
Published in Transactions on Machine Learning Research (09/2023)

High Fidelity Neural Audio Compression

Alexandre Défossez∗ defossez@meta.com
Meta AI, FAIR Team, Paris, France

Jade Copet∗ jadecopet@meta.com
Meta AI, FAIR Team, Paris, France

Gabriel Synnaeve† gab@meta.com
Meta AI, FAIR Team, Paris, France

Yossi Adi† adiyoss@meta.com
Meta AI, FAIR Team, Tel-Aviv, Israel

Reviewed on OpenReview: https: // openreview. net/ forum? id= ivCd8z8zR2

Abstract

We introduce a state-of-the-art real-time, high-fidelity, audio codec leveraging neural networks.
It consists in a streaming encoder-decoder architecture with quantized latent space trained
in an end-to-end fashion. We simplify and speed-up the training by using a single multiscale
spectrogram adversary that efficiently reduces artifacts and produce high-quality samples.
We introduce a novel loss balancer mechanism to stabilize training: the weight of a loss
now defines the fraction of the overall gradient it should represent, thus decoupling the
choice of this hyper-parameter from the typical scale of the loss. Finally, we study how
lightweight Transformer models can be used to further compress the obtained representation
by up to 40%, while staying faster than real time. We provide a detailed description of
the key design choices of the proposed model including: training objective, architectural
changes and a study of various perceptual loss functions. We present an extensive subjective
evaluation (MUSHRA tests) together with an ablation study for a range of bandwidths
and audio domains, including speech, noisy-reverberant speech, and music. Our approach
is superior to the baselines methods across all evaluated settings, considering both 24
kHz monophonic and 48 kHz stereophonic audio. Code and samples are available under
github.com/facebookresearch/encodec.

1 Introduction

Recent studies suggest that streaming audio and video have accounted for the majority of the internet traffic
in 2021 (82% according to (Cisco, 2021)). With the internet traffic expected to grow, audio compression
is an increasingly important problem. In lossy signal compression we aim at minimizing the bitrate of a
sample while also minimizing the amount of distortion according to a given metric, ideally correlated with
human perception. Audio codecs typically employ a carefully engineered pipeline combining an encoder and
a decoder to remove redundancies in the audio content and yield a compact bitstream. Traditionally, this
is achieved by decomposing the input with a signal processing transform and trading off the quality of the
components that are less likely to influence perception. Leveraging neural networks as trained transforms via
an encoder-decoder mechanism has been explored by Morishima et al. (1990); Rippel et al. (2019); Zeghidour
et al. (2021). Our research work is in the continuity of this line of work, with a focus on audio signals.

The problems arising in lossy neural compression models are twofold: first, the model has to represent a
wide range of signals, such as not to overfit the training set or produce artifact laden audio outside its

∗,†Equal contribution.

1

https://openreview.net/forum?id=ivCd8z8zR2
https://github.com/facebookresearch/encodec

Published in Transactions on Machine Learning Research (09/2023)

Figure 1: EnCodec : an encoder decoder codec architecture which is trained with reconstruction (ℓs and
ℓt) as well as adversarial losses (ℓg for the generator and ℓd for the discriminator). The residual vector
quantization commitment loss (ℓw) applies only to the encoder. Optionally, we train a small Transformer
language model for entropy coding over the quantized units with ℓl, which reduces bandwidth even further.

comfort zone. We solve this by having a large and diverse training set (described in Section 4.1), as well
as discriminator networks (see Section 3.4) that serve as perceptual losses, which we study extensively in
Section 4.5.1, Table 2. The other problem is that of compressing efficiently, both in compute time and in size.
For the former, we limit ourselves to models that run in real-time on a single CPU core. For the latter, we
use residual vector quantization of the neural encoder floating-point output, for which various approaches
have been proposed (Van Den Oord et al., 2017; Zeghidour et al., 2021).

Accompanying those technical contributions, we posit that designing end-to-end neural compression models is
a set of intertwined choices, among which at least the encoder-decoder architecture, the quantization method,
and the perceptual loss play key parts. Objective evaluations exist and we report scores on them in our
ablations (Section 4.5.1). But the evaluation of lossy audio codecs necessarily relies on human perception, so
we ran extensive human evaluation for multiple points in this design space, both for speech and music. Those
evaluations (MUSHRA) consist in having humans listen to, compare, and rate excerpts of speech or music
compressed with competitive codecs and variants of our method, and the uncompressed ground truth. This
allows to compare variants of the whole pipeline in isolation, as well as their combined effect, in Section 4.5.1
(Figure 3 and Table 1). Finally, our best model, EnCodec , reaches state-of-the-art scores for speech and for
music at 1.5, 3, 6, 12 kbps at 24 kHz, and at 6, 12, and 24 kbps for 48 kHz with stereo channels.

2 Related Work

Speech and Audio Synthesis. Recent advancements in neural audio generation enabled computers to
efficiently generate natural sounding audio. The first convincing results were achieved by autoregressive
models such as WaveNet (Oord et al., 2016), at the cost of slow inference. While many other approaches were
explored (Yamamoto et al., 2020a; Kalchbrenner et al., 2018; Goel et al., 2022), the most relevant ones here
are those based on Generative Adversarial Networks (GAN) (Kumar et al., 2019; Yamamoto et al., 2020a;
Kong et al., 2020; Andreev et al., 2022) were able to match the quality of autoregressive by combining various
adversarial networks operate at different multi-scale and multi-period resolutions. Our work uses and extends
similar adversarial losses to limit artifacts during audio generation.

Audio Codec. Low bitrate parametric speech and audio codecs have long been studied (Atal & Hanauer,
1971; Juang & Gray, 1982), but their quality has been severely limited. Despite some advances (Griffin
& Lim, 1985; McCree et al., 1996), modeling the excitation signal has remained a challenging task. The

2

Published in Transactions on Machine Learning Research (09/2023)

current state-of-the-art traditional audio codecs are Opus (Valin et al., 2012) and Enhanced Voice Service
(EVS) (Dietz et al., 2015). These methods produce high coding efficiency for general audio while supporting
various bitrates, sampling rates, and real-time compression.

Neural based audio codecs have been recently proposed and demonstrated promising results (Kleijn et al., 2018;
Valin & Skoglund, 2019b; Lim et al., 2020; Kleijn et al., 2021; Zeghidour et al., 2021; Omran et al., 2022; Lin
et al., 2022; Jayashankar et al., 2022; Li et al.; Jiang et al., 2022), where most methods are based on quantizing
the latent space before feeding it to the decoder. In Valin & Skoglund (2019b), an LPCNet (Valin & Skoglund,
2019a) vocoder was conditioned on hand-crafted features and a uniform quantizer. Gârbacea et al. (2019)
conditioned a WaveNet based model on discrete units obtained from a VQ-VAE (Van Den Oord et al., 2017;
Razavi et al., 2019) model, while Skoglund & Valin (2019) tried feeding the Opus codec (Valin et al., 2012)
to a WaveNet to further improve its perceptual quality. Jayashankar et al. (2022); Jiang et al. (2022) propose
an auto-encoder with a vector quantization layer applied over the latent representation and minimizing the
reconstruction loss, while Li et al. suggested using Gumbel-Softmax (GS) (Jang et al., 2017) for representation
quantization. The most relevant related work to ours is the SoundStream model (Zeghidour et al., 2021), in
which the authors propose a fully convolutional encoder decoder architecture with a Residual Vector Quantiza-
tion (RVQ) (Gray, 1984; Vasuki & Vanathi, 2006) layers. The model was optimized using both reconstruction
loss and adversarial perceptual losses. Caillon & Esling (2021) studied compression as part of VAE-based
audio modeling , but they did not report any objective or subjective evaluations for this particular application.

Audio Discretization. Representing audio and speech using discrete values was proposed to various tasks
recently. Dieleman et al. (2018); Dhariwal et al. (2020) proposed a hierarchical VQ-VAE based model for
learning discrete representation of raw audio, next combined with an auto-regressive model, demonstrating
the ability to generate high quality music. Similarly, Lakhotia et al. (2021); Kharitonov et al. (2021)
demonstrated that self-supervised learning methods for speech (e.g., HuBERT (Hsu et al., 2021)), can be
quantized and used for conditional and unconditional speech generation. Similar methods were applied
to speech resynthesis (Polyak et al., 2021), speech emotion conversion (Kreuk et al., 2021), spoken dialog
system (Nguyen et al., 2022), and speech-to-speech translation (Lee et al., 2021a;b; Popuri et al., 2022).

3 Model

An audio signal of duration d can be represented by a sequence x ∈ [−1, 1]Ca×T with Ca the number of
audio channels, T = d · fsr the number of audio samples at a given sample rate fsr. The EnCodec model is
composed of three main components: (i) First, an encoder network E is input an audio extract and outputs a
latent representation z; (ii) Next, a quantization layer Q produces a compressed representation zq, using
vector quantization; (iii) Lastly, a decoder network G reconstructs the time-domain signal, x̂, from the
compressed latent representation zq. The whole system is trained end-to-end to minimize a reconstruction loss
applied over both time and frequency domain, together with a perceptual loss in the form of discriminators
operating at different resolutions. A visual description of the proposed method can be seen in Figure 1.

3.1 Encoder & Decoder Architecture

The EnCodec model is a simple streaming, convolutional-based encoder-decoder architecture with sequential
modeling component applied over the latent representation, both on the encoder and on the decoder side.
Such modeling framework was shown to provide great results in various audio-related tasks, e.g., source
separation and enhancement (Défossez et al., 2019; Defossez et al., 2020), neural vocoders (Kumar et al., 2019;
Kong et al., 2020), audio codec (Zeghidour et al., 2021), and artificial bandwidth extension (Tagliasacchi
et al., 2020; Li et al., 2021). We use the same architecture for 24 kHz and 48 kHz audio.

Encoder-Decoder. The encoder model E consists in a 1D convolution with C channels and a kernel size of
7 followed by B convolution blocks. Each convolution block is composed of a single residual unit followed by
a down-sampling layer consisting in a strided convolution, with a kernel size K of twice the stride S. The
residual unit contains two convolutions with kernel size 3 and a skip-connection. The number of channels is
doubled whenever down-sampling occurred. The convolution blocks are followed by a two-layer LSTM for
sequence modeling and a final 1D convolution layer with a kernel size of 7 and D = 128 output channels.

3

Published in Transactions on Machine Learning Research (09/2023)

Algorithm 1 Residual Vector Quantization (RVQ) algorithm
procedure RVQ(z, Q, Nq):

zq ← Empty List, zh ← 0.0, r ← z
for i = 1 to Nq do

r̂, ridx = Qi(r) ▷ Get both codebook dense representation and index
zh = zh + r̂
r = r − r̂
zq = zq ⊕ ridx ▷ Append the codebook index

end for
return (zh, zq)

end procedure

Following Zeghidour et al. (2021); Li et al. (2021), we use C = 32, B = 4 and (2, 4, 5, 8) as strides. We use
ELU as a non-linear activation function (Clevert et al., 2015) either layer normalization (Ba et al., 2016) or
weight normalization (Salimans & Kingma, 2016). We use two variants of the model, depending on whether
we target the low-latency streamable setup, or a high fidelity non-streamable usage. With this setup, the
encoder outputs 75 latent steps per second of audio at 24 kHz, and 150 at 48 kHz. The decoder mirrors the
encoder, using transposed convolutions instead of strided convolutions, and with the strides in reverse order
as in the encoder, outputting the final mono or stereo audio.

Non-streamable. In the non-streamable setup, we use for each convolution a total padding of K − S,
split equally before the first time step and after the last one (with one more before if K − S is odd). We
further split the input into chunks of 1 seconds, with an overlap of 10 ms to avoid clicks, and normalize each
chunk before feeding it to the model, applying the inverse operation on the output of the decoder, adding a
negligible bandwidth overhead to transmit the scale. We use layer normalization (Ba et al., 2016), computing
the statistics including also the time dimension in order to keep the relative scale information.

Streamable. For the streamable setup, all padding is put before the first time step. For a transposed
convolution with stride s, we output the s first time steps, and keep the remaining s steps in memory
for completion when the next frame is available, or discarding it at the end of a stream. Thanks to this
padding scheme, the model can output 320 samples (13 ms) as soon as the first 320 samples (13 ms) are
received. We replace the layer normalization with statistics computed over the time dimension with weight
normalization (Salimans & Kingma, 2016), as the former is ill-suited for a streaming setup. We notice a small
gain over the objective metrics by keeping a form of normalization, as demonstrated in Table A.3.

3.2 Residual Vector Quantization

We use Residual Vector Quantization (RVQ) to quantize the output of the encoder as introduced by Zeghidour
et al. (2021). Vector quantization consists in projecting an input vector onto the closest entry in a codebook of
a given size. RVQ refines this process by computing the residual after quantization, and further quantizing it
using a second codebook, and so forth. A pseudo-code describing the algorithm can be found in Algorithm 1.

We follow the same training procedure as described by Dhariwal et al. (2020) and Zeghidour et al. (2021).
The codebook entry selected for each input is updated using an exponential moving average with a decay of
0.99. Following Dhariwal et al. (2020), we track the moving average of the cluster utilization, and clusters
whose average size fall below 2 are replaced by a candidate sampled from the current batch. We use a
straight-through-estimator (Bengio et al., 2013) to compute the gradient of the encoder, e.g. as if the
quantization step was the identity function during the backward phase. Finally, a commitment loss, consisting
of the MSE between the input of the quantizer and its output, with gradient only computed with respect to
its input, is added to the overall training loss.

By selecting a variable number of residual steps at train time, a single model can be used to support multiple
bandwidth target (Zeghidour et al., 2021). For all of our models, we use at most 32 codebooks (16 for the 48
kHz models) with 1024 entries each, e.g. 10 bits per codebook. When doing variable bandwidth training, we
select randomly a number of codebooks as a multiple of 2, i.e. corresponding to a bandwidth 1.5, 3, 6, 12

4

Published in Transactions on Machine Learning Research (09/2023)

STFT(w, h)

C
onv2D (C

=32, k=3x9, s=(1,2), d=(1, 1))

C
onv2D (C

=32, k=3x9)

C
onv2D (C

=32, k=3x9, s=(1,2), d=(2, 1))

C
onv2D (C

=32, k=3x9, s=(1,2), d=(4, 1))

C
onv2D (C

=32, k=3x3)

C
onv2D (C

=1, k=3x3)

logits

STFT Discriminator (w, h=w/4)

MS-STFTD

Real (STFT)
Im

 (STFT)

Figure 2: MS-STFT Discriminator architecture. The input to the network is a complex-valued STFT with
the real and imaginary parts concatenated. Each discriminator is composed of a 2D convolutional layer,
followed by 2D convolutions with increasing dilation rates. Then a final 2D convolution is applied.

or 24 kbps at 24 kHz. Given a continuous latent represention with shape [B, D, T] that comes out of the
encoder, this procedure turns it into a discrete set of indexes [B, Nq, T] with Nq the number of codebooks
selected. This discrete representation can changed again to a vector by summing the corresponding codebook
entries, which is done just before going into the decoder.

3.3 Language Modeling and Entropy Coding

Naive coding of the codebook indexes is only optimal if the true underline distribution is uniform over the
codebooks. Alternatively, one can better estimate the probability distribution over the codebooks while
leveraging past decoded information to improve compression rates. To do so, we train a small Transformer
based language model (Vaswani et al., 2017) with the objective of keeping faster than real time end-to-end
compression/decompression on a single CPU core. The model consists of 5 layers, 8 heads, 200 channels, a
dimension of 800 for the feed-forward blocks, and no dropout. At train time, we select a bandwidth and
the corresponding number of codebooks Nq. For a time step t, the discrete representation obtained at time
t− 1 is transformed into a continuous representation using learnt embedding tables, one for each codebook,
and which are summed. For t = 0, a special token is used instead. The output of the Transformer is fed
into Nq linear layers with as many output channels as the cardinality of each codebook (e.g. 1024), giving
us the logits of the estimated distribution over each codebook for time t. We thus neglect potential mutual
information between the codebooks at a single time step. This allows to speedup inference (as opposed to
having one time step per codebook, or a multi-stage prediction) with a limited impact over the final cross
entropy. Each attention layer has a causal receptive field of 3.5 seconds, and we offset by a random amount
the initial position of the sinusoidal position embedding to emulate being in a longer sequence. We train the
model on sequences of 5 seconds.

Entropy Encoding. We use a range based arithmetic coder (Pasco, 1976; Rissanen & Langdon, 1981) in
order to leverage the estimated probabilities given by the language model. As noted by Ballé et al. (2018),
evaluation of the same model might lead to different results on different architectures, or with different
evaluation procedures due to floating point approximations. This can lead to decoding errors as the encoder
and decoder will not use the exact same code. We observe in particular that the difference between batch
evaluation (e.g. all time steps at once), and the real-life streaming evaluation that occurs in the decoder
can lead to difference larger than 10−8. We first round the estimated probabilities with a precision of 10−6,
although evaluations in more contexts would be needed for practical deployment. We use a total range width
of 224, and assign a minimum range width of 2. We discuss the impact on the processing time in Section 4.6.

3.4 Training objective

We detail the training objective that combines a reconstruction loss term, a perceptual loss term (via
discriminators), and the RVQ commitment loss.

Reconstruction Loss. The reconstruction loss term is comprised of a time and a frequency domain loss
term. We minimize the L1 distance between the target and compressed audio over the time domain, i.e.

5

Published in Transactions on Machine Learning Research (09/2023)

ℓt(x, x̂) = ∥x− x̂∥1. For the frequency domain, we use a linear combination between the L1 and L2 losses
over the mel-spectrogram using several time scales (Yamamoto et al., 2020b; Gritsenko et al., 2020). Formally,

ℓs(x, x̂) = 1
|α| · |s|

∑
αi∈α

∑
i∈e

∥Si(x)− Si(x̂)∥1 + αi∥Si(x)− Si(x̂)∥2, (1)

where Si is a 64-bins mel-spectrogram using a normalized STFT with window size of 2i and hop length of
2i/4, e = 5, . . . , 11 is the set of scales, and α represents the set of scalar coefficients balancing between the L1
and L2 terms. Unlike Gritsenko et al. (2020), we take αi = 1.

Discriminative Loss. To further improve the quality of the generated samples, we introduce a perceptual
loss term based on a multi-scale STFT-based (MS-STFT) discriminator, illustrated in Figure 2. Multi-scale
discriminators are popular for capturing different structures in audio signals (Kumar et al., 2019; Kong
et al., 2020; You et al., 2021). The basic idea of this family of models is to construct a set of discriminators
operating at different scales, which will act as perceptual loss so they can capture different artifacts produced
by the generator. Multi-scaling can take place in various shapes. Kumar et al. (2019) proposed a Multi-Scale
Discriminator (MSD) which consists of multiple sub-discriminators operating at different scales on the raw
waveform (i.e., different window sizes). Kong et al. (2020) proposed a Multi-Period Discriminator (MPD)
which consists of multiple sub-discriminators operating on equally spaced samples from the waveform.

Inspired by this line of work, we proposed The MS-STFT discriminator which consists in identically structured
networks operating on multi-scaled complex-valued STFT with the real and imaginary parts concatenated.
Each sub-network is composed of a 2D convolutional layer (using kernel size 3 x 8 with 32 channels), followed
by 2D convolutions with increasing dilation rates in the time dimension of 1, 2 and 4, and a stride of 2 over
the frequency axis. A final 2D convolution with kernel size 3 x 3 and stride (1, 1) provide the final prediction.
We use 5 different scales with STFT window lengths of [2048, 1024, 512, 256, 128]. For 48 kHz audio, we
double the size of each STFT window and train the discriminator every two batches, and for stereophonic
audio, we process separately the left and right channels. We use LeakyReLU as a non-linear activation
function and apply weight normalization (Salimans & Kingma, 2016) to our discriminator network. The
MS-STFT discriminator model architecture is visually depicted in Figure 2.

The adversarial loss for the generator is constructed as follows, ℓg(x̂) = 1
K

∑
k max(0, 1−Dk(x̂))), where K is

the number of discriminators. Similarly to previous work on neural vocoders (Kumar et al., 2019; Kong et al.,
2020; You et al., 2021), we additionally include a relative feature matching loss for the generator. Formally,

ℓfeat(x, x̂) = 1
KL

K∑
k=1

L∑
l=1

∥Dl
k(x)−Dl

k(x̂)∥1

mean
(
∥Dl

k(x)∥1
) , (2)

where the mean is computed over all dimensions, (Dk) are the discriminators, and L is the number of layers in
discriminators. The discriminators are trained to minimize the following hinge-loss adversarial loss function:
Ld(x, x̂) = 1

K

∑K
k=1 max(0, 1−Dk(x)) + max(0, 1 + Dk(x̂)), where K is the number of discriminators. Given

that the discriminator tend to overpower easily the decoder, we update its weight with a probability of 2/3 at
24 kHz, and 0.5 at 48 kHz.

Multi-bandwidth training. At 24 kHz, we train the model to support the bandwidths 1.5, 3, 6, 12, and 24
kbps by selecting the appropriate number of codebooks to keep in the RVQ step, as explained in Section 3.2.
At 48 kHz, we train to support 3, 6, 12 and 24 kbps. We also noticed that using a dedicated discriminator
per-bandwidth is beneficial to the audio quality. Thus, we select a given bandwidth for the entire batch, and
evaluate and update only the corresponding discriminator.

VQ commitment loss. As mentioned in Section 3.2, we add a commitment loss lw between the output of
the encoder, and its quantized value, with no gradient being computed for the quantized value. For each
residual step c ∈ {1, . . . C} (with C depeding on the bandwidth target for the current batch), noting zc the
current residual and qc(zc) the nearest entry in the corresponding codebook, we define lw as

lw =
C∑

c=1
∥zc − qc(zc)∥2

2. (3)

6

Published in Transactions on Machine Learning Research (09/2023)

1.5 3 6 9.6 12
0

20

40

60

80

100

Bitrate (kbps)

M
U

SH
R

A

EnCodec
EnCodec : entropy coded

Lyra-v2
EVS
Opus

Figure 3: Human evaluations (MUSHRA: comparative scoring of samples) across bandwidths of standard
codecs and neural codecs. For EnCodec we report the initial bandwidth without entropy coding (in plain)
and with entropy coding (hollow). Lyra-v2 is a neural audio codec, while EVS and Opus are competitive
standard codecs. The audio samples are from speech and music. The ground truth is 16bits 24kHz wave.

Overall, the generator is trained to optimize the following loss, summed over the batch,

LG = λt · ℓt(x, x̂) + λs · ℓs(x, x̂) + λg · ℓg(x̂) + λfeat · ℓfeat(x, x̂) + λw · ℓw(w), (4)

where λt, λs, λg, λfeat, and λw the scalar coefficients to balance between the terms.

Balancer. We introduce a loss balancer in order to stabilize training, in particular the varying scale of the
gradients coming from the discriminators. We also find that the balancer makes it easier to reason about the
different loss weights, independently of their scale. Let us take a number of losses (ℓi)i that depends only on
the output of the model x̂. We define gi = ∂ℓi

∂x̂ , and ⟨∥gi∥2⟩β the exponential moving average of gi over the
last training batches. Given a set of weights (λi) and a reference norm R, we define

g̃i = R
λi∑
j λj
· gi

⟨∥gi∥2⟩β
. (5)

We then backpropagate into the network
∑

i g̃i, instead of the original
∑

i λigi. This changes the optimization
problem but allows to make the λi interpretable irrespectively of the natural scale of each loss. If

∑
i λi = 1,

then each weight can be interpreted as the fraction of the model gradient that come from the corresponding
loss. We take R = 1 and β = 0.999. All the generator losses from Eq. (4) fit into the balancer, except for
the commitment loss, as it is not defined with respect to the output of the model.

4 Experiments and Results

4.1 Dataset

We train EnCodec on 24 kHz monophonic across diverse domains, namely: speech, noisy speech, music and
general audio while we train the fullband stereo EnCodec on only 48 kHz music. For speech, we use the clean
speech segments from DNS Challenge 4 (Dubey et al., 2022) and the Common Voice dataset (Ardila et al., 2019).
For general audio, we use on AudioSet (Gemmeke et al., 2017) together with FSD50K (Fonseca et al., 2021).
For music, we rely on the Jamendo dataset (Bogdanov et al., 2019) for training and evaluation and we further
evaluate our models on music using a proprietary music dataset. Data splits are detailed in Appendix A.1.

For training and validation, we define a mixing strategy which consists in either sampling a single source
from a dataset or performing on the fly mixing of two or three sources. Specifically, we have four strategies:
(s1) we sample a single source from Jamendo with probability 0.32; (s2) we sample a single source from the
other datasets with the same probability; (s3) we mix two sources from all datasets with a probability of 0.24;
(s4) we mix three sources from all datasets except music with a probability of 0.12.

7

Published in Transactions on Machine Learning Research (09/2023)

The audio is normalized by file and we apply a random gain between -10 and 6 dB. We reject any sample
that has been clipped. Finally we add reverberation using room impulse responses provided by the DNS
challenge with probability 0.2, and RT60 in the range [0.3, 1.3] except for the single-source music samples.
Such input normalization was found to be beneficial in improving model performance (Defossez et al., 2020).
For testing, we use four categories: clean speech from DNS alone, clean speech mixed with FSDK50K sample,
Jamendo sample alone, proprietary music sample alone.

4.2 Baselines

Opus (Valin et al., 2012) is a versatile speech and audio codec standardized by the IETF in 2012. It scales
from 6 kbps narrowband monophonic audio to 510 kbps fullband stereophonic audio. EVS (Dietz et al., 2015)
is a codec standardized in 2014 by 3GPP and developed for Voice over LTE (VoLTE). It supports a range
of bitrates from 5.9 kbps to 128 kbps, and audio bandwidths from 4 kHz to 20 kHz. It is the successor of
AMR-WB (Bhagat et al., 2012).We use both codecs to serve as traditional digital signal processing baselines.
We also utilize MP3 compression at 64 kbps as an additional baseline for the stereophonic signal compression
case. MP3 uses lossy data compression by approximating the accuracy of certain components of sound that
are considered to be beyond hearing capabilities of most humans. Finally, we compare EnCodec to the
SoundStream model from the official implementation available in Lyra 2 1 at 3.2 kbps and 6 kbps on audio
upsampled to 32 kHz. We also reproduced a version of SoundStream (Zeghidour et al., 2021) with minor
improvements. Namely, we use the relative feature loss introduce in Section 3.4, and layer normalization
(applied separately for each time step) in the discriminators, except for the first and last layer, which improved
the audio quality during our preliminary studies. Results a reported in Table A.2 in the Appendix A.3.

4.3 Evaluation Methods

We consider subjective and objective metrics. For the subjective tests we follow the MUSHRA protocol (Series,
2014), using a hidden reference and a low anchor. Annotators were recruited using a crowd-sourcing platform,
in which they were asked to rate the perceptual quality of the provided samples in a range between 1 to
100. We randomly select 50 samples of 5 seconds from each category of the the test set and force at least
10 annotations per samples. To filter noisy annotations and outliers we remove annotators who rate the
reference recordings less then 90 in at least 20% of the cases, or rate the low-anchor recording above 80 more
than 50% of the time. For objective metrics, we use ViSQOL (Hines et al., 2012; Chinen et al., 2020) 2,
together with the Scale-Invariant Signal-to-Noise Ration (SI-SNR) (Luo & Mesgarani, 2019; Nachmani et al.,
2020; Chazan et al., 2021).

4.4 Training

We train all models for 300 epochs, with one epoch being 2,000 updates with the Adam optimizer with a
batch size of 64 examples of 1 second each, a learning rate of 3 · 10−4, β1 = 0.5, and β2 = 0.9. All the models
are traind using 8 A100 GPUs. We use the balancer introduced in Section 3.4 with weights λt = 0.1, λf = 1,
λg = 3, λfeat = 3 for the 24 kHz models. For the 48 kHz model, we use instead λg = 4, λfeat = 4.

4.5 Results

We start with the results for EnCodec with a bandwidth in {1.5, 3, 6, 12} kbps and compare them to the
baselines. Results for the streamable setup are reported in Figure 3 and a breakdown per category in Table 1.
We additionally explored other quantizers such as Gumbel-Softmax and DiffQ (see details in Appendix A.2),
however, we found in preliminary results that they provide similar or worse results, hence we do not report them.

When considering the same bandwidth, EnCodec is superior to all evaluated baselines considering the
MUSHRA score. Notice, EnCodec at 3kbps reaches better performance on average than Lyra-v2 using
6kbps and Opus at 12kbps. When considering the additional language model over the codes, we can reduce
the bandwidth by ∼ 25− 40%. For instance, we can reduce the bandwidth of the 3 kpbs model to 1.9 kbps.

1https://github.com/google/lyra
2We compute visqol with: https://github.com/google/visqol using the recommended recipes.

8

https://github.com/google/visqol

Published in Transactions on Machine Learning Research (09/2023)

Table 1: MUSHRA scores for Opus, EVS, Lyra-v2, and EnCodec for various bandwidths under the
streamable setting. Results are reported across different audio categories (clean speech, noisy speech, and
music), sampled at 24 kHz. We report mean scores and 95% confidence intervals. For EnCodec , we also
report the average bandwidth after using the entropy coding described in Section 3.3.

Model Bandwidth Entropy Coded Clean Speech Noisy Speech Music Set-1 Music Set-2
Reference - - 95.5±1.6 93.9±1.8 93.2±2.5 97.1±1.3

Opus 6.0 kbps - 30.1±2.8 19.1±5.9 20.6±5.8 17.9±5.3
Opus 12.0 kbps - 76.5±2.3 61.9±2.1 77.8±3.2 65.4±2.7

EVS 9.6 kbps - 84.4±2.5 80.0±2.4 89.9±2.3 87.7±2.3

Lyra-v2 3.0 kbps - 53.1±1.9 52.0±4.7 69.3±3.3 42.3±3.5
Lyra-v2 6.0 kbps - 66.2±2.9 59.9±3.3 75.7±2.6 48.6±2.1

EnCodec 1.5 kbps 0.9 kbps 49.2±2.4 41.3±3.6 68.2±2.2 66.5±2.3
EnCodec 3.0 kbps 1.9 kbps 67.0±1.5 62.5±2.3 89.6±3.1 87.8±2.9
EnCodec 6.0 kbps 4.1 kbps 83.1±2.7 69.4±2.3 92.9±1.8 91.3±2.1
EnCodec 12.0 kbps 8.9 kbps 90.6±2.6 80.1±2.5 91.8±2.5 92.9±1.2

Table 2: Comparing discriminators using objective (ViSQOL, SI-SNR) and subjective metrics (MUSHRA).

Discriminator setup SI-SNR ViSQOL MUSHRA
MSD+Mono-STFT 5.99 4.22 62.91±2.62
MPD 7.35 4.24 60.7±2.8
MS-STFT+MPD 6.55 4.34 79.0±1.9

MS-STFT 6.67 4.35 77.5±1.8

We observe that for higher bandwidth, the compression ratio is lower, which could be explained by the small
size of the Transformer model used, making hard to model all codebooks together.

4.5.1 Ablation study

Next, we perform an ablation study to better evaluate the effect of the discriminator setup, streaming, multi-
target bandwidth, and balancer. We provide more detailed ablation studies in the Appendix, Section A.3.

The effect of discriminators setup. Various discriminators were proposed in prior work to improve the
perceptual quality of the generated audio. The Multi-Scale Discriminator (MSD) model proposed by Kumar
et al. (2019) and adopted in (Kong et al., 2020; Andreev et al., 2022; Zeghidour et al., 2021), operates on the
raw waveform at different resolutions. We adopt the same MSD configuration as described in Zeghidour et al.
(2021). Kong et al. (2020) additionally propose the Multi-Period Discriminator (MPD) model, which reshapes
the waveform to a 2D input with multiple periods. Next, the STFT Discriminator (Mono-STFTD) model
was introduced in Zeghidour et al. (2021), where a single network operates over the complex-valued STFT.

We evaluate our MS-STFTD discriminator against three other discriminator configurations: (i) MSD+Mono-
STFTD (as in Zeghidour et al. (2021)); (ii) MPD only; (iii) MS-STFTD only; (vi) MS-STFTD+MPD. Results
are reported in Table 2. Results suggest that using only a multi-scale STFT-based discriminator such as MS-
STFTD, is enough to generate high quality audio. Additionally, it simplifies the model training and reduces
training time. Including the MPD discriminator, adds a small gain when considering the MUSHRA score.

The effect of the streamable modeling. We also investigate streamable vs. non-streamable setups and
report results in Table 3. Unsurprisingly, we notice a small degradation switching from non-streamable to
streamable but the performance remains strong while this setting enables streaming inference.

9

Published in Transactions on Machine Learning Research (09/2023)

Table 3: Streamable vs. Non-streamable evaluations at 6 kbps on an equal mix of speech and music.

Model Streamable SI-SNR ViSQOL
Opus ✓ 2.45 2.60
EVS ✓ 1.89 2.74
EnCodec ✓ 6.67 4.35
EnCodec ✗ 7.46 4.39

Table 4: Stereophonic extreme music compression versus MP3 and Opus for music sampled at 48 kHz.

Model Bandwidth Entropy Coded Compression MUSHRA
Reference - - 1× 95.1±1.8

MP3 64 kbps - 24× 82.7±3.2
Opus 6 kbps - 256× 17.7±5.9
Opus 24 kbps - 64× 82.9±3.7
EnCodec 6 kbps 4.2 kbps 256× 82.9±2.4
EnCodec 12 kbps 8.9 kbps 128× 88.0±2.7
EnCodec 24 kbps 19.4 kbps 64× 87.5±2.6

The effect of the balancer. Lastly, we present results evaluating the impact of the balancer. We train the
EnCodec model considering various values λt, λf , λg, and λfeat with and without the balancer. Results
are reported in Table A.4 in the Appendix. As expected, results suggest the balancer significantly stabilizes
the training process. See Appendix A.3 for more details.

4.5.2 Stereo Evaluation

All previously reported results considered only the monophonic setup. Although it makes sense when
considering speech data, however for music data, stereo compression is highly important. We adjust our
current setup to stereo by only modifying our discriminator setup as described in Section 3.4.

Results for EnCodec working at 6 kbps, EnCodec with Residual Vector Quantization (RVQ) at 6 kbps,
and Opus at 6 kbps, and MP3 at 64 kbps are reported in Table 4. EnCodec is significantly outperforms Opus
at 6kbps and is comparable to MP3 at 64kbps, while EnCodec at 12kpbs achieve comparable performance to
EnCodec at 24kbps. Using a language model and entropy coding gives a variable gain between 20% to 30%.

4.6 Latency and computation time

We report the initial latency and real time factor on Table 5. The real-time factor is here defined as the ratio
between the duration of the audio and the processing time, so that it is greater than one when the method is
faster than real time. We profiled all models on a single thread of a MacBook Pro 2019 CPU at 6 kbps.

Table 5: Initial latency and real time factor (RTF) for Lyra v2, EnCodec at 24 kHz and 48 kHz. A RTF
greater than 1 indicates faster than real time processing. We report the RTF for both the encoding (Enc.)
and decoding (Dec.), without and with entropy coding (EC). All models are evaluated at 6 kbps.

Real Time Factor
Model Latency Enc. Dec. Enc. + EC Dec. + EC
Lyra v2 (32 kHz) - 27.4 67.2 - -
EnCodec 24 kHz 13 ms 9.8 10.4 1.6 1.6
EnCodec 48 kHz 1 s 6.8 5.1 0.68 0.66

10

Published in Transactions on Machine Learning Research (09/2023)

Initial latency. The 24 kHz streaming EnCodec model has an initial latency (i.e., without the
computation time) of 13.3 ms. The 48 kHz non-streaming version has an initial latency of 1 second, due
to the normalizations used. Note that using entropy coding increases the initial latency, because the stream
cannot be “flushed” with each frame, in order to keep the overhead small. Thus decoding the frame at time
t, requires for the frame t + 1 to be partially received, increasing the latency by 13ms.

Real time factor. While our model is worse than Lyra v2 in term of processing speed, it processes the
audio 10 times faster than real time, making it a good candidate for real life applications. The gain from the
entropy coding comes at a cost, although the processing is still faster than real time and could be used for
applications where latency is not essential (e.g. streaming). At 48 kHz, the increased number of step size lead
to a slower than real time processing, although a more efficient implementation, or using accelerated hardware
would improve the RTF. It could also be used for archiving where real time processing is not required.

5 Conclusion

We presented EnCodec : a state-of-the-art real-time neural audio compression model, producing high-fidelity
audio samples across a range of sample rates and bandwidth. We showed subjective and objective results
from 24kHz monophonic at 1.5 kbps (Figure 3) to 48kHz stereophonic (Table 4). We improved sample
quality by developing a simple but potent spectrogram-only adversarial loss which efficiently reduces artifacts
and produce high-quality samples. Besides, we stabilized training and improved the interpretability of the
weights for losses through a novel gradient balancer. Finally, we also demonstrated that a small Transformer
model can be used to further reduce the bandwidth by up to 40% without further degradation of quality, in
particular for applications where low latency is not essential (e.g. music streaming).

11

Published in Transactions on Machine Learning Research (09/2023)

References
Pavel Andreev, Aibek Alanov, Oleg Ivanov, and Dmitry Vetrov. Hifi++: a unified framework for neural

vocoding, bandwidth extension and speech enhancement. arXiv preprint arXiv:2203.13086, 2022.

Rosana Ardila, Megan Branson, Kelly Davis, Michael Henretty, Michael Kohler, Josh Meyer, Reuben Morais,
Lindsay Saunders, Francis M Tyers, and Gregor Weber. Common voice: A massively-multilingual speech
corpus. arXiv preprint arXiv:1912.06670, 2019.

Bishnu S Atal and Suzanne L Hanauer. Speech analysis and synthesis by linear prediction of the speech wave.
The journal of the acoustical society of America, 50(2B):637–655, 1971.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Johannes Ballé, Valero Laparra, and Eero P Simoncelli. End-to-end optimized image compression. In ICLR,
2017.

Johannes Ballé, Nick Johnston, and David Minnen. Integer networks for data compression with latent-variable
models. In International Conference on Learning Representations, 2018.

Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients through
stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.

Dipesh Bhagat, Ninad Bhatt, and Yogeshwar Kosta. Adaptive multi-rate wideband speech codec based
on celp algorithm: architectural study, implementation & performance analysis. In 2012 International
Conference on Communication Systems and Network Technologies, pp. 547–551. IEEE, 2012.

Dmitry Bogdanov, Minz Won, Philip Tovstogan, Alastair Porter, and Xavier Serra. The mtg-jamendo
dataset for automatic music tagging. In Machine Learning for Music Discovery Workshop, International
Conference on Machine Learning (ICML 2019), Long Beach, CA, United States, 2019. URL http:
//hdl.handle.net/10230/42015.

Antoine Caillon and Philippe Esling. Rave: A variational autoencoder for fast and high-quality neural audio
synthesis. arXiv preprint arXiv:2111.05011, 2021.

Shlomo E Chazan, Lior Wolf, Eliya Nachmani, and Yossi Adi. Single channel voice separation for unknown
number of speakers under reverberant and noisy settings. In ICASSP 2021-2021 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 3730–3734. IEEE, 2021.

Michael Chinen, Felicia SC Lim, Jan Skoglund, Nikita Gureev, Feargus O’Gorman, and Andrew Hines. Visqol
v3: An open source production ready objective speech and audio metric. In 2020 twelfth international
conference on quality of multimedia experience (QoMEX), pp. 1–6. IEEE, 2020.

Cisco. Global - 2021 forecast highlights - cisco. https://www.cisco.com/c/dam/m/en_us/solutions/
service-provider/vni-forecast-highlights/pdf/Global_2021_Forecast_Highlights.pdf, 2021.

Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep network learning by
exponential linear units (elus). arXiv preprint arXiv:1511.07289, 2015.

Alexandre Défossez, Nicolas Usunier, Léon Bottou, and Francis Bach. Music source separation in the waveform
domain. arXiv preprint arXiv:1911.13254, 2019.

Alexandre Defossez, Gabriel Synnaeve, and Yossi Adi. Real time speech enhancement in the waveform domain.
arXiv preprint arXiv:2006.12847, 2020.

Alexandre Défossez, Yossi Adi, and Gabriel Synnaeve. Differentiable model compression via pseudo quantiza-
tion noise. arXiv preprint arXiv:2104.09987, 2021.

Prafulla Dhariwal, Heewoo Jun, Christine Payne, Jong Wook Kim, Alec Radford, and Ilya Sutskever. Jukebox:
A generative model for music. arXiv preprint arXiv:2005.00341, 2020.

12

http://hdl.handle.net/10230/42015
http://hdl.handle.net/10230/42015
https://www.cisco.com/c/dam/m/en_us/solutions/service-provider/vni-forecast-highlights/pdf/Global_2021_Forecast_Highlights.pdf
https://www.cisco.com/c/dam/m/en_us/solutions/service-provider/vni-forecast-highlights/pdf/Global_2021_Forecast_Highlights.pdf

Published in Transactions on Machine Learning Research (09/2023)

Sander Dieleman, Aaron van den Oord, and Karen Simonyan. The challenge of realistic music generation:
modelling raw audio at scale. Advances in Neural Information Processing Systems, 31, 2018.

Martin Dietz, Markus Multrus, Vaclav Eksler, Vladimir Malenovsky, Erik Norvell, Harald Pobloth, Lei Miao,
Zhe Wang, Lasse Laaksonen, Adriana Vasilache, et al. Overview of the evs codec architecture. In 2015
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5698–5702.
IEEE, 2015.

Harishchandra Dubey, Vishak Gopal, Ross Cutler, Sergiy Matusevych, Sebastian Braun, Emre Sefik Eskimez,
Manthan Thakker, Takuya Yoshioka, Hannes Gamper, and Robert Aichner. Icassp 2022 deep noise
suppression challenge. In ICASSP, 2022.

Eduardo Fonseca, Xavier Favory, Jordi Pons, Frederic Font, and Xavier Serra. Fsd50k: an open dataset of
human-labeled sound events. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 30:
829–852, 2021.

Cristina Gârbacea, Aäron van den Oord, Yazhe Li, Felicia SC Lim, Alejandro Luebs, Oriol Vinyals, and
Thomas C Walters. Low bit-rate speech coding with vq-vae and a wavenet decoder. In ICASSP 2019-2019
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 735–739. IEEE,
2019.

Jort F Gemmeke, Daniel PW Ellis, Dylan Freedman, Aren Jansen, Wade Lawrence, R Channing Moore,
Manoj Plakal, and Marvin Ritter. Audio set: An ontology and human-labeled dataset for audio events. In
2017 IEEE international conference on acoustics, speech and signal processing (ICASSP), pp. 776–780.
IEEE, 2017.

Karan Goel, Albert Gu, Chris Donahue, and Christopher Ré. It’s raw! audio generation with state-space
models. arXiv preprint arXiv:2202.09729, 2022.

Robert Gray. Vector quantization. IEEE Assp Magazine, 1(2):4–29, 1984.

D Griffin and Jae Lim. A new model-based speech analysis/synthesis system. In ICASSP, 1985.

Alexey Gritsenko, Tim Salimans, Rianne van den Berg, Jasper Snoek, and Nal Kalchbrenner. A spectral
energy distance for parallel speech synthesis. Advances in Neural Information Processing Systems, 33:
13062–13072, 2020.

Andrew Hines, Jan Skoglund, Anil Kokaram, and Naomi Harte. Visqol: The virtual speech quality objective
listener. In IWAENC 2012; International Workshop on Acoustic Signal Enhancement, pp. 1–4. VDE, 2012.

Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov, and
Abdelrahman Mohamed. Hubert: Self-supervised speech representation learning by masked prediction of
hidden units. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 29:3451–3460, 2021.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. Technical Report 1502.03167, arXiv, 2015.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. In ICLR, 2017.

Tejas Jayashankar, Thilo Koehler, Kaustubh Kalgaonkar, Zhiping Xiu, Jilong Wu, Ju Lin, Prabhav Agrawal,
and Qing He. Architecture for variable bitrate neural speech codec with configurable computation complexity.
In ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
pp. 861–865. IEEE, 2022.

Xue Jiang, Xiulian Peng, Chengyu Zheng, Huaying Xue, Yuan Zhang, and Yan Lu. End-to-end neural speech
coding for real-time communications. In ICASSP 2022-2022 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 866–870. IEEE, 2022.

Biing-Hwang Juang and A Gray. Multiple stage vector quantization for speech coding. In ICASSP’82. IEEE
International Conference on Acoustics, Speech, and Signal Processing, volume 7, pp. 597–600. IEEE, 1982.

13

Published in Transactions on Machine Learning Research (09/2023)

Nal Kalchbrenner et al. Efficient Neural Audio Synthesis. In ICML, 2018.

Eugene Kharitonov, Ann Lee, Adam Polyak, Yossi Adi, Jade Copet, Kushal Lakhotia, Tu-Anh Nguyen,
Morgane Rivière, Abdelrahman Mohamed, Emmanuel Dupoux, et al. Text-free prosody-aware generative
spoken language modeling. arXiv preprint arXiv:2109.03264, 2021.

W Bastiaan Kleijn, Felicia SC Lim, Alejandro Luebs, Jan Skoglund, Florian Stimberg, Quan Wang, and
Thomas C Walters. Wavenet based low rate speech coding. In 2018 IEEE international conference on
acoustics, speech and signal processing (ICASSP), pp. 676–680. IEEE, 2018.

W Bastiaan Kleijn, Andrew Storus, Michael Chinen, Tom Denton, Felicia SC Lim, Alejandro Luebs, Jan
Skoglund, and Hengchin Yeh. Generative speech coding with predictive variance regularization. In ICASSP
2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.
6478–6482. IEEE, 2021.

Jungil Kong, Jaehyeon Kim, and Jaekyoung Bae. Hifi-gan: Generative adversarial networks for efficient and
high fidelity speech synthesis. Advances in Neural Information Processing Systems, 33:17022–17033, 2020.

Felix Kreuk, Adam Polyak, Jade Copet, Eugene Kharitonov, Tu-Anh Nguyen, Morgane Rivière, Wei-Ning
Hsu, Abdelrahman Mohamed, Emmanuel Dupoux, and Yossi Adi. Textless speech emotion conversion
using decomposed and discrete representations. arXiv preprint arXiv:2111.07402, 2021.

Kundan Kumar, Rithesh Kumar, Thibault de Boissiere, Lucas Gestin, Wei Zhen Teoh, Jose Sotelo, Alexandre
de Brébisson, Yoshua Bengio, and Aaron C Courville. Melgan: Generative adversarial networks for
conditional waveform synthesis. Advances in neural information processing systems, 32, 2019.

Kushal Lakhotia, Eugene Kharitonov, Wei-Ning Hsu, Yossi Adi, Adam Polyak, Benjamin Bolte, Tu-Anh
Nguyen, Jade Copet, Alexei Baevski, Abdelrahman Mohamed, et al. On generative spoken language
modeling from raw audio. Transactions of the Association for Computational Linguistics, 9:1336–1354,
2021.

Ann Lee, Peng-Jen Chen, Changhan Wang, Jiatao Gu, Xutai Ma, Adam Polyak, Yossi Adi, Qing He,
Yun Tang, Juan Pino, et al. Direct speech-to-speech translation with discrete units. arXiv preprint
arXiv:2107.05604, 2021a.

Ann Lee, Hongyu Gong, Paul-Ambroise Duquenne, Holger Schwenk, Peng-Jen Chen, Changhan Wang, Sravya
Popuri, Juan Pino, Jiatao Gu, and Wei-Ning Hsu. Textless speech-to-speech translation on real data. arXiv
preprint arXiv:2112.08352, 2021b.

Shuyang Li, Huanru Henry Mao, and Julian McAuley. Variable bitrate discrete neural representations via
causal self-attention. In 2nd Pre-registration workshop (NeurIPS 2021), Remote.

Yunpeng Li, Marco Tagliasacchi, Oleg Rybakov, Victor Ungureanu, and Dominik Roblek. Real-time speech
frequency bandwidth extension. In ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pp. 691–695. IEEE, 2021.

Felicia SC Lim, W Bastiaan Kleijn, Michael Chinen, and Jan Skoglund. Robust low rate speech coding based
on cloned networks and wavenet. In ICASSP 2020-2020 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 6769–6773. IEEE, 2020.

Ju Lin, Kaustubh Kalgaonkar, Qing He, and Xin Lei. Speech enhancement for low bit rate speech codec. In
ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
pp. 7777–7781. IEEE, 2022.

Yi Luo and Nima Mesgarani. Conv-tasnet: Surpassing ideal time–frequency magnitude masking for speech
separation. IEEE/ACM transactions on audio, speech, and language processing, 27(8):1256–1266, 2019.

Alan McCree, Kwan Truong, E Bryan George, Thomas P Barnwell, and Vishu Viswanathan. A 2.4 kbit/s
melp coder candidate for the new us federal standard. In ICASSP, 1996.

14

Published in Transactions on Machine Learning Research (09/2023)

Shigeo Morishima, H Harashima, and Y Katayama. Speech coding based on a multi-layer neural network. In
IEEE International Conference on Communications, Including Supercomm Technical Sessions, pp. 429–433.
IEEE, 1990.

Eliya Nachmani, Yossi Adi, and Lior Wolf. Voice separation with an unknown number of multiple speakers.
In International Conference on Machine Learning, pp. 7164–7175. PMLR, 2020.

Tu Anh Nguyen, Eugene Kharitonov, Jade Copet, Yossi Adi, Wei-Ning Hsu, Ali Elkahky, Paden Tomasello,
Robin Algayres, Benoit Sagot, Abdelrahman Mohamed, et al. Generative spoken dialogue language
modeling. arXiv preprint arXiv:2203.16502, 2022.

Ahmed Omran, Neil Zeghidour, Zalán Borsos, Félix de Chaumont Quitry, Malcolm Slaney, and Marco
Tagliasacchi. Disentangling speech from surroundings in a neural audio codec. arXiv preprint
arXiv:2203.15578, 2022.

Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex Graves, Nal
Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu. Wavenet: A generative model for raw audio. arXiv
preprint arXiv:1609.03499, 2016.

Richard Clark Pasco. Source coding algorithms for fast data compression. PhD thesis, Stanford University
CA, 1976.

Adam Polyak, Yossi Adi, Jade Copet, Eugene Kharitonov, Kushal Lakhotia, Wei-Ning Hsu, Abdelrah-
man Mohamed, and Emmanuel Dupoux. Speech resynthesis from discrete disentangled self-supervised
representations. arXiv preprint arXiv:2104.00355, 2021.

Sravya Popuri, Peng-Jen Chen, Changhan Wang, Juan Pino, Yossi Adi, Jiatao Gu, Wei-Ning Hsu, and Ann
Lee. Enhanced direct speech-to-speech translation using self-supervised pre-training and data augmentation.
arXiv preprint arXiv:2204.02967, 2022.

Ali Razavi, Aaron Van den Oord, and Oriol Vinyals. Generating diverse high-fidelity images with vq-vae-2.
Advances in neural information processing systems, 32, 2019.

Oren Rippel, Sanjay Nair, Carissa Lew, Steve Branson, Alexander G Anderson, and Lubomir Bourdev.
Learned video compression. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 3454–3463, 2019.

Jorma Rissanen and Glen Langdon. Universal modeling and coding. IEEE Transactions on Information
Theory, 27(1):12–23, 1981.

Tim Salimans and Durk P Kingma. Weight normalization: A simple reparameterization to accelerate training
of deep neural networks. Advances in neural information processing systems, 29, 2016.

B Series. Method for the subjective assessment of intermediate quality level of audio systems. International
Telecommunication Union Radiocommunication Assembly, 2014.

Jan Skoglund and Jean-Marc Valin. Improving opus low bit rate quality with neural speech synthesis. arXiv
preprint arXiv:1905.04628, 2019.

Marco Tagliasacchi, Yunpeng Li, Karolis Misiunas, and Dominik Roblek. Seanet: A multi-modal speech
enhancement network. arXiv preprint arXiv:2009.02095, 2020.

Jean-Marc Valin and Jan Skoglund. Lpcnet: Improving neural speech synthesis through linear prediction. In
ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
pp. 5891–5895. IEEE, 2019a.

Jean-Marc Valin and Jan Skoglund. A real-time wideband neural vocoder at 1.6 kb/s using lpcnet. arXiv
preprint arXiv:1903.12087, 2019b.

15

Published in Transactions on Machine Learning Research (09/2023)

Jean-Marc Valin, Koen Vos, and Timothy Terriberry. Definition of the opus audio codec. IETF, September,
2, 2012.

Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. Advances in neural
information processing systems, 30, 2017.

A Vasuki and PT Vanathi. A review of vector quantization techniques. IEEE Potentials, 25(4):39–47, 2006.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser,
and Illia Polosukhin. Attention is all you need. In Proc. of Neural Information Processing Systems, 2017.

Bernard Widrow, Istvan Kollar, and Ming-Chang Liu. Statistical theory of quantization. IEEE Transactions
on instrumentation and measurement, 45(2):353–361, 1996.

Ryuichi Yamamoto, Eunwoo Song, and Jae-Min Kim. Parallel wavegan: A fast waveform generation model
based on generative adversarial networks with multi-resolution spectrogram. In ICASSP 2020-2020 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 6199–6203. IEEE,
2020a.

Ryuichi Yamamoto, Eunwoo Song, and Jae-Min Kim. Parallel wavegan: A fast waveform generation model
based on generative adversarial networks with multi-resolution spectrogram. In ICASSP 2020-2020 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 6199–6203. IEEE,
2020b.

Jaeseong You, Dalhyun Kim, Gyuhyeon Nam, Geumbyeol Hwang, and Gyeongsu Chae. Gan vocoder:
Multi-resolution discriminator is all you need. arXiv preprint arXiv:2103.05236, 2021.

Neil Zeghidour, Alejandro Luebs, Ahmed Omran, Jan Skoglund, and Marco Tagliasacchi. Soundstream: An
end-to-end neural audio codec. IEEE/ACM Transactions on Audio, Speech, and Language Processing,
2021.

16

Published in Transactions on Machine Learning Research (09/2023)

Table A.1: Datasets description. License with asterisk annotation * imply that the specific license varies
across the dataset and is specific to each sample.

Dataset Audio domain Sampling rate Channels Duration License
Common Voice 7.0 Speech 48 kHz 1 9,096 h CC-0
DNS Challenge 4 (speech) Speech 48 kHz 1 2,425 h Multiples*
AudioSet General audio 48 kHz 2 4,989 h CC BY 4.0*
FSD50K General audio 44.1 kHz 1 108 h CC*
Jamendo Music multiples 2 919 h CC*

A Appendix

A.1 Experimental details

Datasets details. We present additional details and statistics over the datasets used for training in Table A.1.
Notice that for some datasets, each sub-source or sample has its own license and we then refer the reader to
the respective dataset details for more information. We create our datasets splits as followed. For Common
Voice, we randomly sample 99.5% of the dataset for train, 0.25% for valid and the rest for test splits. Similarly,
we sample 98% of the clean segments from DNS Challenge 4 for train, 1% for valid and 1% for test. For
AudioSet, we use the unbalanced train segments as training data and randomly selected half of the eval
segments as validation set and the other half as test set. We follow the same procedure for FSD50K using the
dev set for training and splitting the eval set between validation and test. Finally for the Jamendo dataset,
we randomly take 96% of the artists and their corresponding tracks for train, 2% for valid and 2% for test,
hence there is no artists overlap in the different sets.

SoundStream model. We additionally re-implemented SoundStream. We follow the implementation details
in Zeghidour et al. (2021) to develop our own SoundStream version as the original implementation is not open
sourced. We implement Residual Vector Quantization with k-means initialization, exponential moving average
updates and random restart as pointed by the original implementation. For the wave-based discriminator, we
follow the details provided in Zeghidour et al. (2021) and refer to the original Multi-Scale Discriminator
implementation proposed in Kumar et al. (2019) for additional information. We use LeakyReLU as non-linear
activation function and following Kong et al. (2020), we use spectral normalization for the original resolution
and weight normalization for other resolutions. For the STFT-based discriminator, we experimented with
multiple normalization methods and found that using LayerNorm (Ba et al., 2016) was the only one that
prevented the discriminator from diverging. We used LeakyReLU as non-linear activation function. Finally,
training hyper parameters are not shared either so we use the same parameters as for our EnCodec model.

A.2 Alternative quantizers

A.2.1 DiffQ Quantizer

Pseudo quantization noise. We perform scalar quantization of the latent representation. As quantization
is non differentiable, we use properly scaled additive independent noise, a.k.a pseudo quantization noise,
at train time to simulate it. This approach was first use for analog-to-digital converters design (Widrow
et al., 1996), then for image compression (Ballé et al., 2017), and finally by the DiffQ model compression
method (Défossez et al., 2021) with a differentiable bandwidth estimate. We extend the DiffQ approach
for latent space quantization, adding support for streamable rescaling, proper sparsity, and improved prior
coding. Formally, we introduce a learnt parameter B ∈ RD (with D the dimension of the latent space) such
that B(i) represents the number of bits to use of the i-th dimension. In practice B is parameterized as
B = Bmax · sigmoid(αv), with Bmax = 15, and the α = 5 factor is used for boosting the learning rate of v,
the learnt parameter. We then define the pseudo quantized representation zq,train used at train time,

zq,train = clamp(z, m− L · σ, m + L · σ) + L · σ · U [−1, 1]
2B

, (6)

17

Published in Transactions on Machine Learning Research (09/2023)

with m (resp. σ) the mean (resp. standard deviation) of z along the time and batch axis, and U [−1, 1]
uniform i.i.d noise. The limit L is chosen so that when B goes to 0, the noise covers most of the range of
values accessible to a Gaussian variable of variance σ. In order to prevent outlier values, we clamp the input
z to this expected range of values. If L is too large, the dynamic range of the quantization will be poorly
used. If L is too low, many values will get clamped and lose gradients. In practice we choose L = 3, which
verifies that values are not clamped 99.5% of the time (against 99.8% if the input were gaussian). In order to
learn B, we approximate at train time the bandwidth used by the model by wdiffq = T ′ ∑D

i=1 B(i)/d with T ′

the number of latent time steps, d the duration of the sample, and add to the training loss a penalty term of
the form λwdiffq, as long as wdiffq is over a given target, as used in Section 3.4.

Test time quantization. At validation and test time, we replace the batch-level statistic with an exponential
moving average with a decay of 0.9 computed over the train set, similar to batch norm (Ioffe & Szegedy,
2015). We first normalize and clamp z to the segment [0, 1] as u = clamp((L + σ−1(z −m))/2L, 0, 1) and
define the number of quantized levels NB = round(2B) and the quantized index as

i = min [floor(NB · u), NB − 1] ∈ [0..NB − 1], (7)

with the minimum taken to avoid the edge case u = 1. We know we can code each entry in i on at most
log2(NB) bits. The quantized latent zq is finally defined as zq = m + Lσ

(
2 i+0.5

NB
− 1

)
.

Sparsity. We want to allow B to go to 0, however additive noise fails to remove all information contained
in the latent in that case. Indeed, if z < m for instance, then even after adding the largest possible amount
of noise, zq,train is still biased towards values smaller than m. In order to remove all information about z
from zq,train, the scale of the noise relative to the scale of the signal must go to infinity. This is achieved
by scaling down z by a factor min(B, 1) in Eq. (6), while scaling down the additive noise only by a factor√

min(B, 1). Thus, the decoder cannot invert the downscaling of z without blowing up the noise. In the
limit of B → 0, we recover a sparse representation.

A.2.2 Gumbel softmax quantizer

We introduce a second fully differentiable vector quantizer composed of NC codebooks each with Ω entries.
The i-th codebook is composed of a set of centroids Ci ∈ RΩ×D, a logit bias bi ∈ RΩ, and a learnt prior
logit li ∈ RΩ. Assuming for simplicity a latent vector for the j-th time step zj ∈ RD, we define a probability
distribution over each codebook entries as qi(z) = softmax(Cizj +bi). We then sample from the corresponding
gumbel-softmax (Jang et al., 2017) with a temperature τ = 0.5. This gives us a differentiable approximately
1-hot vector over the codebooks, i.e., noting GS the gumbel-softmax,

zq,train =
NC∑
i=1

GS(log(qi(z)), τ)T Ci. (8)

At test time, we replace the gumbel-softmax with a sampling from the distribution qi. We define for all i,
pi = softmax(li) the prior distribution over the codebooks entries which is used for coding the quantized
value zq with an arithmetic coder. We can both train the prior and minimize the bandwidth with a single loss
term given by the cross entropy between the prior pi and the posterior qi(z), i.e. the differentiable bandwidth
estimate for this method is given by wgs =

∑NC

i=1
∑Ω

k=1−qi(z) log(pi).

A.3 Additional Results

Comparing to SoundStream. For fair evaluation, we also compare EnCodec to our reimplementation of
SoundStream (Zeghidour et al., 2021). For which, the quantizer corresponds to RVQ in and the discriminator
corresponds to STFTD+MSD. Results are reported in Table A.2. The results of our SoundStream imple-
mentation are slightly worse than EnCodec using DiffQ quantizer. However, when considering the RVQ as
the latent quantizer, EnCodec is superior to the SoundStream model. Both EnCodec and SoundStream
methods are significantly better than Opus and EVS at 6.0kbps.

The effect of the model architecture. We investigate the impact of different architectural decisions of
our EnCodec model and we present our results with objective metrics and real-time factor in Table A.3.

18

Published in Transactions on Machine Learning Research (09/2023)

Table A.2: A comparison between EnCodec using either DiffQ or RVQ as latent quantizers against our
implementation of the SoundStream model at 3kbps. We additionally include the results of Opus and EVS at
6.0kbps for reference.

Model Bandwidth MUSHRA
Reference - 96.1±1.41

Opus 6.0 21.1±2.62
EVS 6.0 62.9±2.18
SoundStream 3.0 71.8±1.51
EnCodec (DiffQ) 3.0 72.3±1.18
EnCodec (RVQ) 3.0 76.8±1.31

Table A.3: Model architecture Analysis. We explore variations of our architecture including the impact of
the number of Residual Units (ResUnits), the sequence modeling with LSTM, the number of channels (C) on
objective metrics and real-time factor (RTF greater than 1 is faster than real time).

Model RTF Enc RTF Dec SI-SNR ViSQOL
EnCodec base 9.8 10.4 6.67 4.35
Channels = 16 26.0 25.7 6.40 4.32
Channels = 64 1.3 3.1 6.70 4.38
norm = None 10.1 10.4 6.45 4.29
LSTM = 0 15.0 14.6 6.40 4.35
Residual Layer = 3, LSTM = 0 6.0 7.3 6.32 4.35

For all models, we consider the streamable setup and our reference EnCodec base model has the number of
channels C set to 32 and a single residual unit. The real-time factor reported here is defined as the ratio
between the duration of the input audio and the processing time needed for encoding (respectively decoding)
it. We profiled streamable multi-target 24 kHz models during inference at 6 kbps on a single thread of a
MacBook Pro 2019 CPU. First, we validate that the selected number of channels provide good trade offs in
terms of perceived quality and inference speed. We observe that increasing the capacity of the model only
marginally affects the scores on objective metrics while it has a high impact on the real-time factor. The
results also demonstrate that presence of LSTM improves the SI-SNR and the final reconstruction quality,
at the detriment of the real-time factor. We also experiment with increasing the number of residual units
instead of relying on a LSTM in our architecture. To do so, we use 3 Residual Units and we double the
dilation used in the first convolutional layer of the residual unit for each subsequent unit. We observe that
using Residual Units has more impact on the real-time factor and we note a small degradation of the SI-SNR
compared to the LSTM-based version.

The effect of the balancer. Lastly, we present results evaluating the impact of the balancer. In which,
we train the EnCodec model considering various levels of balancing the loss. For this set of experiments
we use the DiffQ quantizer rather than RVQ. All models were trained on Jamando music dataset (see
Table A.4). Results suggest the balancer significantly stabilizes the training process. This is especially useful
while considering the different terms in the objective together where each term operates at a different scale.
Following the balancer approach significantly reduce the effort needed for tuning the objective coefficients
(i.e., λt, λf , λg, λfeat). We demonstrate that the use of the balancer shows no degradation compared to an
identified combination of coefficients.

A.4 Societal impact

The majority of the internet traffic is represented by audio and video streams (82% in 2021 according to Cisco
(2021)). This share of content is boosted by user-generated content, phone and video calls and by the

19

Published in Transactions on Machine Learning Research (09/2023)

Table A.4: ViSQOL and SI-SNR results for EnCodec using DiffQ considering various coefficients to balance
the overall objective. All models were trained using Jamando music dataset.

λt λf λg λfeat Balancer SI-SNR ViSQOL
1 1 1 1 ✓ 10.32 4.16
1 1 1 1 ✗ 6.16 3.89
1 1 2 1 ✓ 10.08 4.12
1 1 2 1 ✗ 5.01 3.77
1 2 2 1 ✓ 10.06 4.17
1 2 2 1 ✗ 3.84 3.67
1 2 4 1 ✓ 9.93 4.17
1 2 4 1 ✗ 1.72 3.52
1 2 100 1 ✓ 8.41 4.05
1 2 100 1 ✗ -35.83 2.82
2 1 1 4 ✓ 10.53 4.06
2 1 1 4 ✗ 7.66 4.03
2 2 2 4 ✓ 10.19 4.13
2 2 2 4 ✗ 7.16 3.98
2 2 10 4 ✓ 9.82 4.11
2 2 10 4 ✗ 3.98 3.66
2 2 100 4 ✓ 8.52 4.03
2 2 100 4 ✗ -34.31 2.91
10 1 1 1 ✓ 10.53 3.65
10 1 1 1 ✗ 8.16 4.00
10 1 4 1 ✓ 10.72 3.62
10 1 4 1 ✗ 5.99 3.74
10 1 4 2 ✓ 10.71 3.73
10 1 4 2 ✗ 7.03 3.88
10 2 100 2 ✓ 9.23 4.07
10 2 100 2 ✗ -33.78 2.85
10 2 100 4 ✓ 9.22 4.09
10 2 100 4 ✗ -16.39 2.95

development of HD music streaming and video streaming services. Compression methods are used to reduce
the storage requirements and network bandwidth used to serve this content. Furthermore, the growing
adoption of wearable devices contributes to making efficient compression an increasingly important problem.

Different audio codecs, including Opus and EVS, have been developed and widely adopted over the past years.
Those codecs support audio coding at low latency with high audio quality at low to medium bitrates (in the
range of 12 to 24 kbps) but the audio quality deteriorates at very low bitrates (eg. 3 kbps) on non-speech
audio. Addressing very low bitrate compression with high fidelity remains an essential challenge to solve
as very low bitrate codecs enable communication and improve experiences such as videoconferencing or
streaming content even with a poor internet connection and therefore allows the internet services to become
more inclusive. While further work needs to be done, we hope that sharing the result of this work to the
broader community can further contribute to this direction.

20

	Introduction
	Related Work
	Model
	Encoder & Decoder Architecture
	Residual Vector Quantization
	Language Modeling and Entropy Coding
	Training objective

	Experiments and Results
	Dataset
	Baselines
	Evaluation Methods
	Training
	Results
	Ablation study
	Stereo Evaluation

	Latency and computation time

	Conclusion
	Appendix
	Experimental details
	Alternative quantizers
	DiffQ Quantizer
	Gumbel softmax quantizer

	Additional Results
	Societal impact

