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Abstract001

The emergence of long-context large language002
models (LLMs) has enabled the use of hun-003
dreds, or even thousands, of demonstrations004
for in-context learning (ICL) – a previously005
impractical regime. This paper investigates006
whether traditional ICL selection strategies,007
which balance the similarity of ICL exam-008
ples to the test input (using a text retriever)009
with diversity within the ICL set, remain effec-010
tive when utilizing a large number of demon-011
strations. Our experiments demonstrate that,012
while longer contexts can accommodate more013
examples, simply increasing the number of014
demonstrations does not guarantee improved015
performance. Smart ICL selection remains016
crucial, even with thousands of demonstra-017
tions. To further enhance ICL in this setting,018
we introduce Refract ICL, a novel ICL selec-019
tion algorithm specifically designed to focus020
LLM attention on challenging examples by021
strategically repeating them within the context022
and incorporating zero-shot predictions as er-023
ror signals. Our results show that Refract ICL024
significantly improves the performance of ex-025
tremely long-context models such as Gemini026
1.5 Pro, particularly on tasks with a smaller027
number of output classes.028

1 Introduction029

A key factor driving the success of large language030

models (LLMs) is in-context learning (ICL), where031

LLMs leverage a few input-output examples, also032

known as demonstrations, to solve the desired033

task (Brown et al., 2020; Zhao et al., 2021). Tra-034

ditionally restricted to a few-shot setup where a035

handful of demonstrations are used in the prompt,036

ICL is now entering a new era with the emergence037

of extremely long context models (Reid et al., 2024)038

capable of handling hundreds or even thousands of039

tokens.040

LLMs are known to be sensitive to the prompt041

(Lester et al., 2021; Liu et al., 2022; Zhang et al.,042

2022), and especially within the few-shot ICL setup 043

where we are limited by the sequence length win- 044

dow, the choice of demonstration selection be- 045

comes crucial. Prior work has demonstrated the ef- 046

fectiveness of selecting demonstrations based on se- 047

mantic similarity to the test input (Das et al., 2021; 048

Liu et al., 2022; Margatina et al., 2023; Gao et al., 049

2023). These studies, however, primarily operate 050

within the constraints of limited context windows. 051

With the dramatic expansion in context capacity af- 052

forded by million-token models, critical questions 053

arise: Does smart ICL selection remain necessary 054

when million-token models can fit thousands of ex- 055

amples in the context? Do traditional ICL selection 056

strategies, designed for few-shot scenarios, still 057

hold true when using hundreds of demonstrations? 058

As we increase the number of demonstrations (k), 059

how do we ensure the LLM effectively focuses on 060

the most challenging examples – those that could 061

significantly refine its understanding? 062

Our work addresses these questions through an 063

empirical study of example selection strategies in 064

ICL, examining their impact across diverse tasks 065

and k-shot settings. Concurrent work has begun 066

exploring the many-shot ICL paradigm with long- 067

context models up to 80k tokens Bertsch et al. 068

(2024). Our investigation pushes these boundaries 069

by exploring the capabilities of a 2 Million context 070

model, Gemini 1.5 Pro (Reid et al., 2024). More- 071

over, we critically examine a diverse set of retrieval 072

baselines and provide comparison across short (8K 073

context) (Anil et al., 2023), long (32k context) 074

(Team et al., 2023), and extremely long context 075

models (Gemini 1.5 Pro). Our results demonstrate 076

that simply increasing k without careful selection 077

can be detrimental, highlighting the continued need 078

for smart retrieval methods even in extremely long 079

contexts. For example, we observe that the simple 080

yet robust TF-IDF retrieval method often outper- 081

forms more complex, fine-tuned retrieval strategies. 082

Additionally, we find a clear correlation between 083
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model context size and the ability to effectively084

leverage larger k values. Models with smaller con-085

text windows, like Flan-PaLM 2 and Gemini, show086

performance degradation beyond certain k values,087

highlighting their limitations in utilizing extensive088

contexts.089

As the number of demonstrations (K) increases,090

effectively guiding the LLM’s focus towards the091

most informative examples becomes crucial. To092

address this, we introduce Refract ICL, a novel ICL093

selection algorithm designed to amplify the LLM’s094

attention towards the most challenging demonstra-095

tions. Recognizing that the expanded context win-096

dow now allows for repetition, Refract ICL lever-097

ages zero-shot predictions to strategically highlight098

and repeat these difficult examples. This repe-099

tition encourages comprehensive interaction be-100

tween challenging demonstrations, breaking free101

from the inherent sequential bias of causal language102

modeling in LLMs (Gong et al., 2023) and enabling103

the model to gain a deeper understanding of its er-104

rors. We find that this approach significantly boosts105

the performance of long-context LLMs, particu-106

larly those with extremely large contexts like Gem-107

ini 1.5 Pro. This improvement is most pronounced108

on tasks with a smaller number of output classes.109

Our ablation studies confirm that the benefits of Re-110

fract ICL stem from both the strategic repetition of111

challenging examples and the integration of error112

signals.113

2 Scaling k with Traditional Retrievers114

2.1 Datasets and Models115

This section investigates the impact of scaling the116

number of in-context demonstrations (k) on LLMs117

with varying context lengths. We explore whether118

traditional retrieval methods, designed for few-shot119

settings, remain effective when utilizing hundreds120

or even thousands of demonstrations. We use121

datasets across diverse task types and languages:122

binary text classification (EDOS-A (en) (Kirk et al.,123

2023) and COUNTFACT (de, en, ja) (O’Neill et al.,124

2021)), multi-class text classification (EDOS-B125

(en) (Kirk et al., 2023) and MTOP-intent (de, en,126

es, fr, hi, th) (Li et al., 2021)), multi-label text clas-127

sification (ATIS-intent (en) (Price, 1990)), relation128

classification (DDI13 (Herrero-Zazo et al., 2013)),129

sequence labeling (ATIS-slot (en) (Price, 1990) and130

BC5CDR (en) (Li et al., 2016)), and machine trans-131

lation (XML-MT (enfi, enja) (Hashimoto et al.,132

2019)).133
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Figure 1: Performance of Gemini 1.5 Pro (2M context) with
up to 2000 randomly retrieved demonstrations shows that
increasing k alone does not guarantee improvement on all
datasets.

Figure 2: Performance on ATIS and BC5CDR datasets with
Gemini 1.5 Pro (2M context) shows that even with up to
2000 demonstrations, smart retrieval (TF-IDF and T5x with
balancing) consistently outperforms random selection.

We evaluate three LLMs with varying context 134

lengths: Short Context: Flan-PaLM 2 (S) (Anil 135

et al., 2023) (8K tokens). Long Context: Gemini 136

(Team et al., 2023) (32K tokens). Extremely Long 137

Context: Gemini 1.5 Pro (Reid et al., 2024) (2 138

Million tokens). 139

We evaluate the following traditional retrieval ap- 140

proaches: Random Selection: Examples are ran- 141

domly sampled from the training set. This serves as 142

a simple baseline to compare against more sophis- 143

ticated strategies. TF-IDF: Examples are retrieved 144

based on their TF-IDF similarity to the input text. 145

This widely used approach measures the relevance 146

of examples based on term frequency and inverse 147

document frequency. T5x-Retrieval: We use the 148

t5x-retrieval code base (Ni et al., 2022) to fine-tune 149

mT5 (Xue et al., 2021) with a general text retrieval 150

objective in Izacard et al. (2021). Multi-Task Re- 151

triever: A multi-task demonstration retriever R is 152

designed to estimates s(d|x, t), a score of a demon- 153

stration d given an input x and its corresponding 154

task t (Li et al., 2023; Wang et al., 2023). Class- 155

Balanced Variants: To balance example quality 156

and quantity, we incorporate class balancing tech- 157

niques, ensuring a more diverse set of demonstra- 158
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XML-MT-ENJA Flan-PaLM 2 (S) (corpus-BLEU), R0 = 0.36,
k=1,5,10,30,50,80,100

Gemini (corpus-BLEU), R0 = 0.33
k=1,5,10,30,50,80,100

Gemini 1.5 Pro (corpus-BLEU), R0 = 0.3
k=1,5,10,30,50,80,100

Random +0.01 +0.03 +0.04 +0.02 -0.05 N/A N/A +0.03 +0.00 -0.04 +0.03 +0.02 +0.03 +0.03 +0.15 +0.22 +0.22 +0.24 +0.24 +0.26 +0.26
TF-IDF +0.16 +0.19 +0.18 +0.17 +0.01 N/A N/A +0.10 +0.17 +0.16 +0.22 +0.20 +0.13 +0.16 +0.25 +0.34 +0.36 +0.38 +0.37 +0.38 +0.38
TF-IDF bal +0.16 +0.19 +0.20 +0.07 -0.04 N/A N/A +0.10 +0.15 +0.20 +0.22 +0.19 +0.18 +0.18 +0.26 +0.35 +0.38 +0.38 +0.38 +0.38 +0.39
T5x +0.18 +0.21 +0.21 +0.05 -0.08 N/A N/A +0.10 +0.17 +0.16 +0.22 +0.20 +0.13 +0.16 +0.25 +0.34 +0.36 +0.38 +0.37 +0.38 +0.38
T5x bal +0.18 +0.20 +0.21 +0.02 -0.10 N/A N/A +0.10 +0.19 +0.19 +0.21 +0.19 +0.18 +0.15 +0.29 +0.34 +0.37 +0.36 +0.37 +0.36 +0.36
Multi-task +0.19 +0.22 +0.22 +0.02 -0.14 N/A N/A +0.06 +0.08 +0.09 +0.10 +0.10 +0.02 -0.09 +0.35 +0.37 +0.40 +0.40 +0.41 +0.42 +0.42
COUNTFACT Flan-PaLM 2 (S) (F1-macro), R0 = 0.27, Gemini (F1-macro), R0 = 0.47, Gemini 1.5 Pro (F1-macro), R0 = 0.41,
Random -0.04 +0.21 +0.28 +0.31 +0.30 +0.22 +0.22 +0.08 +0.10 +0.11 +0.12 +0.12 +0.11 +0.10 +0.12 +0.24 +0.28 +0.31 +0.33 +0.32 +0.33
TF-IDF +0.13 +0.30 +0.41 +0.44 +0.45 +0.38 +0.36 +0.18 +0.15 +0.16 +0.19 +0.20 +0.15 +0.16 +0.27 +0.33 +0.37 +0.36 +0.35 +0.35 +0.35
TF-IDF bal +0.13 +0.29 +0.37 +0.39 +0.34 +0.42 +0.45 +0.14 +0.11 +0.13 +0.18 +0.15 +0.12 +0.10 +0.26 +0.26 +0.24 +0.29 +0.29 +0.33 +0.33
T5x +0.12 +0.30 +0.37 +0.42 +0.44 +0.42 +0.41 +0.19 +0.15 +0.15 +0.14 +0.15 +0.14 +0.14 +0.25 +0.32 +0.35 +0.35 +0.34 +0.36 +0.35
T5x bal +0.12 +0.26 +0.34 +0.39 +0.43 +0.43 +0.44 +0.14 +0.07 +0.12 +0.12 +0.12 +0.10 +0.09 +0.25 +0.30 +0.30 +0.31 +0.34 +0.35 +0.38
Multi-task +0.12 +0.33 +0.39 +0.36 +0.32 +0.29 +0.33 +0.13 +0.13 +0.12 +0.08 +0.07 +0.06 +0.06 +0.23 +0.25 +0.26 +0.26 +0.27 +0.27 +0.27
ATIS-slot (en) Flan-PaLM 2 (S) (F1), R0 = 0.00, Gemini (F1), R0 = 0.06, Gemini 1.5 Pro (F1), R0 = 0.16,
Random +0.25 +0.55 +0.60 +0.15 +0.18 N/A N/A +0.54 +0.63 +0.70 +0.70 +0.65 +0.58 +0.58 +0.67 +0.69 +0.71 +0.74 +0.76 +0.77 +0.76
TF-IDF +0.60 +0.79 +0.83 +0.16 +0.52 N/A N/A +0.75 +0.83 +0.82 +0.86 +0.83 +0.80 +0.77 +0.74 +0.78 +0.80 +0.81 +0.80 +0.81 +0.80
TF-IDF bal +0.60 +0.80 +0.84 +0.60 +0.62 N/A N/A +0.75 +0.85 +0.83 +0.84 +0.78 +0.77 +0.74 +0.74 +0.79 +0.80 +0.80 +0.80 +0.80 +0.82
T5x +0.63 +0.79 +0.81 +0.18 +0.50 N/A N/A +0.79 +0.85 +0.85 +0.86 +0.86 +0.86 +0.82 +0.73 +0.77 +0.78 +0.79 +0.79 +0.79 +0.78
T5x bal +0.63 +0.80 +0.84 +0.60 +0.63 N/A N/A +0.80 +0.85 +0.85 +0.85 +0.85 +0.82 +0.80 +0.74 +0.78 +0.78 +0.79 +0.79 +0.80 +0.80
Multi-task +0.68 +0.79 +0.82 +0.18 +0.51 N/A N/A +0.76 +0.78 +0.83 +0.77 +0.76 +0.76 +0.75 0.72 +0.73 +0.75 +0.77 +0.77 +0.77 +0.77

Table 1: Performance change from zero-shot across different numbers of demonstrations (k) and retrieval methods for three
language models: Flan-PaLM 2, Gemini, and Gemini 1.5 Pro. Each cell represents the performance differences compared to the
zero-shot baseline (R0), corresponding to k values of 1, 5, 10, 30, 50, 80, and 100. ’bal’ denotes class-balanced variants.

tions (Yang et al., 2023).159

2.2 Results and Analysis160

Our results illustrated in Figures 1 and 2, and161

further detailed in Table 1 for XML-MT (en-ja),162

COUNTFACT, and ATIS-slot (en) datasets, reveal163

several interesting insights. First, the simple TF-164

IDF approach often outperforms more complex,165

fine-tuned retrievers across various models and con-166

text lengths. This highlights the continued effec-167

tiveness of simple, yet robust retrieval methods168

even in long-context settings. Second, a clear cor-169

relation emerges between context size and the abil-170

ity to leverage larger k values. Gemini 1.5 Pro171

exhibits robust scaling, with performance either im-172

proving or plateauing as k increases. This suggests173

its ability to effectively utilize information from a174

large number of demonstrations. Conversely, both175

Flan-PaLM 2 and Gemini show performance drops176

beyond certain k values (k > 10+ and k > 30+ re-177

spectively), indicating limitations in their ability to178

utilize extensive contexts effectively.179

Finally, pushing the boundaries with Gemini180

1.5 Pro by increasing k up to 2000 demonstrates181

that simply increasing the number of randomly re-182

trieved examples does not guarantee performance183

improvement (Figure 1). Furthemore, Figure 2184

highlights that even with thousands of demonstra-185

tions, smart retrieval methods like TF-IDF and T5x186

with balancing provide a clear advantage over ran-187

dom selection. This emphasizes the importance188

of carefully choosing demonstrations, even with189

massive context windows.190

3 Refract ICL 191

In this section, we introduce Refract ICL, a novel 192

selection algorithm designed to augment traditional 193

retrieval methods and enhance LLM performance 194

in large-k settings. Refract ICL achieves this by 195

strategically repeating challenging examples within 196

the ICL context and incorporating error signals to 197

guide the LLM’s attention. More concretely, given 198

a pool of demonstrations D = {d1, d2, ..., dn}, 199

we first generate zero-shot predictions for each 200

di. Demonstrations where the LLM struggles to 201

achieve accurate zero-shot performance are classi- 202

fied as "challenging" and form the subset D′ ⊂ D. 203

Next, we repeat the challenging demonstrations 204

from D′ by appending them towards the end of D, 205

leveraging the expanded context window afforded 206

by long-context LLMs. For instance, the updated 207

context looks like d1d2...dnd
′
1d

′
2..., where di ∈ D 208

and d′i ∈ D′. This repetition helps in removing 209

from the inherent sequential bias of causal language 210

modeling (Gong et al., 2023), allowing challenging 211

examples to comprehensively interact and inform 212

each other. Finally, we add zero-shot predictions 213

to each of the demonstrations, providing explicit 214

error signals to the LLM, i.e. the final ICL con- 215

text looks like d1z1d2z2...dnznd
′
1z

′
1d

′
2z

′
2..., where 216

zi and z′i represents the zero-shot prediction for di 217

and d′i respectively. Including zero-shot predictions 218

guides the LLM’s attention towards potential error 219

patterns and encourages more effective learning 220

from the demonstrations. 221
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Dataset Retrieval Metric Gemini
k=1,3,5,10,30,50,80,100

Gemini 1.5 Pro
k=1,3,5,10,30,50,80,100

AF-SENTIMENT TF-IDF bal Accuracy 0.62 -0.08 -0.07 -0.22 -0.01 +0.03 +0.02 +0.02 0.63 -0.01 +0.01 +0.04 -0.02 +0.00 +0.01 +0.01
EDOS-A TF-IDF bal F1 0.55 -0.27 -0.20 -0.15 -0.04 +0.02 +0.05 +0.25 0.62 +0.06 +0.06 +0.05 +0.05 +0.02 +0.05 +0.03
COUNTFACT TF-IDF bal F1 0.54 -0.21 -0.26 -0.23 -0.05 +0.04 +0.08 +0.03 0.71 +0.02 -0.02 +0.05 +0.04 +0.05 +0.02 +0.04
BC5CDR TF-IDF bal F1 0.60 -0.02 -0.04 -0.03 -0.04 -0.05 -0.05 -0.06 0.76 +0.01 -0.02 +0.01 +0.01 +0.00 -0.02 -0.02
ATIS-intent(en) TF-IDF bal F1 0.84 -0.06 -0.06 -0.02 -0.01 -0.01 +0.00 -0.02 0.72 +0.03 +0.02 +0.00 +0.01 +0.00 +0.01 +0.02
MTOP-intent TF-IDF bal Accuracy 0.87 -0.06 -0.01 -0.02 -0.02 +0.00 -0.02 -0.01 0.88 +0.02 +0.01 +0.02 +0.01 +-0.00 +-0.00 +0.01
EDOS-B TF-IDF bal F1 0.16 -0.01 -0.01 -0.01 +0.00 +0.00 +0.07 +0.02 0.43 +0.02 +0.01 +0.02 -0.01 +0.00 +0.02 +0.00
ATIS-slot (en) TF-IDF bal F1 0.80 -0.03 -0.02 -0.01 +0.00 +0.00 +0.00 -0.01 0.88 +0.01 +0.02 +0.02 +0.02 +0.01 +0.00 +0.01
DDI13 TF-IDF bal F1 0.12 -0.03 -0.03 +0.00 +0.00 +0.01 +0.00 +0.00 0.27 +0.02 +0.03 +0.05 +0.06 +0.02 +0.05 +0.03
XML-MT enfi TF-IDF bal Corpus-BLEU 0.29 +0.00 +0.00 +0.00 +0.01 +0.01 +0.01 +0.01 0.44 +0.03 +0.01 +0.02 +0.01 +0.02 +0.02 +0.02
XML-MT enja TF-IDF bal Corpus-BLEU 0.39 +0.00 +0.00 -0.01 +0.00 +0.01 +0.02 +0.01 0.56 +0.04 +0.03 +0.00 +0.01 +0.00 +0.02 +0.02
AF-SENTIMENT T5x bal Accuracy 0.63 -0.09 -0.07 -0.20 -0.01 +0.04 +0.01 +0.02 0.63 -0.01 +0.00 +0.03 -0.01 +0.00 +0.01 +0.01
EDOS-A T5x bal F1 0.57 -0.30 -0.29 -0.19 -0.04 +0.01 +0.04 +0.26 0.60 +0.06 +0.06 +0.04 +0.04 +0.01 +0.04 +0.03
COUNTFACT T5x bal F1 0.55 -0.27 -0.28 -0.28 -0.09 +0.04 +0.07 +0.05 0.72 +0.01 -0.02 +0.06 +0.03 +0.05 +0.02 +0.03
BC5CDR T5x bal F1 0.61 -0.05 -0.04 -0.03 -0.06 -0.06 -0.06 -0.05 0.74 +0.01 -0.01 +0.01 +0.00 +0.01 -0.02 -0.01
ATIS-intent(en) T5x bal F1 0.84 -0.09 -0.05 -0.03 -0.01 -0.03 +0.00 -0.01 0.74 +0.05 +0.03 +0.00 +0.00 +0.01 +0.01 +0.01
MTOP-intent T5x bal Accuracy 0.89 -0.06 -0.03 -0.02 -0.02 +0.00 -0.01 -0.02 0.89 +0.01 +0.01 +0.01 +0.00 +-0.00 +-0.00 +0.01
EDOS-B T5x bal F1 0.15 -0.03 -0.01 -0.01 -0.02 -0.02 +0.08 +0.01 0.43 +0.03 +0.01 +0.02 -0.02 -0.01 +0.02 +0.00
ATIS-slot (en) T5x bal F1 0.81 -0.02 -0.02 -0.03 -0.01 -0.02 -0.02 -0.02 0.89 +0.01 +0.01 +0.02 +0.03 +0.00 -0.01 +0.01
DDI13 T5x bal F1 0.14 -0.07 -0.01 +0.00 +0.00 +0.01 +0.01 +0.00 0.26 +0.03 +0.01 +0.09 +0.04 +0.04 +0.04 +0.03
XML-MT enfi T5x bal Corpus-BLEU 0.29 +0.00 +0.00 -0.01 +0.01 +0.02 +0.02 +0.01 0.47 +0.02 +0.01 +0.01 +0.00 +0.00 -0.01 +0.01
XML-MT enja T5x bal Corpus-BLEU 0.38 +0.00 -0.01 -0.01 -0.01 +0.01 +0.00 +0.01 0.59 +0.05 +0.03 +0.01 +0.00 -0.01 +0.02 +0.01

Table 2: Performance Changes by adding Refract ICL to TF-IDF bal and T5x bal retrieval methods across k shots with Gemini
and Gemini 1.5 Pro. All metrics are presented on a 0 to 1 scale for ease of comparison.

Dataset w/ repeat w/o repeat
AF-SENTIMENT 0.73 0.71
EDOS-A 0.74 0.71
COUNTFACT 0.77 0.77
BC5CDR 0.84 0.83
ATIS-intent(en) 95.8 95.8
MTOP-intent 0.97 0.97
EDOS-B 0.57 0.57
ATIS-slot (en) 0.97 0.96
DDI13 0.48 0.48
XML-MT enfi 0.50 0.49
XML-MT enja 0.69 0.69

Table 3: Ablation comparing the Gemini 1.5 Pro Perfor-
mance with Refract ICL + T5x bal retrieval with and without
repeating challenging examples in ICL context.

3.1 Results222

Table 2 presents the performance gains achieved223

by Refract ICL on Gemini and Gemini 1.5 Pro. We224

observe significant improvements, particularly on225

classification tasks with a smaller number of out-226

put classes, such as EDOS-A, COUNTFACT, and227

DDI13. Interestingly, Gemini 1.5 Pro shows more228

consistent gains across different k values compared229

to Gemini, indicating that the larger context model230

is better able to leverage the targeted attention pro-231

vided by Refract ICL. While Refract ICL demon-232

strates strong performance on tasks with fewer233

output classes, the improvements are less substan-234

tial on tasks with a larger number of classes (e.g.,235

MTOP-intent) or segmentation tasks like ATIS-slot.236

This suggests that the current implementation of237

error signal integration might be less effective in238

these settings. Future work will explore alternative239

approaches for representing and incorporating er-240

ror signals in more complex tasks. To assess the 241

impact of mitigating sequential bias, we conducted 242

an ablation study by removing the repetition of 243

challenging examples. As shown in Table 3, this 244

ablation leads to a noticeable performance decrease, 245

confirming that breaking sequential dependencies 246

through repetition plays a crucial role in Refract 247

ICL’s effectiveness. 248

4 Conclusion 249

In this paper, we explored the impact of increas- 250

ing demonstration count (k) in the context of long- 251

context LLMs and highlighted the continued im- 252

portance of smart ICL selection strategies. While 253

longer context lengths unlock the potential to lever- 254

age a larger number of demonstrations, simply in- 255

creasing k without careful selection can be detri- 256

mental. Our proposed method, Refract ICL, demon- 257

strates that focusing LLM attention on challenging 258

examples and incorporating error signals can sig- 259

nificantly boost performance. This approach offers 260

a promising direction for enhancing long-context 261

ICL. Future work will investigate alternative ap- 262

proaches for representing and incorporating error 263

signals in more complex tasks, such as those with 264

a larger number of output classes or involving in- 265

tricate sequence labeling. Additionally, we plan 266

to explore the interplay between different retrieval 267

methods and Refract ICL, aiming to develop even 268

more effective and robust strategies for demonstra- 269

tion selection in the era of long-context LLMs. 270
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5 Limitations271

This work explores the potential of Refract ICL for272

enhancing long-context in-context learning, but it273

is not without limitations. While our experiments274

demonstrate promising results, particularly on clas-275

sification tasks with a smaller number of output276

classes, the current implementation of Refract ICL277

shows limited effectiveness on tasks with a larger278

number of output classes or involving complex se-279

quence labeling. This suggests that the current280

strategy for integrating error signals, while benefi-281

cial in some settings, might not generalize well to282

all task types.283
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