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Figure 1: Visualization comparing SNPs at a specific genomic region in 52 varieties of Canola: a) Every SNP is coloured blue
(match) or red (mismatch) based on its similarity to the reference variety at the top (first row), and missing SNPs are encoded in
white. b) The name of each line variety is shown at right next to its corresponding row of SNPs. c) A reference map of phenotypic
trait values is shown at left and the varieties are ordered by their increasing levels of aliphatic glucosinolates. d) The names of the
SNPs are shown above each column. e) Connections to the SNP’s genomic location are shown at bottom along with a map of genes
in that region.

ABSTRACT

Large-scale linear datasets are often visualized using tables. Visual
analysis tasks in such systems involve comparisons and identifica-
tion of patterns across rows and columns, but these tasks can be hard
to perform as the table increases in size because rows and columns of
interest can be far apart in the table. This problem is particularly evi-
dent in table visualizations of genomic data such as SNPs (which are
genetic markers used in comparing different variants of an organism).
Visual analysis of SNP datasets has a wide range of applications
in plant breeding, genome-wide association studies, and pharmaco-
genetics. However, current SNP visualizations are limited in their
support for complex analytic tasks in wide-scale tables. Through
ongoing collaborations with genomic researchers and plant breeders,
we have identified a set of new interaction requirements for visual
analysis of SNP datasets, and we have developed a new visualization
tool with interaction techniques that satisfy the requirements. Our
requirements and techniques provide new understanding of how to
support complex visual analysis in large-scale table visualizations.
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1 INTRODUCTION

In many visual-analytics domains, analysts use wide linear datasets
that have many features or observations about a set of entities –
for example, genomic data, time-series data, sequential documents,
or population data. These datasets are often displayed using table
visualizations in which each cell’s value is encoded using a visual
variable such as colour [69, 81, 101]. A main goal in working with
table visualizations is to find insights from seeing patterns in the
visualized data, such as determining that a particular row is different
from a reference row in an important way, or that a particular column
shows a pattern across the different rows, or that two columns show a
similar (or contrasting) pattern to each other. These tasks involve two
main activities in the visual workspace: finding patterns in the rows
and columns that indicate potential relationships, and comparing
rows or columns (either to a reference or to other parts of the data).

In the genomics domain, a common example of wide datasets is
Single Nucleotide Polymorphism data. SNPs are genetic differences
between genomes at a single base pair, and can be important in
understanding the relationship of an organism’s genotype to its
phenotype (that is, its observable traits). For example, SNP analysis



is extremely common in plant breeding research, since SNPs have
proven to be important markers for desirable crop traits such as
flowering time, disease resistance, or protein content.

Plant breeders and genomic researchers are now able to quickly
and easily produce datasets that collect large sets of SNPs (number-
ing from hundreds to tens of thousands) for many different varieties
of a crop as shown in Figure 1, which is visualization of SNPs in 52
varieties of Canola. When a collection of SNPs are inherited together
near a common loci they are referred to as a haplotype because they
indicate a potential genetic linkage. Studying these clusters of SNPs
and the DNA around them can help researchers identify specific mu-
tations that affect the plant’s characteristics, and can help breeders
identify candidate genes for future crossings (although SNPs occur
in both genes and in non-coding regions).

Many tools have been introduced that visualize SNP haplotypes,
but few systems have focused on the interactive tasks that users
need to carry out during exploratory investigations. Current tools
are limited in their support for visual exploration – particularly in
terms of lightweight visual comparisons in the wide datasets that
are now common in breeding (often with thousands of columns).
For example, mechanisms for navigating and comparing different
columns in wide tables is of particular importance because most
genetic locations in a plant’s genome have dependencies that may be
far away (for example, the polyploid nature of many plant genomes
leads to multiple copies of genes on different chromosomes).

To better support visual exploration in wide datasets, we have
been working with genomic researchers and plant breeders for sev-
eral years to identify specific analysis tasks in large SNP tables, and
interaction requirements that are needed to support those tasks. We
identified the following six specific requirements:

• Flexible and fast re-ordering mechanisms so that users can
quickly look at several arrangements of the SNP table, such
as different domain-specific clustering and sorting methods as
well as manual re-ordering;

• Lightweight row comparisons that allow temporary changes
to encodings so that a quick comparison can be made without
altering the overall organization of the table – for example,
checking the difference between two rows without re-setting
the reference row;

• Comparisons between related columns that allow multiple
genetic locations to be compared even if they are far away in
the table – for example, comparing SNPs at two locations that
have orthologous genes;

• Flexible encoding of differences that allow users to rapidly
switch between different visual representations of the differ-
ence between two plant varieties (for example, alternate colour
schemes to show show existence of difference from a reference,
‘cascading’ differences, the type of difference, or the specific
details for both varieties);

• Support for location awareness because the scale and orga-
nization of SNP table visualizations can lead to difficulty in
tracking where a SNP is in the plant’s genome (for example,
whether a SNP is in an important region that is known to
control other traits);

• Managing and revisiting table configurations to simplify nav-
igation through the huge “configuration space” of ways that
the user’s current view of the table can be ordered, encoded,
and positioned (for example, keeping track of what other clus-
tering approaches have been tried, or how to get back to a
previously-viewed configuration of the table).

We have developed a new SNP-haplotype viewer that provides
novel interaction techniques to meet these requirements. The viewer
provides lightweight mechanisms for arranging the table, compar-
ing rows and columns, and looking at different encodings; it also
shows explicit information about genomic and table location, and
includes a configuration snapshot tool that provides automatic and
manual saving of configurations as well as visualization of the saved
snapshots so that they can be compared, revisited, and annotated.

Our work makes two main contributions: first, we identify sev-
eral new interaction requirements for visual analysis of wide linear
datasets – these arise from our collaborations in the plant-breeding
domain, but there are several applications of the requirements to
other types of wide tabular data; and second, we demonstrate new
interaction techniques that can satisfy those requirements in a work-
ing genomics visualization tool. Our SNP-haplotype visualization is
open-source and is freely available at genomevis.usask.ca/haplotype-
map [3, 4].

2 BACKGROUND AND RELATED WORK

Three areas of prior work underlie our research: systems and tech-
niques for table visualizations, techniques for and studies of visual
comparison, and genomic visualizations of SNP data.

2.1 Visualizations of Tables
Tables have long been a standard way of communicating structured
information using spatial layout. Table visualizations — which en-
code each cell’s data value with a visual variable (colour, size, or po-
sition within the cell) -– have also been in use for more than a century,
and have been well known since Bertin’s work [10] and others as
reviewed by Perin et al [81]). Table visualizations (sometimes called
heat maps or colour-shaded matrices) allow large tables to be in-
spected and explored in a relatively small space, and tools for making
visual tables are now a standard part of many visualization systems
such as Tableau (tableau.com), PowerBI (powerbi.microsoft.com),
and ggplot2 (ggplot2.tidyverse.com).

Table visualizations have been used in many different ways and
in many different domains: for example, to summarize the charac-
teristics of a set of locations [10, 45, 64]; to show the magnitude of
a variable of interest (such as gene expression level or abundance
of ions) for different samples [50, 70, 101]; to explore student en-
gagement in online classes [21]; to explore database contents [58];
to show interactions in social networks [35]; to analyse energy de-
mand over time for different buildings [105]; or to track employee
performance through a set of criteria [106].

Some of the primary goals when visualizing tables are to help
users understand relationships between the entities represented in the
tables rows, the features or characteristics represented in columns,
and associations between rows and columns. Analytics work in
many domains where table visualizations are used is often equivocal
and under-specified: for example, in the domain of genomics, Nusrat
states “data visualization is essential for interpretation and hypothe-
sis generation as well as a valuable aid in communicating discoveries.
Visual tools bridge the gap between algorithmic approaches and the
cognitive skills of investigators. [...] A key challenge in data-driven
research is to discover unexpected patterns and to formulate hypothe-
ses in an unbiased manner in vast amounts of genomic and other
associated data” ( [76], p. 781).

Within this context, researchers have investigated many different
aspects of designing, interpreting, and interacting with table visu-
alizations. First, several projects have considered the problem of
generating table visualizations: for example, Perin and colleagues
revisited Bertin’s early methodology for producing visual encodings
inside table cells, and developed a tool for interactively creating table
visualizations with a range of visual variables; others have developed
tools for quickly creating table visualizations from spreadsheets [12]
and arbitrary CSV files [14]. Researchers have also considered, how



to provide access to the table’s values within the visualization: for
example, Rao and Card’s Table Lens provided a bar-chart encoding
of cell values and mechansims for quickly sorting by column, and
used a focus+context mechanism to allow detailed inspection of
certain rows within the graphic presentation [85]; the Table Lens
has also been extended by other researchers to allow multiple colour
maps and clustering support [56]). A different approach was ex-
plored by Han and Nacenta, who created “Fat Fonts” that show
both a scalar value and provide a visual representation of the value
through amount of ink [41]. Table representations have also been
adapted to show hierarchical data [28, 60].

Second, many researchers have investigated ways of ordering
and arranging a table to best reveal patterns in the data. Careful
manual arrangement of rows and columns was an important part of
Bertin’s original methodology [10], and many tools allow manual
reordering of rows and columns. However, with larger datasets, man-
ual ordering is not feasible, so automated algorithms for clustering
or “pattern mining” [26, 54] are often employed – these can use
similarity to create a tree from the table’s rows [101], or can look
for visual patterns in the table data [11, 24, 56, 59, 81].

Third, many systems provide explicit support for specific tasks,
such as ranking candidates [38,99], interactively looking for patterns
[11], navigating through versions of tables that change over time [82],
extracting and comparing data subsets from different tables [36],
interaction techniques for working with event sequences [40], or
dimensionality reduction [11, 28].

Finally, matrix visualizations are a subtype of table visualiza-
tions in which the two dimensions of the table represent the same
features for two entities, and each cell represents a degree of asso-
ciation between the entities for that feature. Matrix visualizations
have also been used in many domains: for example, to show graphs
and networks [9, 47, 48], term co-occurrence [35], genomic similar-
ity [42], physical connections in folded structures [22,102], software
evolution [89], or classification errors like confusion matrices [34].
Researchers have also investigated several novel representations for
matrices, including dual views that pair a matrix with its correspond-
ing node-link diagram [46], integration of matrices into existing
node-link structures [48], extensions that allow display of multivari-
ate data [104], and ‘matrices of heatmaps’ to increase the number of
dimensions that can be shown [88].

2.2 Supporting Visual Comparisons in Visualizations

Comparisons are a common and frequent task in visual analytics,
and techniques for supporting comparison have been widely stud-
ied. Many techniques can be classified using the three approaches
proposed by Gleicher: juxtaposition, superimposition, and explicit
encoding [30, 31, 66]. Juxtaposition involves placing visualizations
in close proximity, in order to allow users to see similarities and
differences in parallel parts of the visualizations. For example, if
two line charts are presented side by side, viewers can compare
values and trends in the charts (as long as all representations use the
same layout and scale so that visual differences accurately reflect
differences in the underlying data). A common technique that jux-
taposes several visualizations is the small-multiples method [10]:
each of the multiples has a similar layout but different data, allowing
comparisons by looking across the images. This idea has been used
in many ways, including well-known techniques such as scatterplot
matrices [49], as well as extensions to immersive environments [61].
Juxtaposition can also be achieved interactively: for example, Tomin-
ski’s CompaRing approach brings comparison candidates close to
the cursor when the user selects an object [95].

Superimposition involves putting two datasets in the same visual-
ization so that differences are visible in the same reference frame.
For example, instead of showing two line charts side by side, the
two lines can be shown in the same chart. Using a common ref-
erence frame allows similarities and differences to be seen more

clearly – however, this method has the problem of clutter, and the
density of some representations mean that they do not work well as
overlays (for example, space-filling methods or dense data spaces),
and the approach works best with sparse data (although the visual
presentations can be adjusted to reduce occlusion).

Explicit encoding of a comparison involves creating and visual-
izing a new dataset that explicitly represents a specific comparison
-– e.g., the data from two line charts can be used to create a new
dataset showing the difference between the lines, and then this new
dataset can be shown explicitly as a new line (either in addition to
or instead of the existing lines). Many types of explicit encoding
are possible: for example, showing the existence of differences, the
magnitude of differences, or the type of differences (limited only by
the ways in which two datasets can be compared) [73]. Researchers
have demonstrated several explicit-encoding methods in visualiza-
tion research, including colour-based differences (such as showing
same/different colouring, or amount of difference), “diff matrices”
that show a matrix of line pairs [92], annotations that indicate dif-
ferences in one of the representations being compared (for example,
coloured lines showing missing or added elements in a tree [13]),
differences between tables at different time periods [73], changes
between video frames [15], or “shine-through” representations to
highlight differences in overlays [96].

Researchers have also extended Gleicher’s three basic categories
to include other representations. Different visualizations can be
presented sequentially in the same location, either using the idea of
Rapid Serial Visual Presentation (RSVP) [7], or using animation to
smoothly morph from one dataset to another [25]. This technique
is a combination of juxtaposition and superimposition using time
(temporal juxtaposition), and can address the occlusion problem
while still making use of the common spatial frame. Tominski
showed a variation on this idea in a technique that allowed the user to
‘peel back’ a top representation to look at the bottom representation
[96]. Other researchers have extended the idea of juxtaposition by
nesting one visualization inside another, which allows different types
of comparisons [53], and have introduced the concept of overloading
one representation with details from another, such as showing graph
elements that are present in one visualization but not in another [52].

In addition to comparison approaches based on spatial layout,
researchers have also considered the actions and interactions that
are part of visual comparison tasks. For example, von Landesberger
specified the workflow involved in a visual comparison task [98]; Wu
developed a “view composition algebra” to understand and compose
actions in ad-hoc comparison settings [103]; Jardine and colleagues
investigated the low-level perceptual processes involved in visual
comparison [51]; and Kehrer and colleagues defined a formal model
of category comparisons in small-multiple displays [57]. An addi-
tional higher-level consideration is the amount of effort required to
carry out a visual comparison – low-effort techniques are critically
important for supporting effective exploration of large datasets. A
few researchers have explicitly focused on effort reduction – for
example, Tominski’s CompaRing which reduced the steps required
to juxtapose two comparators [95].

Studies have also been conducted to look at the performance of
different techniques for supporting visual comparisons. Early per-
ceptual studies investigated performance on comparisons between el-
ements in bar charts [16] and individual differences in same/different
visual comparison tasks [17]. Several studies have followed up on
these results to look at comparisons in standard chart types [93, 94]
the effect of chart size and space usage on interpretation [43], and the
effect of glyph types on reading and comparing time-series visual-
izations [27]. Several researchers have evaluated the basic processes
involved in visual comparison: for example, Lu and colleagues cre-
ated a model of just-noticeable differences as the basis of visual
comparison, and explored this idea with bar charts, bubble charts,
and pie charts [65], and Ondov and colleagues studied low-level



perceptual tasks to compare performance in several presentation
styles (overlays, small multiples, and animated transitions) [79].
Other studies have considered specific representations or analysis
scenarios: for example, user performance in visual comparison,
slope estimation, and discrimination tasks for multiple time-series
visualizations [53]; the performance of square and triangular matrix
representations as well as different methods of matrix juxtaposi-
tion [63]; the effectiveness of small multiples compared to animated
transitions for seeing changes in graphs [2]; and user performance
when comparing ranked data in tables [8].

2.3 Genomic Visualizations and SNP Haplotypes

There are many types of genomic visualization that are used to
show a wide range of information – for example, sequences and
sequence alignment, levels of gene expression or ion abundance,
conserved regions of the genome (synteny), or structural variation
across different samples [1, 5, 20, 67, 68, 76, 86, 107] – see [76]
for a broad survey. In particular, recent advances in sequencing
capabilities and the increasing availability of genomic data has led to
the use of genetic analysis and genomic visualization in the domain
of plant breeding where one of the main goals is to connect a crop
plant’s genotype to its phenotype – the observable characteristics or
traits of the plant. Plant breeders and genomic scientists investigate
how genetics affect important crop traits such as oil and protein
content, plant height, resistance to disease, or heat tolerance; this
knowledge can be used to create hypotheses and choose candidates
for breeding in order to try and introduce and retain desirable traits
[55].

Although complete sequencing of individual genomes is still
time-consuming, it has become feasible to identify large numbers of
genetic markers in a genome using the “genotyping-by-sequencing”
approach [19, 83] that generates sets of markers called SNPs for
a variety. SNP markers are often associated with differences in
traits of interest, and so SNP visualizations are an important part of
marker-assisted breeding [55].

Several systems have been developed for showing SNP data, in-
cluding capabilities in general-purpose genomic visualization tools
(for example, JBrowse [20] or Gosling [67]) as well as dedicated
applications such as Haploview [6], Flapjack [69], SNP-Vista [91],
or GCViT [100]. These systems often show table visualizations with
individuals in rows and SNPs in columns, as well as association
matrices that show co-occurrence of different alleles within a haplo-
type group [6], or histograms of SNP counts within a given window
size [100]. Many tools provide clustering capabilities, such as using
a genetic-similarity dendrogram [91]) as well as interactive zoom
to let users see details of the alleles and the actual nucleotides. A
few tools are paired with algorithms for conducting genome-wide
association studies (GWAS) that look for correlations between SNPs
and measured traits of interest [33]. However, there are still many
limitations in current genomic visualizations in terms of support for
the task of interactive visual comparison, although a few examples
of research that focuses on comparison do exist: very early work de-
veloped diagrammatic methods for comparing DNA sequences [29];
Glueck and colleagues developed the PhenoBlocks visualization
with the goal of supporting comparisons across phenotypes [32];
Mitra and colleagues developed methods for comparing metage-
nomic datasets [71]; and recent research by Ripken and colleagues
conducted requirements interviews with biologists for working with
genomic data in a VR environment for immersive analytics – the
identified requirements included the need to compare data subsets,
and the need to flexibly reorder and group the data [87]).

A specific limitation of current SNP-haplotype viewers is that
most tools have been primarily built for analysis of diploid genomes
(common in humans or animals) whereas plants are often polyploid,
with multiple copies of each gene [62]; breeders and researchers of-
ten need to consider the effects of all orthologous locations together

during exploration, but simultaneous visual access to orthologues
is not well supported in most tools. The drawbacks of current tools
and our collaborations with plant breeders and genomic researchers
led us to the new requirements and visual features described below.

3 APPLICATION DOMAIN

To contextualize the design of a visualization tool for SNPs, we
provide an overview of the biological background for the domain,
and a characterization of the dataset used in the visualization.

3.1 Biological Background
Genomics research involves the study of an organism’s DNA in
order to understand its structure, function, and evolution [80, 84].
An organism’s complete set of DNA is called its genome, consisting
of a large set of nucleotides that encode the instructions responsible
for the organism’s development and function [72]. There are four
nucleotide bases – Adenine (A), Guanine (G), Cytosine (C) and
Thymine (T). A variation in a single nucleotide in the genome at
a specific position is called a Single Nucleotide Polymorphism or
SNP. These variations tend to exist in a significant fraction of the
population (1% or more) and the different variants of a particular
SNP are called alleles. When a set of SNPs that are adjacent to
each other in the genome are inherited together they are referred to
as a haplotype. Mapping the location of these haplotypes can help
researchers in classifying different variant populations.

3.2 Data Characterization
SNP data can be represented in different types of files such as VCF
(Variant Call Format) or Hapmap (Haplotype Map) and is often
analyzed in combination with additional data sources such as a
GFF (General Feature Format) file for the position of genes, and a
phenotypic-trait table. At the most basic level, however, SNP data
is ordered based on genomic position and classified according to
the population line (variety) such that each SNP has the following
features:

• Identifier: Every SNP is given a unique identifier that is com-
mon across all the different parental lines of a single organism.

• Possible Alleles: The different nucleotide variants that exist for
a SNP; while most common SNPs have two alleles, triallelic
SNPs have been identified in human genomes.

• Position: The location of a SNP in the genome, typically
encoded relative to a chromosome.

• Value: The nucleotide variant present in the given population
line; the value can be empty when the data is missing.

Table visualizations of SNPs use the inherent ordering, and then
build a table at the genome, chromosome, or region level. Other
datasets can supplement the SNP information to indicate, for exam-
ple, the gene that the SNP is on, or copy number variations at that
genomic location. Further, other data sources can provide additional
information about each variety: phenotypic traits such as flowering
time, protein content, or seed size; or dendogram trees that cluster
the lines based on their genetic distance. These additional datasets
are primarily used to control the order of the rows.

4 REQUIREMENTS FOR SNP-HAPLOTYPE ANALYSIS

We have been working with genomic researchers and plant breeders
over the past five years to understand user tasks and requirements
for visual exploration in genomic datasets. Our collaborating re-
search groups are interested both in producing new crop variants that
have improved agronomic or nutrition traits, and also in exploring
genetic evidence for hypotheses about physiological mechanisms
and plant evolution. One research group is interested in using our



Figure 2: The SNP browser’s three main views: genome-level overview (top left) showing all 19 chromosomes of Canola, with chromosome 1
selected; chromosome-level view with highlighted viewfinder rectangle (top right); region view with match/difference colouring (bottom left) and
hover popup showing details; region view with nucleotide-based colour scheme (bottom right).

visualization system to map the differences among multiple Lentil
germplasm/stock lines. They are particularly interested in combin-
ing SNP data with CNVs (copy number variations) to break down
the lentil population into smaller clusters and identify candidate
genes [39]. Another group wants to use our system to investigate
the genetic diversity between founder lines in a Canola breeding
population [23]. A third research group that investigates Blackleg
(an oilseed pathogen fungus) is interested in analyzing SNPs across
the common Blackleg isolates relative to the position of avirulence
genes. Requirements analysis has been carried out in an iterative and
collaborative fashion with these research groups, and we have devel-
oped and deployed several versions of our haplotype visualization –
the prototypes have been used as a foundation for discussions about
user tasks and visual-exploration needs. Based on our discussions,
we have identified the following requirements that go beyond what
is available in current SNP visualizations:

R1. Flexible and fast re-ordering mechanisms. Genomic crop
analysis involves looking for associations between SNPs,
genes, and traits of interest – and to do this, users need to
be able to quickly look at several arrangements of the SNP
table. For example, ordering rows by genetic similarity, sorting
by a measured trait, clustering by allele group for a particular
SNP, or arranging rows manually (based on the user’s knowl-
edge of the varieties) are all common manipulation methods
for our collaborators. In addition, it is valuable to be able to
move between these different arrangements quickly and easily.

R2. Lightweight row comparisons. Because there are many ways
in which varieties can be compared, users need lightweight
mechanisms for quickly seeing how one row compares to
another without changing the global ordering of the table. In
addition to simple selection of a reference variety that changes
the global visualization, there is a need for low-effort ways of
comparing any two given rows. For example, in a table that
is colour-coded based on differences from a single reference,

users need a way to do a quick comparison of the differences
between two varieties without changing the overall reference.

R3. Comparisons between related columns. A genetic location
in a plant genome is often related to other locations: for ex-
ample, many plant species are polyploid (multiple duplicated
copies of genes across the genome), and many genes also have
dependencies with other parts of the genome (such as when a
gene in one location may be regulated by another). This means
that users need to compare the columns of a table visualization
as well as the rows – and need easy access to related locations,
since a SNP table may be many thousands of columns wide.

R4. Flexible encoding of differences. There are many ways in
which genomic researchers think about the difference between
two varieties: they may be interested simply in the existence
of differences between a variety and a reference; they may
want to see specific differences at the nucleotide level; they
may be interested in exact matches between alleles or partial
matches (heterozygous nucleotide pairs); or they may want
to see ‘cascading’ differences that build up across multiple
varieties. Alternate encodings, for example using colour maps,
can show different kinds of differences, but users need to be
able to switch between encodings quickly and easily.

R5. Support for location awareness. The size of SNP table visu-
alizations (often in the order of tens of thousands of columns)
means that it can be difficult for users to maintain awareness of
where they are in the genome – a problem that is exacerbated
by the fact that SNPs are simply ordered in the table, rather
than positioned relative to their actual genomic location. As a
result, it is critical that any visualization provide support for
awareness of location, both at a high level ( “what chromosome
am I looking at?”) and at a low level (“what gene is this SNP
on, and how many neighboring SNPs are on the same gene?”).

R6. Managing and revisiting table configurations. With multiple
ordering mechanisms, multiple colour encodings, and zoom



and pan navigation, there are an enormous number of possi-
ble configurations for the table visualization. It can be very
difficult for users to remember where they have been in this
“configuration space” and how they can get back to a previous
configuration (for example, to show a pattern to a colleague
or to revisit a previous candidate). Although provenance tools
have been introduced for several visualization systems [18,37],
no current genomic visualization systems (to our knowledge)
provide any support for this requirement.

5 SYSTEM OVERVIEW

Our haplotype browser is a web-based application for visualizing and
exploring SNP groups across multiple varieties (parental lines) of
crop species such as Canola (Brassica napus), lentil (Lens culinaris),
or wheat (Triticum aestivum). The system provides several table
visualizations at different genomic scales, with varieties in the table’s
rows and SNPs in the columns (see Figure 2). After the user selects
or loads a datafile, the system displays a genome-wide overview of
all varieties and SNPs, divided into chromosomes. Since there are
often many thousands of SNPs for each variety ( 30,000 in the Canola
dataset of Figure 2), this table is highly compressed horizontally, and
so primarily serves as a consistent frame of reference that helps the
user orient themselves to the data and keep track of navigational cues
such as the zoom region. The main user interaction at the overview
level is to select a chromosome for closer analysis, which is then
displayed as a second table below the overview.

The chromosome view uses the same tabular organization as
the overview, but at a higher zoom level, where users can start to
identify patterns in the data and locations for closer investigation —
for example, the central region of the chromosome view in Figure
2 shows that there are a number of varieties that differ in terms of
several contiguous SNPs. To zoom in further on this region, the
chromosome view provides a viewfinder rectangle that selects a
subset for a third view that shows only the region of interest (yellow
rectangle in Figure 2).

The region view is shown at the bottom of Figure 2. When the
zoom level is high enough in this view, the names of the SNPs are
shown at the top of the table, and the actual base pairs are also
drawn in the table cell. In this view, several additional interactions
are available. The user can pan (by dragging) and adjust the zoom
level (using a slider above the view), and can hover over any cell to
show a tooltip with information about the SNP and its corresponding
alleles. Button toggles are provided above this view for the user
to move left or right across the region in small step increments to
investigate neighbouring SNP clusters. There also a pair of input
boxes to enter a specific start and end position if the user is targeting
a known genetic loci. All three views use the same basic encoding
scheme, as described in the following section.

6 VISUAL ENCODING DESIGN

SNP data is primarily visualized through a simple coloured tabular
grid where the level of detail changes depending on the genomic
resolution. In encoding this dataset we followed previous SNP geno-
type visualizers like FlapJack and Haploview [6, 69, 74] that plot
the parental lines horizontally with colored SNP markers running
vertically. We extend this design space in our visualization by pro-
viding three panels: a main SNP panel and two supporting panels of
associated data, with coordinated interaction support among all three
for complex analysis tasks. The main panel, visualizing the SNP
markers, is at the center of our visualization. To its left is the line
ordering panel that encodes the ordering of the parental lines either
via a dendogram tree or a heatmap of phenotypic traits. The final
panel is positioned underneath the main panel and visualizes the
genetic-to-physical location map of the SNPs and the corresponding

genes around the loci. The visual encoding of all three panel is flexi-
ble and can change based on a variety of interaction and selection
parameters.

6.1 Main SNP Panel

The main table visualization has several possible colour encodings –
some of these are based on comparisons of each line to a reference
line (shown at the top of the table), and some based on underly-
ing genetic information. The multiple color encoding schemes are
designed to meet requirement R4.

The first (and default) color scheme is an explicit encoding of
differences to the reference line: if a SNP allele in a particular line
matches with the SNP allele in the reference line, it is painted blue
and, if there is a mismatch, it is painted red. Since each allele is
inherited from one parent, the alleles are always shown in pairs and
can be homozygous (same) or heterozygous (different alleles in the
pair). Since most SNPs have two possible alleles ( for example
A/C), the three possible genotypes could be either a homozygous
pair of the first allele (AA) or a homozygous pair of the second
allele (CC) or a heterozygous pair of both (AC or CA). In the default
color scheme, a SNP is considered to match if one among the pair
of alleles is the same as the reference (and is thus painted blue). The
second color scheme is a variation of the first, and ignores partially-
matching SNPs such that a marker is painted blue only if the alleles
from both parents match the alleles in the reference SNP.

The third color scheme is used to investigate the homozygosity
of SNP clusters – it paints a SNP marker blue if the pair of alleles
within the SNP are the same, or red if they are different. This can
help researchers isolate parental lines with a higher concentration of
heterozygous SNP pairs. The fourth color scheme uses the under-
lying DNA, with the SNP marker colored based on the nucleotide
bases present in the alleles. There are four basic colors used for each
of the four homozygous base pairs (AA, GG, CC and TT) and all
heterozygous base pairs are painted purple. This colour scheme is
shown in Figure 2 (bottom right), where many SNPs show two main
groups with either the AA or the GG allele. A fifth and final color
scheme is used to visualize similarity among lines in a cascaded
fashion with each line colored based on its similarity with all the
lines above it (see Section 7.3 below). In all five color schemes,
missing data where a SNP is not present in a line or its allele is
unknown is painted white.

The organisation of the table visualization is based on the genomic
resolution. At the whole-genome level, the SNPs are grouped into
chromosomes in order to provide an overview of the dataset and
also highlight large-scale patterns. For example, a large clusters of
missing SNPs either across the lines vertically or in a single line
horizontally can indicate an error during sequencing or the SNP
assaying process. It also provides spatial context for the user as they
investigate SNP clusters in a specific region. When a chromosome
has been selected, it is highlighted using a white background in the
genome view. Canvas rendering at this level is optimized through
an algorithm that filters out minuscule SNP variations to improve
rendering speed. This optimization occurs automatically when the
size of the rendered SNP markers goes below a single pixel.

In the chromosome view, painting of the SNP markers is the
same as at the genome level, but with the addition of a viewfinder
window that allows selection of a region for closer analysis. In
the region view, SNP markers are painted using the chosen colour
scheme, along with a label in each cell indicating the pair of alleles
in the SNP. At this resolution additional markers can also be painted
on top of the SNPs such as copy number variations. These are
either insertions or deletions in genes at specific locations across the
genome and are highlighted as red or white circles with white circles
indicating insertions and red circles deletions as shown in Figure 3.



Figure 3: Visualization of copy number variations in the chromosome view (red circles indicate deletions and white circles indicate insertions). The
green ribbon underneath the SNP panel is visualizing gene density at the SNP loci with dark green locations indicating a higher density.

Figure 4: Visualization of genes as pointed arrowheads indicate their position and orientation in the genome. The fine gray lines are connecting
SNPs with their physical location in the genome.

Figure 5: Split View demonstrating comparison of SNP clusters across two different genomic regions in the same chromosome. Each view has a
SNP column pinned to the left and the line NAM˙‘25 is selected and highlighted across both views.



6.2 Line Ordering Panel

This panel is designed to meet requirement R1. The ordering of the
different parental lines is important to researchers because several
insights can be gained by identifying similar regions in the table’s
columns – this is because the extent of similarity in the SNP clusters
around a loci across the lines is an indication of shared ancestry or
origin between the lines. By default our visualization system orders
the lines based on a dendogram tree provided by the user. This tree
structure visualizes every parental line as a leaf node in a tree, and it
clusters lines based on evolutionary distance. This arrangement can
help researchers in studying the SNPs of a particular subset of the
lines that are similar to each other.

The other ordering mechanism consists of heatmaps of different
phenotypic traits for each of the parental lines. The trait map con-
tains one column for each trait (seed size or protein content), with
colouring based on a heatmap of the range of values for that trait.
The Virdis color palette is used for the heatmaps for easier distinction
between the lines [75]. The lines can be ordered by sorting them
based on any of the column values, which places lines with similar
phenotypes closer to each other. This feature is explored further in
the interaction design section below.

6.3 Gene Loci Panel

SNPs in the main view are ordered from left to right based on genetic
position. However, because SNPs may be unevenly distributed
across the genome, the position of a SNP’s column does not match
its physical location in the genome. This makes it difficult to visually
indicate additional information regarding the genetic loci of the
SNPs. To address this problem and meet requirement R5, we provide
a visual map that provides the entire genomic scale of investigation
underneath the SNP view and connects every SNP to its actual
physical location in the genome, as shown in Figure 4. Additional
datasets sujch as gene density maps or gene markers are then placed
underneath this physical map so that they corresponding to the
location of the SNPs. For the whole-genome view, this panel is
hidden as the density of lines makes it difficult to discern positional
information. In the chromosome view, the panel is used to show a
simple scale indicating the actual physical location of the SNPs in
terms of number of base pairs, and can be used to highlight additional
datasets such as gene density tracks. In the region view, the panel
shows individual genes located near the loci of the SNPs. The genes
are visualized as horizontal arrows, with the direction of the arrow
indicating the orientation of the gene (see Figure 4). Clicking on a
gene arrow shows the gene ID and additional information related to
the function of the gene or the protein it encodes.

7 INTERACTION FEATURE DESIGN

Here we outline the different interactive design features in our visu-
alization that address the six major requirements.

7.1 Dynamic Ordering of Lines

Users are given several option to order the different parental/variety
lines. By default, lines are ordered according to a dendogram tree
based on an input file provided by the user. This mechanism clusters
lines that are evolutionarily similar. If a dendrogram file is not avail-
able, the lines are sorted automatically based on the SNP similarity
with the reference line. This approach ensures that matching SNP
clusters get pushed to the top of the main view while the lines that
differ the most are pushed towards the bottom. Additionally users
are also given the option of manually selecting a subset of lines
through a multi select dropdown list. The order of lines in this case
is determined based on the order in which the lines are selected.
This gives researchers the option to investigate specific patterns that
they might have observed in the dataset in greater detail by only
comparing those lines.

If a file containing phenotype trait values is provided by the user,
then the lines can also be ordered based on these traits. Users are
first given an option to select the traits they are interested in mapping
for all available traits in the file (the order of selection determines
the placing of the trait columns from left to right). Then users are
given an option to order the lines based on a specific trait value.
This ordering can be changed by clicking the column head of any
phenotype trait in the trait map. This offers a fast and flexible way
to reorder the lines thus meeting requirement R1.

7.2 Navigating Multiple Genomic Resolutions

When investigating large-scale datasets, users need to be able to navi-
gate quickly while still maintaining contextual information regarding
their position in the dataset. We provide location context through
the three coordinated views described above (genome, chromosome,
region). Navigating from genome to chromosome involves clicking
on the desired chromosome, and then selecting a region involves
positioning the viewfinder window. The viewfinder is translucent
by default to ensure that it does not occlude the view of the chromo-
some, and has a darker border at the bottom indicating the region
that has been selected (Figure 3). The user can drag the viewfinder
and adjust its left and right extents with the mouse.

In scenarios where SNP density is high in a chromosome, it
might be difficult to use the viewfinder to zoom into a small enough
region due to the limited size of the window. To address this issue,
a navigation panel is available in the region view to aid users in
controlling the region of interest. It contains two input boxes to
enter genomic start and end position (base pair locations) from the
start of the chromosome. This allows researchers to look at all SNPs
near a specific gene loci (for example, a gene that corresponds to a
particular protein). The view also included navigation buttons that
let the user move the region in small incremental steps, and a slider
provides additional control over the zoom level of the region view.
As the user interacts with the navigation panel, the corresponding
changes are reflected in the viewfinder in the chromosome view,
maintaining location awareness between the views and from the
table to the genome.

7.3 Dynamic Color Scheme

Apart from the four basic color schemes discussed above, we also
offer users a novel way to compare a small subset of lines through
a cascading waterfall color pattern. This feature was designed to
meet requirement R4. When users manually select fewer than ten
varieties for comparison, the visualization changes into a dynamic
color scheme for visualizing accumulating differences, instead of the
standard blue and red scheme. In the cascade color scheme, every
line is compared with all the lines above it instead of just the one
reference line at the top. To encode the similarity pattern, every line
is first assigned a unique color. Then all the SNPs in that line are
compared with the lines vertically above it starting from the top. If a
SNP markers matches with any of the lines above it, the color of the
topmost matching line is assigned to the SNP. If the marker doesn’t
match any of the lines above it, it is considered novel and is painted
in the unique color assigned to the line. This ensure a cascading
waterfall style of coloring, such that all the SNPs in the first line have
the same color because there are no SNPs above them. In the second
line, all the SNPs that match the first line are painted in the color of
the first line and all the SNPs that do not match are painted in the
color of the second line. This flow continues until the final line is a
mixture of different colors of all the lines above it depending on the
precedence of SNPs markers present in it. This offers researchers
a insight into the origin of a unique cluster of SNPs. However this
color scheme only works for ten lines or fewer, due to the limitations
on the number of colours that users can reliably distinguish.



Figure 6: A preview of the SNP view is shown in the top left corner above the phenotype trait map when the user hovers their mouse over a
particular phenotype. The preview shows what the SNP view would look like if the lines were sorted using that particular phenotype.

7.4 Row and Column Highlighting

In large datasets with many rows and columns, it can be hard for
users to navigate across the SNP view to identify a specific SNP
marker and its allele annotations. To support users with this task,
we offer a row highlighting option that lets users highlight a specific
row by clicking on the line name (this draws white guidelines across
the SNP view as shown in Figure 5). To further aid users with this
problem, we also offer a tooltip feature that shows all the details
such as the corresponding line name and the SNP index of a specific
marker when the mouse is hovered over it. The guidelines and
tooltips greatly improve the user’s ability to trace SNPs along a row
– and the highlighting can also act as a temporary landmark that
allows visual inspection of rows above and below the guidelines.

Another issue that can occur during visual comparison of two SNP
columns is the distance between their loci. If the SNPs are far apart,
they cannot be viewed in the region window without zooming out
and losing detail. To solve this problem and meet requirement R3, we
introduced a column-pinning mechanism (inspired by spreadsheet
applications) that lets users pin a SNP column to the beginning of
the region view. The selected SNP column is also highlighted in
the region view by changing the color of the allele annotations on
each marker in the column from white to black. Users can then
pan across the chromosome to a different location and compare
the SNP columns in that region with the pinned SNP column (see
Figure 5, in which two SNP columns have been pinned in the region
view). An additional advantage of this feature is that it also lets
users temporarily mark and highlight a SNP column that might have
caught their interest for further investigation.

7.5 Multi-Region Analysis

Although SNPs are inherited in clusters around a specific gene loci,
several SNP clusters across the genome can be related to each other
due to gene duplication or dependency. This is a common issue
for polyploid plants which may have several duplicated copies of
the same gene. The regulation and expression of these genes can
vary based on the SNP clusters within or around them, which means
that researchers often have to jump between multiple regions in the
genome to compare these SNP clusters. While the column-pinning
feature discussed above helps in this situation to an extent, it only
lets users compare a single column at a time, meaning they lose
context of the neighbouring SNPs in the cluster. To address this
problem, we implemented a split-screen view that splits the region
view into two parts with each part focusing on a different region.
All of the other features discussed above such as row and column
highlighting get carried over into these split views. This gives users
the option to pin two different SNP columns and compare their
neighbouring clusters in a side-by-side view (as shown in Figure 5).

This feature allows our system to meet both requirements R3 and
R5.

7.6 Lightweight Comparison Preview
Based on the feedback collected from our collaborators, one of
the most commonly used selection features is the ability to switch
the reference row at the top and compare a different line with the
other lines. In certain datasets such as lentil (Lens culinaris) the
number of lines that are being studied are quite high due to the
large number of possible cultivars and variants. This is a general
problem in most food crops as they are cultivated across the world
in a variety of environmental conditions with different outcomes
due to the selective breeding process. This means breeders often
need a way to carry out lightweight row comparisons across the
lines ‘on the fly’ without switching the reference line of the entire
visualization. To address this issue and meet requirement R2, we
offer a preview mode along with the row highlighting feature. Users
can first select a row in the SNP view by clicking its line name. This
highlights the entire row with white guide lines. Users can then
hover their mouse over any other row to perform a quick comparison
between the two rows and update the coloring in the row that is
being hovered. The coloring switches back to its default state once
the mouse hover over the row is removed. This way researchers
can quickly compare select rows without having to switch the main
reference row at the top and update the whole SNP view. Similarly,
we also offer previews for the interactions in the trait map that re-
orders the table: users can hover their mouse over the column head
of a trait column to see a quick preview in a small floating window
next to the mouse cursor of what the SNP view would look like if the
lines were ordered based on that phenotype. The preview disappears
as soon the mouse is moved away from the column head.

7.7 Revisitation Support Through Snapshots
The exploratory nature of our visualization tool means that users
will interact with the dataset at multiple resolutions and in complex
filtering scenarios – and it can become difficult to switch contexts
between different viewpoints for visual comparison when looking at
SNP markers in different regions. To help address this issue and meet
requirement R6, our system maintains an in-memory store of the
sequence of actions that led to the current state of the visualization.
Each of these memory states are stored along with a thumbnail image
(snapshot) of the visualization at that instant. A floating snapshot
panel that is minimized by default is available for users to pull up
and explore prior states of the visualization. Users can then click on
any of these snapshots to go back to the state of the visualization
at that prior point in time. This providers users with a lightweight
history tracking mechanism that can help them retrace their steps
during data exploration. The snapshots are automatically tagged



Figure 7: A preview of the light weight row comparison feature. When users hover their mouse over a row after highlighting a different row. The
hovered row is highlighted with a single guide line and its colouring is update to reflect similarity with the other highlighted row instead of the
reference line at the top.

Figure 8: SNP View visualizing the similarities between 10K SNPs in a reference line across 328 Lentils varieties. a) Cluster of SNPs that dont
match with the reference line across most of the varieties. b) One lentil variety line seen as an almost white line across the entire region indicating
missing data across its entirety due to possible sequencing error.



Figure 9: A example of the snapshot feature that lets users store their interaction history as a series of snapshots with thumbnails showing the
state of the visualization when the snapshot was taken. The panel is minimized by default but can opened up as seen here and contains three
snapshots.

with a note that indicates the chromosome name and the start and
end position of the region view. This note can be edited by users to
also include other points of interest if needed. The snapshot feature
also provides users a novel way of interacting with the system by
creating snapshots of multiple regions of interest and going back and
forth between them for quick visual lookup and comparison. The
system includes mechanisms for automatic creation of snapshots (if
the user stays in a particular configuration for 30 seconds) as well as
manual creation (through a keyboard shortcut).

8 ITERATIVE REFINEMENT, TESTING, AND CURRENT USE

The design of our visualization system was iteratively refined over
a period of two years through multiple rounds of feedback from
our research collaborators as they used our system to explore their
different datasets. During this period our system was also stress
tested with larger datasets ( 29,000 SNP markers across 1000 lines
of barley, and the first 10,000 SNP markers across 328 lentil varieties
developed at the Crop Development Center in Canada).

An example visualization of the large lentil dataset is shown
in Figure 8; this demonstrates the usability of our system even
with very large tables – even at this scale, the visualization shows
genome-level patterns such as lines with an extensive set of missing
markers (8 (b)) or SNP clusters that are completely different across
the majority of lines (8 (a)). Our system is also in use by a group of
plant breeders to showcase the diversity of agronomically important
traits among a population of Canola founder lines, and has been
adapted for use with several other use cases including exploration
of genotypes for Blackleg, a common oilseed pathogen. Our tool
is open-source and freely available [3, 4], and has been integrated
into KnowPulse, a major North American pulse crop database to
visualize the differences among their various lentil and other pulse
cultivars [77, 90]. Our web tool has also been integrated into an
accelerated breeding portal developed at the Global Institute of Food
Security in Saskatchewan [78].

9 DISCUSSION AND FUTURE WORK

In the following sections we consider the relationship of our require-
ments and techniques to previous work on table visualization and
visual comparison, discuss ways that our techniques can be applied
to datasets outside the domain of genomics, and outline a set of
directions for future work.

9.1 Requirements and Techniques in Context of Previ-
ous Work

Working in real-world collaboration with genomic researchers and
plant breeders means that our SNP-haplotype viewer implements
some interaction techniques that are shared with what has been seen
in previous systems – for example, two of our requirements match
those identified in Ripken’s interviews with biologists [87], although
Ripken’s research took a broader view and our requirements are thus
more focused on the comparison tasks themselves; similarly, several
systems have provided techniques for clustering, sorting, and manual
row rearrangement [50, 56, 70, 101, 106], and column pinning and
split-screen views are common in spreadsheet applications (although
not seen in tabular visualization systems).

However, several techniques and features are novel (or have novel
adaptations to fit the scenario of large-scale SNP tables). First,
our techniques for row and column comparisons are an advance
in terms of user effort: the lightweight row comparisons, column
pinning, split-screen views, and visual previews of column sorting
substantially reduce the number of steps needed to carry out a visual
comparison. Reducing effort in exploratory visual analysis is critical:
although there may be ways to achieve the comparison using stan-
dard techniques, it is important to provide low-effort mechanisms
so that users can follow exploratory paths without needing to think
about multiple steps in the UI. Our goals here are similar to those
of Tominski’s CompaRing system [95], although his approach used
juxtaposition whereas ours uses an explicit encoding of difference.
Second, techniques such as providing three persistent zoom views
that follow the structure of the genome, and visual tracks to indicate
genomic location as well as gene commonality, assist the user in
maintaining location awareness (since table locations are not well
matched to actual locations). Third, providing snapshots to track,
compare, share, and revisit table configurations is an extension to
the work done previously on visualization provenance [37, 44] that
broadens the focus from communication and storytelling to support-
ing the basic mechanics and processes of navigating through the
complex parameter space of table configuration.

9.2 Generalizing to Other Types of Wide Datasets

Although we have focused on the domain of genomic research and
the specific needs of our collaborators, we believe that several of
our requirements and interaction techniques will be applicable to



other domains as well. Column-based comparison tools will be use-
ful whenever the data has columnar dependencies or links between
columns. For example, if columns are used for temporal data, there
may be cyclic relationships that need to be brought closer together
for investigation (natural cycles such as seasons, or links created by
external phenomena such as temperature data during sunspot years).
Flexible row comparison mechanisms will also be important in any
dataset where there are many entities, and where comparisons need
to be made between rows as well as to an obvious reference row.
For example, a dataset of baseball players (as was used in the Table
Lens [85]) does not have a single clear reference, and it is likely
that many different pairs of players could be compared for a given
task. The idea of multiple flexible encodings can also be useful in
other datasets – these allow users to cycle quickly through different
perspectives on the comparison, gaining a broader view of differ-
ences. In particular, our ‘cascading differences’ encoding could be
useful in showing the accumulation of changes when rows represent
successive versions of a complex entity, such as a software code
base. Finally, a configuration-snapshot mechanism should also be
widely applicable in any visualization where users change organiza-
tion frequently, and where users need to revisit recent configurations
that they have previously explored.

9.3 Future Research Directions
Our future work will involve activities to improve the SNP viewer
as part of our ongoing collaboration, and new projects to explore
broader visualization issues raised by our experience. In the SNP
visualization system, we will add algorithms for pattern mining in
the table data [11, 24, 59, 81] and tools for comparing these patterns
to external evidence such as GWAS results. We will also add sup-
port for additional context tracks (for example, to provide GWAS
results or other gene-centric measurements such as expression level)
– aligning GWAS results such as a Manhattan plot with the table
visualization can provide a bridge between algorithmic approaches
and visual analysis [76], and gives users a set of starting points for
their exploration. We also plan to extend the interactions available
with the configuration-snapshot tool, such as to provide explicit
encoding of differences between two configurations [13, 73, 97].

In the broader visualization context, our initial goal is to test our
new interaction techniques in other types of wide tabular datasets,
and broaden our interaction requirements to encompass new tasks
and comparison activities: we will work with datasets that use
continuous rather than discrete values (requiring new encodings
for the table), we will test our tools with large-scale time series
that contain cyclic column dependencies, and we will add additional
techniques to work with table subsets [36,87]. We also plan to follow
up on work that has looked at the details of visual comparisons
[51, 57, 103] and assess the components of visual comparison in
table visualizations (and support for these components) at a more
fine-grained level.

10 CONCLUSION

Analytics tasks in large-scale table visualizations involve compar-
isons and identification of patterns across rows and columns, but
these tasks become more difficult when tables are large – as is the
case for SNP analyses in genomic research. Current SNP visu-
alizations are limited in their support for complex analytic tasks
in wide-scale tables – both because they do not focus on interac-
tion, and because they do not address issues raised by tables with
thousands or tens of thousands of columns. In collaboration with
genomic researchers and plant breeders, we have identified six new
interaction requirements that will help to support visual analytics
tasks with wide-scale SNP datasets. The requirements cover needs
for flexible arrangements of the table, lightweight comparisons of
both rows and columns, flexible visual encodings, and the ability
to save table configurations. We developed a new SNP-haplotype

viewer that implements interaction techniques for each of our pro-
posed requirements; the tool has been in continuous and successful
use by our collaborators over several years. Our work contributes
both a better understanding of the needs for large-scale visual analy-
sis in table visualizations, and specific interaction techniques that
can address those needs.
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