional logic formula
and represent it as formal syntax using the vocabulary specified in the [VOCABULARY]
block above. Only output the formula and no other text. The NL description appears
immediately following the [NL DESCRIPTION] tag.

[VOCABULARY]
Use ∨ to represent disjunction
Use ∧ to represent conjunction
Use ¬ to represent negation
Use ( and ) to represent parentheses

[NL DESCRIPTION]
A disjunctive statement involving three propositions: p5, the negation of p12, and the
negation of p4.

observed when not providing the predicate names and arity was the LLM rephrasing its explanation
causing confusion when regenerating.

Autoformalization Errors: Beyond the errors observed in propositional logic, the most common
mistake made during autoformalization was the LLM confusing constants with variables (see example
2 in Table 4). Additionally, the LLMs often messed up the predicate arity. Mistral often used = and
̸= operators with the variables, which was not needed for any formluae in ∀uto∃∨∧L. Similarly, the
LLMs would often use their own grammar instead of the one provided in the prompt.

G.3 REGULAR EXPRESSION RESULTS

Informalization Errors: Most of the errors observed were the LLMs giving the wrong explanation,
even for simple regular expressions. For example, GPT-4o often described c∗ as "one or more
occurrences of ’c’", where c is a character from the alphabet (see example 1 in Table 5). For the
other LLMs, it was quite common for the explanation to not give the actual character (see example
4 in Table 5). Overall, we observed a higher likelihood of SOTA LLMs hallucinating on regular
expressions compared to the other datasets.
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Prompt 8: First-Order Logic Verification Prompt

Your task is to say whether two First-Order Logic formulae are equivalent. The first formula
will appear right after [FORMULA 1] and the second after [FORMULA 2].
Give an explanation followed by a yes or no answer. The answer must show up at the end
with the format "[Answer]" followed by either a yes or no.

[Formula 1]
∃x1.¬pred5(p7)

[Formula 2]
∃p7.¬pred5(p7)

Table 3: Examples of errors the evaluated LLMs made while evaluating ∀uto∃∨∧L for the proposi-
tional logic dataset.
φ I(φ) (A ◦ I)(φ)

(¬p11 ∧ ¬p8)
The natural description of the formula is:
"It is not the case that both proposition p11
and proposition p8 are true."

(¬(p11 ∧ p8))

(¬p10 ∧ (¬p9 ∨ p7))
The natural description of the formula is:
"It is not the case that proposition p10 is true
and either proposition p9 is false or
proposition p7 is true."

¬(p10 ∧ (¬p9 ∨ p7))

(¬p3 ∧ ¬p7)
Here is the natural description of the given
formula: "The statement says that p3 is not
true and p7 is also not true."

(¬p3 ∨ ¬p7)

(¬¬p2 ∨ p3)
The formula states that either the proposition
p2 is true or the proposition p3 is true.
Additionally, it specifies that the proposition
p2 is not false.

(p2 ∨ p3) ∧ ¬¬p2

(¬p2 ∧ p5 ∧ ¬p6)
The formula describes a situation where the
first proposition is false, the second
proposition is true, and the third proposition
is false.

(¬p ∧ q ∧ ¬r)

Autoformalization Errors: The most common mistake when constructing a regular expression from
natural language was misplacing ∗ or adding it when it was not needed (see example 3 in Table 5).
Finally, even though we explicitly prompted the LLMs to use just ∗, sometimes the LLM would use
+.

H STANDARD DEVIATION EVALUATION

In this section, we perform an empirical analysis of the standard deviation of the syntactic compliance
and accuracy of the ∀uto∃∨∧L results. Due to the 10 batches having different data, the standard
deviation cannot be computed reliably based on the performance of the individual batches. We
evaluated the standard deviation by running ∀uto∃∨∧L 10 times on the first batch of each dataset
composed of 1974 propositional logic, 1900 first-order logic, and 1842 regular expressions examples.
Additionally, we evaluated GPT-3.5-turbo (ChatGPT) with a temperature of 1, LLama-3-8B-Instruct,
Mistral-v0.2-7B-Instruct, and Phi-3-medium-4k-instruct. We calculated the mean and standard
deviation of each independent run of ∀uto∃∨∧L and plotted the results in Figure 8.

For propositional and first-order logic, the standard deviation of the evaluated LLMs is low. While
noisier, the standard deviation of the regular expression results were still less than 20% with the
better performing models having a lower standard deviation. Overall, this experiment shows that the
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Table 4: Examples of errors the evaluated LLMs made while evaluating ∀uto∃∨∧L for the first-order
logic dataset.
φ I(φ) (A ◦ I)(φ)

(¬pred8(p10) ∧ pred8(p5)
∧pred6(p8))

The formula states that it is not the case
that the predicate pred8 holds for the
object p10, and the predicate pred8
holds for the object p5, and the
predicate pred6 holds for the object p8,
all conjoined together.

¬(pred8(p10)
∧pred8(p5)
∧pred6(p8))

∃x1.¬pred2(p4)
Here is the natural description of the
given formula: "There exists an x1 such
that p4 is not an instance of pred2.

∃x1.¬pred2(x1)

∀x1.¬¬pred3(p5) For all x1, it is not the case that
pred3(p5) is false.

∀x1.¬(pred3(p5)
∨¬pred3(p5))

pred2(p3, p5)
There exists a relationship between the
objects p3 and p5 such that the predicate
pred2 holds true for these objects.

∃p3 p5.pred2(p3, p5)

Table 5: Examples of errors the evaluated LLMs made while evaluating with ∀uto∃∨∧L for the
regular expression dataset.

φ I(φ) (A ◦ I)(φ)

1∗0
The pattern consists of one or more occurrences of the digit
"1" followed by exactly one occurrence of the digit "0". (1∗)10

(1∗)∗0

The regular expression describes a sequence that consists of
zero or more repetitions of the digit ’1’, followed by exactly
one ’0’. This entire pattern can repeat any number of times,
including zero times.

((1∗)0)∗

1∗11∗
The pattern consists of zero or more occurrences of the
digit ’1’, followed by exactly one occurrence of the digit ’1’,
followed by zero or more occurrences of the digit ’1’.

1∗1∗1∗

(1)∗0
Zero or more occurrences of the character or group of
characters before the asterisk. (.∗)

noise of non-deterministic text generation does not significantly impact ∀uto∃∨∧L or our results and
evaluations.

I ADDITIONAL ZERO-SHOT PROMPTING RESULTS

In this section, we evaluate other categorization metrics from the zero-shot prompting experiments
from the main paper. For the propositional and first-order logic datasets, the other categorization
metrics are the CFG parse tree depth needed to produce each FS expression and the individual number
of each operator (∧,∨,¬). For regular expressions, we have discussed in the main paper that each
regular expression represents a minimal DFA that is unique up to isomorphism. Therefore, the other
categorization metrics for regular expressions are the number of nodes V , the number of edges E,
and the density of this minimal DFA. The density is calculated using Equation 1 where we discretize
the value by rounding to every tenth.

Density =
|E|

|V |(|V | − 1)
(1)

Imbalanced Dataset Labels Due to the datasets being created by sampling an equal number of
expressions for each number of operators, taking this dataset and evaluating it in terms of the other
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Figure 8: Average and standard deviation error of Zero-shot Pass@1 results from using ∀uto∃∨∧L
to assess LLMs w.r.t. §A2 and §A3 (Sec. 4) on the first batch of the packaged datasets. The x-axis
represents an increasing order of descriptional complexity.

metrics results in an imbalanced dataset. To examine this effect, we have created Figures 9 and 10 to
perform an analysis of dataset imbalance on these other metrics.

For propositional and first-order logic, the dataset is actually quite balanced due to CFG tree depth
and the number of each individual operator having a high correlation to the total number of operators.
As such, other than metric values close to the extrema, the noise from the imbalanced data will be
marginal.

The regular expression dataset is less balanced due to a weaker correlation with the CFG tree depth.
The middle of the density graphs will be the most noisy since there is significantly less data for
densities of 0.1 and 0.2. The number of examples drops as the number of edges and nodes increases
with less than 10% of the data having more than 7 edges and/or nodes.
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Figure 9: Count of the number of examples for each metric value for the regular expression datasets.
The pie charts increase in values counter-clockwise while going from lighter to darker.

Categorization Metrics Performance In Figures 11, 12,13, 14, and 15 the performance of each
LLM over these other categorization metrics are shown. Across the board, we observe a diminishing
performance regardless of the source of increasing complexity. Ignoring the noise from the low
number of examples closer to the extrema, the depth of the tree showed a similar behavior as the
operator number. Propositional logic performance was concave w.r.t the number of ∧ and ∨ operators
since it becomes easier to describe expressions composed of exclusively ∧ and ∨ operators. A similar,
but weaker pattern is observed in the first-order logic results for the same reason. The negation
operator was not concave, showing how LLMs struggle to handle multiple negation operators.

For regular expressions, increasing the number of nodes and edges reduces accuracy and the ability
to evaluate equality. Density does not seem to be a factor, as the dip at 0.1 can be associated with
noise due to the lower number of examples. Overall, these three metrics are much weaker factors in
how well the LLM performs compared to the CFG tree depth.
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Figure 10: Count of the number of examples for each metric value for each of the datasets. Each row
is a dataset and each column is a different metric that can be used to categorize the dataset. The pie
charts increase in value counter-clockwise while going from lighter to darker.
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Figure 11: Zero-shot Pass@1 results (avg. over 10 batches, higher values better) from using ∀uto∃∨∧L
to assess LLMs w.r.t. §A2, §A3, §A4 (Sec. 4) on the packaged datasets. The x-axis is the depth of the
CFG tree to produce the formula.
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Figure 12: Zero-shot Pass@1 results (avg. over 10 batches, higher values better) from using ∀uto∃∨∧L
to assess LLMs w.r.t. §A2, §A3, §A4 (Sec. 4) on the packaged datasets. The x-axis is the number of
and operators (∧) in the expression.
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Figure 13: Zero-shot Pass@1 results (avg. over 10 batches, higher values better) from using ∀uto∃∨∧L
to assess LLMs w.r.t. §A2, §A3, §A4 (Sec. 4) on the packaged datasets. The x-axis is the number of
or operators (∨) in the expression.
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Figure 14: Zero-shot Pass@1 results (avg. over 10 batches, higher values better) from using ∀uto∃∨∧L
to assess LLMs w.r.t. §A2, §A3, §A4 (Sec. 4) on the packaged datasets. The x-axis is the number of
negation operators (¬) in the expression.
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Figure 15: Zero-shot Pass@1 results (avg. over 10 batches, higher values better) from using ∀uto∃∨∧L
to assess LLMs w.r.t. §A2, §A3, §A4 (Sec. 4) on the packaged datasets. The x-axis is the metric on
the CFG tree to produce the regular expression formula.
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Figure 16: Syntactic compliance and accuracy difference of few-shot Pass@1 compared to zero-shot
Pass@1 results (avg. over 10 batches, higher values better) from using ∀uto∃∨∧L to assess LLMs
w.r.t. §A2, §A3, §A4 (Sec. 4) on the packaged datasets. The x-axis represents the increasing order of
descriptional complexity.

J FEW-SHOT PROMPTING RESULTS

In this section, we discuss our few-shot prompting experiment and analyze the performance difference
between zero-shot and few-shot prompting on §A1 and §A2.

We evaluated on the same five datasets from the main paper’s experiments but inserted two exam-
ples into the prompts. First-order and predicate logic used the same two examples, while regular
expressions used their own two examples. In Figure 16, the performance difference of each LLM
when using few-shot prompting instead of zero-shot is shown. Using few-shot prompting increases
syntactic compliance as the model has access to the desired format for encoding and decoding.
For expressions with lower complexity, this translates to a better performance on §A2. However,
as complexity increases, the performance difference between zero-shot and few-shot prompting is
negligible due to having the correct format for parsing but failing maintaining the same formula.

K OTHER BENCHMARK CORRELATION AND ∀UTO∃∨∧L PREDICTIVE POWER
EVALUATION

For evaluating the correlation between a LLM’s performance on ∀uto∃∨∧L and existing benchmarks
and measuring the predictive power of ∀uto∃∨∧L, in Section 5, we evaluated on FOLIO (Han et al.,
2022), Multi-LogicEval (Patel et al., 2024), and HumanEval (Chen et al., 2021). In this section we
discuss these experiments and cite the sources of the HumanEval results along with evaluate the
predictive power of ∀uto∃∨∧L.

In this section, we discuss the experimental setup for the benchmark, the sources used for LLM
performance on other benchmarks, and the ∀uto∃∨∧L we used for evaluation. We also evaluate the
FOLIO premise benchmark further based on the operator numbers in each premise.

K.1 FOLIO EXPERIMENTAL SETUPS

The FOLIO dataset is composed of premises and a conclusion for each sample where the task is
to conclude whether the conclusion is true, false, or unknown given the premises. Additionally,
the dataset provides an encoding into first-order logic for all the premises and conclusions. There-
fore, we evaluated each LLM on their abilities to (1) informalize a first-order logic premise, (2)
autoformalize a natural language premise, (3) correctly classifying the conclusion using the first-
order logic representations, and (4) correctly classifying the conclusion using the natural language
representations.
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Prompt 9: FOLIO Premise Informalization Prompt

[TASK]
Your task is to convert a first-order logic formula, appearing after [FORMULA], to a natural
description that represents the formula. Only natural language terms are allowed to be used
and do not copy the formula in your description. Your description should allow one to
reconstruct the formula without having access to it, so make sure to use the correct names in
your description. Explicitly describe the predicates. You may use terms verbatim as specified
in the vocabulary below.

[EXAMPLE 1]
∀x(DrinkRegularly(x, coffee) ∨ (¬WantToBeAddictedTo(x, caffeine)))
People regularly drink coffee, or they don’t want to be addicted to caffeine, or both.
[VOCABULARY]
∨ represents disjunction
∧ represents conjunction
¬ represents negation
→ represents implication
( and ) represent parentheses
propositions can be used verbatim
predicates can be used verbatim
∀ < x1 >< x2 > ... < xn > . represents universal quantification with x1... representing
free variables
∃ < x1 >< x2 > ... < xn > . represents existential quantification with x1... representing
free variables
The objects are: caffeine
The parameterized predicates are: awarethatdrug(?p0, ?p1),
wanttobeaddictedto(?p0, ?p1)
The free variables are: x

[FORMULA]
∀x. (¬wanttobeaddictedto(x, caffeine)→ ¬awarethatdrug(x, caffeine))

For the FOLIO premise informalization and autoformalization experiments, the LLM was prompted
using the same few-shot first-order logic prompt used by ∀uto∃∨∧L where the example from the
prompt is another premise from the same FOLIO example to make sure both the example and the
evaluated premises have the same context. Premises were screened to make sure that we were able to
parse them into Prover9. Below is an example premises come from the FOLIO dataset.

For evaluating the performance of each LLM on classifying whether the premises entailed the conclu-
sion, the same prompt was used for both the natural language and first-order logic representations of
the premises and conclusions. The prompts are inspired by the prompts used in Multi-LogiEval and
use Chain-of-Thought prompting and prompt the model to provide the answer in a parsable format.
An example for both premises using an example from the FOLIO dataset are shown below.

We evaluated the informalization results against the ground truth natural language representation
using BLEU (Callison-Burch et al., 2006), ROUGE (Lin, 2004), METEOR (Banerjee & Lavie, 2005),
and BERT Score (Zhang* et al., 2020). The model deberta-xlarge-mnli (He et al., 2021) was used for
the BERT score calculation. For the autoformalization results, we used the same verification process
as the main paper. For the FOLIO conclusion classification, the LLM’s answered was parsed out of
its response with the examples that could not be parsed being classified as "Unknown" and marked as
wrong. These examples were checked to verify the parser.

K.2 MULTI-LOGIEVAL EXPERIMENT SETUP

The task in Multi-LogicEval (Patel et al., 2024) is to answer a yes-or-no question using the provided
context, where the question was created using a certain depth of rules of logical reasoning. We used a
prompt similar to the one they used where we use Chain-of-Thought prompting and prompt the LLM
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Prompt 10: FOLIO Premise Autoformalization Prompt

[VOCABULARY]
Use ∨ to represent disjunction
Use ∧ to represent conjunction
Use ¬ to represent negation
Use ( and ) to represent parentheses
The objects are: caffeine
The parameterized predicates are: awarethatdrug(?p0, ?p1),
wanttobeaddictedto(?p0, ?p1)
The free variables are: x

[TASK]
Your task is to interpret the natural language (NL) description of a first-order logic formula
and represent it as formal syntax using the vocabulary specified in the [VOCABULARY]
block above. Only output the formula and no other text. The NL description appears
immediately following the [NL DESCRIPTION] tag.

[EXAMPLE 1]
People regularly drink coffee, or they don’t want to be addicted to caffeine, or both.
∀x(DrinkRegularly(x, coffee) ∨ (¬WantToBeAddictedTo(x, caffeine)))

[NL DESCRIPTION]
No one who doesn’t want to be addicted to caffeine is unaware that caffeine is a drug.

Prompt 11: FOLIO Natural Language Representation Prompt

For the following [PREMISES] containing rules of logical reasoning, perform step-by-step
reasoning to answer whether the [CONCLUSION] is True/False/Uncertain based on the
[PREMISES]. Use the following answer format:
Reasoning Steps:
Answer: True/False/Uncertain
[PREMISES]:
All people who regularly drink coffee are dependent on caffeine
People regularly drink coffee, or they don’t want to be addicted to caffeine, or both.
No one who doesn’t want to be addicted to caffeine is unaware that caffeine is a drug.
Rina is either a student who is unaware that caffeine is a drug, or she is not a student and is
she aware that caffeine is a drug.
Rina is either a student who depend on caffeine, or she is not a student and not dependent on
caffeine.
[CONCLUSION]:
Rina doesn’t want to be addicted to caffeine or is unaware that caffeine is a drug.

to provide the answer in a specific location to parse. Examples of these prompts are provided below
using examples from the Multi-LogiEval dataset.

K.3 HUMANEVAL AND BIG BENCH HARD SCORE SOURCES

To evaluate the correlation and predictive power of ∀uto∃∨∧L against commonly used LLM bench-
marks HumanEval (Chen et al., 2021) and Big Bench Hard (BBH) (Suzgun et al., 2023), we collected
the performance scores of the LLMs we evaulated on both benchmarks and report our findings and
sources in Table 6. We were unable to find any sources that evaluated GPT-4o-mini on BBH.
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Prompt 12: FOLIO First-Order Logic Representation Prompt

For the following [PREMISES] containing rules of logical reasoning, perform step-by-step
reasoning to answer whether the [CONCLUSION] is True/False/Uncertain based on the
[PREMISES]. Use the following answer format:
Reasoning Steps:
Answer: True/False/Uncertain
[PREMISES]:
∀x(DrinkRegularly(x, coffee)→ IsDependentOn(x, caffeine))
∀x(DrinkRegularly(x, coffee) ∨ (¬WantToBeAddictedTo(x, caffeine)))
∀x(¬WantToBeAddictedTo(x, caffeine)→ ¬AwareThatDrug(x, caffeine))
¬(Student(rina)⊕ ¬AwareThatDrug(rina, caffeine))
¬(IsDependentOn(rina, caffeine)⊕ Student(rina))
[CONCLUSION]:
¬WantToBeAddictedTo(rina, caffeine) ∨ (¬AwareThatDrug(rina, caffeine))

Prompt 13: Multi-LogicEval Prompt

"Given the context that contains rules of logical reasoning in natural language and question,
perform step-by-step reasoning to answer the question. Based on context and reasoning steps,
answer the question ONLY in ’yes’ or ’no.’ Please use the below format:
Context: At a university, students who study hard earn high grades. Those who participate in
extracurriculars develop leadership skills. However, students have restricted time outside of
classes. They can either study hard or they do not develop leadership skills from extracurricu-
lars.
Question: Can we conclude that Priya, a university student with limited free time, either earns
high grades or does not participate in extracurricular activities?
Reasoning steps: [generate step-by-step reasoning]
Answer: Yes/No"

Table 6: Reported performance of SOTA LLMs on HumanEval and Big Bench Hard (BBH) benchmarks. The
values under the Computed column are averaged over 5 runs from our experiments. Other results are reported
from online sources. A – indicates that we were not able to find any online source. We used our local computed
results when they were available.

Model HumanEval Score BBH Score

Computed (Online) (Online)

ChatGPT 74.3 68 (OpenAI, 2024) 48.1 (OpenAI, 2023)
GPT-4o 91.8 90.2 (OpenAI, 2024) 48.1 (Dunham & Syahputra, 2024)

GPT-4o-mini 88.3 87.2 (OpenAI, 2024) –
Llama-3.2-1B-Instruct 34.6 – 8.7 (Fourrier et al., 2024)

Qwen-2.5-1.5B-Instruct 56.7 61.6 (Qwen2, 2024) 19.8 (Fourrier et al., 2024)
Phi-3.5-Mini-Instruct 71.3 64.6 (Liu et al., 2023b) 36.7 (Fourrier et al., 2024)

Mistral-7B-Instruct-v0.2 44.5 42.1 (Liu et al., 2023b) 24.0 (Fourrier et al., 2024)
Llama-3-8B-Instruct 62.8 61.6 (Liu et al., 2023b) 24.5 (Fourrier et al., 2024)

Granite-3.0-8B-Instruct 62.2 64.6 (Granite Team, 2024) 51.6 (Fourrier et al., 2024)
Llama-3.1-8B-Instruct 63.4 66.5 (Microsoft, 2024) 63.4 (Microsoft, 2024)

Ministral-8B-Instruct-2410 76.8 76.8 (MistralAI, 2024) 8.7 (Fourrier et al., 2024)
Gemma-2-9B-IT 68.3 68.9 (Qwen2, 2024) 42.1 (Fourrier et al., 2024)

Phi-3-Medium-4k-Instruct 75.0 62.2 (Microsoft, 2024) 49.4 (Fourrier et al., 2024)
Qwen-2.5-14B-Instruct 80.5 83.5 (Qwen2, 2024) 48.4 (Fourrier et al., 2024)

Yi-1.5-34B-Instruct 72.6 75.2 (Yi, 2024) 44.3 (Fourrier et al., 2024)
Llama-3-70B-Instruct 79.9 77.4 (Liu et al., 2023b) 50.2 (Fourrier et al., 2024)
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Figure 17: Correlation between scores on ∀uto∃∨∧L and both autoformalization A and informalization I
for FOLIO premises. Each point represents a specific number of operators with arrows showing increasing
complexity (number of operators). The trendline across all the points is annotated with ×, the Pearson correlation
coefficient (ρ), and the p-value are annotated in the top left.

K.4 COMPUTED ∀UTO∃∨∧L CONDITIONAL PERFORMANCE

To compare against the performance on different benchmarks in Section 5, we needed to calculate the
conditional performance of each LLM on ∀uto∃∨∧L for the relevant portions of the datasets. For
example, there are few premises in the FOLIO dataset with more than 6 operators meaning that the
most accurate comparison would be to evaluate our first-order logic dataset up to the same number of
operators. Therefore, we calculated the accuracy of the first-order logic formulae with less than seven
operators when calculating the correlation and predictive power. On MultiLogiEval, the number of
operators is dictated by the depth of the rules, so we took the average of all first-order logic examples
up to 30 in our dataset. On HumanEval, to the best of our knowledge using the average of regex with
CFG tree depth up to 7 is the best comparison.

K.5 FOLIO ADDITIONAL CORRELATION FIGURES

In Section 5, we evaluated the correlation of other benchmarks compared to ∀uto∃∨∧L. For the
FOLIO dataset, we were able to calculate the exact number of operators in each problem, allowing
us to plot points comparing the autoformalization and informalization accuracy for each operator
number class to directly compare to the accuracy of the same number of operators in the first-order
logic dataset we generated.

We plot these results in Figure 17 with the Pearson correlation coefficient. Each figure shows a
moderate to strong correlation with a statistically significant p-value of less than 0.05. As the compu-
tational complexity increases, performance on ∀uto∃∨∧L, autoformalization, and informalization
decreases. The autoformalization correlation is significantly stronger due to the informalization
evaluation metrics being much weaker at evaluating truth maintenance.

L LLM AS VERIFIERS EVALUATION

In this section, we analyze the performance of LLMs on §A4, where we evaluate the performance
of using a LLM to verify whether the formal syntax expression φ is equivalent to the one produced
by GPT-4o after doing A ◦ I(φ). Figure 20 shows the number of positive and negative examples.
Additionally, it breaks down the performance of each LLM on each dataset.

The LLMs are clearly biased towards giving positive answers with a high ratio of false positives
to negative labels compared to false negatives to positive labels. A common case was the LLM
not recognizing that GPT-4o renamed predicates or constants producing a different formal syntax
expression. A structure that ChatGPT tends to struggle with is double negations. Below we provide
two examples where, even at the time of writing this rebuttal, ChatGPT failed to correctly verify
whether the two formulae are equivalent. Note that [FORMULA 2] is ChatGPT’s own response after
conducting (A ◦ I)n(φ0) where φ0 = [FORMULA 1].

In the case of Output Example 1, it can be clearly seen that ChatGPT failed to understand that the two
formulae are different. In particular, it was not able to correctly evaluate or reason that the second
regular expression represents a string that begins with a 1 followed by zero or one 0’s. This is despite
the LLM using a “Chain-of-thought” to help it arrive at an answer.
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Output Example 1: Regular Expression Verification Example

Prompt:
Your task is to say whether two Regular Expression formulae are equivalent. The first formula
will appear right after [FORMULA 1] and the second after [FORMULA 2].
Give an explanation followed by a yes or no answer. The answer must show up at the end
with the format "[Answer]" followed by either a yes or no.
[FORMULA 1]: 100*
[FORMULA 2]: 1(0*)

Response:
To determine whether the two regular expressions 100∗ and 1(0∗) are equivalent, let’s analyze
them:
### Explanation:
1. Formula 1: 100*
- This matches the character "1" followed by zero or more "0"s.
- It will match: "1", "10", "100", "1000", etc.
2.Formula 2: 1(0*)
- This matches the character "1" followed by zero or more "0"s (the same as Formula 1).
- It will also match: "1", "10", "100", "1000", etc.
### Key Observation:
- Both formulas describe the same set of strings: a "1" followed by zero or more "0"s.
- The use of parentheses in Formula 2 is purely for grouping and does not alter the matching
behavior.
### Conclusion:
The two regular expressions are equivalent.
[Answer]: yes

Output Example 2: First-Order Logic Verification Example

Prompt:
Your task is to say whether two First Order Logic formulae are equivalent. The first formula
will appear right after [FORMULA 1] and the second after [FORMULA 2].
Give an explanation followed by a yes or no answer. The answer must show up at the end
with the format "[Answer]" followed by either a yes or no.
[FORMULA 1]: ∀x1.(¬¬pred8(p8, p7) ∨ ¬pred4(x1))
[FORMULA 2]: ∀x1.(¬pred8(p8, p7) ∨ ¬pred4(x1))

Response:
The two formulas are equivalent.
Explanation: In both Formula 1 and Formula 2, the part ¬¬pred8(p8, p7) is equivalent to
¬pred8(p8, p7) due to the double negation elimination rule in logic. Therefore, both formulas
convey the same meaning, as the presence or absence of a double negation does not affect the
truth value in this context.
[Answer]: Yes

A more glaring reasoning error is found in Output Example 2, where ChatGPT fails to apply the
principles of logic where ¬¬p ≡ p ̸≡ ¬p. Our results convincingly showcase that LLMs cannot be
used as verifiers even for straightforward statements such as the examples presented.

M DATASET DIVERSITY

Fig. 9 and Fig. 9 provide additional details on the types of data present in the datasets packaged with
∀uto∃∨∧L. Users can generate dynamic datasets along these dimensions using the hyperparameters
mentioned in Table 1.
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To further provide additional statistics pertaining to the similarity of formulae in our dataset, especially
those where the formulae are otherwise equivalent but just use different vocabularies. For example,
the formula f = p1 can be represented via different propositions where p1 = It is raining in f1 and
something different in another formula f2 even though they canonically represent the same formula
f .

This allows to test robustness in LLM outputs. Nevertheless, the probability of such instances
decreases as the formula size increases. We have counted the total proporition of the dataset where
this occurs by replacing any variable from the vocabulary with an element of a vocabulary of size 1.
For example, all variables used in PL(12) dataset of our results are replaced by substituting those
variables with a vocabulary of only 1 proposition. Excess parentheses etc are preprocessed using
NLTK and removed before the substitution (e.g. ((p1) ∧ p2) is simplified to p1 ∧ p2.

The k-SAT dataset contains 8550 unique samples and the propositional logic dataset contains 17.7k
samples constituting 85% and 90% of these datasets respectively.

N EVALUATION OF LLMS

Table 7 lists the models, their parameters (– if closed-source), and the exact model version used for
our experiments. The open-source models were loaded using NVIDIA A100 80GB GPUs whereas
we used the OpenAI API for the GPT family of models. We cover a diverse range of models in our
evaluation ranging from extremely small LMs with a few billion parameters (∼1B) to LLMs with
several billions of parameters. This allows the analysis of ∀uto∃∨∧L from the lens of generalization.

Fig. 18 represents the syntactic compliance (§A2) data from Fig. 5 for all the models with a separate
axis for each LLM. Similarly, Fig. 19 plots the Accuracy (§A3). Tables 9 – 14 provide the data that
was used to plot the results in Fig. 3 and to compute the predictive power in Fig. 4.

Tables 15 – 18 list the example counts for each combination of class label and prediction for FOLIO(R;
NL) and FOLIO(R; FOL) and each label’s precision and recall rate. Tables 19 and 20 list the examples
counts for each combination of class label and prediction for LogiEval(R; PL) and LogieEval(R;
FOL).

N.1 CLAUDE EVALUATION

We evaluated Claude 3.0 Sonnet on just the 3-SAT, propositional logic, and regular expression
datasets due to the cost. Our results are shown in Figure 21 and show that Claude 3.0 Sonnet performs
similarly to GPT-4o with both having nearly perfect syntactic compliance and accuracy on 3-SAT.
Sonnet achieved the highest syntactic compliance and accuracy on propositional logic compared to
the other models. However the accuracy was only around 50% for expressions with more than 20
operators. Additionally, while being often syntactic compliant, Sonnet performed with low accuracy
on the regular expression dataset.
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Table 7: The LLMs used in our evaluation. The label names represent the labels used in Fig. 18 and Fig. 19, |θ|
represents the total number of parameters, and the last column lists the exact version used (for reproducibility).

Label |θ| Version

ChatGPT – GPT-3.5-turbo-0125
GPT-4o – gpt-4o-2024-08-06

GPT-4o-mini – gpt-4o-mini-2024-07-18
GPT-4o1 – o1-preview-2024-09-12

Llama-3.2-1B-Instruct 1B meta-llama/Llama-3.2-1B-Instruct
Qwen-2.5-1.5B-Instruct 1.5B Qwen/Qwen2.5-1.5B-Instruct

Phi-3.5-Mini-Instruct 4B microsoft/Phi-3.5-mini-instruct
Mistral-7B-Instruct-v0.2 7B mistralai/Mistral-7B-Instruct-v0.2

Llama-3-8B-Instruct 8B meta-llama/Llama-3-8B-Instruct
Granite-3.0-8B-Instruct 8B ibm-granite/granite-3.0-8b-instruct
LLama-3.1-8B-Instruct 8B meta-llama/Llama-3.1-8B-Instruct

Ministral-8B-Instruct-2410 8B mistralai/Ministral-8B-Instruct-2410
Gemma-2-9B-IT 9B google/gemma-2-9b-it

Phi-3-Medium-4k-Instruct 14B microsoft/Phi-3-medium-4k-instruct
Qwen-2.5-14B-Instruct 14B Qwen/Qwen2.5-14B-Instruct

Yi-1.5-34B-Instruct 34B 01-ai/Yi-34B-Instruct
Llama-3-70B-Instruct 70B meta-llama/Llama-3-70B-Instruct

Table 8: Correlation data for FOLIO(R; NL). The ∀uto∃∨∧L data was averaged from the PL dataset with data
points with description complexity d ≤ 6. These values were used to compute the predictive power of ∀uto∃∨∧L
reported in Fig. 4.

Model ∀uto∃∨∧L Score FOLIO(R; NL) Score

GPT-4o 0.79 0.75
GPT-4o-mini 0.56 0.69

ChatGPT 0.36 0.56
Mistral-7B-Instruct-v0.2 0.06 0.54

Phi-3-medium-4k-instruct 0.35 0.67
LLama-3-8B-Instruct 0.13 0.58

Gemma-2-9B-IT 0.28 0.64
Granite-3.0-8B-Instruct 0.18 0.60
Llama-3.1-8B-Instruct 0.09 0.59

LLama-3.2-1B-Instruct 0.03 0.36
LLama-3-70B-Instruct 0.49 0.70

Ministral-8B-Instruct-2410 0.10 0.61
Phi-3.5-Mini-Instruct 0.19 0.61

Qwen-2.5-1.5B-Instruct 0.07 0.49
Qwen-2.5-14B-Instruct 0.67 0.73

Yi-1.5-34B 0.21 0.63
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Figure 18: Syntactic compliance (§A2) of all models on the ∀uto∃∨∧L datasets.

35



1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

0

1
Propositional Logic(12)

GPT-4o

0

1
GPT-4o-mini

0

1
ChatGPT

0

1
Mistral-7B-Instruct-v0.2

0

1
Phi-3-Medium-4k-Instruct

0

1
LLama-3-8B-Instruct

0

1
Gemma-2-9B-IT

0

1
Granite-3.0-8B-Instruct

0

1
Llama-3.1-8B-Instruct

0

1
LLama-3.2-1B-Instruct

0

1
LLama-3-70B-Instruct

0

1
Ministral-8B-Instruct-2410

0

1
Phi-3.5-Mini-Instruct

0

1
Qwen-2.5-1.5B-Instruct

0

1
Qwen-2.5-14B-Instruct

0 20 40
0

1
Yi-1.5-34B

FOL(8, 12)−S

0 20 40

FOL(8, 12)−E

0 20 40

Regular Expression(2)

0 20 40

# of Operators: ∧,∨,¬ (¬ is counted as an operator iff not succeeded by a terminal) CFG Parse Tree Depth

§A
3:

A
cc

ur
ac

y

GPT-4o

GPT-4o-mini

ChatGPT

Mistral-7B-Instruct-v0.2

Phi-3-Medium-4k-Instruct

LLama-3-8B-Instruct

Gemma-2-9B-IT

Granite-3.0-8B-Instruct

Llama-3.1-8B-Instruct

LLama-3.2-1B-Instruct

LLama-3-70B-Instruct

Ministral-8B-Instruct-2410

Phi-3.5-Mini-Instruct

Qwen-2.5-1.5B-Instruct

Qwen-2.5-14B-Instruct

Yi-1.5-34B

Figure 19: Accuracy (§A3) of all models on the ∀uto∃∨∧L datasets.
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Table 9: Correlation data for FOLIO(R; FOL). The ∀uto∃∨∧L data was averaged from the FOL dataset with
data points with description complexity d ≤ 6. These values were used to compute the predictive power of
∀uto∃∨∧L reported in Fig. 4.

Model ∀uto∃∨∧L Score FOLIO(R; FOL) Score

GPT-4o 0.79 0.71
GPT-4o-mini 0.56 0.67

ChatGPT 0.36 0.51
Mistral-7B-Instruct-v0.2 0.06 0.51

Phi-3-medium-4k-instruct 0.35 0.62
LLama-3-8B-Instruct 0.13 0.52

Gemma-2-9B-IT 0.28 0.59
Granite-3.0-8B-Instruct 0.18 0.56
Llama-3.1-8B-Instruct 0.09 0.56

LLama-3.2-1B-Instruct 0.03 0.36
LLama-3-70B-Instruct 0.49 0.66

Ministral-8B-Instruct-2410 0.10 0.56
Phi-3.5-Mini-Instruct 0.19 0.53

Qwen-2.5-1.5B-Instruct 0.07 0.45
Qwen-2.5-14B-Instruct 0.67 0.71

Yi-1.5-34B 0.21 0.61

Table 10: Correlation data for LogiEval(R; PL). The ∀uto∃∨∧L data was averaged from the PL dataset with
data points with description complexity d ≤ 30. These values were used to compute the predictive power of
∀uto∃∨∧L reported in Fig. 4.

Model ∀uto∃∨∧L Score LogiEval(R; PL) Score

GPT-4o 0.67 0.87
GPT-4o-mini 0.35 0.67

ChatGPT 0.17 0.64
Mistral-7B-Instruct-v0.2 0.12 0.60

Phi-3-medium-4k-instruct 0.23 0.75
LLama-3-8B-Instruct 0.12 0.61

Gemma-2-9B-IT 0.28 0.71
Granite-3.0-8B-Instruct 0.21 0.58
Llama-3.1-8B-Instruct 0.11 0.71

LLama-3.2-1B-Instruct 0.04 0.50
LLama-3-70B-Instruct 0.34 0.85

Ministral-8B-Instruct-2410 0.17 0.68
Phi-3.5-Mini-Instruct 0.10 0.62

Qwen-2.5-1.5B-Instruct 0.11 0.52
Qwen-2.5-14B-Instruct 0.46 0.76

Yi-1.5-34B 0.26 0.78
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Table 11: Correlation data for LogiEval(R; FOL). The ∀uto∃∨∧L data was averaged from the FOL dataset with
data points with description complexity d ≤ 30. These values were used to compute the predictive power of
∀uto∃∨∧L reported in Fig. 4.

Model ∀uto∃∨∧L Score LogiEval(R; FOL) Score

GPT-4o 0.32 0.82
GPT-4o-mini 0.17 0.56

ChatGPT 0.09 0.63
Mistral-7B-Instruct-v0.2 0.01 0.56

Phi-3-medium-4k-instruct 0.09 0.70
LLama-3-8B-Instruct 0.02 0.62

Gemma-2-9B-IT 0.07 0.69
Granite-3.0-8B-Instruct 0.05 0.55
Llama-3.1-8B-Instruct 0.02 0.68

LLama-3.2-1B-Instruct 0.00 0.47
LLama-3-70B-Instruct 0.15 0.78

Ministral-8B-Instruct-2410 0.02 0.64
Phi-3.5-Mini-Instruct 0.04 0.54

Qwen-2.5-1.5B-Instruct 0.02 0.50
Qwen-2.5-14B-Instruct 0.19 0.66

Yi-1.5-34B 0.05 0.71

Table 12: Correlation data for FOLIO(A). The ∀uto∃∨∧L data was averaged from the FOL dataset with data
points with description complexity d ≤ 6. These values were used to compute the predictive power of ∀uto∃∨∧L
reported in Fig. 4.

Model ∀uto∃∨∧L Score FOLIO(A) Score

GPT-4o 0.82 0.48
GPT-4o-mini 0.58 0.47

ChatGPT 0.40 0.38
Mistral-7B-Instruct-v0.2 0.07 0.23

Phi-3-medium-4k-instruct 0.38 0.37
LLama-3-8B-Instruct 0.15 0.18

Gemma-2-9B-IT 0.32 0.35
Granite-3.0-8B-Instruct 0.21 0.16
Llama-3.1-8B-Instruct 0.10 0.26

LLama-3.2-1B-Instruct 0.03 0.00
LLama-3-70B-Instruct 0.53 0.47

Ministral-8B-Instruct-2410 0.11 0.26
Phi-3.5-Mini-Instruct 0.22 0.21

Qwen-2.5-1.5B-Instruct 0.08 0.12
Qwen-2.5-14B-Instruct 0.71 0.42

Yi-1.5-34B 0.24 0.37
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Table 13: Correlation data for FOLIO(I). The ∀uto∃∨∧L data was averaged from the FOL dataset with data
points with description complexity d ≤ 6. These values were used to compute the predictive power of ∀uto∃∨∧L
reported in Fig. 4.

FOLIO(I) Score

Model ∀uto∃∨∧L Score BLEU ROUGE METEOR BERT

GPT-4o 0.71 0.14 0.42 0.64 0.71
GPT-4o-mini 0.49 0.13 0.41 0.61 0.73

ChatGPT 0.27 0.19 0.47 0.62 0.76
Mistral-7B-Instruct-v0.2 0.04 0.08 0.31 0.51 0.64

Phi-3-Medium-4k-Instruct 0.26 0.12 0.39 0.58 0.70
LLama-3-8B-Instruct 0.08 0.04 0.18 0.35 0.50

Gemma-2-9B-IT 0.21 0.10 0.34 0.53 0.63
Granite-3.0-8B-Instruct 0.12 0.15 0.41 0.58 0.72
Llama-3.1-8B-Instruct 0.06 0.09 0.31 0.51 0.64

LLama-3.2-1B-Instruct 0.02 0.00 0.06 0.15 0.36
LLama-3-70B-Instruct 0.39 0.12 0.40 0.60 0.70

Ministral-8B-Instruct-2410 0.07 0.11 0.36 0.55 0.67
Phi-3.5-Mini-Instruct 0.12 0.05 0.22 0.41 0.55

Qwen-2.5-1.5B-Instruct 0.05 0.09 0.33 0.49 0.65
Qwen-2.5-14B-Instruct 0.57 0.07 0.26 0.45 0.55

Yi-1.5-34B 0.14 0.12 0.39 0.58 0.72

Table 14: Correlation data for HumanEval (A). The ∀uto∃∨∧L data was averaged from the regex dataset with
data points with description complexity d ≤ 7. These values were used to compute the predictive power of
∀uto∃∨∧L reported in Fig. 4.

Model ∀uto∃∨∧L Score HumanEval (A) Score

GPT-4o 0.66 0.92
GPT-4o-mini 0.44 0.88

ChatGPT 0.36 0.74
Mistral-7B-Instruct-v0.2 0.20 0.45

Phi-3-medium-4k-instruct 0.45 0.75
LLama-3-8B-Instruct 0.07 0.63

Gemma-2-9B-IT 0.28 0.68
Granite-3.0-8B-Instruct 0.21 0.62
Llama-3.1-8B-Instruct 0.19 0.63

LLama-3.2-1B-Instruct 0.03 0.35
LLama-3-70B-Instruct 0.33 0.80

Ministral-8B-Instruct-2410 0.13 0.77
Phi-3.5-Mini-Instruct 0.36 0.71

Qwen-2.5-1.5B-Instruct 0.12 0.57
Qwen-2.5-14B-Instruct 0.45 0.81

Yi-1.5-34B 0.13 0.73
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Table 15: Count of examples in FOLIO(R; NL) for each combination of (T)rue, (F)alse, and (U)ncertain label
and predictions in that order. For example, TU is the number of times a LLM predicted a True label as Uncertain.

Model TT TF TU FT FF FU UT UF UU

GPT-4o 1667 125 147 178 1133 131 246 419 952
GPT-4o-mini 1500 187 253 162 1087 196 255 488 877

ChatGPT 1501 281 147 366 889 186 620 562 434
Mistral-7B-Instruct-v0.2 1301 205 412 200 717 508 525 387 691

Phi-3-medium-4k-instruct 1468 153 310 222 871 343 310 289 1009
LLama-3-8B-Instruct 1400 244 288 272 807 347 477 413 717

Gemma-2-9B-IT 1439 94 385 231 813 382 378 289 934
Granite-3.0-8B-Instruct 1415 109 412 304 666 471 382 316 919
Llama-3.1-8B-Instruct 1400 174 314 267 766 360 435 352 781

LLama-3.2-1B-Instruct 1407 235 118 931 279 81 1109 235 111
LLama-3-70B-Instruct 1677 101 161 263 966 214 419 319 881

Ministral-8B-Instruct-2410 1577 242 116 358 954 130 583 532 503
Phi-3.5-Mini-Instruct 1355 164 398 223 821 383 357 359 890

Qwen-2.5-1.5B-Instruct 1470 345 117 615 684 138 824 477 309
Qwen-2.5-14B-Instruct 1564 132 239 215 1020 207 266 276 1058

Yi-1.5-34B 1507 125 298 240 894 305 497 346 773

Table 16: Calculated precision and recall for each label in FOLIO (R;NL).

True Label False Label Uncertain Label

Model Prec. Rec. Prec. Rec. Prec. Rec.

GPT-4o 0.80 0.86 0.68 0.79 0.77 0.59
GPT-4o-mini 0.78 0.77 0.62 0.75 0.66 0.54

ChatGPT 0.60 0.78 0.51 0.62 0.57 0.27
Mistral-7B-Instruct-v0.2 0.64 0.68 0.55 0.50 0.43 0.43

Phi-3-medium-4k-instruct 0.73 0.76 0.66 0.61 0.61 0.63
LLama-3-8B-Instruct 0.65 0.72 0.55 0.57 0.53 0.45

Gemma-2-9B-IT 0.70 0.75 0.68 0.57 0.55 0.58
Granite-3.0-8B-Instruct 0.67 0.73 0.61 0.46 0.51 0.57
Llama-3.1-8B-Instruct 0.67 0.74 0.59 0.55 0.54 0.50

LLama-3.2-1B-Instruct 0.41 0.80 0.37 0.22 0.36 0.08
LLama-3-70B-Instruct 0.71 0.86 0.70 0.67 0.70 0.54

Ministral-8B-Instruct-2410 0.63 0.81 0.55 0.66 0.67 0.31
Phi-3.5-Mini-Instruct 0.70 0.71 0.61 0.58 0.53 0.55

Qwen-2.5-1.5B-Instruct 0.51 0.76 0.45 0.48 0.55 0.19
Qwen-2.5-14B-Instruct 0.76 0.81 0.71 0.71 0.70 0.66

Yi-1.5-34B 0.67 0.78 0.65 0.62 0.56 0.48
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Table 17: Count of examples in FOLIO(R; FOL) for each combination of (T)rue, (F)alse, and (U)ncertain label
and predictions in that order. For example, TU is the number of times a LLM predicted a True label as Uncertain.

Model TT TF TU FT FF FU UT UF UU

GPT-4o 1596 124 218 215 1004 224 329 359 932
GPT-4o-mini 1432 140 367 153 944 348 224 420 976

ChatGPT 1500 208 227 456 711 266 756 525 338
Mistral-7B-Instruct-v0.2 1159 244 521 229 616 575 503 335 760

Phi-3-medium-4k-instruct 1405 120 393 278 688 457 365 226 1014
LLama-3-8B-Instruct 1471 193 249 462 621 332 674 396 532

Gemma-2-9B-IT 1378 112 408 256 659 489 397 268 919
Granite-3.0-8B-Instruct 1428 181 317 373 596 458 530 325 755
Llama-3.1-8B-Instruct 1449 163 305 358 647 409 575 289 725

LLama-3.2-1B-Instruct 1436 232 127 969 239 96 1142 237 117
LLama-3-70B-Instruct 1661 122 149 390 829 224 576 248 791

Ministral-8B-Instruct-2410 1525 226 180 452 805 185 692 464 461
Phi-3.5-Mini-Instruct 1291 145 449 314 595 503 466 331 791

Qwen-2.5-1.5B-Instruct 1305 358 255 611 560 256 829 392 386
Qwen-2.5-14B-Instruct 1648 90 194 279 918 241 377 253 966

Yi-1.5-34B 1513 106 271 285 730 350 476 282 826

Table 18: Calculated precision and recall for each label in FOLIO(R; FOL).

True Label False Label Uncertain Label

Model Prec. Rec. Prec. Rec. Prec. Rec.

GPT-4o 0.75 0.82 0.68 0.70 0.68 0.58
GPT-4o-mini 0.79 0.74 0.63 0.65 0.58 0.60

ChatGPT 0.55 0.78 0.49 0.50 0.41 0.21
Mistral-7B-Instruct-v0.2 0.61 0.60 0.52 0.43 0.41 0.48

Phi-3-medium-4k-instruct 0.69 0.73 0.67 0.48 0.54 0.63
LLama-3-8B-Instruct 0.56 0.77 0.51 0.44 0.48 0.33

Gemma-2-9B-IT 0.68 0.73 0.63 0.47 0.51 0.58
Granite-3.0-8B-Instruct 0.61 0.74 0.54 0.42 0.49 0.47
Llama-3.1-8B-Instruct 0.61 0.76 0.59 0.46 0.50 0.46

LLama-3.2-1B-Instruct 0.40 0.80 0.34 0.18 0.34 0.08
LLama-3-70B-Instruct 0.63 0.86 0.69 0.57 0.68 0.49

Ministral-8B-Instruct-2410 0.57 0.79 0.54 0.56 0.56 0.29
Phi-3.5-Mini-Instruct 0.62 0.68 0.56 0.42 0.45 0.50

Qwen-2.5-1.5B-Instruct 0.48 0.68 0.43 0.39 0.43 0.24
Qwen-2.5-14B-Instruct 0.72 0.85 0.73 0.64 0.69 0.61

Yi-1.5-34B 0.67 0.80 0.65 0.53 0.57 0.52
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Table 19: Number of examples of true positives (TP), false positives (FP), true negatives (TN), and false
negatives (FN) for each LLM in LogiEval(R; PL). The counts for when the LLM was incompliant with our
prompt for positive (IP) and negative (IN) labels are also provided. Additionally, the calculated true positive rate
(TPR), true negative rate (TNR), precision, and F1 score for each LLM is shown.

Model TP FP TN FN IP IN TPR TNR Prec. F1

GPT-4o 1724 56 594 251 0 0 0.87 0.91 0.97 0.92
GPT-4o-mini 1310 116 534 665 0 0 0.66 0.82 0.92 0.77

ChatGPT 1348 260 390 625 2 0 0.68 0.60 0.84 0.75
Mistral-7B-Instruct-v0.2 1240 187 379 640 95 84 0.66 0.67 0.87 0.75

Phi-3-medium-4k-instruct 1558 197 452 411 6 1 0.79 0.70 0.89 0.84
LLama-3-8B-Instruct 1246 209 434 715 14 7 0.64 0.67 0.86 0.73

Gemma-2-9B-IT 1464 217 432 497 14 1 0.75 0.67 0.87 0.80
Granite-3.0-8B-Instruct 1106 168 482 869 0 0 0.56 0.74 0.87 0.68
Llama-3.1-8B-Instruct 1523 242 400 430 22 8 0.78 0.62 0.86 0.82

LLama-3.2-1B-Instruct 985 250 342 820 170 58 0.55 0.58 0.80 0.65
LLama-3-70B-Instruct 1741 142 507 223 11 1 0.89 0.78 0.92 0.91

Ministral-8B-Instruct-2410 1350 161 489 621 4 0 0.68 0.75 0.89 0.78
Phi-3.5-Mini-Instruct 1222 180 459 719 34 11 0.63 0.72 0.87 0.73

Qwen-2.5-1.5B-Instruct 1085 281 298 582 308 71 0.65 0.51 0.79 0.72
Qwen-2.5-14B-Instruct 1474 72 574 486 15 4 0.75 0.89 0.95 0.84

Yi-1.5-34B 1651 193 457 321 3 0 0.84 0.70 0.90 0.87

Table 20: Number of examples of true positives (TP), false positives (FP), true negatives (TN), and false
negatives (FN) for each LLM in LogiEval(R; FOL). The counts for when the LLM was incompliant with our
prompt for positive (IP) and negative (IN) labels are also provided. Additionally, the calculated true positive rate
(TPR), true negative rate (TNR), precision, and F1 score for each LLM is shown.

Model TP FP TN FN IP IN TPR TNR Prec. F1

GPT-4o 1627 57 593 398 0 0 0.80 0.91 0.97 0.88
GPT-4o-mini 1084 95 555 941 0 0 0.54 0.85 0.92 0.68

ChatGPT 1346 177 472 678 1 1 0.67 0.73 0.88 0.76
Mistral-7B-Instruct-v0.2 1172 159 403 716 137 88 0.62 0.72 0.88 0.73

Phi-3-medium-4k-instruct 1449 139 511 574 2 0 0.72 0.79 0.91 0.80
LLama-3-8B-Instruct 1267 139 502 752 6 9 0.63 0.78 0.90 0.74

Gemma-2-9B-IT 1355 118 532 665 5 0 0.67 0.82 0.92 0.78
Granite-3.0-8B-Instruct 1023 102 548 1002 0 0 0.51 0.84 0.91 0.65
Llama-3.1-8B-Instruct 1466 198 440 538 21 12 0.73 0.69 0.88 0.80

LLama-3.2-1B-Instruct 968 255 335 853 204 60 0.53 0.57 0.79 0.64
LLama-3-70B-Instruct 1630 116 533 392 3 1 0.81 0.82 0.93 0.87

Ministral-8B-Instruct-2410 1304 161 486 708 13 3 0.65 0.75 0.89 0.75
Phi-3.5-Mini-Instruct 1059 140 493 922 44 17 0.53 0.78 0.88 0.67

Qwen-2.5-1.5B-Instruct 1013 220 374 775 237 56 0.57 0.63 0.82 0.67
Qwen-2.5-14B-Instruct 1303 89 555 707 15 6 0.65 0.86 0.94 0.77

Yi-1.5-34B 1489 156 494 534 2 0 0.74 0.76 0.91 0.81
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