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Abstract

The emergence of long-context large language
models (LLMs) has enabled the use of hun-
dreds, or even thousands, of demonstrations
for in-context learning (ICL) — a previously
impractical regime. This paper investigates
whether traditional ICL selection strategies,
which balance the similarity of ICL exam-
ples to the test input (using a text retriever)
with diversity within the ICL set, remain effec-
tive when utilizing a large number of demon-
strations. Our experiments demonstrate that,
while longer contexts can accommodate more
examples, simply increasing the number of
demonstrations does not guarantee improved
performance. Smart ICL selection remains
crucial, even with thousands of demonstra-
tions. To further enhance ICL in this setting,
we introduce Refract ICL, a novel ICL selec-
tion algorithm specifically designed to focus
LLM attention on challenging examples by
strategically repeating them within the context
and incorporating zero-shot predictions as er-
ror signals. Our results show that Refract ICL
significantly improves the performance of ex-
tremely long-context models such as Gemini
1.5 Pro, particularly on tasks with a smaller
number of output classes.

1 Introduction

A key factor driving the success of large language
models (LLMs) is in-context learning (ICL), where
LLMs leverage a few input-output examples, also
known as demonstrations, to solve the desired
task (Brown et al., 2020; Zhao et al., 2021). Tra-
ditionally restricted to a few-shot setup where a
handful of demonstrations are used in the prompt,
ICL is now entering a new era with the emergence
of extremely long context models (Reid et al., 2024)
capable of handling hundreds or even thousands of
tokens.

LLMs are known to be sensitive to the prompt
(Lester et al., 2021; Liu et al., 2022; Zhang et al.,

2022), and especially within the few-shot ICL setup
where we are limited by the sequence length win-
dow, the choice of demonstration selection be-
comes crucial. Prior work has demonstrated the ef-
fectiveness of selecting demonstrations based on se-
mantic similarity to the test input (Das et al., 2021;
Liu et al., 2022; Margatina et al., 2023; Gao et al.,
2023). These studies, however, primarily operate
within the constraints of limited context windows.
With the dramatic expansion in context capacity af-
forded by million-token models, critical questions
arise: Does smart ICL selection remain necessary
when million-token models can fit thousands of ex-
amples in the context? Do traditional ICL selection
strategies, designed for few-shot scenarios, still
hold true when using hundreds of demonstrations?
As we increase the number of demonstrations (k),
how do we ensure the LLM effectively focuses on
the most challenging examples — those that could
significantly refine its understanding?

Our work addresses these questions through an
empirical study of example selection strategies in
ICL, examining their impact across diverse tasks
and k-shot settings. Concurrent work has begun
exploring the many-shot ICL paradigm with long-
context models up to 80k tokens Bertsch et al.
(2024). Our investigation pushes these boundaries
by exploring the capabilities of a 2 Million context
model, Gemini 1.5 Pro (Reid et al., 2024). More-
over, we critically examine a diverse set of retrieval
baselines and provide comparison across short (8K
context) (Anil et al., 2023), long (32k context)
(Team et al., 2023), and extremely long context
models (Gemini 1.5 Pro). Our results demonstrate
that simply increasing k without careful selection
can be detrimental, highlighting the continued need
for smart retrieval methods even in extremely long
contexts. For example, we observe that the simple
yet robust TF-IDF retrieval method often outper-
forms more complex, fine-tuned retrieval strategies.
Additionally, we find a clear correlation between



model context size and the ability to effectively
leverage larger k values. Models with smaller con-
text windows, like Flan-PalLM 2 and Gemini, show
performance degradation beyond certain k values,
highlighting their limitations in utilizing extensive
contexts.

As the number of demonstrations (K) increases,
effectively guiding the LLM’s focus towards the
most informative examples becomes crucial. To
address this, we introduce Refract ICL, a novel ICL
selection algorithm designed to amplify the LLM’s
attention towards the most challenging demonstra-
tions. Recognizing that the expanded context win-
dow now allows for repetition, Refract ICL lever-
ages zero-shot predictions to strategically highlight
and repeat these difficult examples. This repe-
tition encourages comprehensive interaction be-
tween challenging demonstrations, breaking free
from the inherent sequential bias of causal language
modeling in LLMs (Gong et al., 2023) and enabling
the model to gain a deeper understanding of its er-
rors. We find that this approach significantly boosts
the performance of long-context LL.Ms, particu-
larly those with extremely large contexts like Gem-
ini 1.5 Pro. This improvement is most pronounced
on tasks with a smaller number of output classes.
Our ablation studies confirm that the benefits of Re-
fract ICL stem from both the strategic repetition of
challenging examples and the integration of error
signals.

2 Scaling k with Traditional Retrievers

2.1 Datasets and Models

This section investigates the impact of scaling the
number of in-context demonstrations (k) on LLMs
with varying context lengths. We explore whether
traditional retrieval methods, designed for few-shot
settings, remain effective when utilizing hundreds
or even thousands of demonstrations. We use
datasets across diverse task types and languages:
binary text classification (EDOS-A (en) (Kirk et al.,
2023) and COUNTFACT (de, en, ja) (O’Neill et al.,
2021)), multi-class text classification (EDOS-B
(en) (Kirk et al., 2023) and MTOP-intent (de, en,
es, fr, hi, th) (Li et al., 2021)), multi-label text clas-
sification (ATIS-intent (en) (Price, 1990)), relation
classification (DDI13 (Herrero-Zazo et al., 2013)),
sequence labeling (ATIS-slot (en) (Price, 1990) and
BC5CDR (en) (Li et al., 2016)), and machine trans-
lation (XML-MT (enfi, enja) (Hashimoto et al.,
2019)).
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Figure 1: Performance of Gemini 1.5 Pro (2M context) with
up to 2000 randomly retrieved demonstrations shows that
increasing k alone does not guarantee improvement on all
datasets.
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Figure 2: Performance on ATIS and BC5CDR datasets with
Gemini 1.5 Pro (2M context) shows that even with up to
2000 demonstrations, smart retrieval (TF-IDF and T5x with
balancing) consistently outperforms random selection.

We evaluate three LLMs with varying context
lengths: Short Context: Flan-PalLM 2 (S) (Anil
et al., 2023) (8K tokens). Long Context: Gemini
(Team et al., 2023) (32K tokens). Extremely Long
Context: Gemini 1.5 Pro (Reid et al., 2024) (2
Million tokens).

We evaluate the following traditional retrieval ap-
proaches: Random Selection: Examples are ran-
domly sampled from the training set. This serves as
a simple baseline to compare against more sophis-
ticated strategies. TF-IDF: Examples are retrieved
based on their TF-IDF similarity to the input text.
This widely used approach measures the relevance
of examples based on term frequency and inverse
document frequency. T5x-Retrieval: We use the
t5x-retrieval code base (Ni et al., 2022) to fine-tune
mT5 (Xue et al., 2021) with a general text retrieval
objective in Izacard et al. (2021). Multi-Task Re-
triever: A multi-task demonstration retriever R is
designed to estimates s(d|z, t), a score of a demon-
stration d given an input = and its corresponding
task t (Li et al., 2023; Wang et al., 2023). Class-
Balanced Variants: To balance example quality
and quantity, we incorporate class balancing tech-
niques, ensuring a more diverse set of demonstra-



XML-MT-ENJA | Flan-PaLM 2 (S) (corpus-BLEU), R = 0.36, Gemini (corpus-BLEU), Ry = 0.33 Gemini 1.5 Pro (corpus-BLEU), Ry = 0.3

k=1,5.10,30,50,80,100 k=1,5,10,30,50,80,100 k=1,5,10,30,50,80,100

Random +0.01 +0.03 +0.04 +0.02 -0.05 N/A N/A +0.03 +0.00 -0.04 +0.03 +0.02 +0.03 +0.03 | +0.15 +0.22 +0.22 +0.24 +0.24 +0.26 +0.26
TF-IDF +0.16 +0.19 +0.18 +0.17 +0.01 N/A N/A | 40.10 +0.17 +0.16 +0.22 +0.20 +0.13 +0.16 | +0.25 +0.34 +0.36 +0.38 +0.37 +0.38 +0.38
TF-IDF bal +0.16 +0.19 +0.20 +0.07 -0.04 N/A N/A | 40.10 +0.15 +0.20 +0.22 +0.19 +0.18 +0.18 | +0.26 +0.35 +0.38 +0.38 +0.38 +0.38 +0.39
TSx +0.18 +0.21 +0.21 +0.05 -0.08 N/A N/A | 40.10 +0.17 +0.16 +0.22 +0.20 +0.13 +0.16 | +0.25 +0.34 +0.36 +0.38 +0.37 +0.38 +0.38
T5x bal +0.18 +0.20 +0.21 +0.02 -0.10 N/A N/A | 40.10 +0.19 +0.19 +0.21 +0.19 +0.18 +0.15 | +0.29 +0.34 +0.37 +0.36 +0.37 +0.36 +0.36
Multi-task +0.19 +0.22 +0.22 +0.02 -0.14 N/A N/A +0.06 +0.08 +0.09 +0.10 +0.10 +0.02 -0.09 | +0.35 +0.37 +0.40 +0.40 +0.41 +0.42 +0.42
COUNTFACT Flan-PaLM 2 (S) (F1-macro), Ry = 0.27, Gemini (F1-macro), Ry =0.47, Gemini 1.5 Pro (F1-macro), Ry = 0.41,
Random -0.04 +0.21 +0.28 +0.31 +0.30 +0.22 +0.22 | +0.08 +0.10 +0.11 +0.12 +0.12 +0.11 +0.10 | +0.12 +0.24 +0.28 +0.31 +0.33 +0.32 +0.33
TF-IDF +0.13 +0.30 +0.41 +0.44 +0.45 +0.38 +0.36 | +0.18 +0.15 +0.16 +0.19 +0.20 +0.15 +0.16 | +0.27 +0.33 +0.37 +0.36 +0.35 +0.35 +0.35
TF-IDF bal +0.13 +0.29 +0.37 +0.39 +0.34 +0.42 +0.45 | +0.14 +0.11 +0.13 +0.18 +0.15 +0.12 +0.10 | +0.26 +0.26 +0.24 +0.29 +0.29 +0.33 +0.33
T5x +0.12 +0.30 +0.37 +0.42 +0.44 +0.42 +0.41 | +0.19 +0.15 +0.15 +0.14 +0.15 +0.14 +0.14 | +0.25 +0.32 +0.35 +0.35 +0.34 +0.36 +0.35
T5x bal +0.12 +0.26 +0.34 +0.39 +0.43 +0.43 +0.44 | +0.14 +0.07 +0.12 +0.12 +0.12 +0.10 +0.09 | +0.25 +0.30 +0.30 +0.31 +0.34 +0.35 +0.38
Multi-task +0.12 +0.33 +0.39 +0.36 +0.32 +0.29 +0.33 | +0.13 +0.13 +0.12 +0.08 +0.07 +0.06 +0.06 | +0.23 +0.25 +0.26 +0.26 +0.27 +0.27 +0.27
ATIS-slot (en) Flan-PaLLM 2 (S) (F1), Ry = 0.00, Gemini (F1), Ry = 0.06, Gemini 1.5 Pro (F1), Ry =0.16,
Random +0.25 +0.55 +0.60 +0.15 +0.18 N/A N/A | 40.54 +0.63 +0.70 +0.70 +0.65 +0.58 +0.58 | +0.67 +0.69 +0.71 +0.74 +0.76 +0.77 +0.76
TF-IDF +0.60 +0.79 +0.83 +0.16 +0.52 N/A N/A | +0.75 +0.83 +0.82 +0.86 +0.83 +0.80 +0.77 | +0.74 +0.78 +0.80 +0.81 +0.80 +0.81 +0.80
TF-IDF bal +0.60 +0.80 +0.84 +0.60 +0.62 N/A N/A | 40.75 +0.85 +0.83 +0.84 +0.78 +0.77 +0.74 | +0.74 +0.79 +0.80 +0.80 +0.80 +0.80 +0.82
TSx +0.63 +0.79 +0.81 +0.18 +0.50 N/A N/A | +0.79 +0.85 +0.85 +0.86 +0.86 +0.86 +0.82 | +0.73 +0.77 +0.78 +0.79 +0.79 +0.79 +0.78
T5x bal +0.63 +0.80 +0.84 +0.60 +0.63 N/A N/A | +0.80 +0.85 +0.85 +0.85 +0.85 +0.82 +0.80 | +0.74 +0.78 +0.78 +0.79 +0.79 +0.80 +0.80
Multi-task +0.68 +0.79 +0.82 +0.18 +0.51 N/A N/A | +0.76 +0.78 +0.83 +0.77 +0.76 +0.76 +0.75 | 0.72 +0.73 +0.75 +0.77 +0.77 +0.77 +0.77

Table 1: Performance change from zero-shot across different numbers of demonstrations (k) and retrieval methods for three
language models: Flan-PaLLM 2, Gemini, and Gemini 1.5 Pro. Each cell represents the performance differences compared to the

zero-shot baseline (Ry), corresponding to k values of 1, 5, 10,

tions (Yang et al., 2023).

2.2 Results and Analysis

Our results illustrated in Figures 1 and 2, and
further detailed in Table 1 for XML-MT (en-ja),
COUNTFACT, and ATIS-slot (en) datasets, reveal
several interesting insights. First, the simple TF-
IDF approach often outperforms more complex,
fine-tuned retrievers across various models and con-
text lengths. This highlights the continued effec-
tiveness of simple, yet robust retrieval methods
even in long-context settings. Second, a clear cor-
relation emerges between context size and the abil-
ity to leverage larger k values. Gemini 1.5 Pro
exhibits robust scaling, with performance either im-
proving or plateauing as k increases. This suggests
its ability to effectively utilize information from a
large number of demonstrations. Conversely, both
Flan-PalLM 2 and Gemini show performance drops
beyond certain k values (k > 10+ and %k > 30+ re-
spectively), indicating limitations in their ability to
utilize extensive contexts effectively.

Finally, pushing the boundaries with Gemini
1.5 Pro by increasing k£ up to 2000 demonstrates
that simply increasing the number of randomly re-
trieved examples does not guarantee performance
improvement (Figure 1). Furthemore, Figure 2
highlights that even with thousands of demonstra-
tions, smart retrieval methods like TF-IDF and T5x
with balancing provide a clear advantage over ran-
dom selection. This emphasizes the importance
of carefully choosing demonstrations, even with
massive context windows.

30, 50, 80, and 100. ’bal’ denotes class-balanced variants.

3 Refract ICL

In this section, we introduce Refract ICL, a novel
selection algorithm designed to augment traditional
retrieval methods and enhance LLM performance
in large-k settings. Refract ICL achieves this by
strategically repeating challenging examples within
the ICL context and incorporating error signals to
guide the LLM’s attention. More concretely, given
a pool of demonstrations D = {d,ds,...,dy},
we first generate zero-shot predictions for each
d;. Demonstrations where the LLLM struggles to
achieve accurate zero-shot performance are classi-
fied as "challenging" and form the subset D’ C D.
Next, we repeat the challenging demonstrations
from D’ by appending them towards the end of D,
leveraging the expanded context window afforded
by long-context LLMs. For instance, the updated
context looks like dyds...d,d}d)..., where d; € D
and d; € D’. This repetition helps in removing
from the inherent sequential bias of causal language
modeling (Gong et al., 2023), allowing challenging
examples to comprehensively interact and inform
each other. Finally, we add zero-shot predictions
to each of the demonstrations, providing explicit
error signals to the LLM, i.e. the final ICL con-
text looks like dyz1dazo...dp 2 d} 21 d5 25, where
z; and z; represents the zero-shot prediction for d;
and d, respectively. Including zero-shot predictions
guides the LLM’s attention towards potential error
patterns and encourages more effective learning
from the demonstrations.



Dataset Retrieval Metric Gemini Gemini 1.5 Pro
k=1,3,5,10,30,50,80,100 k=1,3,5,10,30,50,80,100

AF-SENTIMENT | TF-IDF bal Accuracy 0.62 -0.08 -0.07 -0.22 -0.01 +0.03 +0.02 +0.02 0.63 -0.01 +0.01 +0.04 -0.02 +0.00 +0.01 +0.01
EDOS-A TF-IDF bal Fl1 0.55 -0.27 -0.20 -0.15 -0.04 +0.02 +0.05 +0.25 0.62 +0.06 +0.06 +0.05 +0.05 +0.02 +0.05 +0.03
COUNTFACT TF-IDF bal Fl 0.54 -0.21 -0.26 -0.23 -0.05 +0.04 +0.08 +0.03 0.71 +0.02 -0.02 +0.05 +0.04 +0.05 +0.02 +0.04
BC5CDR TF-IDF bal Fl 0.60 -0.02 -0.04 -0.03 -0.04 -0.05 -0.05 -0.06 0.76 +0.01 -0.02 +0.01 +0.01 +0.00 -0.02 -0.02
ATIS-intent(en) TF-IDF bal Fl 0.84 -0.06 -0.06 -0.02 -0.01 -0.01 +0.00 -0.02 0.72 +0.03 +0.02 +0.00 +0.01 +0.00 +0.01 +0.02
MTOP-intent TF-IDF bal Accuracy 0.87 -0.06 -0.01 -0.02 -0.02 +0.00 -0.02 -0.01 0.88 +0.02 +0.01 +0.02 +0.01 +-0.00 +-0.00 +0.01
EDOS-B TF-IDF bal Fl 0.16 -0.01 -0.01 -0.01 +0.00 +0.00 +0.07 +0.02 0.43 +0.02 +0.01 +0.02 -0.01 +0.00 +0.02 +0.00
ATIS-slot (en) TF-IDF bal F1 0.80 -0.03 -0.02 -0.01 +0.00 +0.00 +0.00 -0.01 0.88 +0.01 +0.02 +0.02 +0.02 +0.01 +0.00 +0.01
DDI13 TF-IDF bal F1 0.12 -0.03 -0.03 +0.00 +0.00 +0.01 +0.00 +0.00 | 0.27 +0.02 +0.03 +0.05 +0.06 +0.02 +0.05 +0.03
XML-MT enfi TF-IDF bal | Corpus-BLEU | 0.29 +0.00 +0.00 +0.00 +0.01 +0.01 +0.01 +0.01 | 0.44 +0.03 +0.01 +0.02 +0.01 +0.02 +0.02 +0.02
XML-MT enja TF-IDF bal | Corpus-BLEU | 0.39 +0.00 +0.00 -0.01 +0.00 +0.01 +0.02 +0.01 | 0.56 +0.04 +0.03 +0.00 +0.01 +0.00 +0.02 +0.02
AF-SENTIMENT T5x bal Accuracy 0.63 -0.09 -0.07 -0.20 -0.01 +0.04 +0.01 +0.02 0.63 -0.01 +0.00 +0.03 -0.01 +0.00 +0.01 +0.01
EDOS-A T5x bal F1 0.57 -0.30 -0.29 -0.19 -0.04 +0.01 +0.04 +0.26 0.60 +0.06 +0.06 +0.04 +0.04 +0.01 +0.04 +0.03
COUNTFACT T5x bal Fl1 0.55 -0.27 -0.28 -0.28 -0.09 +0.04 +0.07 +0.05 0.72 +0.01 -0.02 +0.06 +0.03 +0.05 +0.02 +0.03
BC5CDR T5x bal Fl1 0.61 -0.05 -0.04 -0.03 -0.06 -0.06 -0.06 -0.05 0.74 +0.01 -0.01 +0.01 +0.00 +0.01 -0.02 -0.01
ATIS-intent(en) T5x bal F1 0.84 -0.09 -0.05 -0.03 -0.01 -0.03 +0.00 -0.01 0.74 +0.05 +0.03 +0.00 +0.00 +0.01 +0.01 +0.01
MTOP-intent T5x bal Accuracy 0.89 -0.06 -0.03 -0.02 -0.02 +0.00 -0.01 -0.02 0.89 +0.01 +0.01 +0.01 +0.00 +-0.00 +-0.00 +0.01
EDOS-B T5x bal Fl 0.15 -0.03 -0.01 -0.01 -0.02 -0.02 +0.08 +0.01 0.43 +0.03 +0.01 +0.02 -0.02 -0.01 +0.02 +0.00
ATIS-slot (en) T5x bal Fl 0.81 -0.02 -0.02 -0.03 -0.01 -0.02 -0.02 -0.02 0.89 +0.01 +0.01 +0.02 +0.03 +0.00 -0.01 +0.01
DDII3 T5x bal Fl 0.14 -0.07 -0.01 +0.00 +0.00 +0.01 +0.01 +0.00 | 0.26 +0.03 +0.01 +0.09 +0.04 +0.04 +0.04 +0.03
XML-MT enfi T5x bal Corpus-BLEU | 0.29 +0.00 +0.00 -0.01 +0.01 +0.02 +0.02 +0.01 | 0.47 +0.02 +0.01 +0.01 +0.00 +0.00 -0.01 +0.01
XML-MT enja T5x bal Corpus-BLEU | 0.38 +0.00 -0.01 -0.01 -0.01 +0.01 +0.00 +0.01 0.59 +0.05 +0.03 +0.01 +0.00 -0.01 +0.02 +0.01

Table 2: Performance Changes by adding Refract ICL to TF-IDF bal and T5x bal retrieval methods across & shots with Gemini
and Gemini 1.5 Pro. All metrics are presented on a 0 to 1 scale for ease of comparison.

Dataset w/ repeat | w/o repeat
AF-SENTIMENT 0.73 0.71
EDOS-A 0.74 0.71
COUNTFACT 0.77 0.77
BC5CDR 0.84 0.83
ATIS-intent(en) 95.8 95.8
MTOP-intent 0.97 0.97
EDOS-B 0.57 0.57
ATIS-slot (en) 0.97 0.96
DDII3 0.48 0.48
XML-MT enfi 0.50 0.49
XML-MT enja 0.69 0.69

Table 3: Ablation comparing the Gemini 1.5 Pro Perfor-
mance with Refract ICL + T5x bal retrieval with and without
repeating challenging examples in ICL context.

3.1 Results

Table 2 presents the performance gains achieved
by Refract ICL on Gemini and Gemini 1.5 Pro. We
observe significant improvements, particularly on
classification tasks with a smaller number of out-
put classes, such as EDOS-A, COUNTFACT, and
DDI13. Interestingly, Gemini 1.5 Pro shows more
consistent gains across different k£ values compared
to Gemini, indicating that the larger context model
is better able to leverage the targeted attention pro-
vided by Refract ICL. While Refract ICL demon-
strates strong performance on tasks with fewer
output classes, the improvements are less substan-
tial on tasks with a larger number of classes (e.g.,
MTOP-intent) or segmentation tasks like ATIS-slot.
This suggests that the current implementation of
error signal integration might be less effective in
these settings. Future work will explore alternative
approaches for representing and incorporating er-

ror signals in more complex tasks. To assess the
impact of mitigating sequential bias, we conducted
an ablation study by removing the repetition of
challenging examples. As shown in Table 3, this
ablation leads to a noticeable performance decrease,
confirming that breaking sequential dependencies
through repetition plays a crucial role in Refract
ICL’s effectiveness.

4 Conclusion

In this paper, we explored the impact of increas-
ing demonstration count (k) in the context of long-
context LL.Ms and highlighted the continued im-
portance of smart ICL selection strategies. While
longer context lengths unlock the potential to lever-
age a larger number of demonstrations, simply in-
creasing k without careful selection can be detri-
mental. Our proposed method, Refract ICL, demon-
strates that focusing LLM attention on challenging
examples and incorporating error signals can sig-
nificantly boost performance. This approach offers
a promising direction for enhancing long-context
ICL. Future work will investigate alternative ap-
proaches for representing and incorporating error
signals in more complex tasks, such as those with
a larger number of output classes or involving in-
tricate sequence labeling. Additionally, we plan
to explore the interplay between different retrieval
methods and Refract ICL, aiming to develop even
more effective and robust strategies for demonstra-
tion selection in the era of long-context LLMs.



5 Limitations

This work explores the potential of Refract ICL for
enhancing long-context in-context learning, but it
is not without limitations. While our experiments
demonstrate promising results, particularly on clas-
sification tasks with a smaller number of output
classes, the current implementation of Refract ICL
shows limited effectiveness on tasks with a larger
number of output classes or involving complex se-
quence labeling. This suggests that the current
strategy for integrating error signals, while benefi-
cial in some settings, might not generalize well to
all task types.

References

Rohan Anil, Andrew M Dai, Orhan Firat, Melvin John-
son, Dmitry Lepikhin, Alexandre Passos, Siamak
Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng
Chen, et al. 2023. Palm 2 technical report. arXiv
preprint arXiv:2305.10403.

Amanda Bertsch, Maor Ivgi, Uri Alon, Jonathan
Berant, Matthew R Gormley, and Graham Neu-
big. 2024. In-context learning with long-context
models: An in-depth exploration. arXiv preprint
arXiv:2405.00200.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam Mc-
Candlish, Alec Radford, Ilya Sutskever, and Dario
Amodei. 2020. Language Models are Few-Shot
Learners. In Advances in Neural Information Pro-
cessing Systems 33: Annual Conference on Neu-
ral Information Processing Systems 2020, NeurlPS
2020, December 6-12, 2020, virtual.

Rajarshi Das, Manzil Zaheer, Dung Thai, Ameya
Godbole, Ethan Perez, Jay Yoon Lee, Lizhen
Tan, Lazaros Polymenakos, and Andrew McCallum.
2021. Case-based reasoning for natural language
queries over knowledge bases. In Proceedings of
the 2021 Conference on Empirical Methods in Natu-
ral Language Processing, pages 9594-9611, Online
and Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Lingyu Gao, Aditi Chaudhary, Krishna Srinivasan,
Kazuma Hashimoto, Karthik Raman, and Michael
Bendersky. 2023.  Ambiguity-aware in-context
learning with large language models. arXiv preprint
arXiv:2309.07900.

Zhuocheng Gong, Jiahao Liu, Qifan Wang, Jingang
Wang, Xunliang Cai, Dongyan Zhao, and Rui
Yan. 2023. Improving input-label mapping with
demonstration replay for in-context learning. arXiv
preprint arXiv:2310.19572.

Kazuma Hashimoto, Raffaella Buschiazzo, James
Bradbury, Teresa Marshall, Richard Socher, and
Caiming Xiong. 2019. A High-Quality Multilin-
gual Dataset for Structured Documentation Transla-
tion. In Proceedings of the Fourth Conference on
Machine Translation (Volume 1: Research Papers),
pages 116-127.

Maria Herrero-Zazo, Isabel Segura-Bedmar, Paloma
Martinez, and Thierry Declerck. 2013. The DDI
corpus: An annotated corpus with pharmacological
substances and drug—drug interactions. Journal of
Biomedical Informatics, 46(5):914-920.

Gautier Izacard, Mathilde Caron, Lucas Hosseini, Se-
bastian Riedel, Piotr Bojanowski, Armand Joulin,
and Edouard Grave. 2021. Unsupervised dense in-
formation retrieval with contrastive learning. arXiv
preprint arXiv:2112.09118.

Hannah Kirk, Wenjie Yin, Bertie Vidgen, and Paul
Rottger. 2023. SemEval-2023 Task 10: Explain-
able Detection of Online Sexism. In Proceedings of
the 17th International Workshop on Semantic Evalu-
ation (SemEval-2023), pages 2193-2210.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 3045-3059, Online and Punta Cana, Domini-
can Republic. Association for Computational Lin-
guistics.

Haoran Li, Abhinav Arora, Shuohui Chen, An-
chit Gupta, Sonal Gupta, and Yashar Mehdad.
2021. MTOP: A Comprehensive Multilingual Task-
Oriented Semantic Parsing Benchmark. In Proceed-
ings of the 16th Conference of the European Chap-
ter of the Association for Computational Linguistics:
Main Volume, pages 2950-2962, Online. Associa-
tion for Computational Linguistics.

Jiao Li, Yueping Sun, Robin J. Johnson, Daniela Sci-
aky, Chih-Hsuan Wei, Robert Leaman, Allan Peter
Davis, Carolyn J. Mattingly, Thomas C. Wiegers,
and Zhiyong Lu. 2016. BioCreative V CDR task
corpus: a resource for chemical disease relation
extraction. Database: The Journal of Biological
Databases and Curation, 2016.

Xiaonan Li, Kai Lv, Hang Yan, Tianyang Lin, Wei Zhu,
Yuan Ni, Guotong Xie, Xiaoling Wang, and Xipeng
Qiu. 2023. Unified Demonstration Retriever for In-
Context Learning. In Proceedings of the 61st An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 4644—
4668.


https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://doi.org/10.18653/v1/2021.emnlp-main.755
https://doi.org/10.18653/v1/2021.emnlp-main.755
https://doi.org/10.18653/v1/2021.emnlp-main.755
https://doi.org/10.18653/v1/W19-5212
https://doi.org/10.18653/v1/W19-5212
https://doi.org/10.18653/v1/W19-5212
https://doi.org/10.18653/v1/W19-5212
https://doi.org/10.18653/v1/W19-5212
https://doi.org/10.1016/j.jbi.2013.07.011
https://doi.org/10.1016/j.jbi.2013.07.011
https://doi.org/10.1016/j.jbi.2013.07.011
https://doi.org/10.1016/j.jbi.2013.07.011
https://doi.org/10.1016/j.jbi.2013.07.011
https://doi.org/10.18653/v1/2023.semeval-1.305
https://doi.org/10.18653/v1/2023.semeval-1.305
https://doi.org/10.18653/v1/2023.semeval-1.305
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://doi.org/10.18653/v1/2021.eacl-main.257
https://doi.org/10.18653/v1/2021.eacl-main.257
https://doi.org/10.18653/v1/2021.eacl-main.257
https://api.semanticscholar.org/CorpusID:88817
https://api.semanticscholar.org/CorpusID:88817
https://api.semanticscholar.org/CorpusID:88817
https://api.semanticscholar.org/CorpusID:88817
https://api.semanticscholar.org/CorpusID:88817
https://doi.org/10.18653/v1/2023.acl-long.256
https://doi.org/10.18653/v1/2023.acl-long.256
https://doi.org/10.18653/v1/2023.acl-long.256

Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan,
Lawrence Carin, and Weizhu Chen. 2022. What
makes good in-context examples for GPT-3? In
Proceedings of Deep Learning Inside Out (DeeLIO
2022): The 3rd Workshop on Knowledge Extraction
and Integration for Deep Learning Architectures,
pages 100-114, Dublin, Ireland and Online. Asso-
ciation for Computational Linguistics.

Katerina Margatina, Timo Schick, Nikolaos Aletras,
and Jane Dwivedi-Yu. 2023. Active learning prin-
ciples for in-context learning with large language
models. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2023, pages 5011-5034,
Singapore. Association for Computational Linguis-
tics.

Jianmo Ni, Gustavo Hernandez Abrego, Noah Con-
stant, Ji Ma, Keith Hall, Daniel Cer, and Yinfei
Yang. 2022. Sentence-T5: Scalable Sentence En-
coders from Pre-trained Text-to-Text Models. In
Findings of the Association for Computational Lin-
guistics: ACL 2022, pages 1864—1874.

James O’Neill, Polina Rozenshtein, Ryuichi Kiryo,
Motoko Kubota, and Danushka Bollegala. 2021. 1
Wish I Would Have Loved This One, But I Didn’t —
A Multilingual Dataset for Counterfactual Detection
in Product Reviews. Preprint, arXiv:2104.06893.

Patti Price. 1990. Evaluation of spoken language sys-
tems: The ATIS domain. In Speech and Natural
Language: Proceedings of a Workshop Held at Hid-
den Valley, Pennsylvania, June 24-27, 1990.

Machel Reid, Nikolay Savinov, Denis Teplyashin,
Dmitry Lepikhin, Timothy Lillicrap, Jean-baptiste
Alayrac, Radu Soricut, Angeliki Lazaridou, Orhan
Firat, Julian Schrittwieser, et al. 2024. Gemini
1.5: Unlocking multimodal understanding across
millions of tokens of context. arXiv preprint
arXiv:2403.05530.

Gemini Team, Rohan Anil, Sebastian Borgeaud,
Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu,
Radu Soricut, Johan Schalkwyk, Andrew M Dai,
Anja Hauth, et al. 2023. Gemini: a family of
highly capable multimodal models. arXiv preprint
arXiv:2312.11805.

Liang Wang, Nan Yang, and Furu Wei. 2023. Learn-
ing to Retrieve In-Context Examples for Large Lan-
guage Models. arXiv preprint cs.CL 2307.07164.

Linting Xue, Noah Constant, Adam Roberts, Mi-
hir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya
Barua, and Colin Raffel. 2021. mTS5: A Massively
Multilingual Pre-trained Text-to-Text Transformer.
In Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 483—498.

Zhao Yang, Yuanzhe Zhang, Dianbo Sui, Cao Liu, Jun
Zhao, and Kang Liu. 2023. Representative demon-
stration selection for in-context learning with two-

stage determinantal point process. In The 2023 Con-
ference on Empirical Methods in Natural Language
Processing.

Yiming Zhang, Shi Feng, and Chenhao Tan. 2022. Ac-
tive example selection for in-context learning. In
Proceedings of the 2022 Conference on Empirical
Methods in Natural Language Processing, pages
9134-9148, Abu Dhabi, United Arab Emirates. As-
sociation for Computational Linguistics.

Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, and
Sameer Singh. 2021. Calibrate before use: Improv-
ing few-shot performance of language models. In In-

ternational Conference on Machine Learning, pages
12697-12706.


https://doi.org/10.18653/v1/2022.deelio-1.10
https://doi.org/10.18653/v1/2022.deelio-1.10
https://doi.org/10.18653/v1/2022.deelio-1.10
https://doi.org/10.18653/v1/2023.findings-emnlp.334
https://doi.org/10.18653/v1/2023.findings-emnlp.334
https://doi.org/10.18653/v1/2023.findings-emnlp.334
https://doi.org/10.18653/v1/2023.findings-emnlp.334
https://doi.org/10.18653/v1/2023.findings-emnlp.334
https://doi.org/10.18653/v1/2022.findings-acl.146
https://doi.org/10.18653/v1/2022.findings-acl.146
https://doi.org/10.18653/v1/2022.findings-acl.146
https://arxiv.org/abs/2104.06893
https://arxiv.org/abs/2104.06893
https://arxiv.org/abs/2104.06893
https://arxiv.org/abs/2104.06893
https://arxiv.org/abs/2104.06893
https://arxiv.org/abs/2104.06893
https://arxiv.org/abs/2104.06893
https://doi.org/10.18653/v1/2021.naacl-main.41
https://doi.org/10.18653/v1/2021.naacl-main.41
https://doi.org/10.18653/v1/2021.naacl-main.41
https://doi.org/10.18653/v1/2022.emnlp-main.622
https://doi.org/10.18653/v1/2022.emnlp-main.622
https://doi.org/10.18653/v1/2022.emnlp-main.622

	Introduction
	Scaling k with Traditional Retrievers
	Datasets and Models
	Results and Analysis

	Refract ICL
	Results

	Conclusion
	Limitations

