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Abstract

Multimodal models have achieved state-of-the-
art performance for English language due to
abundant high-quality multimodal data (image-
text and audio-text). However, the perfor-
mance for other languages is lower due to
limited high-quality multilingual-multimodal
data. Current state-of-the-art methods use auto-
matic translations to create and evaluate Multi-
lingual Multimodal models. Meanwhile, the
availability of multilingual text data and ro-
bust self-supervised methods has grown sig-
nificantly, leading to powerful multilingual text
models. In this work, we leverage the strong
multilingual semantic alignment of text mod-
els and align them with multimodal models.
We demonstrate that learning just a few linear
layers can transform multilingual text repre-
sentations into multimodal text representations
that are compatible with the rest of the multi-
modal model. Our method, M2M, uses only
English text data for learning the transforma-
tion/alignment. It achieves 95.3% Recall@ 10
on English language (0.3% higher than the
baseline model) and 89.2% Recall@ 10 aver-
aged across 11 languages (10 of which are un-
seen during alignment) for the Text-to-Image
retrieval task on the XTD dataset. M2M gener-
alizes across architectures, datasets, modalities,
and tasks (Image-Text, Audio-Text retrieval,
and Cross-lingual Text-to-Image generation).
Code, checkpoints, and data will be publicly
released.

1 Introduction

Humans can naturally align multiple modalities,
connecting visual objects with words and sounds.
We can associate previously seen objects with their
corresponding words in a newly introduced lan-
guage without explicit supervision or direct map-
ping between the object and the new word. Instead,
this is achieved by implicitly aligning the object,
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its word in a known language, and the word in the
newly introduced language. Existing works (Carls-
son et al., 2022; Yan et al., 2024; Koukounas et al.,
2024b) explicitly rely on multimodal data in new
languages to adapt models like CLIP (Radford
et al., 2021) and CLAP (Elizalde et al., 2023) that
are primarily trained in English. These multimodal
models require large amounts of data for each lan-
guage, which is often impractical to obtain. In
contrast, multilingual text encoders have achieved
state-of-the-art (SOTA) performance through the
use of abundant text data and self-supervised learn-
ing techniques (Devlin et al., 2019; Radford, 2018).

We present a simple method that aligns multi-
lingual and multimodal latent spaces using textual
representations as a bridge. Similar to how humans
learn, our method doesn’t require explicit multi-
modal signals for each language— English textual
data alone is sufficient for alignment. Using robust
multilingual text encoders with a simple MSE-like
loss function, we achieve performance compara-
ble to models trained on multilingual-multimodal
data. We achieve this alignment by learning a pro-
jection map (a few linear layers) while keeping
the rest of the pretrained model frozen. Maiorca
et al. (2024b); Rosenfeld et al. (2022) show the
effectiveness of linear projection maps for aligning
latent spaces using multimodal English data in clas-
sification tasks. Our work extends this approach
for multilingual and multimodal latent spaces on
retrieval and generative tasks. To summarize our
contributions:

1. We propose M2M, a simple alignment
method that maps multilingual latent space
to multimodal latent space using only mono-
lingual (English) text data. Our empirical re-
sults show that M2M is effective across differ-
ent architectures, evaluation datasets, modali-
ties (image, audio), and tasks (Image-Text &
Audio-Text retrieval and Text-to-Image gener-
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ation). The method is parameter-efficient, re-
quiring only a few linear layers, and achieves
strong alignment even with limited data (~1K
sentences).

2. We create synthetic parallel evaluation
datasets for Audio-Text retrieval in 33
languages using test sets from Audio-
Caps (Kim et al., 2019) (160K samples) and
Clotho (Drossos et al., 2019) (172K samples).
We also generate 30K MSCOCO captions in
9 new languages (270K samples) for Text-to-
Image generation using state-of-the-art trans-
lation models.

2 Related Work

Multilingual Multimodal Models. Strong
multimodal models like CLIP (Radford et al.,
2021) and CLAP (Elizalde et al., 2023; Wu et al.,
2022) are typically trained on large amounts of
English multimodal data (paired image-text and
audio-text data). Extending these models to other
languages typically requires explicit training on
multilingual-multimodal data—either by training
from scratch (Jain et al., 2021) or by finetuning
pretrained models (Koukounas et al., 2024b; Yan
et al., 2024; Chen et al., 2023; Ye et al., 2024; Li
et al., 2023). Some approaches (Carlsson et al.,
2022; Chen et al., 2022; Zhai et al., 2021) fine-tune
only the text encoders while keeping the image
encoder frozen, while Aggarwal and Kale (2020)
train projection layers on top of frozen encoders
using multimodal English data. Our method uses
simple training losses, linear layers, and only
English text data. We demonstrate our method’s
effectiveness for a broad range of multimodal
tasks, including Image-Text & Audio-Text retrieval
and Text-to-Image generation.

Latent Space Translation is a technique
that maps representations between different latent
spaces to enable information sharing. Recent
research has focused on two main approaches-
Using relative representations for latent space
alignment (Moschella et al., 2022; Norelli
et al.,, 2022); Creating direct transformation
maps (Gower, 1975) between source and target
spaces (Maiorca et al., 2024b; Lahner and Moeller,
2024). These approaches have been successfully
applied to tasks like cross-modal classification and
generative modeling. A further development is the
Inverse Relative Projection method (Maiorca et al.,

2024a), which converts source representations
to relative form before mapping them to a target
space, effectively translating monolingual text
representations into multilingual text representa-
tions. Our approach builds on this foundation by
creating a linear mapping between multilingual
and multimodal latent spaces. By using English
text as a bridge between these spaces, we can
create multilingual multimodal models without
requiring specialized training data.

3 Methodology

Our method M2M is a simple alignment method
that learns a few linear layers to align multilin-
gual latent space with multimodal latent space us-
ing English text representations. While we focus
on dual-modality multimodal models in this work,
our method can extend to models with more than
two modalities. Consider a monolingual multi-
modal model M. that supports language e. M,
consists of individual encoders for each modality.
Let M, = (T, X.) where T, is the language e
text encoder and X, represents any other modal-
ity encoder (e.g. Image, Audio, etc.). We assume
representations from both 7, and X, are already
aligned in a shared latent space using paired mul-
timodal data from language e (e.g. CLIP, CLAP).
Let 7, be a multilingual text encoder. Our goal is
to achieve semantic alignment between global rep-
resentations (sentence-level representations) in the
latent space. To achieve this, we learn a projection
map f—. that transforms multilingual represen-
tations from 7;,, into multimodal representations
from 7T, using a loss function and language e text-
only data. The data must have semantic correspon-
dence with the task/multimodal latent space (e.g.
image captions for Image-Text retrieval, and audio
captions for Audio-Text retrieval). In our method,
the projection map—consisting of a few linear lay-
ers—is the only learned component, while all en-
coders (1., T;,, X¢) remain frozen. After learn-
ing the projection map, we simply replace 7, with
Tm—se = (T, fm—e) in M, resulting in a multi-
lingual multimodal model M,,, = (T}, Xe)-
For a sentence s in language e, we extract multi-
modal text representation s, = T¢(s) and multilin-
gual text representation s,,, = T, (s). Since both
text encoders represent the same sentence s, in an
all-aligned world, s, and s, would be identical.
However, s, and s, typically differ because they
come from different encoders trained with distinct



objectives and datasets. To align s,, and s., we
learn a projection map f,—. from s,, to s.. Here,
Se acts as an anchor to guide latent space transla-
tion. We use MSE as our primary loss function.

Sm—e = fm—)e(sm) (1)
£align = MSE(HSGHQ7 H3m—>€H2> (2)

We derive additional supervision from the struc-
ture of the target latent space. For a training batch
B, let S, and S,,,_,. denote the batched sets of mul-
timodal text representations and the corresponding
multilingual aligned representations, respectively.
We calculate pairwise cosine similarities within the
batch for both the target and predicted spaces:

C. = cos_sim(S, S,) 3)

Cm—>e = COS_Sim(Sm—w, Sm—>e) 4

where C., Cpy—e € RIBI¥IBl are the similarity ma-
trices that capture the structure of the target and
predicted spaces, respectively. We minimize the
MSE between these similarity matrices:

Estr - MSE(C& Cm—>e) (5)

This effectively enforces the predicted representa-
tions to preserve the structural relationships of the
target space. Final loss is a linear combination of
both Ljign and L

£ — )\ * Edhgn + B * £SII" (6)

We also experiment with other losses such as L1
loss and similarity loss (1 — cosine(se, Sm—se))s
though these are not as effective as L.

MSE loss helps replace s, with s;,_,. more ef-
fectively than contrastive or similarity loss, which
only focus on angles between representations. We
avoid token/word-level alignment since it empha-
sizes language structure over semantics. Moreover,
implementing the reverse map f._,,,, would dis-
rupt the existing alignment between representations
from X, (other modality encoder) and 7.

4 Experiments and Results

In this section, we empirically demonstrate the ef-
fectiveness of our method. We conduct detailed
experiments examining the projection map (f,—.e)
architecture, training loss, and training data scaling
in the Image-Text retrieval setting. We evaluate
our approach on three tasks: Image-Text Retrieval,
Audio-Text Retrieval, and Cross-lingual Text-to-
Image generation.
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Figure 1: Effect of scaling train data on XTD eval set
for M2M-aligned model- Jina-CLIP-v1 x M-MPNET.

4.1 Preliminary Experiments

We investigate the impact of varying number of
linear layers (1, 2, 4), adding or removing residual
connections (He et al., 2015) in f,,_, and test-
ing different training objectives through ablation
studies.

Experimental setup. We primarily use Jina-
CLIP-v1 (Koukounas et al., 2024a) as the multi-
modal model (M) and Multilingual MPNET (M-
MPNET) (Reimers and Gurevych, 2020) as the
multilingual text encoder (7},,). Following (Carls-
son et al., 2022), we use a combination of Google
Conceptual Captions (GCC) (Sharma et al., 2018),
MSCOCO (Lin et al., 2014), and VizWiz (Bigham
et al., 2010) as our training dataset to learn f, ..
We remove duplicate sentences and create a N-
sentence training split through random sampling.
We experiment with various model architectures
and training split sizes (Scaling). Unless speci-
fied otherwise, we train for 50 epochs using 250K-
sentence training size, batch size of 64, AdamW
optimizer (Loshchilov, 2017) with a learning rate
of 3e-4, weight decay of le-2, and a linear learn-
ing rate scheduler with 50 warmup steps. All
M2M-aligned models are trained on two RTX
A5000 24GB Nvidia GPUs. For validation, we use
XTD (Aggarwal and Kale, 2020) English image-
text pairs, saving the best checkpoint based on the
mean of Text-to-Image (T2I) and Image-to-Text
(I2T) recall. Both T2I and 12T recalls are averaged
across Recall@1,5,10. We evaluate these exper-
iments on Image-to-Text retrieval task using the
XTD test dataset.

Result and Analysis. As shown in Table 2, M2M
maintains strong performance regardless of the
number of linear layers or the presence of resid-
ual connections. The performance of our proposed



Model XTD-T2I XTD-I2T ~ XM3600  Multi30K
s

Avg. de en es fr it ip ko pl ru tr zh Avg. en T2I 12T T2I 12T
English-only Vision-Language Models
E1l: CLIP (ViT-L 336px) 357 554 925 64.1 67.0 537 187 27 156 50 132 49 432 941 140 2377 549 637
E2: Jina-CLIP-v1 374 615 950 67.8 774 583 98 19 168 44 109 7.5 395 958 203 265 589 59.6
E3: K-ALIGN 47.6 733 940 67.1 80.0 728 262 12.6 37.6 340 191 7.0 53.1 938 229 310 675 70.1
Multilingual Vision-Language Models Trained on Supervised Multimodal and/or Multilingual Data
T1: mUSEM3L 749 735 853 767 789 789 678 707 717 73.6 709 76.1 - - - - - -
T2: MCLIP-ST 76.4 787 885 782 798 793 68.6 63.1 756 747 744 794 786 904 487 60.6 80.7 834
T3: ALIGN-Base 82.2% — - 88 - 89 - 766 798 823 735 865 - - - - - -
T4: MURAL-Large 90.2% — - 929 - 918 - 881 910 872 895 8.7 - - - - - -
T5: LABSE ViT-L/14 872 89.6 916 895 899 90.I 739 80.8 89.8 855 89.8 839 90.8 949 732 836 909 937
T6: XLM-R-L ViT-B/32 88.0 887 91.8 89.1 894 898 81.0 821 914 86.1 888 893 899 917 752 845 892 91.0
T7: XLM-R ViT-L/14 89.0 90.6 924 91.0 90.0 O91.1 819 852 913 858 903 89.7 922 945 764 850 922 944
T8: XLM-R-L ViT-B/16+ 92.0 93.0 950 93.6 93.1 931 842 89.0 944 90.0 93.0 940 932 961 818 87.1 939 942
T9: Jina-CLIP-v2 92.6 925 92.8 889 955 932 941 90.6 949 90.7 935 914 932 927 8I.1 857 93.8 940
T10: AltCLIPas9 93.7%* — 954 941 929 942 917 944 - 918 - 951 - - - - - -
M2M-aligned Multilingual Multimodal models using English-only Text data
M1: Jina-CLIP-vl x LaBSE 824 825 864 837 844 845 762 80 845 80.0 807 830 80.1 873 628 656 787 752
M2: Jina-CLIP-vl x M-MiniLM 86.5 87.5 94.1 882 880 874 806 748 892 850 862 90.1 849 938 57.7 643 878 857
M3: Jina-CLIP-v1 X JinaTextV3 87.8 91.0 953 895 90.1 91.2 804 80.1 902 85.6 874 849 875 947 67.0 722 879 872
M4: Jina-CLIP-vl x M-MPNET 89.2 909 944 91.1 895 908 824 854 90.6 87.1 889 90.1 893 95.6 664 729 90.0 89.7
MS5: CLIP X M-MPNET 842 854 910 856 85.1 858 778 80.6 847 81.6 845 839 859 937 555 669 90.6 92.0
Mé6: K-ALIGN x M-MPNET 86.8 87.5 93.0 89.7 87.8 883 787 83.0 88.6 832 87.0 875 86.1 942 59.1 685 904 90.0

Table 1: Comparison of M2M-aligned model performance with English and Multilingual CLIP-like models using
Recall@10 across datasets. Results include reported XTD-T2I numbers for T1, T3-T8, T10 and rest are computed
using available checkpoints. * denotes average is computed over only supported languages.

Loss Linear layers Skip Conn. Avg. de en es fr it ip ko pl ru tr zh

MSE 2 No 88.7 89.0 954 899 893 895 820 853 902 857 89.5 90.1
MSE 2 Yes 88.8 88.8 950 90.1 89.6 902 82.0 854 905 856 89.2 89.9
A1 Latign +B1-Lstr 2 No 89.3 894 956 90.7 893 90.6 823 852 915 86.5 904 904
A1 Latign + P11 Lstr 2 Yes 892 892 952 910 894 903 82.6 858 91.0 865 89.6 904
A1 Latign +B1- Lstr 4 No 89.3 89.5 957 911 B89.6 90.8 825 86.2 909 86.5 90.0 90.0
A1 Latign + P11 Lstr 1 No 894 892 954 91.0 89.7 90.7 829 855 908 86.9 904 90.5
A2 Latign +B1-Lstr 2 No 88.8 89.1 948 90.6 89.6 90.1 819 852 90.7 86.1 89.3 892
Similarity Loss 2 No 88.6 89.0 955 89.6 892 89.8 81.7 849 904 856 89.1 90.1
L1 2 No 844 859 947 86.6 853 872 763 788 84.8 788 843 857

Table 2: Comparison of Recall@ 10 across different training losses, linear layers, and residual connections (Skip
Conn.) for M2M-aligned Jina-CLIP-v1 xM-MPNET on XTD Image-to-Text retrieval. Ay =44, Ay = 1,58, = 1.

training objective (eq. 6) surpasses alternative
approaches for Image-to-Text retrieval across 11
languages, with improvements in Avg. Recall@10
of absolute 0.7% over MSE loss, 0.8% over simi-
larity loss, and 5% over L1 loss. Text-to-Image re-
trieval task shows similar results (see Appendix D).
Assigning a higher weight for L4, (A = 44) com-
pared to L (8 = 1) yields a 0.6% gain in Avg.
Recall@10 versus equal weighting (A = 1,5 = 1).

Based on the optimal configuration from Table 2,
we conduct data scaling experiments for the pro-
jection map f,,— with 2 linear layers, no resid-
ual connection, and parameters A = 44,5 = 1.
We train with loss £ (eq. 6) using training splits
containing 1K, 5K, 10K, 50K, 100K, 250K, and
2M sentences. Figure 1 demonstrates that M2M

achieves 85.8% Avg. Recall@10 (across 11 lan-
guages) with just 1,000 English sentences, without
any multilingual or multimodal data. We observed
diminishing returns from scaling beyond 250K sen-
tences. Increasing the data fourfold to 2M sen-
tences yielded only minimal improvements of 0.1%
(T2I) and 0.2% (I2T) in Avg. Recall@10 (see Ap-
pendix E for details). Therefore, all experiments
use the 250K -sentence training split by default. Al-
though a single layer had higher performance for
map fy, e, we opt for 2 linear layers (~1M pa-
rameters) as the optimal number since there can
be a mismatch of latent dimensions between mul-
tilingual and multimodal spaces. We use the first
linear layer to project multilingual representations
to match the dimension of multimodal space.



4.2 Image-Text Retrieval

Experimental setup. We experiment with sev-
eral English multimodal models (M,): CLIP (Rad-
ford et al.,, 2021), Jina-CLIP-vl (Koukounas
et al., 2024a), and KakaoBrain-ALIGN (K-
ALIGN) (Yoon et al., 2022), along with multilin-
gual text encoders (7},,): LaBSE (Feng et al., 2020),
Multilingual MPNET (M-MPNET) (Reimers and
Gurevych, 2020), Multilingual MiniLM (M-
MiniLM) (Reimers and Gurevych, 2020), and Jina-
embeddings-v3 (Jina-Text-v3) (Sturua et al., 2024).
Models aligned using our method are denoted as
Multimodal-Model xMultilingual-Model. We
compare M2M-aligned models against English-
only Vision-Language models (CLIP, Jina-CLIP-
vl, K-ALIGN) and existing Multilingual Multi-
modal Models (MMMs): mUSEM3L (Aggarwal
and Kale, 2020), Multilingual CLIP from Sen-
tenceTransformer Library2 (MCLIP-ST) (Reimers
and Gurevych, 2020), MURAL-Large (Jain et al.,
2021), ALIGN-Base (Jia et al., 2021) reported by
MURAL, (Carlsson et al., 2022)’s LaBSE ViT-
L/14, XLM-R-Large ViT-B/32, XLM-R ViT-L/14,
XLM-R-Large ViT-B/16+, Jina-CLIP-v2 (Kouk-
ounas et al., 2024b), and AItCLIP,;9 (Chen et al.,
2022). Languages supported by these models are
listed in Appendix C.

Evaluation. We evaluate using three multilingual
datasets: XTD (11 languages) (Aggarwal and Kale,
2020), which includes MIC (Rajendran et al., 2016)
(de, fr) and STAIR Captions (Yoshikawa et al.,
2017) (jp); XM3600 (36 languages) (Thapliyal
et al., 2022); and Multi30K (4 languages) (Elliott
et al., 2016) (Elliott et al., 2017) (Barrault et al.,
2018). Following previous works (Aggarwal and
Kale, 2020; Jain et al., 2021; Carlsson et al., 2022),
we evaluate using Recall@ 10 with cosine similarity
as the ranking score. For XTD, we report Text-to-
Image retrieval scores across all languages along
with Avg. Recall@10. For XM3600, Multi30K,
and Image-to-Text retrieval task, we only report
the mean Recall@10 score across all languages
present in the dataset with per language score in
Appendix F.

Results & Analysis. For the XTD T2I task, M2M-
aligned Jina-CLIP-vl x M-MPNET model (row
M4 in Table 1) outperforms several MMMs trained
on multimodal and/or multilingual paired data
(rows T1-T3, T5-T7). For English, our Jina-CLIP-
v1 xJina-Text-v3 model (row M3) outperforms all

2https ://www. sbert.net/

English-only baselines (rows E1-E3). For subse-
quent comparisons, we use Jina-CLIP-v2 as SOTA
which has the best performance averaged across all
languages.

On the XTD dataset, our best M2M-aligned
model (row M4) performs 3.4% lower on T2I and
3.9% lower on 12T compared to SOTA. This perfor-
mance gap is expected, as models like Jina-CLIP-
v2 are explicitly trained on massive amounts of
multilingual-multimodal i.e. ~400M non-English
image-text pairs from CommonPool (Gadre et al.,
2023) and 1.2M multilingual synthetic captions.
For the Multi30K dataset, we observe a simlar per-
formance gap of 3.3% for T2I and 2.4% for 12T.
However, for XM3600, this gap widens to 14.2%
for 12T and 14.8% for T2I. We speculate this is
due to it’s larger retrieval space (Multi30K and
XTD have 1K instances in test set, compared to
XM3600 that contains 3,600 images and ~7K cap-
tions). When considering only model-supported
languages, this gap narrows to 10.1% for I2T and
13.2% for T2I. Detailed performance metrics for
XM3600 and Multi30K’s supported languages are
available in the Appendix F.

4.3 Audio-Text Retrieval

Experimental Setup. We use LAION-CLAP (Wu
et al., 2022) as the Audio-Text multimodal model
(Me) and align it with the M-MPNET (7). We
experiment with two variants: 1) CLAP-HTSAT-
fused (trained on AudioCaps (Kim et al., 2019),
Clotho (Drossos et al., 2019), and LAION-Audio-
630k dataset (Wu et al., 2022)) and 2) CLAP-
General (trained on additional speech and music
data). For alignment, we use English text of audio-
caption datasets: AudioCaps, Clotho, and Wav-
Caps (Mei et al., 2023). We use the AudioCaps
validation set to save the best checkpoint.

Synthetic Evaluation Datasets. Due to the lack
of multilingual audio-text evaluation datasets, we
extend AudioCaps (4875 captions) and Clotho
(5225 captions) test sets to 33 new languages using
machine translation models. We use English-to-
Indic translation model from IndicTrans2 (Gala
et al., 2023) for 11 Indic languages ® and Aya-
23-35B (Aryabumi et al., 2024) for 22 other lan-
guages *. Based on the results reported by Aya-23-
35B on the FLoRes-200 test set (Costa-jussa et al.,
2022) and manual spot-check, we assume that the

3bn, gu, hi, kn, ml, mr, ne, pa, ta, te, ur
“ar, zh-Hans, zh-Hant, cs, nl, fr, de, el, he, id, it, ja, ko, fa,
pl, pt, ro, ru, es, tr, uk, vi
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AudioCaps Clotho

Models T2A A2T T2A A2T

Avg. en Avg. en Avg. en Avg. en
English-only LAION-CLAP Models
CF: HTSAT-Fused - 70.3/82.5% - 74.4/88.0%* - 49.9/55.4* - 60.9/66.9*
CG: General - 834 - 89.7 - 49.3 - 58.1
M2M-aligned Multilingual CLAP models
CMI1: CF x M-MPNET 42.8/47.11 62.6 51.3/55.3" 63.5 33.2/36.41 46.7 39.7/42.8" 49.9
CM2: CG x M-MPNET  48.3/54.2 772 60.8/65.9" 81.5 33.3/36.71 478 39.6/42.8" 50.6

Table 3: Performance comparison of Audio-Text Models on AudioCaps and Clotho datasets using Recall@ 10 for
Text-to-Audio (T2A) and Audio-to-Text (A2T) retrieval, averaged across 34 languages. * denotes reported numbers
from Wu et al. (2022) and rest are computed from checkpoints. | represents Avg. over supported languages.

translations for the 22 languages are of reasonably
high quality. Additionally, we use the FLoRes-200
test set to find the optimal prompt to be used for
obtaining the translations. To assess the transla-
tion quality for Indic languages, we back-translate
the translations to English using the IndicTrans2
(indic-to-en). Across 11 Indic languages, we ob-
serve a mean spBLEU (Post, 2018) score of 48.7
and chrF++ (Popovié, 2017) score of 63.6 for the
AudioCaps test set. For Clotho test set, the mean
spBLEU is 47.4 and mean chrF++ is 59.6. Addi-
tional details about dataset license and translation
quality assessment are discussed in the Appendix B,
G. Due to lack of comparable multilingual base-
lines and test sets, we report Recall@ 10 metric for
our method only on our synthetic multilingual test
sets. Language-wise Recall@10 are reported in
Appendix H for both AudioCaps and Clotho.
Results & Analysis. Table 3 demonstrates
our method’s effectiveness in generalizing across
modalities beyond images. For English, our
method performs below the state-of-the-art by 6.2%
on Text-to-Audio retrieval (T2A) and 8.2% on
Audio-to-Text retrieval (A2T) using the AudioCaps
test set, and by 2.1% (T2A) and 7.5% (A2T) on the
Clotho test set.

To investigate this drop, we compute Text-to-
Text (T2T) Recall@10 on XM3600 (image-text)
and AudioCaps (audio-text) test sets as these
datasets contain multiple captions for each im-
age/audio. M-MPNET (multilingual text encoder)
achieves a T2T Recall@10 of 62.1%, compara-
ble to Jina-CLIP-v1 (image-text model) at 63.8%
on the image-text test set. However, the same
M-MPNET achieves 73.8%, i.e. significantly
lower than CLAP-general’s (audio-text model)
at 80.2%. We speculate that M-MPNET excels
in image-caption encoding but underperforms in
audio-caption encoding in general.

Additionally, our qualitative analysis reveals
strong semantic alignment between audio and text
representations. For example, when given the query
“A man speaks with some clicks and then loud long
scrapes”, the top three retrieved audio captions
were: 1) “Sanding and filing then a man speaks”, 2)
“A man speaks with some clicking and some sand-
ing”, and 3) “A man speaks with a high-frequency
hum with some banging and clanking”. Although
the ground truth audio appeared at rank 10, its cap-
tions closely matched those of the top retrieved
results: “A man talking as metal clacks followed
by metal scraping against a metal surface”, and “A
man is speaking followed by saw blade noises”.
This semantic overlap between ground truth and
retrieved audio-captions indicates strong retrieval
performance. Please refer to Appendix H for more
details and additional examples.

4.4 Cross-lingual Text-to-Image Generation

Our method is also agnostic of tasks and extends
to generative tasks like Text-to-Image generation.
Since M2M aligns sentence-level representations
(CLS) of models, we experiment with a Text-to-
Image generation model that utilizes CLS of the
text, namely FLUX.1-dev (FLUX) (Labs, 2024).
FLUX is a 12B parameter model chosen due to its
public availability, competitive performance (Yang
et al., 2024), and use of CLIP text encoder (CLS
conditioning). Apart from CLIP, FLUX contains
a TS encoder (Raffel et al., 2020) for token con-
ditioning. To learn the projection map fy, e, we
select the M-MPNET model ° (7},,) and the CLIP
encoder from FLUX (T.). Since FLUX uses two
text encoders (CLIP and T5), we experiment with
four settings:

SWe qualitatively analyzed 100 generated images for
FLUX x LaBSE and FLUX x M-MPNET aligned models
and found the latter generated better quality images.
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Figure 2: Images generated by FLUX text-to-image model using the prompt “The city bus is traveling down the
road” in multiple languages. Our M2M-aligned model produces similar quality images compared to baseline FLUX
(both T5 and CLIP encoders), FLUX-T5 and FLUX-CLIP models.

1. FLUX: Generate images using the same input
text for both CLIP and TS5 encoders

2. FLUX-CLIP: Use input text for CLIP encoder
and a generic text prompt for TS encoder: “A
photo of: ¢

3. FLUX-TS5: Use input text for TS encoder and
a generic text prompt for CLIP encoder: “A
photo of: ”

4. FLUX x M-MPNET: Use input text for
M2M-aligned M-MPNET encoder and a
generic text prompt for TS encoder: “A photo
of: ”

FLUX x M-MPNET represents our proposed
M2M-aligned zero-shot Cross-lingual Text-to-
Image generation model.

Training Setup & Evaluation. We follow the
training settings and dataset described in Sec-
tion 4.1, but train for 10 epochs without a vali-
dation set, using bfloat16 precision and MSE loss
(instead of loss in eq. 6) over unnormalized rep-
resentations. Using L, with MSE leads to sig-
nificant degradation. The identical mapping of
representations is more important for generation
task than the structural similarity between latent
spaces. We generate 512x512 resolution images
using 3.5 guidance scale, 10 inference steps, and

®We qualitatively analyzed 100 generated images FLUX-
CLIP, FLUX x M-MPNET setting with prompts- “An image
of: ”,““A picture of: 7, “A photo of: ” and found the prompt-
“A photo of: 7 generated better quality images.

a fixed seed. Following evaluation protocols from
previous works (Ramesh et al., 2021; Rombach
et al., 2021; Saharia et al., 2022), we randomly
sample 30K captions from the MSCOCO2014 (Lin
et al., 2014) validation set. For multilingual evalu-
ation, we follow the process outlined in Synthetic
Evaluation datasets—section 4.3 and generate par-
allel captions in 9 new languages ’. We evaluate
performance using FID (Heusel et al., 2017) and
Inception Score (IS) (Salimans et al., 2016).

Results and Analysis. Table 4 shows FLUX x
M-MPNET achieves high Inception score of 31.81
(averaged over all languages) including English
(35.9£0.57), surpassing trained models such as
Latent Diffusion Model (LDM) (Rombach et al.,
2021) (30.2940.42), CogView (Ding et al., 2021)
(18.2), and LAFITE (Zhou et al., 2022) (26.02).
Both, FLUX-CLIP and FLUX x M-MPNET show
a poor FID score of 40.9 and 43.4 (averaged over all
languages) respectively, while FLUX and FLUX-
TS5 have a significantly better and same FID score
of 23.4. The same lower FID between FLUX and
FLUX-TS5 indicates that the FLUX model relies
heavily on T5-token representations, and can gen-
erate high-quality images without any signals from
the CLIP encoder. Since our method is not using
the FLUX model as intended (with both CLIP and
TS5 encoder), FLUX x M-MPNET generated im-
ages have suboptimal quality and are less faithful
to the conditioned multilingual text (e.g. missing
objects due to lost signal from T5 encoder).

"fr, el, he, id, ko, fa, ru, es, hi. We use IndicTrans2 for hi,
and AYA-24-35B for remaining languages.
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Figure 3: Images generated from multilingual translations of input prompt: “The city bus is traveling down the road”
using FLUX x M-MPNET model, with theme prompts in T5 encoder to enhance image quality and style.

Models

Inception Score (1)

en fr el he id ko fa ru es hi
FLUX 42340381
FLUX-T5 42.1£0.64
FLUX-CLIP 33.440.57 - - - - - - - - -
FLUX x M-MPNET 3594057 32.740.80 29.940.66 29.94045 34.340.76 30.240.51 32.540.74 28.6+0.63 32.840.50 31.3+0.46

Table 4: Inception score for MSCOCO-30K on 512x512 images (10 inference steps; guidance scale = 3.5).

Despite this limitation, our qualitative analysis
reveals diverse high-quality, slightly low-fidelity
cross-lingual image generations shown in Figure 2.
For FLUX-CLIP and FLUX x M-MPNET, we also
notice hallucinated images—generated images that
are unrelated to the given text but remain coherent
and well-formed, potentially misaligned. These
images are neither random noise nor contain mis-
placed/distorted object features. We suspect signal
loss from the TS5 encoder due to generic prompt
input may lead to these hallucinations, potentially
resulting in higher FID scores compared to FLUX
and FLUX-T5. To alleviate these issues, we can
simply add missing objects, style, theme, etc. in the
prompt to TS encoder, as shown in Figure 3. Please
refer to Appendix I for more details, examples, and
language-wise FID scores.

5 Conclusion

In this work, we introduced M2M —an efficient
alignment method that transforms multilingual la-
tent space into multimodal latent space using only
a few linear layers and English text data. Unlike ex-
isting methods that require extensive multilingual
and multimodal datasets, our approach significantly

reduces resource requirements while maintaining
robust performance across diverse tasks and modal-
ities. Our method demonstrates consistent general-
ization across training strategies, datasets, modali-
ties, and tasks, achieving a 95.3% Recall@10 for
English and a strong zero-shot multilingual perfor-
mance with an average Recall@ 10 of 89.2% across
11 languages on XTD-T2I retrieval. Through both
qualitative and quantitative analysis, we show our
method’s effectiveness for Image-Text & Audio-
Text retrieval, and Text-to-Image generation. To
facilitate future research, we release our synthetic
evaluation datasets: AudioCaps & Clotho in 33
new languages and MSCOCO 30K captions in 9
new languages, providing a unified framework for
benchmarking multilingual performance on mul-
timodal tasks. While these results are promis-
ing, there remains room for improvement, particu-
larly in exploring token-level alignment. We hope
our work encourages approaches that leverage im-
plicit alignment between languages and modalities,
rather than relying solely on additional data to en-
hance performance on multimodal tasks.



Limitations

Need for local alignment. While our method
performs well compared to trained multilingual
multimodal models in global-representation
(sentence) space, we need to develop alignment
at the local-representation (token) level. Tasks
like Text-to-Image Generation and cross-lingual
skill transfer would benefit significantly from
fine-grained signals alongside high-level semantics.
Our current method does not support local
alignment, and we present this as an opportunity
for future research.

Joint Cross-modal Representations. Our
work effectively aligns multilingual and multi-
modal representations from dual encoder models,
where each modality is encoded individually. Joint
cross-modal encoders generate representations
by combining multiple modality representations
through shared architectural components. The
effectiveness of our method for joint cross-modal
representations remains to be explored.

Lack of Human-verified multilingual-
multimodal evaluation set. Finding high-quality
standard multilingual evaluation sets for Audio-
Text retrieval and Text-to-Image Generation
tasks is challenging. To address this, we curated
synthetic parallel evaluation data for AudioCaps
(160K samples), Clotho (172K samples), and
MSCOCO-30K (270K samples). Due to the
large scale of the data, human verification of the
translated captions was not feasible for us. While
we use objective metrics like spBLEU and chrF++
to ensure dataset quality, these measures alone
are not sufficient, and without human verification,
some errors may persist in the evaluation dataset.

References

Pranav Aggarwal and Ajinkya Kale. 2020. Towards
zero-shot cross-lingual image retrieval.  arXiv
preprint arXiv:2012.05107.

Nahid Alam, Karthik Reddy Kanjula, Surya Guthikonda,
Timothy Chung, Bala Krishna S Vegesna, Abhipsha
Das, Anthony Susevski, Ryan Sze-Yin Chan, SM Ud-
din, Shayekh Bin Islam, et al. 2024. Maya: An
instruction finetuned multilingual multimodal model.
arXiv preprint arXiv:2412.07112.

Viraat Aryabumi, John Dang, Dwarak Talupuru,
Saurabh Dash, David Cairuz, Hangyu Lin, Bharat

Venkitesh, Madeline Smith, Kelly Marchisio, Sebas-
tian Ruder, Acyr F. Locatelli, Julia Kreutzer, Nick
Frosst, Phil Blunsom, Marzieh Fadaee, A. Ustun,
and Sara Hooker. 2024. Aya 23: Open weight
releases to further multilingual progress. ArXiv,
abs/2405.15032.

Loic Barrault, Fethi Bougares, Lucia Specia, Chiraag
Lala, Desmond Elliott, and Stella Frank. 2018. Find-
ings of the third shared task on multimodal machine
translation. In Proceedings of the Third Conference
on Machine Translation: Shared Task Papers, pages
304-323.

Jeffrey P. Bigham, Chandrika Jayant, Hanjie Ji, Greg Lit-
tle, Andrew Miller, Rob Miller, Robin Miller, Aubrey
Tatarowicz, Brandyn Allen White, Samuel White,
and Tom Yeh. 2010. Vizwiz: nearly real-time an-
swers to visual questions. Proceedings of the 23nd
annual ACM symposium on User interface software
and technology.

Fredrik Carlsson, Philipp Eisen, Faton Rekathati, and
Magnus Sahlgren. 2022. Cross-lingual and multilin-
gual CLIP. In Proceedings of the Thirteenth Lan-
guage Resources and Evaluation Conference, pages
6848-6854, Marseille, France. European Language
Resources Association.

Guanhua Chen, Lu Hou, Yun Chen, Wenliang Dai,
Lifeng Shang, Xin Jiang, Qun Liu, Jia Pan, and Wen-
ping Wang. 2023. mCLIP: Multilingual CLIP via
cross-lingual transfer. In Proceedings of the 61st An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 13028—
13043, Toronto, Canada. Association for Computa-
tional Linguistics.

Zhongzhi Chen, Guangyi Liu, Bo-Wen Zhang, Fu-
long Ye, Qinghong Yang, and Ledell Yu Wu.
2022. Altclip: Altering the language encoder in
clip for extended language capabilities. ArXiv,
abs/2211.06679.

Marta R Costa-jussa, James Cross, Onur Celebi, Maha
Elbayad, Kenneth Heafield, Kevin Heffernan, Elahe
Kalbassi, Janice Lam, Daniel Licht, Jean Maillard,
et al. 2022. No language left behind: Scaling
human-centered machine translation. arXiv preprint
arXiv:2207.04672.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171-4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Ming Ding, Zhuoyi Yang, Wenyi Hong, Wendi Zheng,
Chang Zhou, Da Yin, Junyang Lin, Xu Zou, Zhou


https://api.semanticscholar.org/CorpusID:270045533
https://api.semanticscholar.org/CorpusID:270045533
https://api.semanticscholar.org/CorpusID:270045533
https://api.semanticscholar.org/CorpusID:52804681
https://api.semanticscholar.org/CorpusID:52804681
https://api.semanticscholar.org/CorpusID:52804681
https://aclanthology.org/2022.lrec-1.739
https://aclanthology.org/2022.lrec-1.739
https://aclanthology.org/2022.lrec-1.739
https://doi.org/10.18653/v1/2023.acl-long.728
https://doi.org/10.18653/v1/2023.acl-long.728
https://doi.org/10.18653/v1/2023.acl-long.728
https://api.semanticscholar.org/CorpusID:253511222
https://api.semanticscholar.org/CorpusID:253511222
https://api.semanticscholar.org/CorpusID:253511222
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423

Shao, Hongxia Yang, et al. 2021. Cogview: Master-
ing text-to-image generation via transformers. Ad-
vances in neural information processing systems,
34:19822-19835.

Konstantinos Drossos, Samuel Lipping, and Tuomas
Virtanen. 2019. Clotho: an audio captioning dataset.
ICASSP 2020 - 2020 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing
(ICASSP), pages 736-740.

Benjamin Elizalde, Soham Deshmukh, Mahmoud Al
Ismail, and Huaming Wang. 2023. Clap learning
audio concepts from natural language supervision.
ICASSP 2023 - 2023 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing
(ICASSP), pages 1-5.

Desmond Elliott, Stella Frank, Loic Barrault, Fethi
Bougares, and Lucia Specia. 2017. Findings of the
second shared task on multimodal machine transla-
tion and multilingual image description. In Proceed-
ings of the Second Conference on Machine Transla-
tion, Volume 2: Shared Task Papers, pages 215-233,
Copenhagen, Denmark. Association for Computa-
tional Linguistics.

Desmond Elliott, Stella Frank, Khalil Sima’an, and Lu-
cia Specia. 2016. Multi30k: Multilingual english-
german image descriptions. In Proceedings of the
Sth Workshop on Vision and Language, pages 70-74.
Association for Computational Linguistics.

Fangxiaoyu Feng, Yinfei Yang, Daniel Matthew Cer,
N. Arivazhagan, and Wei Wang. 2020. Language-
agnostic bert sentence embedding. In Annual Meet-
ing of the Association for Computational Linguistics.

Samir Yitzhak Gadre, Gabriel Ilharco, Alex Fang,
Jonathan Hayase, Georgios Smyrnis, Thao Nguyen,
Ryan Marten, Mitchell Wortsman, Dhruba Ghosh,
Jieyu Zhang, Eyal Orgad, Rahim Entezari, Giannis
Daras, Sarah Pratt, Vivek Ramanujan, Yonatan Bit-
ton, Kalyani Marathe, Stephen Mussmann, Richard
Vencu, Mehdi Cherti, Ranjay Krishna, Pang Wei Koh,
Olga Saukh, Alexander J. Ratner, Shuran Song, Han-
naneh Hajishirzi, Ali Farhadi, Romain Beaumont,
Sewoong Oh, Alexandros G. Dimakis, Jenia Jitsev,
Yair Carmon, Vaishaal Shankar, and Ludwig Schmidt.
2023. Datacomp: In search of the next generation of
multimodal datasets. ArXiv, abs/2304.14108.

Jay P. Gala, Pranjal A. Chitale, AK Raghavan, Varun
Gumma, Sumanth Doddapaneni, M. AswanthKumar,
Janki Atul Nawale, Anupama Sujatha, Ratish Pudup-
pully, Vivek Raghavan, Pratyush Kumar, Mitesh M.
Khapra, Raj Dabre, and Anoop Kunchukuttan. 2023.
Indictrans2: Towards high-quality and accessible ma-
chine translation models for all 22 scheduled indian
languages. Trans. Mach. Learn. Res., 2023.

John C Gower. 1975. Generalized procrustes analysis.
Psychometrika, 40:33-51.

Kaiming He, X. Zhang, Shaoging Ren, and Jian Sun.
2015. Deep residual learning for image recognition.

10

2016 IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 770-778.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,
Bernhard Nessler, and Sepp Hochreiter. 2017. Gans
trained by a two time-scale update rule converge to a
local nash equilibrium. In Neural Information Pro-
cessing Systems.

Aashi Jain, Mandy Guo, Krishna Srinivasan, Ting Chen,
Sneha Kudugunta, Chao Jia, Yinfei Yang, and Ja-
son Baldridge. 2021. Mural: Multimodal, multitask
retrieval across languages. ArXiv, abs/2109.05125.

Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana
Parekh, Hieu Pham, Quoc Le, Yun-Hsuan Sung, Zhen
Li, and Tom Duerig. 2021. Scaling up visual and
vision-language representation learning with noisy

text supervision. In International conference on ma-
chine learning, pages 4904-4916. PMLR.

Chris Dongjoo Kim, Byeongchang Kim, Hyunmin Lee,
and Gunhee Kim. 2019. AudioCaps: Generating cap-
tions for audios in the wild. In Proceedings of the
2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long and
Short Papers), pages 119—132, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Andreas Koukounas, Georgios Mastrapas, Michael Giin-
ther, Bo Wang, Scott Martens, Isabelle Mohr, Saba
Sturua, Mohammad Kalim Akram, Joan Fontanals
Mart’inez, Saahil Ognawala, Susana Guzman, Maxi-
milian Werk, Nan Wang, and Han Xiao. 2024a. Jina
clip: Your clip model is also your text retriever.
ArXiv, abs/2405.20204.

Andreas Koukounas, Georgios Mastrapas, Bo Wang,
Mohammad Kalim Akram, Sedigheh Eslami,
Michael Gunther, Isabelle Mohr, Saba Sturua, Scott
Martens, Nan Wang, and Han Xiao. 2024b. jina-clip-
v2: Multilingual multimodal embeddings for text and
images. ArXiv, abs/2412.08802.

Black Forest Labs. 2024. Flux. https://github.com/
black-forest-labs/flux. Accessed: 2025-02-11.

Zorah Lihner and Michael Moeller. 2024. On the di-
rect alignment of latent spaces. In Proceedings of
UniReps: the First Workshop on Unifying Represen-
tations in Neural Models, pages 158-169. PMLR.

Yaoyiran Li, Ching-Yun Chang, Stephen Rawls, Ivan
Vulié, and Anna Korhonen. 2023. Translation-
enhanced multilingual text-to-image generation. In
Proceedings of the 61st Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 9174-9193, Toronto, Canada.
Association for Computational Linguistics.

Tsung-Yi Lin, Michael Maire, Serge J. Belongie, James
Hays, Pietro Perona, Deva Ramanan, Piotr Dolldr,
and C. Lawrence Zitnick. 2014. Microsoft coco:
Common objects in context. In European Conference
on Computer Vision.


https://api.semanticscholar.org/CorpusID:204800739
https://api.semanticscholar.org/CorpusID:249605738
https://api.semanticscholar.org/CorpusID:249605738
https://api.semanticscholar.org/CorpusID:249605738
http://www.aclweb.org/anthology/W17-4718
http://www.aclweb.org/anthology/W17-4718
http://www.aclweb.org/anthology/W17-4718
http://www.aclweb.org/anthology/W17-4718
http://www.aclweb.org/anthology/W17-4718
https://doi.org/10.18653/v1/W16-3210
https://doi.org/10.18653/v1/W16-3210
https://doi.org/10.18653/v1/W16-3210
https://api.semanticscholar.org/CorpusID:220347683
https://api.semanticscholar.org/CorpusID:220347683
https://api.semanticscholar.org/CorpusID:220347683
https://api.semanticscholar.org/CorpusID:258352812
https://api.semanticscholar.org/CorpusID:258352812
https://api.semanticscholar.org/CorpusID:258352812
https://api.semanticscholar.org/CorpusID:271601569
https://api.semanticscholar.org/CorpusID:271601569
https://api.semanticscholar.org/CorpusID:271601569
https://api.semanticscholar.org/CorpusID:271601569
https://api.semanticscholar.org/CorpusID:271601569
https://api.semanticscholar.org/CorpusID:206594692
https://api.semanticscholar.org/CorpusID:326772
https://api.semanticscholar.org/CorpusID:326772
https://api.semanticscholar.org/CorpusID:326772
https://api.semanticscholar.org/CorpusID:326772
https://api.semanticscholar.org/CorpusID:326772
https://api.semanticscholar.org/CorpusID:237490989
https://api.semanticscholar.org/CorpusID:237490989
https://api.semanticscholar.org/CorpusID:237490989
https://doi.org/10.18653/v1/N19-1011
https://doi.org/10.18653/v1/N19-1011
https://doi.org/10.18653/v1/N19-1011
https://api.semanticscholar.org/CorpusID:270123621
https://api.semanticscholar.org/CorpusID:270123621
https://api.semanticscholar.org/CorpusID:270123621
https://api.semanticscholar.org/CorpusID:274656285
https://api.semanticscholar.org/CorpusID:274656285
https://api.semanticscholar.org/CorpusID:274656285
https://api.semanticscholar.org/CorpusID:274656285
https://api.semanticscholar.org/CorpusID:274656285
https://github.com/black-forest-labs/flux
https://github.com/black-forest-labs/flux
https://github.com/black-forest-labs/flux
https://doi.org/10.18653/v1/2023.acl-long.510
https://doi.org/10.18653/v1/2023.acl-long.510
https://doi.org/10.18653/v1/2023.acl-long.510
https://api.semanticscholar.org/CorpusID:14113767
https://api.semanticscholar.org/CorpusID:14113767
https://api.semanticscholar.org/CorpusID:14113767

I Loshchilov. 2017. Decoupled weight decay regulariza-
tion. arXiv preprint arXiv:1711.05101.

Valentino Maiorca, Luca Moschella, Marco Fumero,
Francesco Locatello, and Emanuele Rodola. 2024a.
Latent space translation via inverse relative projec-
tion. arXiv preprint arXiv:2406.15057.

Valentino Maiorca, Luca Moschella, Antonio Norelli,
Marco Fumero, Francesco Locatello, and Emanuele
Rodola. 2024b. Latent space translation via semantic
alignment. Advances in Neural Information Process-
ing Systems, 36.

Xinhao Mei, Chutong Meng, Haohe Liu, Qiuqgiang
Kong, Tom Ko, Chengqi Zhao, Mark D. Plumbley,
Yuexian Zou, and Wenwu Wang. 2023. Wavcaps:
A chatgpt-assisted weakly-labelled audio caption-
ing dataset for audio-language multimodal research.
IEEE/ACM Transactions on Audio, Speech, and Lan-
guage Processing, 32:3339-3354.

Luca Moschella, Valentino Maiorca, Marco Fumero,
Antonio Norelli, Francesco Locatello, and Emanuele
Rodola. 2022. Relative representations enable
zero-shot latent space communication.  ArXiv,
abs/2209.15430.

Antonio Norelli, Marco Fumero, Valentino Maiorca,
Luca Moschella, Emanuele Rodola, and Francesco
Locatello. 2022. Asif: Coupled data turns uni-
modal models to multimodal without training. ArXiv,
abs/2210.01738.

Anton Obukhov, Maximilian Seitzer, Po-Wei Wu, Se-
men Zhydenko, Jonathan Kyl, and Elvis Yu-Jing
Lin. 2020. High-fidelity performance metrics for
generative models in pytorch. Version: 0.3.0, DOI:
10.5281/zenodo.4957738.

Maja Popovié. 2017. chrF++: words helping charac-
ter n-grams. In Proceedings of the Second Confer-
ence on Machine Translation, pages 612-618, Copen-
hagen, Denmark. Association for Computational Lin-
guistics.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186—
191, Brussels, Belgium. Association for Computa-
tional Linguistics.

Alec Radford. 2018. Improving language understanding
by generative pre-training.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-
try, Amanda Askell, Pamela Mishkin, Jack Clark,
Gretchen Krueger, and Ilya Sutskever. 2021. Learn-
ing transferable visual models from natural language
supervision. In International Conference on Machine
Learning.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,

11

Wei Li, and Peter J Liu. 2020. Exploring the lim-
its of transfer learning with a unified text-to-text
transformer. Journal of machine learning research,
21(140):1-67.

Janarthanan Rajendran, Mitesh M. Khapra, Sarath Chan-
dar, and Balaraman Ravindran. 2016. Bridge correla-
tional neural networks for multilingual multimodal
representation learning. In Proceedings of the 2016
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 171-181, San Diego,
California. Association for Computational Linguis-
tics.

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott
Gray, Chelsea Voss, Alec Radford, Mark Chen, and
Ilya Sutskever. 2021. Zero-shot text-to-image gener-
ation. ArXiv, abs/2102.12092.

Nils Reimers and Iryna Gurevych. 2020. Making
monolingual sentence embeddings multilingual us-
ing knowledge distillation. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing. Association for Computational
Linguistics.

Robin Rombach, A. Blattmann, Dominik Lorenz,
Patrick Esser, and Bjorn Ommer. 2021. High-
resolution image synthesis with latent diffusion mod-
els. 2022 IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pages 10674—
10685.

Elan Rosenfeld, Preetum Nakkiran, Hadi Pouransari,
Oncel Tuzel, and Fartash Faghri. 2022. Ape: Align-
ing pretrained encoders to quickly learn aligned mul-
timodal representations. ArXiv, abs/2210.03927.

Chitwan Saharia, William Chan, Saurabh Saxena,
Lala Li, Jay Whang, Emily L. Denton, Seyed
Kamyar Seyed Ghasemipour, Burcu Karagol Ayan,
Seyedeh Sara Mahdavi, Raphael Gontijo Lopes, Tim
Salimans, Jonathan Ho, David J. Fleet, and Moham-
mad Norouzi. 2022. Photorealistic text-to-image
diffusion models with deep language understanding.
ArXiv, abs/2205.11487.

Tim Salimans, Ian J. Goodfellow, Wojciech Zaremba,
Vicki Cheung, Alec Radford, and Xi Chen. 2016.
Improved techniques for training gans. ArXiv,
abs/1606.03498.

Piyush Sharma, Nan Ding, Sebastian Goodman, and
Radu Soricut. 2018. Conceptual captions: A cleaned,
hypernymed, image alt-text dataset for automatic im-
age captioning. In Annual Meeting of the Association
for Computational Linguistics.

Saba Sturua, Isabelle Mohr, Mohammad Kalim Akram,
Michael Giinther, Bo Wang, Markus Krimmel, Feng
Wang, Georgios Mastrapas, Andreas Koukounas,
Nan Wang, et al. 2024. jina-embeddings-v3: Mul-
tilingual embeddings with task lora. arXiv preprint
arXiv:2409.10173.


https://api.semanticscholar.org/CorpusID:257834090
https://api.semanticscholar.org/CorpusID:257834090
https://api.semanticscholar.org/CorpusID:257834090
https://api.semanticscholar.org/CorpusID:257834090
https://api.semanticscholar.org/CorpusID:257834090
https://api.semanticscholar.org/CorpusID:252668844
https://api.semanticscholar.org/CorpusID:252668844
https://api.semanticscholar.org/CorpusID:252668844
https://api.semanticscholar.org/CorpusID:252693369
https://api.semanticscholar.org/CorpusID:252693369
https://api.semanticscholar.org/CorpusID:252693369
https://doi.org/10.5281/zenodo.4957738
https://doi.org/10.5281/zenodo.4957738
https://doi.org/10.5281/zenodo.4957738
https://doi.org/10.18653/v1/W17-4770
https://doi.org/10.18653/v1/W17-4770
https://doi.org/10.18653/v1/W17-4770
https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.18653/v1/W18-6319
https://api.semanticscholar.org/CorpusID:231591445
https://api.semanticscholar.org/CorpusID:231591445
https://api.semanticscholar.org/CorpusID:231591445
https://api.semanticscholar.org/CorpusID:231591445
https://api.semanticscholar.org/CorpusID:231591445
https://doi.org/10.18653/v1/N16-1021
https://doi.org/10.18653/v1/N16-1021
https://doi.org/10.18653/v1/N16-1021
https://doi.org/10.18653/v1/N16-1021
https://doi.org/10.18653/v1/N16-1021
https://api.semanticscholar.org/CorpusID:232035663
https://api.semanticscholar.org/CorpusID:232035663
https://api.semanticscholar.org/CorpusID:232035663
https://arxiv.org/abs/2004.09813
https://arxiv.org/abs/2004.09813
https://arxiv.org/abs/2004.09813
https://arxiv.org/abs/2004.09813
https://arxiv.org/abs/2004.09813
https://api.semanticscholar.org/CorpusID:245335280
https://api.semanticscholar.org/CorpusID:245335280
https://api.semanticscholar.org/CorpusID:245335280
https://api.semanticscholar.org/CorpusID:245335280
https://api.semanticscholar.org/CorpusID:245335280
https://api.semanticscholar.org/CorpusID:263792597
https://api.semanticscholar.org/CorpusID:263792597
https://api.semanticscholar.org/CorpusID:263792597
https://api.semanticscholar.org/CorpusID:263792597
https://api.semanticscholar.org/CorpusID:263792597
https://api.semanticscholar.org/CorpusID:248986576
https://api.semanticscholar.org/CorpusID:248986576
https://api.semanticscholar.org/CorpusID:248986576
https://api.semanticscholar.org/CorpusID:1687220
https://api.semanticscholar.org/CorpusID:51876975
https://api.semanticscholar.org/CorpusID:51876975
https://api.semanticscholar.org/CorpusID:51876975
https://api.semanticscholar.org/CorpusID:51876975
https://api.semanticscholar.org/CorpusID:51876975

Ashish V. Thapliyal, Jordi Pont Tuset, Xi Chen, and
Radu Soricut. 2022. Crossmodal-3600: A massively
multilingual multimodal evaluation dataset. In Pro-
ceedings of the 2022 Conference on Empirical Meth-
ods in Natural Language Processing, pages 715-729,
Abu Dhabi, United Arab Emirates. Association for
Computational Linguistics.

Yusong Wu, K. Chen, Tianyu Zhang, Yuchen Hui, Tay-
lor Berg-Kirkpatrick, and Shlomo Dubnov. 2022.
Large-scale contrastive language-audio pretraining
with feature fusion and keyword-to-caption augmen-
tation. ICASSP 2023 - 2023 IEEE International Con-
ference on Acoustics, Speech and Signal Processing
(ICASSP), pages 1-5.

Zhiyong Yan, Heinrich Dinkel, Yongqing Wang,
Jizhong Liu, Junbo Zhang, Yujun Wang, and Bin
Wang. 2024. Bridging language gaps in audio-text
retrieval. ArXiv, abs/2406.07012.

Chenglin Yang, Celong Liu, Xueqing Deng, Dong-
won Kim, Xing Mei, Xiaohui Shen, and Liang-
Chieh Chen. 2024. 1.58-bit flux. arXiv preprint
arXiv:2412.18653.

Fulong Ye, Guang Liu, Xinya Wu, and Ledell Wu. 2024.
Altdiffusion: A multilingual text-to-image diffusion
model. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 38, pages 6648—-6656.

Boogeo Yoon, Youhan Lee, and Woonhyuk Baek. 2022.
Coyo-align. https://github.com/kakaobrain/
coyo-align.

Yuya Yoshikawa, Yutaro Shigeto, and Akikazu
Takeuchi. 2017. STAIR captions: Constructing a
large-scale Japanese image caption dataset. In Pro-
ceedings of the 55th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 2: Short
Papers), pages 417-421, Vancouver, Canada. Associ-
ation for Computational Linguistics.

Xiaohua Zhai, Xiao Wang, Basil Mustafa, Andreas
Steiner, Daniel Keysers, Alexander Kolesnikov, and
Lucas Beyer. 2021. Lit: Zero-shot transfer with
locked-image text tuning. 2022 IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition
(CVPR), pages 18102—-18112.

Yufan Zhou, Ruiyi Zhang, Changyou Chen, Chunyuan
Li, Chris Tensmeyer, Tong Yu, Jiuxiang Gu, Jinhui
Xu, and Tong Sun. 2022. Towards language-free
training for text-to-image generation. In Proceedings
of the IEEE/CVF conference on computer vision and
pattern recognition, pages 17907-17917.

A Potential Risks

There has been investigation of various biases (gen-
der, race, etc.) for multimodal models primarily
in English language. Our method extends the ca-
pability of multimodal models to many languages
including low resource languages. However, there
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have been very few works to detect and mitigate
biases for these languages. Additionally, since we
use English language as anchor it is possible that
the biases present in English multimodal model can
manifest in the resulting multilingual multimodal
model.

B Model & Data License

All models that are taken from sentence-
transformers® library (Multilingual CLIP (MCLIP-
ST), Multilingual MPNET (M-MPNET), Multilin-
gual MiniLM (M-MiniLM)), LaBSE, KakaoBrain-
ALIGN, Jina-CLIP-v1, and LAION-CLAP (CLAP-
General, CLAP-HTSAT-Fused) are under Apache
License 2.0. For model FLUX.1-dev, generated
outputs can be used for personal, scientific, and
commercial purposes as described in the FLUX.1
[dev] Non-Commercial License. Multilingual
CLIP (Carlsson et al., 2022), OpenAI-CLIP, and
IndicTrans2 are under MIT License. Jina-CLIP-
v2, Jina-embeddings-v3, AYA-23-35B are under
CC-by-NC-4.0. Use of any combination of the
models aligned using our method must adhere to
the license of all individual models.

We release our extended datasets in new
languages for AudioCaps, Clotho, and
MSCOCO02014-30K  under CC-By-NC-4.0
License, adhering to source dataset licenses and
models used to generate data (AudioCaps- MIT
License, Clotho- Tampere University License
(non-commercial with attribution), MSCOCO-
CC-By-4.0).

C List supported languages for
multilingual and/or multimodal models

Different multilingual text encoder and multilin-
gual CLIP models support different languages. For
fairer comparison, we also report metrics averaged
on model-supported languages (e.g. Table 3 and
Table 11). Table 5 shows a list of models and their
supported languages.

D Preliminary experiments on
Text-to-Image Retrieval

Table 6 shows our method outperforms all other
training objectives on Text-to-Image retrieval for
XTD dataset. The impact of high A is less signifi-
cant for Text-to-Image retrieval (equal performance

8https://www.sbert.net/
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Models

Supported languages

LaBSE (Feng et al., 2020)

Jina-CLIP-v2 (Koukounas et al., 2024b), Jina-Text-v3 (Sturua et al., 2024)

Multilingual CLIP (Carlsson et al., 2022)- LaBSE ViT-L/14, XLM-R-

Large ViT-B/32, XLM-R ViT-L/14, XLM-R-Large ViT-B/16+

M-MPNET, M-MiniLM, MCLIP-ST (Reimers and Gurevych, 2020)

af, ht, pt, am, hu, ro, ar, hy, ru, as, id, rw, az, ig, si, be, is, sk, bg, it,
sl, bn, ja, sm, bo, jv, sn, bs, ka, so, ca, kk, sq, ceb, km, sr, co, kn, st,
cs, ko, su, cy, ku, sv, da, ky, sw, de, la, ta, el, Ib, te, en, lo, tg, eo, It,
th, es, lv, tk, et, mg, tl, eu, mi, tr, fa, mk, tt, fi, ml, ug, fr, mn, uk, fy,
mr, ur, ga, ms, uz, gd, mt, vi, gl, my, wo, gu, ne, xh, ha, nl, yi, haw,
no, yo, he, ny, zh, hi, or, zu, hmn, pa, hr, pl

ar, bn, zh, da, nl, en, fi, fr, ka, de, el, hi, id, it, ja, ko, lv, no, pl, pt,
ro, ru, sk, es, sv, th, tr, uk, ur, vi

af, am, ar, az, bg, bn, bs, ca, cs, cy, da, de, el, en, es, et, fa, fa-AF, fi,
fr, gu, ha, he, hi, hr, ht, hu, hy, id, is, it, ja, ka, kk, kn, ko, It, v, mk,
ml, mn, ms, mt, nl, no, pl, ps, pt, ro, ru, si, sk, sl, so, sq, sr, sv, sw,
ta, te, th, tl, tr, uk, ur, uz, vi, zh, zh-TW

ar, bg, ca, cs, da, de, el, en, es, et, fa, fi, fr, fr-ca, gl, gu, he, hi, hr,
hu, hy, id, it, ja, ka, ko, ku, 1t, Iv, mk, mn, mr, ms, my, nb, nl, pl, pt,
pt-br, ro, ru, sk, sl, sq, s, sv, th, tr, uk, ur, vi, zh-cn, zh-tw, zh

Table 5: List of Multilingual text encoder and multilingual multimodal models and it’s supported languages.

for A = 1 and A = 44) than in Image-to-Text re-
trieval (0.6% gain in Avg. Recall@10) shown in
Table 2.

E Data scaling experiments

Table 8 and 7 show that that our method can learn
a strong alignment even with only 1000 English
sentences for both I2T and T2I retrieval on XTD
dataset. On average across 11 languages, there
is insignificant improvement when data is scaled
from 50K (89.2% T21, 89.1% 12T) to 2M sentences
(89.3% T21, 89.5% 127T).

F Image-Text Retrieval: Additional
Results

F.1 Language-wise Recall on XM3600 &
Multi30K

Tables 9, 10 show language-wise performance
of our M2M-aligned models on XM3600 and
Multi30K datasets respectively. Interestingly, CLIP
x M-MPNET outperforms Jina-CLIP-vl x M-
MPNET by 3.7% 12T and 0.5% T2I on Multi30K
dataset. Please refer to Table 13 for XTD I2T
language-wise breakdown.

F.2 Results on model-supported languages

Similar to our results for Image-Text retrieval in
Table 1, in Table 11, we report Recall@10 met-
ric averaged only on languages supported by the
respective multilingual text encoder/mutlilingual
CLIPs. Supported languages for each model is
listed in Table 5.

F.3 Reproducibility experiments

To show that our method’s performance is repro-
ducible. We run experiments twice on our method
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for Image-Text retrieval task, and report mean and
standard deviation in Tables 12, 13 to show that the
performance is stable across varying random seeds.
Rows M1-M6 are defined in Table 1.

G Curation of Synthetic evaluation
dataset

For AYA-23-35B, we use translation prompts to
generate synthetic data following (Alam et al.,
2024). We experiment with zero-shot and 3-shot
prompts. We use FLoRes-200 dataset to assess the
quality of translation prompts. Zero-shot prompt
is fairly straightforward method- we pass the input
sentence and prompt the model to generate transla-
tion in target language. For 3-shot prompt, for each
input english text for which translation has to be
generated, we pick 3 examples. These 3 examples
are picked from sampling set- created by combin-
ing FLoRes-200 validation and test set (excluding
current input text). We compute cosine similarity
between input text and sampling set using LaBSE,
and select top 3 texts and it’s corresponding trans-
lation of the target language as a few-shot example.
The zero-shot translation prompt performs better on
the FLoReS-200 dataset (Costa-jussa et al., 2022)
across 14 languages®, achieving a mean spBLEU of
39.7 and mean chrF++ of 51.5, compared to the 3-
shot prompt with mean spBLEU of 37.2 and mean
chrF++ of 47.4. Given these results, we apply the
zero-shot prompt to generate Aya-23-35B transla-
tions for all 22 languages. Language-wise spBLEU
and chrF++ scores for AYA-23-35B are shown in
Table 16, and for backtranslated Indic translations
are shown in Table 17. Zero-shot prompt and 3-

9ar, zho-Hant, fr, de, he, hi, it, jp, ko, pl, ru, es, tr, vi



Loss MLP layers Skip Conn. Avg. de en es fr it ip ko pl ru tr zh

MSE 2 No 889 899 943 905 90.1 905 822 853 90.6 86.1 89.0 89.7
MSE 2 Yes 88.8 89.7 941 904 90.0 90.9 819 852 90.1 86.1 889 89.2
A1 Latign + P11 Lstr 2 No 89.2 909 944 91.1 895 90.8 824 854 906 87.1 889 90.1
A1 Latign + P11 Lstr 2 Yes 89.2 905 945 914 899 O91.1 823 859 90.8 86.5 88.1 90.1
A1 Latign + P11 Lstr 4 No 89.1 899 944 90.8 899 910 824 856 90.8 86.7 885 90.1
A1 Latign + P11 Lstr 1 No 89.2 904 944 909 903 91.1 824 855 91.0 86.7 889 90.0
A2 Latign + P11 Lstr 2 No 89.2 904 944 904 905 913 824 857 916 864 888 892
Similarity Loss 2 No 88.9 903 944 902 90.0 904 821 854 906 865 83.8 893
L1 2 No 86.2 872 940 88.1 874 87.6 788 81.0 867 833 859 883

Table 6: Comparison of Recall@ 10 metric across different training losses, and settings- varying number of linear
layers, presence or absence of residual connections (Skip Conn.) between linear layers for M2M-aligned Jina-CLIP-
vl xM-MPNET on XTD dataset for Text-to-Image retrieval task. \y =44, Ao = 1,5, = 1.

Scale Avg. de en es fr it ip ko  pl ru tr zh

1K 858 86.0 923 863 869 86.6 803 819 882 828 858 869
5K 88.5 89.7 937 902 89.0 904 825 846 90.1 852 888 89.4
10K 88.8 894 943 903 89.1 91.0 82.1 857 90.8 854 883 899
50K 892 90.6 943 909 89.7 91.0 823 86.0 91.0 864 889 899
100K 89.0 89.7 947 90.8 90.0 91.2 819 856 90.7 858 889 89.6
250K 89.2 909 944 911 895 908 824 854 90.6 87.1 889 90.1
2M 89.3 905 94.8 905 90.0 91.1 826 86.1 91.0 864 892 90.5

Table 7: Effect of scaling number of sentences in the training data on the Recall@ 10 metric for the XTD Text-to-
Image Retrieval task using our M2M-aligned Jina-CLIP-vl x M-MPNET model.

Scale  Avg. de en es fr it ip ko pl ru tr zh

IK 84.6 854 912 857 850 854 780 803 864 816 854 86.3
5K 88.2 884 952 89.8 837 893 81.5 835 90.1 856 887 89.0
10K 88.8 889 956 905 89.0 905 81.6 845 909 863 90.0 89.5
50K 89.1 89.1 951 90.7 894 90.5 81.8 854 909 86.7 90.1 90.4
100K 89.0 89.3 952 90.7 894 90.1 822 849 909 865 90.0 90.3
250K  89.3 894 95.6 90.7 893 90.6 823 852 915 865 904 904
2M 89.5 893 955 91.6 895 911 833 859 908 87.3 90.1 904

Table 8: Effect of scaling number of sentences in the training data on the Recall @ 10 metric for the XTD Image-to-
Text Retrieval task using our M2M-aligned Jina-CLIP-vl x M-MPNET model.

Retrieval Type Avg ar bn cs da de el en es fa fi fil
T2I 664 686 313 732 796 814 674 799 758 762 715 10.0
12T 729 772 363 800 862 88l 763  85.1 823 819 847 18.0
Retrieval Type fr he hi hr hu id it ja ko mi nl no
T2I 815 751 602 793 777 85 793 787 724 07 749 792
12T 879 830 706 867 837 899 8.3 8.1 89 1.1 802 862
Retrieval Type pl pt quz ro ru N% SW te th tr uk vi zh
T21 765 713 27 80.0 823 782 45 291 791 747 765 818 809
12T 833 834 64 876 84 80 93 388 86 815 87 889 869

Table 9: Recall@10 across 36 languages for XM3600 on I2T and T2I retrieval task using M2M-aligned Jina-CLIP-
vl x M-MPNET.
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T2I 12T

Model
ode Avg cs de en fr Avg cs de en fr

Jina-CLIP-vl X M-MPNET  90.1 882 89.6 924 903 897 873 894 920 90.1
CLIP x M-MPNET 90.6 884 890 934 914 920 898 912 949 923

Table 10: Recall@10 across 4 languages for Multi30K on I2T and T2I retrieval task using M2M-aligned Jina-CLIP-
vl x M-MPNET.

XM3600 Multi30K

Models T2 DT T2A DT

English-only Zero-shot Baseline Models

El: CLIP (ViT-L 336px) 773 871 935 958
E2: Jina-CLIP-v1 857 91.8 935 93.6
E3: K-ALIGN 87.0 920 959 958

Multilingual Multimodal Models Trained on
Supervised Multimodal and/or Multilingual Data

T2: MCLIP-ST 576 711 80.7 834
T5: LABSE ViT-L/14 770 875 909 937
T6: XLM-R-L ViT-B/32 796 8.0 892 910
T7: XLM-R ViT-L/14 809 89.6 922 944
T8: XLM-R-L ViT-B/16+ 865 919 939 942
T9: Jina-CLIP-v2 90.1 939 943 945

M2M-aligned Multilingual Multimodal models
Trained on only English Text data

MI: Jina-CLIP-vl x LaBSE 648 676 787 752
M2: Jina-CLIP-vl X M-MiniLM  68.6 755 87.8 857
M3: Jina-CLIP-v1 X JinaTextV3 75.1 80.2 89.0 883
M4: Jina-CLIP-vl x M-MPNET 769 838 90.0 89.7
MS5: CLIP X M-MPNET 646 771 90.6  92.0
M6: K-ALIGN x M-MPNET 68.7 787 904  90.0

—

Table 11: Performance of M2M-align models in comparison with English and Mutlingual CLIP-like models on
Recall@ 10 metric for supported languages for XM3600 and Multi30K datasets.

Models Avg. de en es fr it ip ko p! ru tr zh

Ml 82.6+0.3 82.8+£04 86.7+0.4 83.8+0.1 84.6+0.2 84.7+02 76.5£04 80.5+0.6 84.8+0.4 80.2+0.2 81.1+£0.6 83.3+£0.4
M2 86.5+0.0 87.4£0.1 939403 88.5+04 87.9+0.1 87.440.1 80.7£0.1 75.040.2 89.2+0.1 84.9+0.1 86.0+0.3 90.6£0.6
M3 88.0+£0.2 91.0£0.0 95440.1 90.1+£0.8 90.5+0.6 91.24+0.1 80.0£0.6 80.3+0.3 90.2+0.1 859+0.4 87.8+0.6 85.2+0.4
M4 89.240.0 90.7£04 94540.1 90.9+04 89.940.6 90.9+0.1 82.2+04 858405 90.9+04 86.7+0.6 88.840.2 90.1£0.0
M5 84.3+0.1 85.1£04 91.14+0.1 85.8+0.2 854404 86.1+0.4 77.9+0.1 80.44+04 84.8+0.1 81.74£0.1 84.7+02 84.2+0.4
M6 86.8+0.0 87.3£04 929402 89.7+0.1 87.9+0.1 88.4+0.1 79.0£04 83.14+0.1 88.7+0.1 83.3+0.1 86.9+0.1 87.7£0.2

Table 12: Performance of M2M-aligned Jina-CLIP-vl x M-MPNET on Recall @ 10 metrics averaged (£ standard
deviation) over 2 different runs across 11 languages for Text-to-Image retrieval task on XTD dataset.

Models Avg. de en es fr it ip ko p! ru tr zh

M1 80.1+0.0 79.6£0.3 87.34+0.0 81.0+£0.1 81.8+0.1 83.3+0.3 72.1+£0.1 758405 82.7+0.0 77.6£0.3 79.5+0.1 80.7+£0.4
M2 84.91+0.1 85.1£0.1 94.0+02 86.2+0.3 857£0.1 86.9+0.4 79.7£0.1 699409 88.2+0.1 84.0£0.1 85.6+02 88.7£0.3
M3 87.6+0.1 90.6£0.0 94.74+0.1 90.2+0.2 89.54+0.1 90.2+0.2 79.9+0.5 80.440.1 88.1+0.1 84.9+04 87.3+02 87.3£0.3
M4 89.3+0.0 89.3£0.1 958402 90.8+0.1 89.5£0.2 90.6+0.0 82.6+£04 854402 91.4+0.2 86.4£0.1 90.24+0.4 90.5+0.1
M5 85.8+0.1 859+£0.2 93.840.1 89.0+£0.0 87.2+0.5 88.7+0.4 76.8+£0.1 82.04+0.4 86.8+0.1 82.6+0.1 85.3+0.1 86.4+£0.1
M6 86.1+£0.1 86.3£0.3 94.6+0.5 883+04 87.6+0.3 89.0+£0.1 78.1+£0.1 82240.1 85.9+0.2 823+0.5 84.840.3 87.3£0.0

Table 13: Performance of M2M-aligned Jina-CLIP-v1 x M-MPNET on Recall@ 10 metrics averaged (£ standard
deviation) over 2 different runs across 11 languages for Image-to-Text retrieval task on XTD dataset.
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shot prompt templates are listed in Table 14 and 15.

You are an expert in translations. Your task
is to accurately translate the following text
into [target language].

Input text: [input test sentence]
Translation:

Table 14: Zero-shot prompt used generating translation
from AYA-23-35B. Text in square bracket is a place-
holder for actual input

You are an expert in translations. Your task
is to accurately translate the following text
into [target language].

Here are a few examples to help you
understand the format:

Example 1:
Input text: [input text 1]
Translation: [translation 1]

Example 2:
Input text: [input text 2]
Translation: [translation 2]

Example 3:
Input text: [input text 3]
Translation: [translation 3]

Now, translate the following text:

Input text: [input test sentence]
Translation:

Table 15: 3-shot prompt template used to compare effect
of few-shots on translation quality for AYA-23-35B.
Text in square bracket is a placeholder for actual input.

H CLAP

H.1 Language-wise Recall on Synthetic
Evaluation Dataset.

We show language-wise performance of M2M-
aligned CLAP-general x M-MPNET on Audio-
Caps in Table 18 and Clotho in Table 19.

H.2 Quantifying the qualitative analysis and
more examples

We see in Table 3 that M2M-aligned models don’t
match the performance of baseline CLAP mod-
els. For English, qualitative analysis revealed that
the retrieved audio for a query text had high se-
mantic similarity. To verify our qualitative analy-
sis, we perform following quantitative test. For
each query text, we retrieve top five audios us-
ing M2M-aligned model CLAP-General x M-
MPNET. Next, we compute cosine similarity be-
tween query text and captions of retrieved audio
using CLAP-general model. On average, we see
higher cosine similarity for CLAP-general x M-
MPNET (0.7) compared to CLAP-general (0.65),
demonstrating semantic agreement between CLAP-
general and retrieved audio. More examples are
listed in Table 20.

I Cross-lingual Text-to-Image
Generation.

Both Inception score and FID scores are computed
using torch-fidelity (Obukhov et al., 2020) pack-
age '°. Language-wise FID scores shown in Ta-
ble 21. For English, our aligned model gives bet-
ter FID score than FLUX-CLIP though both are
still high compared to FLUX (upper-bound/skyline
model). More examples of generated images are
shown in Figure 4, Figure 5 & Figure 6.

Ohttps://github.com/toshas/torch-fidelity


https://github.com/toshas/torch-fidelity

Prompts Avg. ar zh fr de he hi it ip ko pl ru es tr vi
spBLEU

3-shot prompt 372 467 206 673 500 372 8.9 648 254 167 226 565 475 360 199
zero-shot prompt  39.7 216 21.3 692 562 556 282 542 286 17.0 337 516 519 29.1 374
chrF++

3-shot prompt 474 365 314 630 558 71.8 186 803 294 177 390 611 552 60.0 440
zero-shot prompt ~ 51.5  29.0 263 645 58.6 776 49.0 780 314 223 410 585 578 63.8 62.7

Table 16: spBLEU and chrF++ scores for zero-shot and 3-shot prompts for FLoRes-200 using AYA-23-35B model.
zh in the table denotes Chinese Traditional (zh-Hant).

bn

Test-Dataset ~ Avg. gu hi kn ml mr ne pa ta te ur
spBLEU

AudioCaps 48.7 383 243 393 562 795 19.1 330 531 643 100.0  28.1
CLOTHO 474 463 514 514 315 287 679 514 481 514 433 50.4
chrF++

AudioCaps 63.6 606 540 586 73.0 742 377 469 821 61.5 100.0 515
CLOTHO 59.6 438 640 659 460 524 680 605 653 659 58.2 65.2

Table 17: spBLEU and chrF++ scores on English backtranslations of AudioCaps and Clotho dataset using Indic-

Trans2 models.

Retrieval Type Avg ar bn cs de el en fr gu he hi id it
T2A 483 457 232 574 582 552 712 605 38 485 526 586 579
A2T 60.8 61 352 658 688 689 815 695 531 61.8 632 683 673
Retrieval Type ja kn ko ml mr nl ne pa fa pl pt ro ru
T2A 502 237 481 262 464 61 339 224 546 52 61.1 584  49.6
A2T 66.7 382 631 432 619 699 474 348 696 659 705 68 64.8

Retrieval Type es ta te tr uk ur vi zh (hans) zh (hant)

T2A 595 294 254 563 461 444 564 53.1 50.8

A2T 675 429 387 638 621 573 672 69.7 67.9

Table 18: Recall @10 metric across 34 languages on AudioCaps dataset for Audio-to-Text (A2T) and Text-to-Audio

(T2A) retrieval task using M2M-aligned CLAP-general x M-MPNET model.

Retrieval Type Avg ar bn cs de el en fr gu he hi id it
T2A 333 343 188 375 377 359 478 404 259 341 36.8 398 382
A2T 39.6 42 241 415 432 412 506 446 348 389 425 448 441
Retrieval Type ja kn ko ml mr nl ne pa fa p! pt ro ru
T2A 386 172 35 208 293 387 239 179 37 36.6 394 383 355
A2T 455 256 428 277 369 448 31 249 435 424 443 434 447

Retrieval Type es ta te tr uk ur vi zh (hans) zh (hant)

T2A 39.7 209 178 365 337 313 39 40 39.8

A2T 456 279 246 427 42 375 45 453 449

Table 19: Recall@ 10 metric across 34 languages on Clotho dataset for Audio-to-Text (A2T) and Text-to-Audio
(T2A) retrieval task using M2M-aligned CLAP-general x M-MPNET model.
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Query Text

Rank 1

Captions of Retrieved Audios

Rank 2

Rank 3

Ground Truth (Rank 9)

Water flows and
people speak in the
distance

Water splashing
with multiple voices
in background

Water is trickling,
and a man talks

A river stream flow-
ing followed by a
kid talking

Running water and distant
speech

A man shouting as

Splashing water and

A large volume of

A stream of water rushing

a stream of water  quiet murmuring water is rushing,  asaman shouts in the dis-
splashes and a crowd splashing and gur-  tance

of people talk in the gling, and an adult

background male speaks briefly

A plastic clack fol- Bubbles gurgling A stream of water = Water rushing loudly

lowed by a man talk-
ing as a stream of
water rushes and a
crowd of people talk
in the background

and water spraying
as a man speaks
softly while crowd
of people talk in the
background

rushing and trickling
followed by a young
man whooshing

while a man yells in the
background

Water splashes and a
man speaks

Water trickling and
faint, muffled speech

Sounds of a river
with man briefly
mumbling

A large volume of water
is rushing fast, splashing
and roaring, and an adult
male shout in the back-
ground

Water is falling,
splashing and gur-
gling, a crowd of

people talk in the

Water spraying and
gurgling as a man
speaks and a crowd
of people talk in the

A stream burbles
while a man speaks

Water flows and people
speak in the distance

background, and an  background
adult male speaks in
the foreground
Query Text Rank 1 Rank 2 Rank 3 Ground Truth (Rank 10)
Frogs croaking  Frogs croaking and  Frogs croaking with ~ Nature sounds with a frog

A frog croaks with
speech and
thumping noises in
the background

together with a man
speaking followed
by rustling

a humming with in-
sects vocalizing

rustling in the back-
ground

croaking

A man talking
followed by plastic
clunking and rattling
as frogs croak and

crickets chirp

A frog croaking and
insects  vocalizing

with a humming

Two instances of
bird wings flapping
while frogs are

croaking

A frog chirping as a
woman talks over an inter-
com and water splashes in
the background followed
by wood falling on a hard
surface

A  man talking  Acroaking frogwith A group of frogs A frog chirping with dis-

followed by plastic  brief bird chirps croaking as plastic  tant speaking of a person

creaking and clack- flutters in the back-

ing as frogs croak ground

and crickets chirp

Several frogs chirp-  Crickets chirping  Frogs chirp loudly A frog croaking as a

ing near and far with  very loudly woman talks through an

men speaking and intercom while water

some banging is splashing and wood
clanks in the background

A man speaking  Ambient horror ~ High pitched croak- A frog croaks with speech

as frogs croak and  music plays as birds ~ ing of frogs with and thumping noises in

crickets chirp while ~ chirp and frogs  some rustling the background

a motorboat engine  croak

runs alongside sev-
eral plastic clacks
and clanging

Table 20: Captions of Audio retrieved for a Query text (Text-to-Audio retrieval task) using M2M-aligned CLAP-
General x M-MPNET
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Models FID-30K (1)

en fr el he id ko fa ru es hi
FLUX 234
FLUX-T5 23.4
FLUX-CLIP 40.9

FLUX x M-MPNET 369 41.8 466 469 400 454 430 472 411 451

Table 21: FID scores computed on our MSCOCO 30K synthetic multilingual evaluation dataset.

-

e

(a) FLUX (en) (b) Ours (en) (c) Ours (el) (d) Ours (fa) (e) Ours (fr) (f) Ours (he)

(g) FLUX CLIP (en) (h) Ours (ru) (i) Ours (hi) (j) Ours (id) (k) Ours (ko) (1) Ours (es)

Figure 4: Images generated by FLUX text-to-image model using the prompt “a snow caped mountain is behind a
large lake” in multiple languages. Our M2M-aligned model produces similar quality images compared to baseline
FLUX (both T5 and CLIP encoders), and FLUX-CLIP models.

(g) FLUX CLIP (en) (h) Ours (ru) (i) Ours (hi) (j) Ours (id) (k) Ours (ko) (1) Ours (es)

Figure 5: Images generated by FLUX text-to-image model using the prompt “Assortment of colorful flowers in
glass vase on table.” in multiple languages. Our M2M-aligned model produces similar quality images compared to
baseline FLUX (both T5 and CLIP encoders), and FLUX-CLIP models.
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(1) TS prompt: “A photo of:

Ours (el) Ours (fa)

FLUX CLIP (en) Ours (ru) Ours (hi) Ours (id) Ours (ko) Ours (es)

(2) T5 prompt: “add a book:

4
SAANTN
FLUX-TS5 (en) Ours (en) Ours (el) Ours (fa) Ours (fr) Ours (he)

FLUX CLIP (en) Ours (ru) Ours (hi) Ours (id) Ours (ko) Ours (es)

(3) TS prompt: “add a book on bed: ”

Ours (en) Ours (el) Ours (fa) Ours (fr) Ours (he)

FLUX CLIP (en) Ours (ru) Ours (hi) Ours (id) Ours (ko) Ours (es)

Figure 6: Images generated by FLUX models using the prompt “A cat sitting on a bed behind a book” in multiple
languages. Our M2M-aligned model produces similar images but with missing objects (book, bed) compared to
FLUX models (TS5 and CLIP encoders). TS prompts help mitigate this issue, as shown in sub-figures (2) & (3).
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