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ABSTRACT

Oriented object detection is crucial for complex scenes such as aerial images
and industrial inspection, providing precise delineation by minimizing back-
ground interference. Recently, the weakly-supervised oriented object detection
has gaining attention due to its cost-effectiveness. However, the majority of exist-
ing weakly-supervised methods are either point-supervised or HBox-supervised,
which presents a challenge in achieving an optimal balance between annotation
cost and detection performance. In response, we introduce a novel form of line
annotation, which is intermediate between point-level and plane-level annotation.
Based on this, we present L2RBox, an end-to-end anchor-free detector that is the
first line-supervised method for oriented object detection. The fundamental objec-
tive of the L2RBox is to utilise line labels for the completion of label assignment
and the calculation of loss. In particular, the line is mapped to the correspond-
ing circle domain, which is then used to select training samples and calculate the
center-ness target by the minimum circumscribed rectangle of the circle in the di-
rection of the line. The regression loss that we propose is designed to support the
line as an optimisation target. It comprises four components, namely scale loss Ls,
height loss Lh, position loss Lp and angle loss La. Extensive experimentation on
DOTA-v1.0 and DIOR-R has demonstrated that our L2RBox significantly outper-
forms point-supervised methods, while requiring only a slight increase in labeling
costs. It is also noteworthy that the proposed approach also demonstrates a slight
performance advantage over the fully-supervised FCOS in certain categories.

1 INTRODUCTION

In recent years, oriented object detection has progressed rapidly, leveraging advancements in hori-
zontal object detection Liu et al. (2020). Its fine-grained rotated bounding box (RBox) has proven
highly effective in complex scenarios such as aerial imagery, scene text, and industrial inspection
Wen et al. (2023). Although detectors have made significant progress with extensive annotated data,
full supervision in oriented object detection faces several challenges: the RBox annotation format is
less prevalent in many existing datasets, and producing RBox annotations is more expensive.

To mitigate the dependence on labor-intensive RBox labeling, weakly-supervised object detection
represents a solution. As illustrated in Fig. 1, existing weakly-supervised methods employ coarser-
grained annotations as weakly-supervised signals to predict RBox, which are roughly divided into
point-supervised methods and HBox-supervised methods according to the annotation. For HBox-
supervised methods, H2RBox Yang et al. (2023) and H2RBox-v2 Yu et al. (2024b) have explored
the HBox-to-RBox setting that learns RBox detectors from horizontal bounding box (HBox) anno-
tation. However, Plane-level annotations are still inefficient and labor-intensive. Therefore, point-
supervised methods PointOBB Luo et al. (2024) and Point2RBox Yu et al. (2024a) have further
explored more cost-effective point-level annotation forms, but these methods suffer from lower de-
tection accuracy and often require additional knowledge or pseudo-label generation. In summary,
these weakly-supervised methods have complex structures and cannot balance detection accuracy
and annotation costs.

In response, we trade off the annotation cost with the detection accuracy for weakly-supervised
methods and first propose line annotation format for oriented object detection. Specifically, we label
the object along its central axis, and the process is flexible, allowing for some margin of error in the
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Detection results

HBox labelled data

HBox-Supervised Methods:

High cost & High accuracy
H2RBox，H2RBox−v2, …

Line labelled data

Line-Supervised Method:

Low cost & High accuracy
L2RBox (ours)

Point labelled data

Point-Supervised Methods:

Low cost & Low accuracy
PointOBB，Point2RBox, …

Plane-level Line-level Point-level

Figure 1: The top row visualizes examples of three weakly-supervised annotation forms, and the
bottom row visualizes the detection results of the same scene. Our proposed line-supervised L2RBox
(line-level) achieves both low cost and high accuracy.

line annotations. As shown in Fig. 1 top row, compared to the point, the line offers significantly
richer information with only a slight increase in labeling costs. For a fair comparison, we use the
annotation website1 to evaluate different annotation formats, the average time for annotating 100 in-
stances is 99.15s for point annotations, 178.8 s for line annotations, 332.7s for HBox, and 516.2s for
RBox. Based on line annotations, the detection performance of our proposed L2RBox significantly
outperforms Point-supervised methods, and is comparable to HBox-supervised methods, as shown
in Fig. 1 bottom row. Additionally, to reflect the effectiveness in balancing annotation cost and per-
formance of weakly-supervised methods, we designed a trade-off metric M that considers both the
accuracy and cost, emphasizing the balance between them. Section 4.2 provides a comprehensive
analysis of the performance of weakly-supervised methods in terms of trade-off metrics.

The line-level annotation introduces a novel task setting: using line annotations to achieve signif-
icantly better performance than point-supervised methods. In this paper, we propose a simple yet
effective approach dubbed as L2RBox, the first line-supervised oriented object detector. As an end-
to-end anchor-free detector, the core of our L2RBox is to use line labels to complete label assignment
and loss calculation, where label assignment includes training sample selection and center-ness tar-
get calculation. Specifically, we map the line to the corresponding circle domain and use this to
select training samples and calculate the center-ness target by the minimum circumscribed rectan-
gle of the circle in the direction of the line (see Fig. 2 top L-LA). In the regression branch (see
Fig. 2 bottom Branches), our proposed regression loss supports the line as an optimization target
comprising four components: scale loss Ls, height loss Lh, position loss Lp and angle loss La.
Extensive experiments demonstrate that our L2RBox achieves significantly better performance than
point-supervised methods with only a slight increase in labeling costs. Meanwhile, our L2RBox
achieves optimal results on the trade-off metric, indicating that our method can effectively balance
detection accuracy and cost. Our main contributions are as follows:

1) To our best knowledge, we first propose line annotation format for oriented object detection,
which trade-off the annotation cost with the detection accuracy in weakly-supervised methods.

2) We propose specialized end-to-end detectors for line supervision, including label assignment
and loss functions that support line annotation, where label assignment includes training sample
selection and center-ness target calculation.

1https://www.makesense.ai/
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3) Extensive experiments on DOTA-v1.0 and DIOR-R show that our L2RBox far outperforms Point-
supervised methods with only a slight increase in labeling costs e.g. our L2RBox achieves AP50 of
58.26% on DOTA, which is an improvement of 28.18% over the point-level method PointOBB. No-
tably, it also offers a slight performance advantage over fully-supervised FCOS in some categories.

2 RELATED WORK

2.1 FULLY-SUPERVISED ORIENTED OBJECT DETECTION

Oriented object detection algorithms primarily focus on aerial objects, multi-oriented scene texts,
retail, etc. Notable approaches in this field include the anchor-based detector Rotated RetinaNet Lin
et al. (2017c), the anchor-free detector Rotated FCOS Tian et al. (2019), and two-stage detectors
such as Oriented R-CNNXie et al. (2021), RoI Transformer Ding et al. (2019), and ReDet Han et al.
(2021). To address the boundary problem caused by the periodicity of angles, RSDet Qian et al.
(2021) proposes a modulation loss to alleviate loss jumps. CSL Yang & Yan (2020) and DCL Yang
et al. (2021a) convert the angle into boundary-free coded data. GWD Yang et al. (2021b), KLD
Yang et al. (2021c), and KFIoU Yang et al. (2022) propose Gaussian-based losses that convert RBox
into a Gaussian distribution. PSC Yu & Da (2023) proposes a Phase-Shifting Coder that encodes
the orientation angle into periodic phases. Additionally, RepPoint-based approaches Yang et al.
(2019); Hou et al. (2023); Li et al. (2022a) provide new alternatives for oriented object detection by
predicting a set of sample points that bounds the spatial extent of an object. In this study, in order to
reduce the reliance on labor-intensive RBox labeling, we concentrate on the more challenging task
of weakly-supervised oriented object detection.

2.2 WEAKLY-SUPERVISED ORIENTED OBJECT DETECTION

Existing mainstream weakly-supervised oriented object detection approaches can be divided into
HBox-supervised (plane-level) and point-supervised (point-level) methods. Furthermore, we ex-
plore the feasibility of line-supervised (line-level) methods.

HBox-supervised. HBox-supervised instance segmentation methods Tian et al. (2021); Li et al.
(2022b); Kirillov et al. (2023) employ the HBox-Mask-RBox pipeline to derive RBox from the
segmentation mask, though this is less cost-effective. A pioneering approach, H2RBox Yang et al.
(2023), bypasses the segmentation step and directly detects RBox from HBox annotations. As a
new version, H2RBox-v2 Yu et al. (2024b) exploits the inherent symmetry of objects. EIE Wang
et al. (2024) leverages various contrastive cues related to angle prediction, facilitating the learning
of equivariance between boxes. Nevertheless, these techniques still necessitate the acquisition of
a considerable number of bounding box annotations. Additionally, OAOD Iqbal et al. (2021) uses
extra object angle, whereas KCR Zhu et al. (2023) employs RBox-annotated source datasets with
HBox-annotated target datasets. However, these specialized annotation forms lack universality.

Point-supervised. Point-based annotations have been widely used in horizontal object detection
Chen et al. (2021); Ying et al. (2023). Due to its cost-effectiveness and efficiency, point-supervised
oriented object detection has garnered attention. P2BNet Chen et al. (2022) uses Multiple Instance
Learning (MIL) to select the box with the highest confidence from multiple boxes containing points.
Point-to-Mask Li et al. (2023) provides a potential method for point-supervised rotating target detec-
tion. PointOBB Luo et al. (2024) learns object scale and angle information through self-supervised
learning across different views, enabling the generation of oriented bounding boxes from points.
Point2RBox Yu et al. (2024a) transfers object features to synthetic patterns using a sampling strat-
egy and trains output RBox on transformed images, enhancing the network’s perception of size
and rotation for improved detection accuracy. However, these methods suffer from lower detection
accuracy and often require additional knowledge or pseudo-label generation.

Line-supervised. In light of the aforementioned methods, we have sought to strike a balance be-
tween the annotation cost and the detection accuracy in weakly supervised methods. To this end,
we explore the potential of utilizing line as a means of labeling objects, which has a cost between
point-level and plane-level. This paper aims to fill this blank and provide a valuable starting point.
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Figure 2: Illustration of proposed L2RBox. The Backbone+FPN extract features from input images
and then fed into L2RBox Head. Line annotation-based label assignment (L-LA) of the Head con-
tains training sample selection and center-ness target computation. Branches of the Head contain
classification and regression branches. The regression loss is designed as four components.

3 PROPOSED METHOD

In this section, we introduce the first implementation of oriented object detection using line as super-
vised information. First, an overview of our L2RBox is provided in section 3.1. Next, we introduce
the line annotation-based label assignment (L-LA) containing training sample selection and center-
ness target computation in sections 3.2 and 3.3. Finally, we present the proposed loss functions,
which guide the optimization of RBox based on line annotations in section 3.4.

3.1 OVERVIEW

For simplicity and efficiency, our L2RBox follows the FCOS-based Tian et al. (2019) detection
paradigm, which features a one-stage, anchor-free architecture. The overview of the L2RBox is
shown in Fig. 2. Our L2RBox initially leverages a backbone and feature pyramid network (FPN)
Lin et al. (2017a) to extract multiscale features from original images. Notably, our detector is adapt-
able to various backbone networks, including ResNet He et al. (2016), Swin Transformer Liu et al.
(2021), and ConvNeXt Liu et al. (2022). Unless otherwise specified, all methods in this paper use
ResNet50 by default for fair comparison.

Following FPN, we detect objects of different sizes at various feature map levels. Each pyramid
level, denoted by Pi, corresponds to a feature level. Specifically, P3, P4, and P5 are derived from
the backbone CNN’s feature maps C3, C4, and C5, followed by a 1 × 1 convolutional layer with
top-down connections. P6 and P7 are generated by applying a convolutional layer with a stride of 2
on P5 and P6, respectively. Each feature pyramid level {P3, P4, P5, P6, P7} is then fed directly into
the L2RBox Head.

The L2RBox Head consists of two branches. The classification branch predicts the confidence
scores, while an additional single-layer convolution predicts the center-ness of the location in par-
allel. The other branch is responsible for RBox regression, enabling loss computation between the
predicted RBox and the ground truth lines. The total loss is calculated as the weighted sum of the
classification and regression losses. Furthermore, we propose a line annotation-based label assign-
ment strategy (L-LA) that contains training sample selection and center-ness target computation.

3.2 TRAINING SAMPLE SELECTION FOR L2RBOX

Given a feature map F ∈ RH×W×C , where H , W , and C correspond to the height, width, and
channel of the feature map, respectively, the set of grid locations for this feature map is represented

4
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Figure 3: Illustration of the center-ness for L2RBox. (a) illustrates the center-ness modeling process
using line annotations, where green represents the supervised information and orange shows the
actual bounding box. (b) compares the trend curves of center-ness component across various scales.
(c) visualization of the center-ness values and projection on the xy-axis.

as P = {(xi, yi)|i = 1, 2, 3, ...,H ×W}. The correspondence between any point (xi, yi) in the set
P and the original image position (xa

i , y
a
i ) is as follows:

(xa
i , y

a
i ) = (

⌊s
2

⌋
+ xi · s,

⌊s
2

⌋
+ yi · s) (1)

where s denotes the stride of feature map F . The jth ground truth line for an input image is defined
as Lj = (xj

0, y
j
0, x

j
1, y

j
1, c

j) ∈ R×{1, 2, ..., C}, where (xj
0, y

j
0) and (xj

1, y
j
1) are the endpoints of the

line, and cj is the class that the line annotation object belongs. C is the number of classes, which is
15 for DOTA-v1.0 dataset. Different from bounding box-supervised approaches that can accurately
define the object boundaries, our method requires expanding the line into a circular region Cg to
approximate the boundaries. The centre (xc, yc) and radius R of circular region Cg are defined as
follows:

(xc, yc) = (
xj
0 + xj

1

2
,
yj0 + yj1

2
), R =

√
(
xj
1 − xj

0

2
)2 + (

yj1 − yj0
2

)2 (2)

To ensure the quality of the training samples, we perform center sampling on the circular region Cg

with a sampling radius Rc = s×o, where s denotes the stride and o denotes the sampling ratio. The
sampling result is denoted as region Cc. We then obtain the set Pg and Pc, belonging to Cg and Cc

in the following way:

Pg =
{
(xi, yi)|i ∈

{
i|(xa

i − xc)
2 + (yai − yc)

2 < R2
}}

,

Pc =
{
(xi, yi)|i ∈

{
i|(xa

i − xc)
2 + (yai − yc)

2 < R2
c

}} (3)

We choose not to directly use the center sampling region for selecting training samples because the
center sampling radius must be globally adjusted based on the stride of each output layer, which
can result in the radius exceeding the circular region. Instead, the final positive samples set P+ =
Pg ∩ Pc, and the labels of positive samples determined by the corresponding GT line. Although
objects with different sizes are assigned to different feature levels, densely arranged objects at the
same level can still result in a location being assigned to more than one circular region. In such
cases, we select the ground truth line with the shortest length as the target.

3.3 CENTER-NESS FOR L2RBOX

The FCOS-based detector uses the predict center-ness as a mask to eliminate low-quality predict
bounding boxes produced by locations far away from the center of an object. The optimisation
target for center-ness is determined by the distances (l, r, t, b) from (xa

i , y
a
i ) to the four edges of the

RBox Br(x
∗, y∗, w, h, θ). The calculation formula is as follows:

l = (xa
i − x∗)cosθ + (yai − y∗)sinθ +

w

2
, r = (xa

i − x∗)cosθ + (yai − y∗)sinθ − w

2
,

t = −(xa
i − x∗)sinθ + (yai − y∗)cosθ +

h

2
, b = −(xa

i − x∗)sinθ + (yai − y∗)cosθ − h

2

(4)
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where (x∗, y∗) is the center, w, h, and θ are the width, height, and angle of the RBox, respectively.

Unlike box annotations that can compute all four distances (l, r, t, b), line annotations are limited
to calculating only two: t and b. To overcome this limitation, as shown in Fig. 3a, we generate a
circle with the midpoint of the line as its center and the line segment as its diameter. The minimum
circumscribed rectangle of the circle, aligned with the line, is then used to approximate center-ness.
The width of a real box can then be considered as a scaling of the line in different ratios k. Our
approximate center-ness cn can be expressed as follows:

cn =

√
min(l, r) + v

max(l, r) + v
× min(t, b)

max(t, b)
, v =

h(k − 1)

2k
(5)

According to Eq. 5, we focus on comparing the center-ness component for width, which shows a
consistent trend at various ratios, as illustrated in Fig. 3b. We also visualize the center-ness values
in Fig. 3c, with higher values found closer to the center. This confirms that our modeling approach
provides a suitable optimization target for center-ness.

3.4 LOSS FUNCTIONS

Since the detector structure is based on FCOS, the losses in this part mainly include the regression
Lreg , classification Lcls, and center-ness Lcn. The loss function for L2RBox is defined as follows:

Loss =
µ1

Npos

∑
i

Lcls(c
∗
i , ci) +

µ2

Npos

∑
i

Lcn(cn
∗
i , cni)

+
µ3∑
cnpos

∑
i

1ci>0cniLreg {Bi, Li}
(6)

Figure 4: IoU curves for circles and corre-
sponding minimum circumscribed rectangles.
A and B are two cases with similar scales and
large-scale gaps, respectively.

where Lcls is the focal loss Lin et al. (2017b), Lcn

is cross-entropy loss, and Lreg is regression loss
for L2RBox. Npos denotes the number of positive
samples. c∗ and c denote the probability distribu-
tion of various classes calculated by Sigmoid func-
tion and target category. B and L represent the
predict RBox and the GT line, respectively. cn∗

i
and cni indicate the predict and target center-ness.
1ci>0 is the indicator function, being 1 if ci > 0
and 0 otherwise.

We present the Lreg to compute the regression loss
between L(x∗

c , y
∗
c , h

∗, θ∗) and the predict RBox
B(xc, yc, w, h, θ). As shown in the regression
branch in Fig. 2, the proposed Lreg comprises four
components: scale loss Ls, height loss Lh, position
loss Lp and angle loss La.

Scale loss: The optimization objective is restricted to the approximate scale of the object by com-
puting the scale loss Ls between the corresponding circles of B and L. The formula is as follows:

Ls = − ln
r2c(Bi) ∩ l2c(βLi)

r2c(Bi) ∪ l2c(βLi)
(7)

where the r2c(·) function converts the RBox into its minimum circumscribed circle, and the l2c(·)
function converts the target line into a circle by taking the segment as the diameter. The scale factor β
influences the scale of the optimization objective through the scaling line, ranging from [1,

√
2] and

reaching its peak of
√
2 when the bounding box is square. To simplify the computation of the loss

function, motivated by the core concept of KFIoU Yang et al. (2022), which emphasizes constructing
loss functions that maintain trend-level consistency with the objective function, we calculate the IoU
loss based on the minimum horizontal circumscribed rectangles of the circles. As shown in Fig. 4,
there is trend-level consistency between the intersection over union (IoU) of circles and the IoU of
their minimum horizontal circumscribed rectangles, and we also give the proof procedure in A.1.

6
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Height loss: Leveraging supervised information to direct the optimization of the long edges of the
predict bounding box. The formula is as follows:

Lh = l1 {h∗, h} (8)
where l1 is the mean absolute error loss.

Position loss: When the IoU loss remains constant (case B, Fig. 4), Lp guides optimization using
center distance. The formula is as follows:

Lp =
∑

t∈(x,y)

l1(t
∗, t) (9)

where t and t∗ represent the centers of the line and the bounding box, respectively.

Angel loss: La takes into account the loss discontinuity caused by the periodicity of angle. The
formula is as follows:

La = l1(sin(θ − θ∗), 0) (10)
The regression loss Lreg is calculated as a sum of the Ls, Lh, Lp and La by the following equation:

Lreg = αLs + (1− α)Lh + Lp + La (11)
where α is an adjustment factor designed to correlate height with scale.

4 EXPERIMENT

4.1 DATASETS AND IMPLEMENTATION DETAILS

DOTA-v1.0: DOTA-v1.0 Xia et al. (2018) is a commonly used dataset in the field of oriented
object detection, which contains 2806 large-scale images. The dataset encompasses the following
15 distinct object classes: Bridge (BR), Harbor (HA), Ship (SH), Plane (PL), Helicopter (HC), Small
vehicle (SV), Large vehicle (LV), Baseball diamond (BD), Ground track field (GTF), Tennis court
(TC), Basketball court (BC), Soccer-ball field (SBF), Roundabout (RA), Swimming pool (SP), and
Storage tank (ST). The proportion of the training set, validation set, and testing set are 1/2, 1/6, and
1/3, respectively. For training and testing, we adhere to a standard protocol by cropping images into
1,024 × 1,024 patches with a stride of 824. The detection accuracy is obtained by submitting testing
results to DOTA’s evaluation server.

DIOR-R: DIOR-R Cheng et al. (2022) is an aerial image dataset. Different imaging conditions,
weather, seasons, and image quality are the major challenges of DIOR-R. Besides, it has high inter-
class similarity and intra-class diversity. The dataset comprises 190,288 objects of interest across
20 categories, totaling 23,463 optical images collected from Google Earth. The categories are de-
fined as: Airplane (APL), Airport (APO), Baseball Field (BF), Basketball Court (BC), Bridge (BR),
Chimney (CH), Expressway Service Area (ESA), Expressway Toll Station (ETS), Dam (DAM), Golf
Field (GF), Ground Track Field (GTF), Harbor (HA), Overpass (OP), Ship (SH), Stadium (STA),
Storage Tank (STO), Tennis Court (TC), Train Station (TS), Vehicle (VE) and Windmill (WM).

Line Annotation: To accurately reproduce the biases during manual annotation, we apply random
translations and rotations to the labels. Translations ranges are set to 10%, 20%, and 40% of the line
length, while rotations ranges are limited to 10%, 20%, and 40% of π/2. The effect of the range will
be discussed in Section 4.3.

Experimental Settings: All methods are implemented under the open-source PyTorch 1.13.1
Paszke et al. (2019) framework and the rotation detection tool kits: MMRotate 1.0.0 Zhou et al.
(2022). For a fair comparison, all models are configured based on ResNet50 He et al. (2016) back-
bone and trained on Tesla A100-40g GPUs. The models are optimized using the AdamW optimizer
Loshchilov & Hutter (2017), with an initial learning rate of 1e-4 and a mini-batch size of 2. AP50 is
selected as the main metric for comparison with existing methods. AP75 and AP are more stringent
evaluation metrics, where AP refers to AP50:95, as commonly used in the object detection field. “3x”
schedule indicates 36 epochs, with 12 epochs being the default. “MS” and “RR” denote multi-scale
technique and random rotation augmentation. Random flipping is employed to prevent over-fitting.

Trade-offs Metric: Multi-criteria decision-making Zlaugotne et al. (2020) offers a structured ap-
proach to select the optimal option while balancing various criteria. Building on this, we develop a
trade-off evaluation metric M that accounts for annotation efficiency and detection accuracy:

7
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Table 1: Detection results of each category on the DOTA-v1.0 and the AP50 of all categories. ‘RC’
indicates using rectangles and circles with curve textures as basic patterns. ‘SK’ indicates using
one sketch pattern for each category as basic patterns. ‘FCOS’ and ‘R-CNN’ denote the use of
pseudo-labels generated by PointOBB to train FCOS and R-CNN detectors respectively.

Method PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC AP50

RBox-supervised:
RetinaNet Lin et al. (2017c) 87.9 77.3 39.7 61.4 75.9 54.4 75.6 90.8 77.4 79.7 51.8 61.5 50.8 65.1 35.3 65.63
RepPoints Yang et al. (2019) 86.7 81.1 41.6 62.0 76.2 56.3 75.7 90.7 80.8 85.3 63.3 66.6 59.1 67.6 33.7 68.45
KFIoU Yang et al. (2022) 89.1 75.2 49.0 69.7 78.1 75.5 86.7 90.9 83.7 84.5 62.2 62.9 66.7 65.9 50.2 72.68
FCOS Tian et al. (2019) 88.4 75.6 48.0 60.1 79.8 77.8 86.6 90.1 78.2 85.0 52.8 66.3 64.5 68.3 40.3 70.78

HBox-supervised:
BoxLevelSet-RBox Li et al. (2022b) 63.5 71.3 39.3 61.1 41.9 41.0 45.8 90.9 74.1 72.1 47.6 63.0 50.0 56.4 28.6 56.44
SAM Kirillov et al. (2023) 78.6 69.2 31.4 56.7 72.2 71.4 77.0 90.5 76.2 83.7 42.5 59.5 51.1 56.2 42.9 63.94
H2RBox Yang et al. (2023) 88.5 73.5 40.8 56.9 77.5 65.4 77.8 90.9 83.2 85.3 55.3 62.9 52.4 63.6 43.3 67.82

Point-supervised:
P2BNet Chen et al. (2022)+H2RBox 24.7 35.9 7.0 27.9 3.3 12.1 17.5 17.5 0.8 34.0 6.3 49.6 11.6 27.2 18.8 19.63
P2BNet+H2RBoxv2Yu et al. (2024b) 11.0 44.8 14.9 15.4 36.8 16.7 27.8 12.1 1.8 31.2 3.4 50.6 12.6 36.7 12.5 21.87
Point2RBox-RC Yu et al. (2024a) 62.9 64.3 14.4 35.0 28.2 38.9 33.3 25.2 2.2 44.5 3.4 48.1 25.9 45.0 22.6 32.92
Point2RBox-SK Yu et al. (2024a) 53.3 63.9 3.7 50.9 40.0 39.2 45.7 76.7 10.5 56.1 5.4 49.5 24.2 51.2 33.8 40.27
PointOBB Luo et al. (2024) (FCOS) 26.1 65.7 9.1 59.4 65.8 34.9 29.8 0.5 2.3 16.7 0.6 49.0 21.8 41.0 36.7 30.08
PointOBB Luo et al. (2024) (R-CNN) 28.3 70.7 1.5 64.9 68.8 46.8 33.9 9.1 10.0 20.1 0.2 47.0 29.7 38.2 30.6 33.31

Line-supervised:
L2RBox (Ours) 86.1 66.2 21.2 57.5 74.5 5.5 44.7 90.7 80.3 62.6 55.1 45.3 26.5 68.1 32.2 54.48
L2RBox (Ours) (3×, RR) 86.2 69.5 18.7 58.6 73.7 6.4 45.3 90.5 79.4 64.4 56.9 40.9 26.8 70.7 32.5 54.66
L2RBox (Ours) (MS) 88.1 70.1 23.0 62.8 80.1 6.1 47.9 90.9 83.9 70.4 64.0 47.4 23.1 71.4 43.1 58.14
L2RBox (Ours) (MS,RR) 87.5 71.3 27.2 64.5 80.3 6.1 47.2 90.9 83.7 70.2 63.7 44.0 24.7 71.7 41.0 58.26

Mi = Na(Ai) ∗Nt(Ti) (12)

where T denotes the annotation time cost for different labeling methods. A denotes the AP50 of
different training methods. Nt(·) and Na(·) refer to the normalizing processes for annotation time
cost and detection accuracy, respectively. Notably, we adopt the max-min normalization method
Jahan & Edwards (2015) and utilize the fully-supervised method KFIou as the reference:

Na(Ai) = (Ai − 0)/(As − 0), Nt(Ti) = (Ts − Ti)/(Ts − 0) (13)

where As denotes the AP50 of the supervised method, Ts denotes the annotation time cost of RBox.

4.2 MAIN RESULTS
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0.33
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Figure 5: Comparison of trade-off metric
for different weakly-supervised methods.

Results of trade-off metric M . We take RBox-
supervised KFIoU Yang et al. (2022) as the bench-
mark and calculate the trade-off metric M of differ-
ent weakly-supervised methods, which have the best
performance under HBox- point- and line-supervised,
respectively (performance see Table 1). As shown in
Fig. 5, red pint, green point, and blue point corre-
spond to our L2RBox, point2rbox Yu et al. (2024a),
and H2RBox Yang et al. (2023), respectively. The
horizontal axis is normalized time efficiency and the
vertical axis is normalized accurancy. The colour
area represents m. Though the HBox-supervised
method has the advantage in accuracy and the Point-
supervised method has the advantage in time effi-
ciency, our Line-supervised has the best trade-off ef-
fectiveness with a highest trade-off metric score of
0.52. Experimental results show that our L2Rbox can
effectively trade-off annotation cost and performance in weakly supervised detectors.
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Results on DOTA-v1.0. As shown in Table 1, our L2RBox achieves AP50 of 54.48%. When
multi-scale (MS) technique and random rotation (RR) augmentation are applied, the AP50 score
reaches up to 58.26%. Compared to Point-supervised approaches, our L2RBox outperforms the best-
performing Point2RBox-SK Yu et al. (2024a) by 17.9%. When benchmarked against the FCOS-
based PointOBB Luo et al. (2024), the improvement reaches 28.18%. This significant performance
advantage results not only from the additional information provided by line supervision over point
supervision but also from our network architecture specifically optimized for line supervision. This
design enables oriented object detection while fully leveraging the supervision information to en-
hance detection accuracy. When compared to the more information-rich HBox-supervised method
H2RBox Yang et al. (2023), our AP50 score is lower by only 9.56%. This difference is much smaller
than the improvement our L2RBox achieves over point-supervised methods. Notably, our L2RBox
achieves performance comparable to fully RBox-supervised methods in the categories PL, GTF, and
TC, and slightly surpasses them in AP50 scores for the categories SP, SBF, SV, and BC, demonstrat-
ing the potential of line supervision.

Results on DIOR-R. To assess the robustness of our L2RBox, we also compared L2RBox against
state-of-the-art methods using the DIOR-R dataset, as detailed in A.2.

Table 2: Ablation for main components.

Dataset TSS CN Lreg AP AP50 AP75

DOTA
✓ ✓ 0.34 1.38 0.09
✓ ✓ 12.22 29.41 8.46
✓ ✓ ✓ 21.84 54.48 17.37

DIOR
✓ ✓ 0.33 1.50 0.10
✓ ✓ 7.50 25.70 1.90
✓ ✓ ✓ 16.21 43.41 7.50

Table 3: Effect of weight µ3.

µ3 AP AP50 AP75

1.0 21.15 52.49 16.97
0.7 20.62 53.75 17.68
0.5 21.62 54.19 17.32
0.3 21.84 54.48 17.37
0.1 21.51 54.43 16.76

Table 4: Effect of adjustment factor α.

α AP AP50 AP75

- 12.39 30.21 8.73
0.3 21.22 53.90 16.60
0.5 21.34 53.51 17.23
0.7 21.84 54.48 17.37
0.9 21.47 54.17 17.21

Table 5: Analysis of different scaling ratios.

β AP AP50 AP75

1.00 0.10 0.14 0.00
1.10 21.19 46.75 14.78
1.15 21.84 54.48 17.37
1.20 20.53 51.65 10.52
1.40 12.39 30.21 8.73

4.3 ABLATION STUDY

The ablation study is performed on the proposed L2RBox with 12 training epochs.

The effect of main components. Table 2 presents the ablation study of the main components. Here,
TSS, CN, and Lreg represent our proposed training sample selection, center-ness target computa-
tion, and regression loss, respectively. TSS is consistently applied to ensure stable network training.
“w/o CN” means utilizing only the center-ness component of height, while “w/o Lreg” means di-
rectly optimizing the network with line annotations. The AP50 scores are 1.38% and 29.41% on
DOTA when adding CN or Lreg, respectively. When all the components work together, the score
achieves 54.43%. These excellent results demonstrate that our proposed method not only enables
line-supervised oriented object detection but also significantly enhances detection accuracy. The
ablation experiment on the DIOR dataset further supports this conclusion.

The effect of weight µ3 of Eq. 6. We explore the impact of the weight µ3 of Lreg in total loss on
the detection performance. Table 3 shows that the overall optimum is achieved when µ3 is set to 0.3.

The effect of adjustment factor α. Table 4 examines the effect of the adjustment factor α. When
α is set to 1 or 0, it indicates that only scale loss Ls or only height loss Lh is used, respectively,
both resulting in a detection accuracy of 0. The symbol “-” indicates that the adjustment factor is
not applied, meaning that the weights of Ls and Lh are independent of each other. When α is set
to 0.7, the AP50 score reaches 54.48%, representing a 24.27% improvement compared to when no
adjustment factor is applied. This notable performance improvement demonstrates that the proposed
adjustment factor effectively links scale and height, jointly guiding the direction of optimization.
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Table 6: Ablation studies of bias range. ‘T’
and ‘R’ represent the random translation
and rotation, respectively. ‘T+R’ means
‘T’ and ‘R’ are used simultaneously.

Setting T R T + R

Range=0% 54.43 54.43 54.43
Range=10% 54.61 54.01 54.59
Range=20% 55.12 54.90 54.61
Range=40% 52.77 54.46 52.51

The effect of scale factor β of Eq. 7. We investigate
the impact of varying the scale factor β on detection
performance across its value range. Through a coarse
search shown in Table 5, we adopt β = 1.15. The op-
timal AP50 score shows improvements of 54.34% and
24.27% compared to the scores at the boundaries of the
tested range. The results indicate that β helps deter-
mine the object’s scale and, in combination with height
information, can return an appropriate bounding box.

The effect of bias range. Table 6 displays the effect of
different noises. The results show that random trans-
lations and rotations with the 20% range slightly im-
prove the performance while the 40% range decreases only 1.92% AP50, demonstrating that our
method is robust to inaccurate annotations.

4.4 MODEL ANALISIS

Table 7: Results of computational cost and de-
tection speed.

Method GFLOPs Params(MB) FPS

FCOS 206.91 31.92 27.2
L2RBox(ours) 206.91 31.92 27.8

Computational Cost and Speed. In this study,
we examine the computational cost and detection
speed of our L2RBox. Given that detection speed
is contingent upon the experimental environment,
we undertake a comparison of the base architec-
ture FCOS Tian et al. (2019) within our experi-
mental environment, which is equipped with two
Tesla A100-40g GPUs. Table 7 illustrates that our
method does not result in any additional computa-
tional overhead or variation in detection speed. GFLOPs indicate model complexity, with lower val-
ues being preferable. “Params” reflects the model size, where fewer parameters are better. Frames
per second (FPS) measures inference speed, with higher values being more desirable.
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Figure 6: Loss and accuracy curves during training on the DOTA.

Convergence Analysis. This
section examines the conver-
gence of the proposed model
during the training phase.
The top row of Fig. 6(a) illus-
trates the convergence of the
total loss and gradient norm
curves, which both reach a
minimum as training pro-
gresses. Furthermore, the
loss curves for the classifica-
tion and regression branches
are provided in greater de-
tail in the bottom row of Fig.
6(a). The combined evalua-
tion accuracy curves at different Intersection over Union (IoU) thresholds in Fig. 6(b) demonstrate
that the proposed model converges effectively and approximates the global optimum.

5 CONCLUSION

This paper introduces a novel line annotation format that balances the annotation cost with the de-
tection accuracy in weakly-supervised oriented object detection methods. We also propose the first
line-supervised detector, L2RBox, which includes label assignment and loss functions that support
line annotation. The detector employs an anchor-free architecture, enabling end-to-end detection.
Extensive experiments demonstrate that our approach significantly outperforms point-supervised
methods while requiring only a slight increase in labeling costs.
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A APPENDIX

A.1 PROOF OF TREND-LEVEL CONSISTENCY

This section presents a proof of the trend-level consistency between the Intersection over Union
(IoU) of circles and the IoU of their minimum horizontal circumscribed rectangles.

As shown in Fig. 7, suppose there are two circles {(x1, y1)|x2
1 + y21 = R2

1}, {(x2, y2)|(x2 − d)2 +
y22 = R2

2}, c1(x1, y1) and c2(x2, y2) are the centres of the two circles respectively. d represents
the distance between c1 and c2. We establish a Cartesian coordinate system with c1 as the origin
and the line between c1 and c2 as the horizontal axis, where k and p are the intersection points of
two circles, and m(xm, 0) is the point where the line segment kp intersect the horizontal axis. The
lengths l1 and l2 of the line segments c1m and c2m are calculated as follows:

l1 =
R2

1 −R2
2 + d2

2d
, l2 =

R2
2 −R2

1 + d2

2d
(14)
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R1
R2

m

k

p

c1 (x1, y1) c2 (x2, y2)

Figure 7: Schematic diagram for calculating Intersection over Union (IoU).

The intersection I of two circles is calculated as follows:

I/2 =

∫ R1

xm

√
R2

1 − x2
1dx1 +

∫ xm

d−R2

√
R2

2 − (x2 − d)2dx2

=
πR2

1

4
−

R2
1 arcsin

l1
R1

+ l1
√

R2
1 − l21

2
+

πR2
2

4
−

R2
2 arcsin

l2
R2

+ l2
√
R2

2 − l22

2

(15)

Then I can be updated with Eq. 14 as:

I =
πR2

1

2
−R2

1 arcsin
R2

1 −R2
2 + d2

2dR1
− R2

1 −R2
2 + d2

2d

√
R2

1 − (
R2

1 −R2
2 + d2

2d
)2

+
πR2

2

2
−R2

2 arcsin
R2

2 −R2
1 + d2

2dR2
− R2

2 −R2
1 + d2

2d

√
R2

2 − (
R2

2 −R2
1 + d2

2d
)2

(16)

When two circles approach each other, the IoU Ciou between two circles can be divided into the
following cases:

Ciou =


0, R1 +R2 ≤ d

f(d)

πR2
1 + πR2

2 − f(d)
, |R1 −R2|<d<R1 +R2

πmin{R1, R2}2

πmax{R1, R2}2
, 0 ≤ d ≤ |R1 −R2|

(17)

where f(·) denote Eq. 16.

Similarly, the IoU Riou between minimum horizontal circumscribed rectangles of the given circles
can be divided into the following cases:

Riou =


0, R1 +R2 ≤ d

2min{R1, R2}(R1 +R2 − d)

4R2
1 + 4R2

2 − 2min{R1, R2}(R1 +R2 − d)
, |R1 −R2|<d<R1 +R2

4min{R1, R2}2

4max{R1, R2}2
, 0 ≤ d ≤ |R1 −R2|

(18)

The monotonicity analysis of Ciou and Riou with respect to the variable d is as follows:

Combining the Eq. 17 and Eq. 18, we first discuss the monotonicity when R1 = R2 = R, where R
is an arbitrary constant.

(1) R1 +R2 ≤ d. In this case, Ciou = 0 and Riou = 0.

(2) |R1 −R2|<d<R1 +R2. We calculate the derivative function for f(d) and Riou as follows:

f ′(d) = −
√

4R2 − d2<0, R′
iou = − 4R

(2R+ d)2
<0 (19)
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Table 8: Detection results of each category on the DIOR-R and the mean AP50 of all categories.
‘1024’ and ‘800’ indicate the input images are resized to 1024 × 1024 and 800 × 800, respectively.

Method APL APO BF BC BR CH ESA ETS DAM GF GTF HA OP SH STA STO TC TS VE WM AP50

RBox-supervised:
RetinaNet 58.9 19.8 73.1 81.3 17.0 72.6 68.0 47.3 20.7 74.0 73.9 32.5 32.4 75.1 67.2 58.9 81.0 44.5 38.3 62.6 54.96
FCOS 61.4 38.7 74.3 81.1 30.9 72.0 74.1 62.0 25.3 69.7 79.0 32.8 48.5 80.0 63.9 68.2 81.4 46.4 42.7 64.4 59.83

HBox-supervised:
H2RBox 68.1 13.0 75.0 85.4 19.4 72.1 64.4 60.0 23.6 68.9 78.4 34.7 44.2 79.3 65.2 69.1 81.5 53.0 40.0 61.5 57.80
H2RBox-v2 67.2 37.7 55.6 80.8 29.3 66.8 76.1 58.4 26.4 53.9 80.3 25.3 48.9 78.8 67.6 62.4 82.5 49.7 42.0 63.1 57.64

Point-supervised:
P2BNet+H2RBox 52.7 0.1 60.6 80.0 0.1 22.6 11.5 5.2 0.7 0.2 42.8 2.8 0.2 25.1 8.6 29.1 69.8 9.6 7.4 22.6 22.59
P2BNet+H2RBox-v2 51.6 3.0 65.2 78.3 0.1 8.1 7.6 6.3 0.8 0.3 44.9 2.3 0.1 35.9 9.3 39.2 79.0 8.8 10.3 21.3 23.61
Point2RBox-SK 41.9 9.1 62.9 52.8 10.8 72.2 3.0 43.9 5.5 9.7 25.1 9.1 21.0 24.0 20.4 25.1 71.7 4.5 16.1 16.3 27.30
PointOBB (FCOS) 58.4 17.1 70.7 77.7 0.1 70.3 64.7 4.5 7.2 0.8 74.2 9.9 9.1 69.0 38.2 49.8 46.1 16.8 32.4 29.6 37.31
PointOBB (R-CNN) 58.2 15.3 70.5 78.6 0.1 72.2 69.6 1.8 3.7 0.3 77.3 16.7 4.0 79.2 39.6 51.7 44.9 16.8 33.6 27.7 38.08

Line-supervised:
L2RBox (Ours) (800) 66.7 3.2 74.2 80.7 9.2 71.9 43.6 30.3 13.3 63.6 74.9 5.7 2.0 18.7 65.1 59.9 80.4 8.2 25.0 50.7 42.40
L2RBox (Ours) (1024) 73.1 4.6 74.8 80.9 9.1 71.8 40.3 34.2 11.1 64.0 77.3 4.9 2.0 19.9 69.1 66.6 80.4 5.8 28.2 50.4 43.41

Note that as the Eq. 17, the sign of the C ′
iou is same as the f ′(d). This demonstrates that the two

functions Ciou and Riou exhibit the same monotonicity.

(3) 0 ≤ d ≤ |R1 −R2|. According to Eq. 17 and Eq. 18, Ciou = 1 and Riou = 1.

Similarly, we discuss the monotonicity when R1 ̸= R2.

(1) R1 +R2 ≤ d. In this case, Ciou = 0 and Riou = 0.

(2) |R1 −R2|<d<R1 +R2. We calculate the derivative function for f(d) and Riou as follows:

f ′(d) = −
√
−R4

1 −R4
2 + 2R2

1d
2 + 2R2

2d
2 + 2R2

1R
2
2 − d4

d
<0

R′
iou = − 8(R2

1 +R2
2)min{R1, R2}

[4R2
1 + 4R2

2 − 2min{R1, R2}(R1 +R2 − d)]2
<0

(20)

This demonstrates that Ciou and Riou exhibit the same monotonicity.

(3) 0 ≤ d ≤ |R1 −R2|. Combine with the Eq. 17 and Eq. 18, Ciou = a and Riou = b, where a and
b are both constants.

In conclusion, regardless of whether the two given circles have the same radius, Ciou and Riou

exhibit the same monotonicity, indicating a trend-level consistency between the IoU of circles and
the IoU of their minimum horizontal circumscribed rectangles.

A.2 RESULTS ON DIOR-R

To assess the robustness of our L2RBox, we also compared L2RBox against state-of-the-art meth-
ods using the DIOR-R dataset, as detailed in Table 8. Our L2RBox achieves AP50 score of 43.41%.
Compared to the state-of-the-art Point-supervised method (i.e. PointOBB Luo et al. (2024)), our
approach uses an end-to-end structure, yet obtains a competitive performance (43.41% vs. 38.08%).
When benchmarked against the end-to-end Point2RBox Yu et al. (2024a), our L2RBox demonstrates
an improvement of 16.11%. In comparison with fully RBox-supervised methods, L2RBox demon-
strates similar performance in the BC, CH, GTF, STO, and TC categories. Notably, in the APL
category, our L2RBox outperforms the fully RBox-supervised FCOS Tian et al. (2019) by 11.7%.
It is probable that this is a consequence of our utilisation of a minimum circumscribed circle to
calculate the loss, which offers greater adaptability for objects with a small aspect ratio.
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h ⋅ cos𝜃

w ⋅ sin 𝜃

Figure 8: The labeling process for line, HBox and RBox annotation.

A.3 THEORETICAL COST

We utilize the distance moved while annotating to reflect the overhead in an ideal situation. As
shown in Fig. 8, the dotted lines with different colors indicate the trajectory of the different an-
notation methods. Assuming that the RBox of an object is (x,y,w,h,θ), the distance moved when
annotating with RBox can be calculated as:

Dr = 2(w + h) (21)

When annotating with HBox:

Dh =
√
(h · sinθ + w · cosθ)2 + (w · sinθ + h · cosθ)2

=
√
w2 + h2 + 4sinθcosθ

(22)

When annotation with Line:
Dl = h (23)

Dr, Dh, and Dl represent the distances moved when using RBox, HBox, and Line annotations,
respectively. So the theoretical cost of line annotations is minimal.

Table 9: Ablation studies of sampling ratio

o AP AP50 AP75

1.0 21.45 53.49 16.93
1.5 21.84 54.48 17.37
2.0 21.22 53.46 16.82

A.4 THE EFFECT OF SAMPLING RATIO

We explore the impact of the sampling ratio o introduced in Section 3.2 on detection performance.
Table 9 shows that the overall optimum is achieved when o is set to 1.5.

A.5 QUALITATIVE RESULTS

The qualitative results obtained on the DOTA-v1.0 and DIOR-R are presented in Fig. 9 and Fig. 10.
Despite the diverse range of scenes and objects captured in the input images, which encompass a
multitude of categories and scales, the proposed L2RBox has demonstrated its capability to accu-
rately predict oriented bounding boxes that are well-aligned with the target. This illustrates that the
proposed components can achieve precise oriented object detection based on line annotations.
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PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC

Figure 9: Qualitative Results on DOTA-v1.0.
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APL APO BF BRBC CH ESA ETS DAM GF

GTF HA OP SH STA TCSTO TS VE WM

Figure 10: Qualitative Results on DIOR-R.
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