
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

PARAMETER MONTE CARLO TREE SEARCH: EFFI-
CIENT CHIP PLACEMENT VIA TRANSFER LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Automated chip placement is an important problem in enhancing the design and
effectiveness of computer chips. Previous approaches have employed transfer
learning to adapt knowledge obtained via machine learning from one chip place-
ment task to another. However, these approaches have not notably reduced the
necessary chip design time, which is crucial for minimizing the total resource
utilization. This paper introduces a novel transfer learning approach called Pa-
rameter Monte Carlo Tree Search (PMCTS) that utilizes MCTS to transfer the
learned knowledge from deep reinforcement learning (RL) models trained on one
chip design task to another chip design by searching directly over the model pa-
rameters to generate models for efficient chip placement. We employ MCTS to
escape the local optima reached by training from scratch and fine-tuning meth-
ods. We evaluate our methodology on four chip design tasks from the literature:
Ariane, Ariane133, IBM01, and IBM02. Through extensive experiments, we find
that our approach can generate models for optimized chip placement in less time
than training from scratch and fine-tuning methods when transferring knowledge
from complex chip designs to simpler ones.

1 INTRODUCTION

Chip placement is a fundamental and time-consuming stage in the chip design process (Cheng et al.,
2022). The process involves placing the various components, such as macros and standard cells, of
a netlist file, which contains a logical description of a circuit’s interconnections, in specific positions
on the chip layout (Ellis-Monaghan & Gutwin, 2003). Standard cells refer to the fundamental logic
gates such as NAND, NOR, and XOR, while macros represent functional blocks like static random-
access memory (SRAM). The goal of placement is to minimize power, performance, and area (PPA)
metrics while adhering to restrictions like placement density and routing congestion (Cheng & Yan,
2021). This is a longstanding problem, but the exponential growth of artificial intelligence (AI)
technology has generated an increased demand for advanced computational hardware. However,
due to the end of Moore’s Law and Dennard scaling, it is essential to shift towards specialized
architecture to cope with the rapidly increasing computational requirements of AI (Mirhoseini et al.,
2020). As such, AI-based techniques are expected to accelerate the chip design cycle, establishing a
mutually beneficial connection between hardware and AI.

Transfer learning methods can prove beneficial in reducing the cost and resource requirements of
developing machine learning (ML) models from scratch for novel domains (You et al., 2023). These
methods utilise pre-existing model weights rather than random initialization to reduce the computing
demand and enable faster adaptation, which in turn can support more design iterations (Cao et al.,
2010). Many transfer learning approaches exist, including zero-shot learning (Xian et al., 2017) and
domain adaptation (Farahani et al., 2021) to transfer knowledge from a source domain to a target
domain. However, zero-shot learning often requires the class sets or features to be identical, and in
the case of domain adaptation approaches, a degree of parallelism between the domains is necessary.
As such, for chip design tasks, fine-tuning has been the most common approach Mirhoseini et al.
(2020), though they have not demonstrated the expected increases in speed.

Search algorithms have played a crucial role in domains such as Neural Architecture Search (NAS)
(Li & Peng, 2020) and Hyper Parameter Optimization (HPO) (Alibrahim & Ludwig, 2021). These
approaches are less commonly applied directly to the parameters of a model (Singamsetti et al.,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

2021; Mahajan & Guzdial, 2022; Doosti & Guzdial, 2023). Building on prior search-based trans-
fer learning approaches, we propose an approach for chip placement that directly updates network
parameters via search.

Our study introduces a novel transfer learning method based on Monte Carlo Tree Search (MCTS)
and MCTS using Upper Confidence Bounds for Trees (UCB) to balance exploration with exploita-
tion (Kocsis & Szepesvári, 2006; Auer et al., 2002). MCTS is probabilistic and heuristic-driven,
allowing it to adapt to the most promising search regions (Deng & Wu, 2023) and guiding our
proposed approach to effectively explore inside promising search regions. Our approach aims at
directly optimizing model parameters within a complex search space. It iteratively updates a search
tree by simulating possible outcomes for an RL agent in the chip design environment. Every node
in the tree corresponds to two networks: a policy network and a value network, and each node is
associated with a cost value: the performance of these networks in a specific chip design environ-
ment. The policy network, denoted as πθ(a|s), determines the probability of selecting an action a
in a given state s, with the parameter θ influencing this behaviour, and the value network provides
an estimation of the expected reward for the chip placement. The cost value is the weighted total of
wirelength, congestion, and density costs associated with the chip design task; a node is considered
more efficient if it creates chip placements with less cost value.

The contributions of this paper are summarized as follows:

• We propose a novel transfer learning-based optimization approach named Parameter Monte
Carlo Tree Search (PMCTS) utilizing the MCTS algorithm to dynamically update the pa-
rameters of a neural network to adapt models with a relatively small amount of computation
and which can generate efficient chip placements.

• We validate the proposed methodology across four distinct chip design tasks—Ariane, Ar-
iane133, IBM01, and IBM02—highlighting its effectiveness and stability in diverse chip
design tasks.

• We show that transferring knowledge from a complex chip design task, such as IBM02, to
a simpler chip design, like Ariane, outperforms both training from scratch and fine-tuning
approaches in terms of creating chip placements with reduced cost value in lesser time-
frames. However, transferring knowledge from a simpler chip design to a more complex
one does not yield the same benefits.

2 RELATED WORK

This section covers related work in transfer learning, parameter search, and chip placement prob-
lems.

2.1 TRANSFER LEARNING

Transfer learning using deep neural networks (DNNs) refers to the process of transferring knowledge
and parameters from a DNN trained on a source dataset to another DNN aiming to address a similar
target problem (Shafahi et al., 2019). Several methods, including zero-shot (Xian et al., 2017),
one-shot (Fei-Fei et al.), and few-shot (Ravi & Larochelle, 2017) approaches, exist to transfer
knowledge from a source domain to a target domain. However, these approaches often rely on
manually authored features or significant additional data to effectively guide the knowledge transfer
process. Our proposed approach does not require the incorporation of additional manually authored
features or significant additional training to adapt to a target domain.

2.2 PARAMETER OPTIMIZATION

Hyperparameter Paramater Optimization (HPO) is the most common search problem associated with
DNNs (Feurer & Hutter, 2019). However, our primary focus is on optimizing parameters rather than
hyperparameters.

The majority of current neural network (NN) research has been on deep learning, where the pri-
mary approach for training NNs is backpropagation (Rumelhart et al., 1986), an algorithm used to
compute the gradient of the loss function. Backpropagation-based approaches have been useful in

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

different domains for determining optimal parameters. However, backpropagation can often become
stuck in local minima (Siddique & Tokhi, 2001). Further, the optimal parameters for backpropaga-
tion appear to differ depending on the specific scenario. Sparse regularization methods in NNs focus
on a subset of the network to enhance computational and space efficiency without compromising
performance by addressing the issue of redundant and correlated structures. The backpropagation
technique proposed by Sun et al. (2017) involves computing a very small but vital part of the gra-
dient and modifying only the corresponding small portion of the parameters in each update. This
approach results in highly sparsified gradients that only modify highly relevant parameters for the
given training sample. Additionally, pruning strategies may compress a model without significantly
reducing its capacity for prediction (Yeom et al., 2021). Our approach can be understood as a type
of sparse optimization, where we rely on search to identify parameters for optimization.

Neuroevolution stands as an alternate optimization approach that involves the training of NNs using
evolutionary algorithms. Making use of evolutionary search facilitates significant functionalities
that are not commonly available to gradient-based methodologies, such as the ability to learn neural
network’s activation functions and architectures (Stanley et al., 2019). Aly et al. (2019) introduce
an evolutionary metaheuristic aimed at optimizing DNNs. The objective is to search multiple regions
of the search space while preserving a specific distance between those regions to guarantee diversity.
Zhou et al. (2024) introduce a neuroevolutionary diversity policy search method for multi-objective
reinforcement learning (RL) challenges, utilizing gradient-based genetic operations to equip each
policy with a buffer for gathering past experiences. A deep genetic algorithm proposed by Such
et al. (2017) competitively trains DNNs for difficult RL tasks. Their genetic algorithm exhibits
remarkable competitiveness with widely used algorithms in the domain of deep RL challenges. Our
proposed transfer learning method utilizes MCTS, a distinct search approach not previously applied
to these cases.

There has been prior work on applying search algorithms to transfer learning tasks (Singamsetti
et al., 2021; Mahajan & Guzdial, 2022; Doosti & Guzdial, 2023). These approaches have shown suc-
cess at few-shot transfer learning and have generally found that tree-based optimization approaches
like MCTS outperform other search algorithms, such as hill-climbing and beam search (Mahajan
& Guzdial, 2022; Doosti & Guzdial, 2023). However, these approaches have not previously been
applied in an RL setting.

2.3 AUTOMATED CHIP PLACEMENT

The chip placement process involves determining the optimal positioning of various macrocom-
ponents, a task that requires sophisticated multi-objective optimization to balance factors such as
wirelength, congestion, and density. Various approaches have been developed to address this prob-
lem, including conventional divide-and-conquer (Fiduccia & Mattheyses, 1988) and hierarchical
placement strategies (Tsay et al., 1988), as well as advanced deep RL techniques (Mirhoseini et al.,
2020). Myung et al. (2023) propose that pre-training networks to extract features from different
netlists and utilize them as encoders in the policy network can greatly decrease the duration of train-
ing. Moreover, Lai et al. (2022) present an approach for placement using RL. This method utilizes
convolutional NNs to learn position, wirelength, and view information for circuit modules, resulting
in a rich visual representation. Lee et al. (2024) discuss using diffusion models for chip placement.
They developed a NN with interleaved graph convolutions and multi-headed attention layers and
also a synthetic data generation algorithm. However, there are certain limitations associated with
this approach. In particular, synthetic datasets with shorter wirelengths may result in models ex-
hibiting poorer performance to out-of-distribution circuits. We note that we specifically focus on
transfer learning as a way to speed up chip design tasks and, as such, do not compare with these
approaches that train from scratch.

Historically, simulated annealing (SA) has been a long-standing method with proven success in
chip placement (Sarrafzadeh et al., 2003). SA is a search-based approach but optimizes the chip
design directly rather than optimizing a chip design model. But SA shows a significant lack of
speed, presents challenges in parallelization, and encounters difficulties adapting to current circuits’
growing complexity and size.

The RL-based methodology of Mirhoseini et al. (2020) explores an RL agent trained to optimize the
arrangement of chips. In our paper, we build upon the policy and value networks from their study.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

To the best of our knowledge, our approach is the first to demonstrate that transferring knowledge
from a complex chip design task to a simpler chip design can quickly create models that can generate
efficient chip placements with reduced cost values compared to training from scratch and fine-tuning
approaches.

3 SYSTEM OVERVIEW

This section outlines our method, which is divided into two main components. First, we train a
model on a source chip design task. After that, our proposed transfer learning method based on
MCTS directly modifies the parameters of the trained source model through interactions with the
target chip design environment. This method creates a tree of child nodes, each of which represents
a distinct model. Lastly, we return the best model, which has the lowest cost value, from the tree.

3.0.1 STEP 1: SOURCE TRAINING

The first step involves training a model on the source chip design task TaskS as described in step 1 of
Algorithm 1. We apply a specific training configuration for each chip design task due to differences
in the numbers of horizontal and vertical routes per micron, as well as the allocation values for
macro horizontal and macro vertical routing. We employ an existing architecture of policy and
value networks and all other domain-specific hyperparameters from Mirhoseini et al. (2020). The
parameters of the policy model are updated using PPO (Schulman et al., 2017) based on the source
chip design task TaskS . We use an existing proxy cost function from Cheng et al. (2023) as shown
in Equation 3.

3.0.2 STEP 2: PARAMETER SEARCH

During the second step, we utilize parameter search as a form of transfer learning to adapt the source
model to the target chip design task. Initially, the root node NR corresponds to the source model Sm.
From this root node NR, we generate a child node by applying a randomly selected search operator to
modify its parameters. Child nodes are created until the tree T has reached its maximum number of
nodes, NM which can be specified. To balance exploration with exploitation, we employ an ϵ value
of 0.1, so the best-performing child nodes are selected ninety percent of the time based on the Cost
value calculated on the target chip design task TaskT by using the proxy cost function as shown
in Equation 3, but less-explored nodes are chosen periodically from all the nodes Ni. The selected
child node Nc will function as the new root node NR. The node NR will later go through further
parameter modification using a randomly selected search operator to generate a child node Nj ,
calculate the Cost value for the target chip design TaskT , and backpropagate this information up
the tree. These operations will terminate when the node reaches its maximum length of child nodes
L. The search operator directly modifies the parameters of the model, allowing a potentially more
efficient optimization process, as these can be understood as sparse updates. Lastly, the algorithm
outputs the most efficient node NLC based on the Cost value from the search tree T for the target
chip design task TaskT .

3.1 SEARCH OPERATORS

The formulation of our search operators is an essential component of our methodology since these
functions directly determine potential sparse parameter modifications during the optimization pro-
cess. The operators contain two distinct functions that modify the parameter values of the models,
with only one operation being randomly selected at a time. These are similar to the mutation func-
tions from prior search-based transfer learning work Singamsetti et al. (2021). We selected these
operations because they are simple and systematic, providing a comprehensive range of options to
explore the search space. We note that the operators can be applied sequentially to the same layer,
allowing for arbitrary value changes in theory. The search operators are as follows:

• The first operation randomly selects a specific layer, Lr ∈ {L1, L2, . . . , Ln}, of the policy
network πθ(a|s), where r ∼ U{1, 2, . . . , n} and modifies the weights by adding a scalar
value, a, uniformly distributed within the range (-1, 1) as shown in Equation (1).

W ′
i,j = Wi,j + a, a ∼ U(−1, 1) (1)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Algorithm 1 PMCTS Algorithm
Input: Source Chip Design Task TaskS
Output: Least cost node NLC for Target Chip Task TaskT

1: Step 1: Source Training
2: Sm=PPO(TaskS)
3: Save Sm

4: Step 2: Parameter Search
5: Initialize Sm as root node NR

6: while NM not met do
7: Nc = Selection(Ni)
8: NR ← Nc

9: for step l = 1 to L do
10: Nj = Search Operator(NR)
11: Cost(Nj , TaskT)
12: Backprop(Nj)
13: end for
14: end while
15: Select NLC from tree T
16: return NLC

• The second operation randomly chooses an individual layer of the policy network and
involves multiplying the weights of the chosen layer by a scalar value uniformly distributed
across the interval [0, 1), as shown in Equation (2).

W ′
i,j = Wi,j · a, a ∼ U [0, 1) (2)

3.2 COST FUNCTION

The cost function is identical to the proxy cost calculation function developed by Cheng et al.
(2023). It is represented by the Proxy Cost estimation, which is the weighted sum of wirelength,
congestion, and density costs of the chip design task, as depicted in Equation 3. Domain experts
identify these three variables as the most important variables in determining the effectiveness of
a specific chip design. The parameters γ and λ are set to 0.5 in our experiments, as specified by
Cheng et al. (2023).

Proxy Cost = Wirelength Cost + γ · Density Cost + λ · Congestion Cost (3)

The Proxy Cost is very essential as it directly influences the learning of the RL agent. The Wirelength
Cost is the first element of the Proxy Cost equation, and it is the normalized half perimeter wirelength
(HPWL) shown in Equation 4 where width and height are the width and height of the chip canvas,
respectively, and the weight, set to 1 by default, specified by the source pin.

Wirelength Cost =
1

|nets|
∑
net

net.weight× HPWL(net)
width + height

(4)

Secondly, according to the Equation 5, the Density Cost is the mean density of the top 10 % most
dense grid cells, where n is the number of grid cells in the top 10%.

Density Cost =
1

n

n∑
i=1

Density of the top 10% densest grid cells (5)

Lastly, the Congestion Cost is divided into two components: congestion resulting from macros and
congestion led by net routing. Macro congestion results from the extra routing layer resources
used by macros, while routing congestion is caused by the use of routing resources by each routed
network. In the process of calculating macro congestion, the horizontal and vertical values of a grid

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

cell are obtained by summing the routing resources utilized by macros that cross the right and top
boundaries of the cell. The total congestion for each grid cell is calculated by summing the macro
congestion and routing congestion for each direction individually, as shown in Equation 6. Next, the
Congestion Cost is calculated as the mean of the top 10% of all H cong and V cong values of grid
cells in the chip canvas defined by the Equation 7. A detailed overview can be found in the prior
work Cheng et al. (2023) and the Circuit Training repository Guadarrama et al. (2021).

H cong = H macro cong +H net cong

V cong = V macro cong + V net cong
(6)

Congestion Cost =
1

n

n∑
i∈Top 10%

(Hcong,i + Vcong,i) (7)

4 EXPERIMENTAL SETUP

In this paper, we focus on the application of our proposed methodology across different chip design
tasks. We evaluate our approach on well-understood tasks that have been studied in prior transfer
learning work of Mirhoseini et al. (2020). This setting allows us to demonstrate that our method
can produce optimized models in less time than corresponding baselines, which typically rely on
traditional backpropagation.

4.1 ENVIRONMENTS

We examine our approach on four distinct chip designs. The first design refers to the Ariane RISC-V
CPU found in the Google Circuit Training repository (Mirhoseini et al., 2020). It consists of 133
hard macro units and serves as a standard reference for the chip placement problem. Hard macros
refer to pre-built building blocks (Lavin et al., 2013). The second design, Ariane133, is a slight
variant of the first design while maintaining the 133-macro unit configuration (Cheng et al., 2023).
In addition, we assess our approach using two designs from the ICCAD04 benchmark, namely
IBM01 and IBM02, which consist of 246 and 271 hard macro units, respectively (Cheng et al.,
2023; Adya et al., 2004; Adya & Markov, 2002). The complexity of the IBM variations exceeds that
of the Ariane versions.

4.2 BASELINES

In this research, we utilize two primary baselines: the scratch model and the fine-tuning approach
from the prior work of Mirhoseini et al. (2020). Both baselines utilize conventional gradient descent
techniques for optimization, providing a comparison to evaluate the efficacy of our proposed method.
The training from scratch model baseline is used as a reference for how well an RL agent can perform
when trained on the target domain from random initialization. The fine-tuning baseline instead takes
a model trained on a source domain and fine-tunes it on a target domain. Through the comparison
with these baselines, we show the effectiveness of our approach in creating optimized models for
chip placement without primarily depending on gradient descent methods.

4.3 COMPUTE RESOURCES

All experiments are conducted using the cloud computing resource provided by <
Redacted for Anonymity >, which consists of 18 CPU cores and 2xNVIDIA v100l GPUs with
32GB of memory each. For both training from scratch and fine-tuning approaches, we ran experi-
ments for 12 hours to allow for convergence. In contrast, our PMCTS approach typically runs for
shorter durations, ranging from 2 to 8 hours depending on the complexity of the source and target
chip designs. For example, using Ariane as the source and Ariane133 as the target chip design,
PMCTS completed in 50 minutes with a max nodes value of 100, meaning the tree generated 100
nodes before stopping. However, when using Ariane as the source and IBM02 as the target, PMCTS
required 2.5 hours to complete due to the complexity of IBM02, where generating new models and
calculating the cost for such complex chip designs takes longer. We employ three arbitrary seed
values for all experiments, which we give in full in the Appendix A.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Method Source
IBM02 IBM01 Ariane133

Scratch (Ariane) 1.29±0.02
Fine Tuning 1.27±0.03 1.30±0.05 1.28±0.05
Zero Shot 1.36±0.03 1.35±0.00 1.32±0.01
Our Approach 1.19±0.01 1.17±0.04 1.24±0.07

Table 1: Estimated average cost value and standard deviations for the baselines and our approach:
when transferring from complex to simple chip (Ariane) designs.

4.4 EXPERIMENTS

We evaluate the performance of our approach utilizing four separate chip design tasks. We use all
permutations of source and target domains. For example, when assessing our approach’s transfer
learning performance, we use the Araine chip design task as the source domain to train a model.
This trained model is then used as the source input model for our approach, and then we evaluate
the performance of the output models from our approach across the three target chip design tasks,
namely Ariane133, IBM01, and IBM02. We then repeat this process for each of the other chip
design tasks. In addition, for the fine-tuning approach, we take a model trained on a source chip
design task and fine-tune it on the remaining target chip designs. We take all our architectures for
both scratch and fine-tuning using similar model settings from the same prior study Mirhoseini
et al. (2020). For training from scratch and fine-tuning, we execute the models for 12 hours. For
our suggested approach, we only consider models from the first hour of running PMCTS. We note
that it is very likely, based on prior work, that both from scratch and fine-tuning approaches would
eventually outperform the PMCTS models based on the results of prior work of Mirhoseini et al.
(2020), but we are focused on speeding up the optimization process, thereby emphasizing this lower
timeframe setting.

5 RESULTS

In this section, we present our results. The tables show the results obtained by comparing the
baseline methodologies with our PMCTS approach. The figures illustrate the average and combined
normalized cost values for all relevant approaches, where normalization was performed by dividing
each cost value by the maximum cost value. Regarding the figures, our method avoids retraining
the same model repeatedly. Instead, it iteratively generates new models by modifying the layers’
weights through mutation functions, evaluating the cost value for each newly created model. This
iterative process introduces variations in the cost values over time, which explains the observed
trends in the figures. The shaded regions of the figures represent the 95% confidence interval range.
We separate the results into two categories—one for transferring knowledge from complex to simple
chip designs and the other for transferring from simple to complex designs—to clarify the analysis.
This splitting allows focused comparisons by emphasizing the differences in performance between
the two directions of knowledge transfer. The approach is considered to be better when the cost
value is lower. The detailed cost values for each seed corresponding to each method are provided in
Appendix A.

Table 1 shows a comparison of the average cost values and standard deviations for the three seed val-
ues across four different methods: scratch training, fine-tuning, zero shot and our proposed approach
for transferring knowledge from complex source chip designs to the simpler target Ariane chip de-
sign task. For the scratch training approach, training the model from scratch on the Ariane chip
design results in comparatively higher costs, indicating that the method is unable to identify effi-
cient models within a certain amount of time. For fine-tuning, zero shot and our proposed approach,
we use separate source models trained on IBM02, IBM01, and Ariane133 chip designs and then
transfer the knowledge to the target Ariane chip design. Fine-tuning offers some improvements over
training from scratch. In contrast, our proposed approach consistently outperforms scratch training,
fine-tuning and zero shot, resulting in models with lower cost values in all scenarios in shorter times.
The results show the usefulness of our method, establishing it as the most cost-effective method for
quickly creating efficient models for chip placement tasks.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Method Source
IBM02 IBM01

Scratch (Ariane133) 1.32±0.04
Fine Tuning 1.27±0.02 1.34±0.06
Zero Shot 1.33±0.06 1.41±0.06
Our Approach 1.24±0.03 1.27±0.02

Table 2: Estimated average cost value and
standard deviations for the baselines and our
approach: when transferring from complex
to simple chip (Ariane133) designs.

Method Source
Ariane133 Ariane

Scratch (IBM01) 2.18±0.08
Fine Tuning 2.23±0.15 2.25±0.11
Zero Shot 2.35±0.07 2.34±0.06
Our Approach 2.1±0.05 2.23±0.11

Table 3: Estimated average cost value and
standard deviations for the baselines and our
approach: when transferring from simple to
complex chip (IBM01) designs.

Method Source
IBM01 Ariane133 Ariane

Scratch (IBM02) 2.72±0.21
Fine Tuning 2.92±0.26 2.27±0.25 2.47±0.12
Zero Shot 2.59±0.15 2.37±0.10 2.61±0.17
Our Approach 2.32±0.26 2.44±0.08 2.43±0.09

Table 4: Estimated average cost value and standard deviations for the baselines and our approach:
when transferring from simple to complex chip (IBM02) designs.

Table 2 demonstrates the efficiency of our approach for transferring knowledge while using Ari-
ane133 as the target chip design task. As table 2 shows the values for transferring knowledge from
the complex chip design tasks, namely IBM02 and IBM01, to the simple chip design, Ariane133.
We do not include Ariane as the source model because it is not more complex than the Arian133.
When using IBM02 and IBM01 as source designs, our method consistently outperforms baseline ap-
proaches, achieving the lowest costs. These results further demonstrate the robustness and efficiency
of our method compared to the baselines for complex-to-simple transfer learning tasks.

Tables 3 and 4 present the cost comparisons and standard deviations for knowledge transfer from
simpler chip designs to complex ones. In Table 3, when transferring knowledge from Ariane133 and
Ariane to IBM01, our approach outperforms fine-tuning but is unable to outperform training from
scratch. In Table 3, we leave out IBM02 as the source model for knowledge transfer to IBM01, as
IBM02 is not simpler than IBM01. Our approach demonstrates superior performance when using
IBM02 as the target chip design task and IBM01 as the source chip shown in Table 4, consistently
outperforming scratch training and fine-tuning approaches. Despite these exceptions, our method
demonstrates significant overall performance. The experiments indicate there may be a certain level
of similarity between IBM02 and IBM01, resulting in the performance of our approach exceeding
both initial training and fine-tuning.

Figure 1 illustrates the combined and normalized average cost values of scratch training for the
four chip design tasks, fine-tuning approaches for the complex to simpler chip designs, and our
proposed method for the complex to simpler chip designs (e.g., using IBM02 as the source and
Ariane as the target chip design, etc.). The key focus is on the first hour of training, where our method
consistently outperforms both scratch training and fine-tuning in terms of speed and efficiency. The
graph demonstrates that our approach quickly identifies the best model, outperforming fine-tuning
and scratch training in the same time frame. Furthermore, our method maintains a lower range of
normalized cost values throughout the entire period, highlighting its rapid convergence. The faster
detection of the best models highlights the efficiency of our approach compared to conventional
methods.

Figure 2 displays the combined and normalized average cost values for the four chip designs when
training from scratch. It also includes the fine-tuning approaches for simple-to-complex chip de-
signs and our proposed method for simple-to-complex chip designs, such as using Ariane as the
source chip design and IBM02 as the target chip design. We observe that our approach encounters
challenges when transferring knowledge from simple chip designs to more complex chip designs.
Although it does not consistently surpass scratch training and fine-tuning in later time frames, it
avoids falling considerably behind.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 1: Showing the combined and normalized averaged cost value for all training from scratch
models, as well as the complex-to-simple chip design approach of fine-tuning and our proposed
method

.

Figure 2: Showing the combined and normalized averaged cost value for all training from scratch
models, as well as the simple-to-complex chip design approach of fine-tuning and our proposed
method

.

6 DISCUSSION

Our proposed transfer learning approach, PMCTS, offers several key advantages that make it highly
effective for solving the chip placement problem. One of the primary benefits is its simplicity,
as it directly modifies the network’s parameters without requiring complex architectural changes
or additional training on the target chip domains. Our experiments show that traditional methods
such as training from scratch or fine-tuning are time-consuming to reach high-performing models.
In contrast, our approach demonstrates greater speed and efficiency, resulting in reduced time and
computational costs. This makes it particularly appealing for chip placements where rapid devel-
opment and cost savings are critical. The shorter period required to generate effective models of
our approach, particularly when transferring knowledge from complex to simple chip designs, of-
fers significant advantages, thereby presenting a more economical and scalable solution to the chip
industry.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

However, it is crucial to acknowledge that this benefit does not apply when the knowledge transfer is
reversed, going from simpler to more complex designs. This suggests that the complexity inherent
in certain chip designs contains vital information that greatly helps the transfer learning process.
However, simpler designs lack sufficient depth to transfer knowledge to complex designs. In the
majority of cases, our PMCTS approach shows higher efficiency compared to both training from
scratch and fine-tuning approaches. It would be worthwhile to explore the possibility of using either
the scratch model or the fine-tuned model as input to PMCTS to further enhance its performance.
However, considering that one key advantage of PMCTS is the ability to obtain a more efficient
model with significantly less computation time, we believe that this would contradict the purpose of
this research. Therefore, we prefer to conduct an additional study of this in the future.

We believe that part of our results, which demonstrate superior performance in transferring knowl-
edge from complex to simple chip designs compared to the reverse, may be due to our selection
of search operators. Particularly, our second search operator essentially has the effect of reducing
parameter magnitudes in the network. This may align with pruning or other sparse optimization ap-
proaches in terms of simplifying a given model, making it more general, and encompassing a simpler
task. In Table 9 in the Appendix A, we analyzed the sensitivity of PMCTS to our mutation func-
tions, demonstrating the role of the multiplication operation. When transferring knowledge from
complex to simple chip designs, removing the multiplication operator led to quicker convergence to
better nodes. For instance, in the IBM01 to Ariane transfer, the minimum cost value of 1.1930 was
achieved after creating 30 nodes with all functions, whereas removing the multiplication operator
reduced this to just 17 nodes. In contrast, removing the multiplication operator significantly reduced
performance when transferring knowledge from simple to complex chip designs. These insights will
inform future refinements for our search operators to optimize performance in diverse transfer learn-
ing settings. In future work, we hope to explore alternative search operators, which may improve
the robustness of our approach.

We plan to extend our approach to more complex chip design tasks, like BlackParrot (Quad-
Core) and MemPool Group, to validate the effective trend of complex-to-simple knowledge transfer
(Petrisko et al., 2020; Riedel et al., 2023). In addition, alternative search algorithms like Quality-
Diversity can be explored given how they offer a wide range of optimized solutions that vary based
on a number of user-specified parameters of interest (Chatzilygeroudis et al., 2021).

7 CONCLUSIONS

This paper presents a novel transfer learning approach named Parameter Monte Carlo Tree Search
(PMCTS) that utilizes MCTS to optimize model parameters for chip placement to generate efficient
models in a short timeframe while transferring knowledge from complex chip design tasks to less
complex ones and without requiring additional authored transfer features. The speed, along with
its effectiveness, makes our approach potentially useful for chip placement scenarios where rapid
optimization and implementation are crucial. By conducting experiments on four different chip
design tasks—Ariane, Ariane133, IBM01, and IBM02—we demonstrate that knowledge transfer
from complex chip designs to less complex ones results in improved performance, surpassing the
training from scratch and fine-tuning in terms of both time and performance. In contrast, the transfer
from simpler to more complex designs does not produce the same advantage in all scenarios.

8 ETHICS STATEMENT

We identify that our work was done in partnership with an international technology company in-
volved in chip manufacturing. While our partner hopes to benefit from this research, we will make
all of our code accessible to the public, and we utilize publicly available chip design environments
for evaluation. We also note that while job loss is possible with any AI application, presently this
type of automated chip design task is handled via search-based approaches in industry. As such, we
do not identify any negative potential repercussions in terms of job loss from our approach.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

9 REPRODUCIBILITY STATEMENT

For reproducibility, we make use of only publicly available chip design task environments as covered
in Subsection 4.1. We also make use of previously published network architectures and optimization
approaches as covered in Subsection 4.4. Finally, we include all code in the supplementary materials
and identify the seeds used for all experiments in our Appendix A.

REFERENCES

Saurabh N Adya and Igor L Markov. Consistent placement of macro-blocks using floorplanning and
standard-cell placement. In Proceedings of the 2002 international symposium on Physical design,
pp. 12–17, 2002.

SN Adya, S Chaturvedi, JA Roy, D Papa, and IL Markov. Unification of partitioning, floorplanning
and placement. In Proc. ICCAD, pp. 550–557, 2004.

Hussain Alibrahim and Simone A Ludwig. Hyperparameter optimization: Comparing genetic al-
gorithm against grid search and bayesian optimization. In 2021 IEEE Congress on Evolutionary
Computation (CEC), pp. 1551–1559. IEEE, 2021.

Ahmed Aly, David Weikersdorfer, and Claire Delaunay. Optimizing deep neural networks with
multiple search neuroevolution. arXiv preprint arXiv:1901.05988, 2019.

Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed bandit
problem. Machine learning, 47:235–256, 2002.

Bin Cao, Sinno Jialin Pan, Yu Zhang, Dit-Yan Yeung, and Qiang Yang. Adaptive transfer
learning. Proceedings of the AAAI Conference on Artificial Intelligence, 24(1):407–412, Jul.
2010. doi: 10.1609/aaai.v24i1.7682. URL https://ojs.aaai.org/index.php/AAAI/
article/view/7682.

Konstantinos Chatzilygeroudis, Antoine Cully, Vassilis Vassiliades, and Jean-Baptiste Mouret.
Quality-diversity optimization: a novel branch of stochastic optimization. In Black Box Opti-
mization, Machine Learning, and No-Free Lunch Theorems, pp. 109–135. Springer, 2021.

Chung-Kuan Cheng, Andrew B Kahng, Sayak Kundu, Yucheng Wang, and Zhiang Wang. Assess-
ment of reinforcement learning for macro placement. In Proceedings of the 2023 International
Symposium on Physical Design, pp. 158–166, 2023.

Ruoyu Cheng and Junchi Yan. On joint learning for solving placement and routing in chip design,
2021. URL https://arxiv.org/abs/2111.00234.

Ruoyu Cheng, Xianglong Lyu, Yang Li, Junjie Ye, Jianye Hao, and Junchi Yan. The policy-gradient
placement and generative routing neural networks for chip design. Advances in Neural Informa-
tion Processing Systems, 35:26350–26362, 2022.

TianJin Deng and Jia Wu. Efficient graph neural architecture search using monte carlo tree search
and prediction network. Expert Systems with Applications, 213:118916, 2023.

Anahita Doosti and Matthew Guzdial. Transfer learning for underrepresented music generation.
arXiv preprint arXiv:2306.00281, 2023.

Joanna Ellis-Monaghan and Paul Gutwin. Graph theoretical problems in next-generation chip de-
sign. Congressus Numerantium, 01 2003.

Abolfazl Farahani, Sahar Voghoei, Khaled Rasheed, and Hamid R. Arabnia. A brief review of do-
main adaptation. In Robert Stahlbock, Gary M. Weiss, Mahmoud Abou-Nasr, Cheng-Ying Yang,
Hamid R. Arabnia, and Leonidas Deligiannidis (eds.), Advances in Data Science and Information
Engineering, pp. 877–894, Cham, 2021. Springer International Publishing. ISBN 978-3-030-
71704-9.

L Fei-Fei, R Fergus, and P Perona. One-shot learning of object categories. ieee trans. Pattern
Recognition and Machine Intelligence.

11

https://ojs.aaai.org/index.php/AAAI/article/view/7682
https://ojs.aaai.org/index.php/AAAI/article/view/7682
https://arxiv.org/abs/2111.00234

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Matthias Feurer and Frank Hutter. Hyperparameter optimization. Automated machine learning:
Methods, systems, challenges, pp. 3–33, 2019.

Charles M Fiduccia and Robert M Mattheyses. A linear-time heuristic for improving network parti-
tions. In Papers on Twenty-five years of electronic design automation, pp. 241–247. 1988.

Sergio Guadarrama, Summer Yue, Toby Boyd, Joe Wenjie Jiang, Ebrahim Songhori, Goldie Anna
Tam, Terence, and Azalia Mirhoseini. Circuit Training: An open-source framework for generating
chip floor plans with distributed deep reinforcement learning., 2021. URL https://github.
com/google_research/circuit_training.

Levente Kocsis and Csaba Szepesvári. Bandit based monte-carlo planning. In European conference
on machine learning, pp. 282–293. Springer, 2006.

Yao Lai, Yao Mu, and Ping Luo. Maskplace: Fast chip placement via reinforced visual representa-
tion learning. Advances in Neural Information Processing Systems, 35:24019–24030, 2022.

Christopher Lavin, Brent Nelson, and Brad Hutchings. Improving clock-rate of hard-macro designs.
In 2013 International Conference on Field-Programmable Technology (FPT), pp. 246–253. IEEE,
2013.

Vint Lee, Chun Deng, Leena Elzeiny, Pieter Abbeel, and John Wawrzynek. Chip placement with
diffusion. arXiv preprint arXiv:2407.12282, 2024.

Yichen Li and Xingchao Peng. Network architecture search for domain adaptation. arXiv preprint
arXiv:2008.05706, 2020.

Anmol Mahajan and Matthew Guzdial. Modeling individual humans via a secondary task transfer
learning method. In Federated and Transfer Learning, pp. 259–281. Springer, 2022.

Azalia Mirhoseini, Anna Goldie, Mustafa Yazgan, Joe Jiang, Ebrahim Songhori, Shen Wang,
Young-Joon Lee, Eric Johnson, Omkar Pathak, Sungmin Bae, et al. Chip placement with deep
reinforcement learning. arXiv preprint arXiv:2004.10746, 2020.

Wooshik Myung, Donghyun Lee, Chenhang Song, Guanrui Wang, and Cheng Ma. Policy gradient-
based core placement optimization for multichip many-core systems. IEEE Transactions on
Neural Networks and Learning Systems, 34(8):4529–4543, 2023. doi: 10.1109/TNNLS.2021.
3117878.

Daniel Petrisko, Farzam Gilani, Mark Wyse, Dai Cheol Jung, Scott Davidson, Paul Gao, Chun Zhao,
Zahra Azad, Sadullah Canakci, Bandhav Veluri, et al. Blackparrot: An agile open-source risc-v
multicore for accelerator socs. IEEE Micro, 40(4):93–102, 2020.

Sachin Ravi and Hugo Larochelle. Optimization as a model for few-shot learning. In International
conference on learning representations, 2017.

Samuel Riedel, Matheus Cavalcante, Renzo Andri, and Luca Benini. MemPool: A scalable many-
core architecture with a low-latency shared L1 memory. IEEE Transactions on Computers, 72
(12):3561–3575, 2023. doi: 10.1109/TC.2023.3307796.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by back-
propagating errors. nature, 323(6088):533–536, 1986.

Majid Sarrafzadeh, Maogang Wang, and Xiaojian Yang. Modern placement techniques. Springer
Science & Business Media, 2003.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Ali Shafahi, Parsa Saadatpanah, Chen Zhu, Amin Ghiasi, Christoph Studer, David Jacobs, and Tom
Goldstein. Adversarially robust transfer learning. arXiv preprint arXiv:1905.08232, 2019.

MNH Siddique and Mohammad O Tokhi. Training neural networks: backpropagation vs. genetic
algorithms. In IJCNN’01. International Joint Conference on Neural Networks. Proceedings (Cat.
No. 01CH37222), volume 4, pp. 2673–2678. IEEE, 2001.

12

https://github.com/google_research/circuit_training
https://github.com/google_research/circuit_training

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Mohan Singamsetti, Anmol Mahajan, and Matthew Guzdial. Conceptual expansion neural architec-
ture search (cenas). International Conference on Computational Creativity, 2021.

Kenneth O Stanley, Jeff Clune, Joel Lehman, and Risto Miikkulainen. Designing neural networks
through neuroevolution. Nature Machine Intelligence, 1(1):24–35, 2019.

Felipe Petroski Such, Vashisht Madhavan, Edoardo Conti, Joel Lehman, Kenneth O Stanley, and
Jeff Clune. Deep neuroevolution: Genetic algorithms are a competitive alternative for training
deep neural networks for reinforcement learning. arXiv preprint arXiv:1712.06567, 2017.

Xu Sun, Xuancheng Ren, Shuming Ma, and Houfeng Wang. meprop: Sparsified back propagation
for accelerated deep learning with reduced overfitting. In International Conference on Machine
Learning, pp. 3299–3308. PMLR, 2017.

Ren-Song Tsay, Ernest S Kuh, and Chi-Ping Hsu. Proud: A sea-of-gates placement algorithm. IEEE
Design & Test of Computers, 5(6):44–56, 1988.

Yongqin Xian, Bernt Schiele, and Zeynep Akata. Zero-shot learning-the good, the bad and the
ugly. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
4582–4591, 2017.

Seul-Ki Yeom, Philipp Seegerer, Sebastian Lapuschkin, Alexander Binder, Simon Wiedemann,
Klaus-Robert Müller, and Wojciech Samek. Pruning by explaining: A novel criterion for deep
neural network pruning. Pattern Recognition, 115:107899, 2021.

Kaichao You, Guo Qin, Anchang Bao, Meng Cao, Ping Huang, Jiulong Shan, and Mingsheng Long.
Efficient convbn blocks for transfer learning and beyond. arXiv preprint arXiv:2305.11624, 2023.

Dan Zhou, Jiqing Du, and Sachiyo Arai. Neuroevolutionary diversity policy search for multi-
objective reinforcement learning. Information Sciences, 657:119932, 2024.

A APPENDIX

Here we give the results of the experiments in detail, with one table for each of the source target
tasks.

Method Source Cost (Seed 10) Cost (Seed 55) Cost (Seed 111)
Scratch (Ariane) 1.312 1.303 1.268
Fine Tuning IBM02 1.273 1.296 1.232
Our Approach 1.202 1.176 1.193
Fine Tuning IBM01 1.267 1.267 1.360
Our Approach 1.193 1.132 1.193
Fine Tuning Ariane133 1.245 1.333 1.268
Our Approach 1.193 1.312 1.202

Table 5: Estimated cost for baselines and our approach: transfer learning from complex to simple
chip (Ariane) designs.

Method Source Cost (Seed 10) Cost (Seed 55) Cost (Seed 111)
Scratch (Ariane133) 1.347 1.352 1.272
Fine Tuning IBM02 1.27 1.255 1.289
Our Approach 1.245 1.206 1.264
Fine Tuning IBM01 1.272 1.352 1.389
Our Approach 1.265 1.266 1.292

Table 6: Estimated cost for baselines and our approach: transfer learning from complex to simple
chip (Ariane133) designs.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Method Source Cost (Seed 10) Cost (Seed 55) Cost (Seed 111)
Scratch (IBM01) 2.222 2.233 2.096
Fine Tuning Ariane 2.343 2.133 2.264
Our Approach 2.194 2.145 2.359
Fine Tuning Ariane133 2.085 2.381 2.216
Our Approach 2.039 2.145 2.101

Table 7: Estimated cost for baselines and our approach: transfer learning from simple to complex
chip (IBM01) designs.

Method Source Cost (Seed 10) Cost (Seed 55) Cost (Seed 111)
Scratch (IBM02) 2.932 2.504 2.714
Fine Tuning Ariane 2.324 2.551 2.526
Our Approach 2.397 2.526 2.364
Fine Tuning Ariane133 2.266 2.532 2.025
Our Approach 2.360 2.526 2.444
Fine Tuning IBM01 2.704 2.84 3.211
Our Approach 2.537 2.028 2.390

Table 8: Estimated cost for baselines and our approach: transfer learning from simple to complex
chip (IBM02) designs.

Source Target Operation Type Min Cost Value Min Nodes

IBM01 Ariane All Operations 1.1930 30
Without Multiply 1.1930 17

IBM02 Ariane All Operations 1.1930 164
Without Multiply 1.1930 111

Ariane133 IBM02 All Operations 2.4436 88
Without Multiply 3.270 37

Ariane133 IBM01 All Operations 2.101 109
Without Multiply 2.347 79

Table 9: Sensitivity Analysis of the Search Operators of the PMCTS Approach.

14

	Introduction
	Related Work
	Transfer Learning
	Parameter Optimization
	Automated Chip Placement

	System Overview
	Step 1: Source Training
	Step 2: Parameter Search

	Search Operators
	Cost Function

	Experimental Setup
	Environments
	Baselines
	Compute Resources
	Experiments

	Results
	Discussion
	Conclusions
	Ethics Statement
	Reproducibility Statement
	Appendix

