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Abstract
Neural language models have seen a dramatic001
increase in size in the last years. While many002
still advocate that ‘bigger is better’, work in003
model distillation has shown that the number of004
parameters used by very large networks is actu-005
ally more than what is required for state-of-the-006
art performance. This prompts an obvious ques-007
tion: can we build smaller models from scratch,008
rather than going through the inefficient process009
of training at scale and subsequently reducing010
model size. In this paper, we investigate the011
behaviour of a biologically inspired algorithm,012
based on the fruit fly’s olfactory system. This013
algorithm has shown good performance in the014
past on the task of learning word embeddings.015
We now put it to the test on the task of seman-016
tic hashing. Specifically, we compare the fruit017
fly to a standard binary network on the task018
of generating locality-sensitive hashes for text019
documents, measuring both task performance020
and energy consumption. Our results indicate021
that the two algorithms have complementary022
strengths while showing similar electricity us-023
age.024

1 Introduction025

In 2022, the vast majority of state-of-the-art NLP026

systems are implemented as deep neural models,027

that is, neural networks with complex architectures028

which can contain hundreds of billions of param-029

eters. Such models have become so expensive to030

train that most institutions cannot afford anymore031

to generate them from scratch. They have also been032

shown to generate non-negligible amounts of CO2033

emissions (Strubell et al., 2019).034

An active research area focuses on model distil-035

lation (e.g. Sanh et al., 2019), that is, the process036

of pruning pretrained large models to only retain037

the weights truly essential to the system’s perfor-038

mance. The result of distillation is a much smaller039

architecture, faster to run, and less memory-hungry.040

However, training a large model to then reduce041

its size seems to be a waste of resources. Ideally,042

we would instead make the right design choices 043

to directly implement a model with a reasonable 044

number of parameters. With this goal in mind, the 045

present paper looks at a biologically-inspired ar- 046

chitecture which have shown potential as a ‘small 047

model’ for language processing: The Fruit Fly Al- 048

gorithm (FFA). 049

The FFA is inspired by the olfactory system of 050

the fruit fly, Drosophila melanogaster. It algorith- 051

mically describes how the fly encodes smells in 052

its environment into a binary pattern of activations, 053

using just two layers of neurons. The usefulness 054

of the biological algorithm for computer science 055

was first noted by Dasgupta et al. (2017), who mod- 056

eled the mechanism as a kind of local-sensitivity 057

hashing relying on random projections, and used 058

it to hash pre-trained document and image vectors. 059

Preissner and Herbelot (2019, 2020) ported the 060

original algorithm to a Natural Language Process- 061

ing setting and made the fly learn word embeddings. 062

Liang et al. (2021) also applied the FFA to the task 063

of creating word embeddings, serving downstream 064

tasks such as word-sense disambiguation and docu- 065

ment classification. 066

The FFA produces word embeddings of a qual- 067

ity comparable to that of traditional, classic meth- 068

ods such as GLOVE (Pennington et al., 2014) and 069

Word2Vec (Mikolov et al., 2013). While it lags 070

behind the performance of large language models 071

like BERT (Devlin et al., 2019), it consumes only 072

a fraction of inference time as well as computing 073

power (Liang et al., 2021). Moreover, the FFA is 074

an explainable model, thanks to a shallow archi- 075

tecture and sparse, binary feature representations. 076

Taken together, these features promise to allevi- 077

ate the drawbacks of mainstream giant language 078

models, such as the need for expensive comput- 079

ing resources, environmental concerns and lack of 080

interpretability. 081

In our work, we aim to take the FFA one step 082

further and use it to perform semantic hashing, 083
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that is, the task of learning locality-sensitive, bi-084

nary vectors for various types of text input. In the085

general area of computational efficiency, semantic086

hashing is an extremely useful task, as it aims at087

generating meaningful vector representations at a088

low number of bits (typically between 8 and 128).089

The produced hashes can be stored very efficiently090

and similarity computations can be performed ex-091

tremely fast over them, using hamming distance.092

Specifically, we provide a comparison of the FFA093

with another efficient hashing algorithm, namely094

the Binary Neural Network (BNN). Both tech-095

niques are very different in terms of architecture096

and training regime. In the spirit of increasing ‘al-097

gorithmic diversity’ (Preissner and Herbelot, 2020),098

we think it worthwhile to investigate the respective099

benefits of the two methods, and we pitch them100

against each other on the tasks of document clas-101

sification and information retrieval. Our results102

show that the two techniques are complementary103

in strength while satisfying requirements of energy104

efficiency.105

2 Related work106

Semantic hashing The task of semantic hash-107

ing comes from the area of information retrieval,108

where it is crucial to be able to cluster documents109

according to their semantic similarity, in order to110

retrieve documents given a query. One way of go-111

ing about this problem is to assign a code, hash or112

vector representation to each document. The more113

similar the hash of two given documents, the more114

semantically related they are. These representa-115

tions should be storable in a fixed number of bits so116

that the retrieval of documents – through hamming117

distance – is fast and computationally efficient.118

Models for semantic hashing vary from the119

simpler methods, such as count-based or term120

frequency-inverse document frequency (tf-idf)121

(Salton and Michael, 1986) methods, to more com-122

plex ones involving deep learning. The current123

unsupervised state-of-the-art systems rely on heavy124

machinery such as generative models with varia-125

tional autoencoders (Chaidaroon and Fang, 2017;126

Zhang and Zhu, 2019; Hansen et al., 2020) since127

they are capable of reducing the high-dimensional128

data into a low latent space.129

Document classification The task of document130

classification is a traditional one in NLP, and like131

many other tasks, it has become associated with132

more and more complex architectures. A few years133

ago, classification used to be tackled using different 134

architectures of neural network such as CNN (Liu 135

et al., 2017) and biLSTM (Adhikari et al., 2019b) 136

with static word embeddings. Nowadays, the pre- 137

ferred method is to input the entire document into 138

a large language model (LLM), retrieve its repre- 139

sentation, and feed it into a fully connected layer 140

or a linear classifier. LLMs are based on Trans- 141

formers and have a massive amount of parameters, 142

(e.g. 170 billion in GPT-3 Brown et al., 2020). 143

They have fostered substantial progress in search 144

engines in the last few years1 and indeed create ex- 145

cellent text representations. But they also have the 146

many pitfalls mentioned in our introduction, from 147

low interpretability to high computational cost, as 148

well as erroneous filtering of content in the pretrain- 149

ing process, disfavouring minority groups (Dodge 150

et al., 2021; Bender et al., 2021). 151

From a purely engineering point of view, the 152

drawbacks of LLMs have prompted the publica- 153

tion of various papers trying to tackle core is- 154

sues in the models. For instance, Adhikari et al. 155

(2019a) implement knowledge distillation as com- 156

pression technique in the BERT-large model to 157

deal with the problem of run-time memory caused 158

by these large systems. Another known issue is 159

that standard LLMs such as BERT (Devlin et al., 160

2019) can only take up to 512 tokens input due 161

to their self-attention mechanisms. Therefore, 162

dealing with long documents can still be a chal- 163

lenge. Researchers have dealt with it by creat- 164

ing Transformer-based models that can take even 165

longer texts as input (Beltagy et al., 2020). 166

Our own stance is that, beside improving LLMs, 167

our community should experiment with more di- 168

verse computational architectures to solve the out- 169

standing problems. As Bender et al. (2021) point 170

out, we should be careful not to focus only on state- 171

of-the-art architectures and encourage instead re- 172

search efforts and funding into diversifying natural 173

language processing models. 174

3 Datasets 175

Six datasets were used to evaluate our algorithms: 176

20 Newsgroups2 (20news) (Lang, 2008), Agnews3 177

1https://blog.google/products/search/
search-language-understanding-bert/

2qwone.com/~jason/20Newsgroups/
20news-bydate.tar.gz

3groups.di.unipi.it/~gulli/AG_corpus_
of_news_articles.html
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(Zhang et al., 2015), Reuters4 (Lewis, 1997), TMC5178

(Oza, 2010), Wikipedia (Wiki), and Web of Sci-179

ence6 (WoS) (Kowsari et al., 2017). Statistics and180

short descriptions of all datasets can be found in181

Table 1.182

All datasets are available to download, except183

Wiki, which we collected by scraping English184

Wikipedia pages. Regarding the 20news dataset,185

we used the specific version sorted by date. For186

Reuters, we used the version ModApte R(90). For187

WoS, we used the medium-size version. Three188

datasets (20news, Agnews, and Reuters) already189

provided separate train and test sets. Thus we kept190

these test sets intact for the purpose of comparison,191

and further split the train sets to extract a validation192

set.193

3.1 Pre-processing194

All datasets are lowercased and tokenized with a195

SentencePiece7 model, generated from the train196

split. Using this tokenization method makes our197

system ready to be used with languages other than198

English. SentencePiece transforms the data into199

tokens belonging to a vocabulary of d wordpieces,200

with d set here at 10, 000. It also returns the log-201

probabilities of each token in the training data. We202

will write lpi to refer to the log-probability of token203

i in the SentencePiece model.204

After this initial pre-processing, each dataset is205

vectorized. For a dataset of n documents, we obtain206

a matrix of size n× d, where each row represents a207

document and each column a token in our vocabu-208

lary of word pieces. Each cell in the matrix shows209

the normalized frequency of a token in the docu-210

ment, reweighted by lppi , where p is an exponent211

used to increase or decrease the effect of lpi. The212

reason for weighing frequencies in this way, rather213

than using a conventional measure such as tf-idf,214

is that it allows the system to be incremental at215

test stage. That is, any new document seen by the216

model can be vectorized without needing access to217

the entire document collection.218

Finally, we experiment with keeping only the219

top t words in each (reweighted) document vector,220

which lets us optimize the number of infrequent221

and/or uncharacteristic words seen by the system.222

4Downloaded from nltk library
5catalog.data.gov/dataset/

siam-2007-text-mining-competition-dataset
6data.mendeley.com/datasets/

9rw3vkcfy4/6 under the license CC BY 4.0
7https://github.com/google/

sentencepiece

That is, before feeding the input to the system, we 223

zero out the d− t cells with lowest weights in each 224

row of the matrix. 225

4 Models 226

4.1 The Binary Neural Network (BNN) 227

BNN (Hubara et al., 2016) is an example of light 228

and efficient model, with the idea to bridge the gap 229

between production in industry and research. Thus, 230

the model provides an ideal comparison for our 231

FFA. BNNs have a reduced cost of computation 232

with respect to continuous neural networks because 233

weights and activations are binarized at run-time, 234

as well as during gradient computation, with +1 235

and -1 values. Weights and activations undergo a 236

deterministic binarization step: 237

xb = Sign(x) =

{
+1 if x ≥ 0,

−1 otherwise
238

where x is the continuous variable and xb is the 239

binarized value. The Stochastic Gradient De- 240

scent, however, is computed with the accumulated 241

continuous-valued weights in order to have high 242

precision. 243

Our BNN has one input layer, one hidden layer 244

and one output layer. It is trained to predict which 245

class(es) a certain document belongs to. The input 246

is a matrix Rn×d with the pre-processed documents 247

(cf. 3.1) where n is the number of documents in 248

the batch and d is 10,000. The output layer is a bi- 249

nary vector representation of dimensionality Rhl×l 250

where hl is the number of neurons in the hidden 251

layer and l is the number of labels in the dataset. 252

Cross Entropy loss is computed for single label 253

documents whereas in the multilabel classification 254

the loss combines a sigmoid layer and Binary Cross 255

Entropy. 256

We experiment with three sizes of hidden layers 257

(32, 64 and 128) and two different learning rates 258

(0.01 and 0.001). The training batch size is kept 259

32 across datasets. Training is run for 50 epochs 260

with early stopping after 5 epochs. The number of 261

epochs of each final model varies between 6 and 262

42. 263

While the BNN is trained on a classification task, 264

it can also be used for semantic hashing. To get 265

an unseen document’s hash, we feed it into the 266

neural network and extract the hidden layer before 267

the classification layer as the representation of the 268

3
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Dataset Multi-class Classes Num docs Train-val-test
split (%) Topics

20news No 20 18846 42-18-40 Newsgroups, such as motorcycles,
computer, politics, etc

Agnews No 4 127600 75-19-6 News articles about the world, sports,
business, and science/tech

Reuters Yes 90 10788 56-16-28 News articles on various topics, such as
jobs, gas, housing, wheat, etc

TMC Yes 22 28596 60-15-25 Air traffic reports

Wiki No 15 29924 60-20-20 Wikipedia pages in categories,
such as music, football, law, etc

WoS No 35 11967 60-20-20 Scientific papers’ abstracts in different fields,
such as biochemistry, psychology, etc

Table 1: Statistics and description of datasets

Figure 1: FFA architecture (figure adapted from Preiss-
ner and Herbelot (2020).

document. Since the activations of the hidden layer269

are already binarized, the representation naturally270

implements binary hashing.271

4.2 The Fruit Fly Algorithm (FFA)272

The Fruit Fly Algorithm (FFA) takes inspiration273

from the fruit fly’s olfactory system. Specifically,274

the fruit fly’s brain is composed of sparse connec-275

tions between only two layers of neurons which can276

assign binary activations to a particular smell (de-277

fined as a combination of different types of chemi-278

cals). These patterns of activations allow the fruit279

fly to ‘conceptualise’ the environment and react to280

new smells by comparing them to previous smells281

the fly has been exposed to. Dasgupta et al. (2017)282

first proposed an implementation of FFA to hash283

existing pretrained embeddings. In our work, we284

extend the FFA to learn binary document embed-285

dings from scratch, with low energy consumption.286

Following the implementation of (Dasgupta287

et al., 2017), the FFA model consists of a small288

feedforward architecture which transforms a doc-289

ument to a binary vector to represent the hash of290

the document (Fig 1). The input layer, the pro- 291

jection neuron layer or PN layer, is a vector of d 292

elements {x1...xd}, generated by the vectorization 293

process described in §3.1. Next, this input layer is 294

multiplied by a random projection matrix to form 295

the input to the second layer. The second layer, 296

(Kenyon Cell layer or KC layer), is represented as 297

a vector of k elements {y1...yk}, which is larger 298

than the PN layer (k >> d) and is kept at fixed 299

size. The projection matrix is sparse, that is, PN 300

and KC layers are not fully connected. Each KC 301

is connected with a constant number i of nodes in 302

the PN layer, and these connections are randomly 303

allocated at initialization time. The activation value 304

of each KC cell is then simply the sum of i activa- 305

tions from the PN layer. Note that although these 306

connections are uniformly distributed, certain allo- 307

cations will result in better performance. Finally, 308

hashing is done by a winner-takes-all (WTA) func- 309

tion that sorts the activations in the KC layer, then 310

takes only a small percentage of the most activated 311

values to produce a compact representation of the 312

document. Specifically, WTA(yi) = 1 if yi is one 313

of the k top values in y and 0 otherwise. 314

5 BNN and FFA comparison 315

Our two algorithms have many differences, from 316

their architecture to their optimization regime. We 317

will highlight those differences here to make our 318

experimental results more interpretable. 319

First, the BNN is a supervised method while 320

the FFA is in essence unsupervised. This means 321

that when training and optimizing the BNN, we are 322

looking for the best network weights and ideal hy- 323

perparameters (for both pre-processing and training 324

regime). In contrast, the FFA does not require train- 325

ing of weights, since the projections are random, 326

but still requires hyperparameter setting (including 327
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pre-processing and fly-specific features such as the328

number of random projections per KC or the WTA329

rate). Note that the BNN uses backpropagation330

while the FFA only performs forward propagation.331

Second, the BNN’s natural training grounds is332

the classification task, which allows us to use a333

straightforward and efficient objective function.334

The FFA being unsupervised, it can be optimized335

on any task that can make direct use of its binary336

embeddings. In practice, we found that optimizing337

the FFA’s hyperparameters on Prec@k gave us bet-338

ter performance than the classification task, so the339

results we report are based on this choice.340

Finally, we should note that the task of this341

paper, learning binary representations at low-342

dimensionality, is a natural setting for the BNN343

but actually challenges the FFA. The strength of344

the FFA is the massive expansion in dimension-345

ality at the level of the KC layer. Through this346

mechanism, an actual fruit fly transforms a per-347

ceptual input in 50 dimensions into a conceptual348

representation contained in 2000 neurons. That349

40-fold expansion in dimensionality allows the fly350

to capture many latent features of the perceptual351

data, some of which, presumably, end up being352

useful for classification.8 But our task requires in-353

stead that the document features be compressed354

in at most 128 dimensions (down from 10,000 in355

input). As we will see later, this will necessitate356

some adjustments to the original FFA.357

5.1 Evaluation358

Classification Classification is simply the pro-359

cess of predicting a class for a given document.360

The accuracy for multi-label and single-label doc-361

uments is computed with sum of all true positives362

and negatives divided by the sum of all true and363

false positives and negatives from the dataset.364

Prec@k Precision at k is a typical information365

retrieval task. Given some document representa-366

tion v, the k nearest neighbours of v are computed.367

Precision is then given as the number of nearest368

neighbours that have the same class as v, divided369

by k. All datasets are evaluated with a k value370

of 100. In the case of multi-label documents, the371

precision is counted as correct if at least one of the372

labels is retrieved.373

8In that sense, one might argue that the natural fruit fly
implements the kind of ‘wastefulness’ we criticised in Large
Language Models – but only across two partially connected
layers, and without backpropagation.

Carbon footprint Aside from task performance, 374

we also measure how the algorithms compare in 375

terms of energy use. For each system, and for each 376

dataset, we compute electricity use in kWh. Since 377

optimization happens differently in the BNN and 378

the FFA, and involves different numbers of hyper- 379

parameters, we report the average consumption of 380

a single optimization step. We used the codecar- 381

bon library (Schmidt et al., 2021) to measure the 382

electricity consumption. 383

6 Experimental Design 384

We implement a BNN and an FFA9 with the aim of 385

generating document hashes at 32, 64 and 128 bits. 386

To evaluate the respective strengths of the two sys- 387

tems, we compare the two architectures according 388

to the two methods described above: precision at k 389

(Prec@k) and classification (Class). 390

Further, we divide our evaluation of the FFA into 391

three different settings, to investigate how the rela- 392

tion between the dimensionality of the input of the 393

size of the KC layer affects results. Recall that the 394

original FFA expects an expansion in dimension- 395

ality which is undesirable from the point of view 396

of the task at hand, where we seek to obtain 32-64- 397

128 bits hashes. To alleviate this issue, we attempt 398

to combine the original architecture with a dimen- 399

sionality reduction step implemented as PCA. We 400

apply this step in two different conditions. In the 401

first one (subsequently referred to as PCA+FFA), 402

we apply PCA to the input matrix and feed the 403

first c principal components to the FFA, where c is 404

a hyperparameter to optimize. In the second one 405

(FFA+PCA), we apply PCA ‘inside’ the FFA, just 406

before the WTA step, in effect reducing the size of 407

the KC layer. As control condition, we also show 408

the results of the original FFA without intervention 409

(henceforth ‘Raw FFA’). To perform classification 410

with the FFA representations, we feed a simple 411

Logistic Regression10 model with the documents’ 412

hashes, as generated by the fly, and perform one- 413

vs-rest classification. 414

For all settings, we tune the values of the two 415

hyperparameters of the pre-processing stage: the 416

log-probability exponent p and the number t of top 417

words considered for each document (see §3.1). 418

For the BNN, we also investigate the learning rate 419

9Our code is freely available at ANONYMISED URL.
10Implementation from scikit-learn: https:

//scikit-learn.org/stable/modules/
generated/sklearn.linear_model.
LogisticRegression.html.
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Bits
Eval
mode

BNN
Raw
FFA

PCA +
FFA

FFA +
PCA

32
pre@k 0.31 0.25 0.3 0.25
class 0.45 0.38 0.45 0.48

64
pre@k 0.31 0.25 0.35 0.29
class 0.48 0.41 0.55 0.56

128
pre@k 0.32 0.27 0.39 0.29
class 0.54 0.48 0.61 0.59

Table 2: Results for 20news dataset

Bits
Eval
mode

BNN
Raw
FFA

PCA +
FFA

FFA +
PCA

32
pre@k 0.79 0.31 0.62 0.62
class 0.75 0.42 0.73 0.78

64
pre@k 0.80 0.64 0.69 0.59
class 0.81 0.43 0.80 0.80

128
pre@k 0.80 0.67 0.72 0.54
class 0.86 0.45 0.84 0.80

Table 3: Results for Agnews dataset

Bits
Eval
mode

BNN
Raw
FFA

PCA +
FFA

FFA +
PCA

32
pre@k 0.61 0.50 0.58 0.54
class 0.99 0.49 0.62 0.56

64
pre@k 0.68 0.50 0.64 0.54
class 0.99 0.48 0.66 0.59

128
pre@k 0.70 0.49 0.66 0.50
class 0.99 0.50 0.68 0.61

Table 4: Results for Reuters dataset

of the network. For the FFA, we tune the projection420

size and WTA rate, as well as the number of princi-421

pal components retained from the PCA, wherever422

applicable. Since the FFA generates random projec-423

tions for each fly it creates, we run it 10 times for424

each combination of dataset and hyperparameters,425

and select the instance with the best performance426

on the train set. (Recall that the FFA is unsuper-427

vised, so we simply compute Prec@k on the n428

documents seeing in training.) All results reported429

in §7 are for the best models obtained from the430

optimization process.431

7 Results432

7.1 Task performance433

Our results are reported in Tables 2 to 8. We pro-434

vide the best hyperparameter sets in the appendix,435

for reproducibility purposes. It emerges that the436

BNN and the FFA complement each other, with one437

Bits
Eval
method

BNN
Raw
FFA

PCA +
FFA

FFA +
PCA

32
pre@k 0.53 0.41 0.56 0.58
class 0.89 0.06 0.19 0.20

64
pre@k 0.58 0.4 0.61 0.56
class 0.91 0.11 0.22 0.20

128
pre@k 0.59 0.43 0.64 0.53
class 0.91 0.14 0.25 0.21

Table 5: Results for TMC dataset

Bits
Eval
method

BNN
Raw
FFA

PCA +
FFA

FFA +
PCA

32
pre@k 0.67 0.19 0.55 0.43
class 0.82 0.34 0.73 0.70

64
pre@k 0.70 0.21 0.63 0.45
class 0.84 0.43 0.81 0.79

128
pre@k 0.69 0.27 0.68 0.40
class 0.85 0.54 0.86 0.81

Table 6: Results for Wiki dataset

Bits
Eval
method

BNN
Raw
FFA

PCA +
FFA

FFA +
PCA

32
pre@k 0.20 0.27 0.35 0.15
class 0.51 0.45 0.58 0.46

64
pre@k 0.22 0.28 0.37 0.14
class 0.56 0.46 0.64 0.51

128
pre@k 0.22 0.26 0.40 0.13
class 0.58 0.50 0.71 0.54

Table 7: Results for WoS dataset

or the other algorithm taking the lead in particular 438

combinations of datasets and tasks. We summa- 439

rize the main trends in our results below, starting 440

with a description of each experimental setting in- 441

dividually and then highlighting their respective 442

strengths. 443

BNN baseline: The BNN performs generally 444

very well on the classification task, reaching ac- 445

curacies over 90% on Reuters and TMC, at all hash 446

sizes. At 128 bits, it also achieves over 85% for Ag- 447

news and Wiki. Its performance is somewhat more 448

disappointing on 20news and WoS (54% and 58% 449

respectively). The results on Prec@k are more var- 450

iegated and, interestingly, do not fully follow the 451

classification patterns. The best performance is on 452

Agnews (around 0.8) followed by Reuters and Wiki 453

(around 0.7 at 64 and 128 bits). TMC only reaches 454

0.59 while the performance on 20news and Wos is 455

again lower (around 0.3 and 0.2 respectively). 456
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Raw FFA: Results with the raw FFA are consis-457

tently low, although this setting surprisingly out-458

performs the BNN on WoS against the Prec@k459

measure.460

FFA with PCA postprocessing: Integrating461

PCA within the FFA, just before the WTA step,462

only occasionally improves performance. In some463

cases, it actually degrades the score of the Raw464

FFA.465

FFA with PCA preprocessing: Out of all FFA466

settings, this is the one with the best performance.467

For classification, it does best on Wiki (86%)468

and WoS (71%), followed by Reuters (68%) and469

20news (61%). For Prec@k, the best results are ob-470

tained on Wiki, Reuters and TMC (0.68, 0.66 and471

0.64 at 128 bits), followed by 20news and WoS472

(around 0.40).473

When comparing both algorithms, we see that474

for classification, PCA+FFA clearly outperforms475

the BNN on 20news and WoS, while very much fail-476

ing to encode TMC and lagging behind on Reuters.477

Performance is comparable on the Wiki dataset478

and Agnews. As far as Prec@k is concerned,479

PCA+FFA outperforms the BNN again on 20news480

and WoS, as well as TMC. The two algorithms481

have more comparable results on Reuters and Wiki,482

especially at higher hash sizes. The BNN obtains483

the highest results on Agnews.484

7.2 Energy consumption485

Table 9 shows energy consumption for the BNN486

and the PCA+FFA model, measured on a 32-core487

Linux machine using CPUs only (model AMD488

Opteron(TM) Processor 6272), with 32GB RAM.489

The left of the table reports average figures for sin-490

gle optimization steps, while the right-hand side491

gives an intuitive measure of electricity usage, by492

showing how many minutes one could run a sin-493

gle 40W light bulb for the same consumption. For494

the FFA, we give results for the overall consump-495

tion as well as a breakdown showing the individual496

demands of the PCA and the actual fruit fly.497

8 Discussion498

8.1 Task performance499

We first remark that as far as classification is con-500

cerned, it is possible to obtain high accuracies on501

nearly all datasets with at least one of our two502

lightweight algorithms: results at 128 bits range503

from 80% to 99% for Agnews, Reuters, TMC and504

Wiki. The more ‘difficult’ datasets are 20news and 505

WoS, and interestingly, those are the ones where 506

the FFA outperforms the BNN. As far as Prec@k is 507

concerned, a very similar picture emerges. Agnews, 508

Reuters, TMC and Wiki reach between 0.69 and 509

0.80 precision, while 20news and WoS lag behind. 510

Here again, the FFA outperforms the BNN by a 511

very substantial margin. 512

One notable aspect of our results is that perfor- 513

mance in classification does not necessarily trans- 514

fer to Prec@k, and vice-versa. The BNN achieves 515

good classification accuracies on TMC but rather 516

low precisions at k, while the FFA behaves in ex- 517

actly the opposite manner. Further, results vary 518

widely depending on datasets, with the BNN and 519

the FFA respectively leading the game on Reuters 520

and WoS for both performance metrics. This seems 521

to indicate that particular data distributions might 522

be better captured by one or the other algorithm. 523

Unlike the BNN, the FFA demonstrates a consis- 524

tent improvement as the hash size increases. This is 525

not surprising, as we mentioned earlier that the FFA 526

is in some sense designed to work at high dimen- 527

sionality. We investigated this effect further and 528

performed Bayesian Optimization11 on the FFA’s 529

hyperparameters, this time allowing the size of the 530

KC layer to grow up to 15,000 bits. Results are 531

shown in Table 8. Against expectation, a higher 532

KC size does not necessarily translate into better 533

Prec@k. And while the higher size does make a 534

substantial difference to the classification task, we 535

note that this is obtained with very low projection 536

sizes, meaning that the algorithm reverts to looking 537

at single words in the output. 538

8.2 Energy efficiency 539

Both the BNN and FFA algorithms prove to be 540

very energy efficient. The right of Table 9 gives 541

an intuitive idea of the energy consumed by the 542

two algorithms, by comparing it to the number 543

of minutes spent running a single 40W bulb in a 544

home. We see that a single run of the BNN is 545

equivalent to running the light bulb between 11 and 546

41 minutes, depending on the size of the dataset 547

being processed. The FFA itself (without PCA 548

pre-processing) has a wider range, from 7 to 81 549

minutes, but still remains very affordable. 550

We note that the main cost of the FFA is of 551

course evaluation. We are optimizing the algorithm 552

11Library from https://github.com/fmfn/
BayesianOptimization.
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prec@100 KC size proj size WTA Acc. KC size proj size WTA
20news 0.12 14896 10 45 0.69 14239 2 100
agnews 0.32 14885 10 80 0.91 9106 2 100
reuters 0.48 4462 10 62 0.73 14033 2 100
tmc 0.46 14866 10 94 0.22 8233 2 57
wiki 0.24 13848 10 35 0.92 14336 2 100
wos 0.15 2337 7 3 0.82 11236 2 100

Table 8: Bayesian Optimization on the raw FFA, with (nearly) unlimited KCs.

kWh per optimization step Minutes running a 40W bulb
BNN FFA (PCA) FFA (Fly) FFA (Overall) BNN FFA (PCA) FFA (Fly) FFA (overall)

20news 0.008856 0.001302 0.012206 0.013508 13 2 18 20
agnews 0.027517 0.058215 0.054120 0.112334 41 87 81 169
reuters 0.018228 0.000806 0.004916 0.005722 27 1 7 9
tmc 0.01066 0.002817 0.010733 0.013550 16 4 16 20
wiki 0.013674 0.003757 0.014526 0.018282 21 6 22 27
wos 0.007422 0.000855 0.006299 0.007154 11 1 9 11

Table 9: Energy consumption of the BNN and FFA, in kWh. Figures are averages for single optimization steps.

on Prec@k, which is an expensive function to run,553

as it involves a computationally-intensive nearest554

neighbour computation. As we pointed out previ-555

ously, optimizing on classification did not seem to556

give the best possible results for the FFA. But this557

aspect would require further investigation, since it558

is the main efficiency bottleneck for the algorithm.559

We also note that when including PCA pre-560

processing, large datasets like agnews become561

more expensive to run: the highest overall con-562

sumption in the table relates to the PCA on agnews563

(0.58 kWh). This is a substantial cost in getting564

the best out of the FFA, and one that could poten-565

tially be reduced. In particular, we are experiment-566

ing with computing dimensionality reduction on567

a restricted subset of our data and subsequently568

learning a regression function from high- to low-569

dimensional space to ‘simulate’ the effect of the570

PCA. Preliminary results are encouraging, with571

limited loss in task performance.572

9 Conclusion573

This paper set out to compare the respective574

strengths of two lightweight binary hashing algo-575

rithms, the binary neural network (BNN) and the576

fruit fly algorithm (FFA), on the task of generat-577

ing highly-compressed document representations.578

We adapted the original FFA to this new context579

by prepending a dimensionality reduction step to580

the architecture, implemented with PCA. We found581

that the two methods display different strengths and582

achieved their top performance on different tasks583

and datasets. Both are energy-efficient, with the584

FFA’s consumption being mostly taken by evalua-585

tion at optimization stage. 586

Both BNNs and biologically-inspired algorithms 587

are relatively new in NLP, and therefore require a 588

lot of community efforts to fully understand their 589

respective behaviours. As immediate further work, 590

we would perform an in-depth analysis on our 591

datasets’ distributions to understand better why 592

some data seem more suited to one or the other 593

algorithm, and why discrepancies emerge in the 594

way that classification and precision at k are tack- 595

led. From an efficiency point of view, we will also 596

further investigate how to reduce the cost of the 597

dimensionality reduction step before applying the 598

FFA. We hope, more generally, that the compari- 599

son provided here will inspire other researchers to 600

try out lightweight techniques to solve core NLP 601

problems. 602

Finally, one of the main strengths of both models 603

is their low running costs. All steps can be run in a 604

CPU or even on a mobile phone – as in the case of 605

the BNN. This is a crucial point when it comes to 606

providing high quality systems based on artificial 607

intelligence models for low resource communities. 608
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A Appendix: model hyperparameters745

SentencePiece was run with default hyperparam-746

eters and a vocabulary size of 10, 000. For the747

BNN, the best log-probability exponent p varied748

depending on the dataset: 3 for Reuters, Agnews749

and TMC, 4 for 20news and WoS, 5 for Wiki. For750

the FFA, p = 4 emerged as the best choice for all751

datasets. The number of top words t gave optimal752

results at t = 300 for most datasets, apart from753

WoS (t = 500).754

Tuning the learning rate for the BNN did not755

result in any statistically significant changes, so all756

results are reported for lr = 0.01.757

For the FFA, we tuned the projection size from758

4 to 16 and the WTA rate from 10 to 70. The best759

hyperparameter combinations for each pair of hash760

size and dataset are included in the table below.761

The Logistic Regression classifier used the default762

sklearn hyperparameters, in multiclass mode.763

32 bits 64 bits 128 bits
WTA proj. WTA proj. WTA proj.

size size size
20news 16 70 16 50 16 50
agnews 8 50 8 30 4 50
reuters 4 50 4 50 4 50
tmc 4 50 8 50 12 30
wiki 8 50 8 30 8 30
wos 8 70 8 50 4 70
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