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ABSTRACT

Multilingual models jointly pretrained on multiple languages have achieved re-
markable performance on various multilingual downstream tasks. Moreover,
models finetuned on a single monolingual downstream task have shown to gen-
eralize to unseen languages. In this paper, we first show that it is crucial for those
tasks to align gradients between them in order to maximize knowledge transfer
while minimizing negative transfer. Despite its importance, the existing methods
for gradient alignment either have a completely different purpose, ignore inter-task
alignment, or aim to solve continual learning problems in rather inefficient ways.
As a result of the misaligned gradients between tasks, the model suffers from se-
vere negative transfer in the form of catastrophic forgetting of the knowledge ac-
quired from the pretraining. To overcome the limitations, we propose a simple yet
effective method that can efficiently align gradients between tasks. Specifically,
we perform each inner-optimization by sequentially sampling batches from all the
tasks, followed by a Reptile outer update. Thanks to the gradients aligned between
tasks by our method, the model becomes less vulnerable to negative transfer and
catastrophic forgetting. We extensively validate our method on various multi-task
learning and zero-shot cross-lingual transfer tasks, where our method largely out-
performs all the relevant baselines we consider.

1 INTRODUCTION

Multilingual language models (Devlin et al., 2019; Conneau & Lample, 2019; Conneau et al., 2020;
Liu et al., 2020; Lewis et al., 2020a; Xue et al., 2021) have achieved impressive performance on
a variety of multilingual natural language processing (NLP) tasks. Training a model with multiple
languages jointly can be understood as a multi-task learning (MTL) problem where each language
serves as a distinct task to be learned (Wang et al., 2021). The goal of MTL is to make use of
relatedness between tasks to improve generalization without negative transfer (Kang et al., 2011;
Kumar & Daumé III, 2012; Lee et al., 2016; Wang et al., 2019b; 2020b). Likewise, when we train
with a downstream multilingual MTL objective, we need to maximize knowledge transfer between
the languages while minimizing negative transfer between them. This is achieved by developing an
effective MTL strategy that can prevent the model from memorizing task-specific knowledge not
easily transferable across the languages.

Such MTL problem is highly related to the gradient alignment between the tasks, especially when
we finetune a well-pretrained model like multilingual BERT (Devlin et al., 2019). We see from the
bottom path of Fig. 1 that the cosine similarity between the task gradients (gradients of MTL losses
individually computed for each task) tend to gradually decrease as we finetune the model with the
MTL objective. It means that the model gradually starts memorizing task-specific (or language-
specific) knowledge not compatible across the languages, which can cause a negative transfer from
one language to another. In case of finetuning the well-pretrained model, we find that it causes
catastrophic forgetting of the pretrained knowledge. Since the pretrained model is the fundamen-
tal knowledge shared across all NLP tasks, such catastrophic forgetting can severely degrade the
performance of all tasks. Therefore, we want our model to maximally retain the knowledge of
the pretrained model by finding a good trade-off between minimizing the downstream MTL loss
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Figure 1: Concepts. Black arrows denote finetuning processes. The darker the part of the arrows, the lower
the MTL loss. Upper and bottom path shows better and worse trade-off, respectively. Colored arrows denote
task gradients. Blue and red color shows high and low cosine similarity, respectively. We demonstrate this
concept with the actual experimental results in Fig. 7a.

and maximizing the cosine similarity between the task gradients, as illustrated in the upper path of
Fig. 1. In this paper, we aim to solve this problem by developing an MTL method that can efficiently
align gradients across the tasks while finetuning the pretrained model.

There has been a seemingly related observation by Yu et al. (2020) that the conflict (negative co-
sine similarity) between task gradients makes it hard to optimize the MTL objective. They propose
to manually alter the direction of task gradients whenever the task gradients conflict to each other.
However, their intuition is completely different from ours. They manually modify the task gradi-
ents whenever the gradient conflicts happen, which leads to more aggressive optimization of MTL
objective. In case of finetuning a well-pretrained model, we find that it simply leads to catastrophic
forgetting. Instead, we aim to make the model converge to a point where task gradients are naturally
aligned, leading to less aggressive optimization of the MTL objective (See the upper path of Fig. 1).

Then a natural question is if we can alleviate the catastrophic forgetting with early stopping. Our
observation is that whereas early stopping can slightly increase cosine similarity to some extent, it
is not sufficient to find a good trade-off between minimizing MTL objective and maximizing cosine
similarity to improve generalization (See Fig. 1). It means that we may need either an implicit or ex-
plicit objective for gradient alignment between tasks. Also, Chen et al. (2020) recently argue that we
can mitigate catastrophic forgetting by adding `2 regularization to AdamW optimizer (Loshchilov
& Hutter, 2019). They argue that the resultant optimizer penalizes `2 distance from the pretrained
model during the finetuning stage. However, unfortunately we find that their method is not much
effective in preventing catastrophic forgetting in the experimental setups we consider.

On the other hand, Reptile (Nichol et al., 2018) implicitly promotes gradient alignment between
mini-batches within a task. Reptile updates a shared initial parameter individually for each task,
such that the task gradients are not necessarily aligned across the tasks. In continual learning area,
MER (Riemer et al., 2019) and La-MAML (Gupta et al., 2020) propose to align the gradients be-
tween sequentially incoming tasks in order to maximally share the progress on their objectives.
However, as they focus on continual learning problems, they require explicit memory buffers to
store previous task examples and align gradients with them, which is complicated and costly. Fur-
ther, their methods are rather inefficient in that the inner-optimization is done with batch size set to
1, which takes significantly more time than usual batch-wise training. Therefore, their methods are
not straightforwardly applicable to multilingual MTL problems we aim to solve in this paper.

In this paper, we show that when we finetune a well-pretrained model, it is sufficient to align gra-
dients between the currently given downstream tasks in order to retain the pretrained knowledge,
without accessing the data used for pretraining or memory buffers. Specifically, during the finetun-
ing stage, we sequentially sample mini-batches from all the downstream tasks at hand to perform
a single inner-optimization, followed by a Reptile outer update. Then, we can efficiently align the
gradients between tasks based on the implicit dependencies between the inner-update steps. This
procedure, which we call Sequential Reptile, is a simple yet effective method that can largely im-
prove the performance of various downstream multilingual tasks by preventing negative transfer and
catastrophic forgetting in an efficient manner. We summarize our contributions as follows.

• We show that when finetuning a well-pretrained model, gradients not aligned between tasks can
cause negative transfer and catastrophic forgetting of the knowledge acquired from the pretrain-
ing.
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• To solve the problem, we propose Sequential Reptile, a simple yet effective MTL method that
efficiently aligns gradients between tasks, thus prevents negative transfer and catastrophic forget-
ting.

• We extensively validate our method on various MTL and zero-shot cross-lingual transfer tasks,
including question answering, named entity recognition and natural language inference tasks, in
which our method largely outperforms all the baselines.

2 RELATED WORKS

Multi-task Learning The goal of MTL is to leverage relatedness between tasks for effective
knowledge transfer while preventing negative interference between them (Zhang & Yeung, 2010;
Kang et al., 2011; Lee et al., 2016). GradNorm (Chen et al., 2018) tackles task imbalance problem
by adaptively weighting each task loss. Another line of literature propose to search Pareto optimal
solutions which represent trade-offs between the tasks (Sener & Koltun, 2018; Lin et al., 2019). Re-
cently, Yu et al. (2020) and Wang et al. (2021) propose to manually resolve the conflict between task
gradients to more aggressively optimize the given MTL objective. However, their goal is completely
different from ours because here we focus on preventing negative transfer by finding a model that
can naturally align the task gradients without such manual modifications.

Multilingual Language Model Training a multilingual language model is a typical example of
multi-task learning. Most of the previous works focus on jointly pretraining a model with hundreds
of languages to transfer common knowledge between the languages (Devlin et al., 2019; Conneau
& Lample, 2019; Conneau et al., 2020; Liu et al., 2020; Lewis et al., 2020a; Xue et al., 2021). Some
literature show the limitation of jointly training the model with multilingual corpora (Arivazhagan
et al., 2019; Wang et al., 2020b). Several follow-up works propose to tackle the various accom-
panying problems such as post-hoc alignment (Wang et al., 2019c; Cao et al., 2019), data balanc-
ing (Wang et al., 2020a) and loss curvature-aware optimization to improve the performance of low
resource languages (Li & Gong, 2021). In this paper, we focus on how to finetune a well pretrained
multilingual language model by preventing catastrophic forgetting of the pretrained knowledge.

Zero-shot Cross Lingual Transfer Zero-shot cross-lingual transfer is to train a model with mono-
lingual labeled data and evaluate it on some unseen target languages without further finetuning the
model on the target languages. Nooralahzadeh et al. (2020) utilize meta-learning to learn how to
transfer knowledge from high resource languages to low resource ones. Hu et al. (2021) and Pan
et al. (2021) leverage a set of paired sentences from different languages to train the model and
minimize the distance between the representation of the paired sentences. Instead, we partition the
monolingual labeled data into groups and consider them as a set of tasks for multi-task learning.

3 APPROACH

The goal of multi-task learning (MTL) is to estimate a model parameter φ that can achieve good
performance across all the given T tasks, where each task t = 1, . . . , T has task-specific data Dt.
We learn φ by minimizing the sum of task losses.

min
φ

T∑
t=1

L(φ;Dt) + λΩ(φ) (1)

where Ω(φ) is a regularization term and λ ≥ 0 is an associated coefficient.

Reptile We briefly review Reptile (Nichol et al., 2018), an efficient first-order meta-learning
method suitable for large-scale learning scenario. We show that Reptile has an approximate learning
objective of the form in Eq. 1. Although Reptile is originally designed for learning a shared initial-
ization, we can use the initialization φ for actual predictions without any adaptation (Riemer et al.,
2019). Firstly, given a set of T tasks, we individually perform the task-specific optimization from
φ. Specifically, for each task t = 1, . . . , T , we perform the optimization by sampling mini-batches
B(1)t , . . . ,B(K)

t from task data Dt and taking gradient steps with them.

θ
(0)
t = φ, θ

(k)
t = θ

(k−1)
t − α∂L(θ

(k−1)
t ;B(k)t )

∂θ
(k−1)
t

(2)
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Figure 2: Comparison between the methods.

for k = 1, . . . ,K, where α is an inner-learning rate and θ(k)t denotes the task-specific parameter of
task t evolved from φ by taking k gradient steps. After performing K gradient steps for all T tasks,
we meta-update φ as follows:

φ← φ− η · 1

T

T∑
t=1

MGt(φ), where MGt(φ) = φ− θ(K)
t (3)

where η denotes an outer-learning rate. Nichol et al. (2018) show that expectation of MGt(φ)
over the random sampling of batches, which is the meta-gradient of task t evaluated at φ, can be
approximated as follows based on Taylor expansion:

E [MGt(φ)] ≈ ∂

∂φ
E

 K∑
k=1

L(φ;B(k)t )− α

2

K∑
k=1

k−1∑
j=1

〈
∂L(φ;B(k)t )

∂φ
,
∂L(φ;B(j)t )

∂φ

〉 (4)

where 〈·, ·〉 denotes a dot product. We can see that E[MGt(φ)] approximately minimizes the task-
specific loss (first term) and maximizes the inner-products between gradients computed with differ-
ent batches (second term). The inner-learning rate α controls the trade-off between them. However,
the critical limitation is that the dot product does not consider aligning gradients computed from
different tasks. This is because each inner-learning trajectory consists of the batches B(1)t , . . . ,B(K)

t
sampled from the same task data Dt.

3.1 SEQUENTIAL REPTILE

In order to consider gradient alignment across tasks as well, we propose to let the inner-learning tra-
jectory consist of mini-batches randomly sampled from all tasks, which we call Sequential Reptile.

Unlike Reptile where we run T task-specific inner-learning trajectory (in parallel), now we have a
single learning trajectory responsible for all T tasks (See Figure 2). Specifically, for each inner-step
k, we randomly sample a task index tk ∈ {1, . . . , T} and a corresponding mini-batch B(k)tk

, and then
sequentially update θ(k) as follows.

θ(0) = φ, θ(k) = θ(k−1) − α
∂L(θ(k−1);B(k)tk

)

∂θ(k−1)
, where tk ∼ Cat(p1, . . . , pT ) (5)

Cat(p1, . . . , pT ) is a categorical distribution parameterized by p1, . . . , pT , the probability of each
task to be selected. For example, we can let pt ∝ (Nt)

q whereNt is the number of training instances
for task t and q is some constant. After K gradient steps with Eq. 5, we update φ as follows

φ← φ− η ·MG(φ), where MG(φ) = φ− θ(K) (6)

Again, based on Taylor expansion, we have the following approximate form for expectation of the
meta-gradient MG(φ) over the random sampling of tasks (See derivation in Appendix C).

E [MG(φ)] ≈ ∂

∂φ
E

 K∑
k=1

L(φ;B(k)tk
)− α

2

K∑
k=1

k−1∑
j=1

〈
∂L(φ;B(k)tk

)

∂φ
,
∂L(φ;B(j)tj )

∂φ

〉 (7)

Note that the critical difference of Eq. 7 from Eq. 4 is that the dot product between the two gradients
is computed from the different tasks, tk and tj . Such inter-task dependency appears as we randomly
sample batches from all the tasks sequentially and compose a single learning trajectory with them.
As a result, Eq. 7, or Sequential Reptile promotes the gradient alignments between the tasks, pre-
venting the model from memorizing language specific knowledge. It also means that the model
can find a good trade-off between minimizing the MTL objective and inter-task gradient alignment,
thereby effectively preventing catastrophic forgetting of the knowledge acquired from pretraining.
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Figure 3: (a)∼(g) Loss surface and learning trajectory of each method. (h) Heatmap shows average pair-wise
cosine similarity between the task gradients.

4 EXPERIMENTS

We first verify our hypothesis with synthetic experiments. We then validate our method by solving
multi-task learning (MTL) and zero-shot cross-lingual transfer tasks with large-scale real datasets.
Baselines We compare our method against the following relevant baselines.
1. STL: Single Task Learning (STL) model trained on each single language.
2. MTL: Base MTL model of which objective is Eq. 1 without the regularizer Ω(φ).
3. GradNorm (Chen et al., 2018): This model tackles task imbalance problem in MTL. It prevents

the training from being dominated by a single task by adaptively weighting each task gradient.
4. PCGrad (Yu et al., 2020): This model aims to optimize MTL objective more aggressively by

resolving gradient conflicts. Specifically, it projects a task gradient onto the other task gradients
if the inner product between them is negative.

5. GradVac (Wang et al., 2021): Similarly to PCGrad, this model alters the task gradients to
match the empirical moving average of cosine similarity between the task gradients.

6. RecAdam (Chen et al., 2020): A model trained with RecAdam optimizer to prevent catas-
trophic forgetting by penalizing `2 distance from the the pretrained model.

7. Reptile (Nichol et al., 2018): A first-order meta-learning method suitable for large-scale learn-
ing scenario. Unlike our method, Reptile performs inner-optimization individually for each task.

8. Sequential Reptile: Our method that can align gradients across the tasks by composing the
inner-learning trajectory with all the tasks.

4.1 SYNTHETIC EXPERIMENTS

We first verify our hypothesis with the following synthetic experiments. We define three local optima
x1 = (0, 10), x2 = (0, 0), and x3 = (10, 0) in a 2-dimensional space. Then, we define three tasks
as minimizing each of the following loss functions w.r.t φ ∈ R2.

Li(φ) = −200 · exp (0.2 · ‖φ− xi‖2) , for i = 1, 2, 3.

MTL objective is defined as
∑3
i=1 Li(φ), which we optimize from the initialization (20, 5).

Results and analysis Fig. 3 shows the MTL loss surface and the learning trajectory of each
method. We observe that except for Reptile and Sequential Reptile, all the other baselines con-
verge to one of the MTL local minima, failing to find a reasonable solution that may generalize
better across the tasks. While Reptile can avoid such a minimum, the resultant solution has very
low cosine similarity (See Fig. 3h) because it does not enforce gradient alignments between tasks.
On the other hand, Figure 3h shows that our Sequential Reptile tends to find a reasonable trade-off
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between minimizing MTL loss and maximizing cosine similarity, thanks to the implicit enforcement
of inter-task gradient alignment in Eq. 7.

Table 1: F1 and EM score on the TYDI-QA dataset for QA. The best result for multilingual models is marked
with bold while the underline denotes the best result among all the models including the monolingual model.

Question Answering (F1/EM)

Method ar bn en fi id ko ru sw te Avg.

STL 80.5 / 65.9 70.9 / 58.4 72.0 / 59.2 76.2 / 63.7 82.7 / 70.6 61.0 / 50.8 73.4 / 56.5 78.4 / 70.1 81.1 / 66.4 75.1 / 62.4

MTL 79.7 / 64.7 74.7 / 64.0 72.8 / 61.1 77.8 / 64.7 82.9 / 71.3 64.0 / 53.4 73.9 / 57.1 80.5 / 72.5 82.5 / 67.9 76.5 / 64.1
RecAdam 79.0 / 63.7 72.5 / 62.4 73.5 / 62.8 76.9 / 64.9 82.1 / 72.2 64.6 / 54.5 73.9 / 57.6 80.4 / 72.9 82.8 / 68.4 76.2 / 64.4
GradNorm 78.8 / 62.9 72.5 / 61.9 73.4 / 60.6 78.5 / 65.8 83.7 / 74.3 66.2 / 53.9 74.5 / 57.7 80.7 / 72.7 83.3 / 68.9 76.8 / 64.3
PCGrad 79.9 / 65.0 72.6 / 61.5 74.6 / 62.3 78.3 / 65.7 82.7 / 73.0 65.9 / 56.1 74.2 / 57.3 80.6 / 73.0 82.5 / 68.1 76.8 / 64.7
GradVac 80.1 / 64.7 71.5 / 59.2 73.0 / 61.2 78.6 / 65.5 83.1 / 72.4 63.8 / 53.4 74.1 / 57.6 80.6 / 72.6 82.2 / 67.5 76.3 / 63.8
Reptile 79.8 / 65.2 75.1 / 64.1 74.0 / 62.8 78.8 / 65.3 83.8 / 73.6 65.7 / 55.9 75.5 / 58.7 81.4 / 72.9 83.1 / 68.5 77.5 / 65.2

Seq.Reptile 81.2 / 66.7 73.9 / 62.6 76.7 / 65.2 79.4 / 66.3 84.9 / 74.7 68.0 / 58.2 76.8 / 59.2 82.9 / 74.8 83.0 / 68.6 78.5 / 66.3

Table 2: F1 score on WikiAnn dataset for NER. The best result for multilingual models is marked with bold
while the underline denotes the best result among all the models including the monolingual model.

Named Entity Recognition (F1)

Method de en es hi jv kk mr my sw te tl yo Avg.

STL 90.3 85.0 92.0 89.7 59.1 88.5 89.4 61.7 90.7 80.1 96.3 77.7 83.3

MTL 83.4 77.8 87.6 82.3 77.7 87.5 82.2 75.7 87.5 78.8 83.5 90.8 82.9
RecAdam 84.5 80.0 88.5 82.7 85.3 88.5 84.4 70.3 89.0 81.6 87.7 91.6 84.5
GradNorm 83.6 77.5 87.3 82.8 78.3 87.8 81.3 73.5 85.4 78.9 83.6 91.4 82.6
PCGrad 83.8 78.5 88.1 81.7 79.7 87.8 81.7 74.4 85.9 78.4 85.7 92.3 83.1
GradVac 83.9 79.5 88.3 81.8 80.6 87.5 82.2 73.9 87.9 79.4 87.9 93.0 83.8
Reptile 85.9 82.4 90.0 86.3 81.3 81.4 86.8 61.8 90.6 72.7 92.8 93.0 83.7

Seq.Reptile 87.4 83.9 90.8 88.1 85.2 89.4 88.9 76.0 91.5 82.5 94.7 92.5 87.5

4.2 MULTI-TASK LEARNING

We next verify our method with large-scale real datasets. We consider multi-task learning tasks such
as multilingual Question Answering (QA) and Named Entity Recognition (NER). For QA, we use
“Gold passage” of TYDI-QA (Clark et al., 2020) dataset where a QA model predicts a start and end
position of answer from a paragraph for a given question. For NER, we use WikiAnn dataset (Pan
et al., 2017) where a model classifies each token of a sentence into three classes. We consider each
language as a distinct task and train MTL models.

Implementation Details For all the experiments, we use multilingual BERT (Devlin et al., 2019)
base model as a backbone network. We fintune it with AdamW (Loshchilov & Hutter, 2019) opti-
mizer, setting the inner-learning rate α to 3 · 10−5. We use batch size 12 for QA and 16 for NER,
respectively. For our method, we set the outer learning rate η to 0.1 and the number inner-steps K
to 1000. Following Wang et al. (2021), for all the baselines, we sample eight tasks proportional to
pt ∝ (Nt)

1/5 where Nt is the number of training instances for task t. For our Sequential Reptile,
we set the parameter of the categorical distribution in Eq. 5 to the same pt.

Results We compare our method, Sequential Reptile against the baselines on QA and NER tasks.
Table 1 shows the results of QA task. We see that our method outperforms all the baselines including
STL on most of the languages. Interestingly, all the other baselines but ours underperform STL on
Arabic language which contains the largest number of training instances (2 ∼ 3 times larger than
the other languages. See Appendix B for more information about data statistics). It implies that
the baselines suffer from negative transfer while ours is relatively less vulnerable. We can observe
essentially the same tendency for NER task, which is a highly imbalanced such that the low-resource
languages can have around 100 training instance, while the high-resource languages can have around
5,000 to 20,000 examples. Table 2 shows the results of NER task. We see that all the baselines but
ours highly degrade the performance on high resource languages — de, en, es, hi, mr and tl, which
means that they fail to address the imbalance problem properly and suffer from severe negative
transfer. Even GradNorm is not effective in our experiments, which is developed to tackle the task
imbalance problem by adaptively scaling task losses.
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Figure 4: Average pair-wise cosine similarity between the gradients computed from different tasks.
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Figure 5: (a, b) Average MLM loss on (a) seen and (b) unseen languages from Common Crawl dataset. We
mask 15% tokens of sentences from Common Crawl dataset, which is preprocessed and provided by Wenzek
et al. (2020), and compute the masked language modeling loss (MLM), which is reconstruction loss of the
masked sentences. (c) `2 distance between the finetuned models and the initially pretrained BERT.

Analysis We next analyze the source of performance improvements. Our hypothesis is that our
method can effectively filter out language specific knowledge when solving the downstream tasks,
which prevents negative transfer and helps retain linguistic knowledge acquired from the pretraining.

Table 3: We evaluate the model, trained with TYDI-QA dataset, on five unseen languages from MLQA dataset.

TYDI-QA→MLQA (F1/EM)

Method de es hi vi zh Avg.

MTL 50.6 / 35.8 54.3 / 35.4 45.0 / 31.2 53.7 / 34.8 52.5 / 32.0 51.2 / 33.8
RecAdam 49.5 / 36.1 52.8 / 35.6 41.7 / 29.0 52.2 / 34.6 49.8 / 29.9 49.2 / 33.0
GradNorm 51.7 / 36.6 54.9 / 36.3 44.4 / 30.4 55.3 / 37.1 52.9 / 32.2 51.8 / 34.5
PCGrad 50.6 / 36.5 54.5 / 36.2 44.1 / 31.2 54.4 / 34.8 52.4 / 31.5 51.1 / 34.2
GradVac 50.0 / 35.4 53.0 / 35.2 41.6 / 28.6 52.9 / 34.9 51.3 / 31.2 49.8 / 33.1
Reptile 52.2 / 38.2 56.1 / 38.0 45.9 / 32.1 56.9 / 38.2 53.9 / 33.2 53.0 / 35.9

Seq.Reptile 53.7 / 38.5 57.6 / 38.9 47.7 / 33.7 58.1 / 39.2 55.1 / 34.7 54.4 / 37.0

Firstly, we quantitatively measure the cosine similarity between the gradients computed from dif-
ferent tasks in Fig. 4a (QA) and Fig. 4b (NER). We see from the figure that our Sequential Reptile
shows the highest cosine similarity as expected, due to the approximate learning objective in Eq. 7.
Such high cosine similarity between the task gradients implies that the model has captured the com-
mon knowledge well transferable across the languages. This is in contrast to the other baselines
whose task gradients can have even negative cosine similarity with high probability. Such different
gradient directions mean that the current model has memorized the knowledge not quite transferable
across the languages, which can cause negative transfer from one language to others.

As a result of such negative transfer, we see from Fig. 5a and Fig. 5b that the baselines suffer from
catastrophic forgetting. In those figures, high MLM losses on seen (Fig. 5a) and unseen languages
(Fig. 5b) mean that the models have forgotten how to reconstruct the masked sentences, which is the
original training objective of BERT. On the other hand, our method shows relatively lower MLM
loss, demonstrating its effectiveness in preventing negative transfer and thereby alleviating the catas-
trophic forgetting. We further confirm this tendency in Fig. 5c by measuring the `2 distance from
the initially pretrained BERT model. We see that the distance is much shorter for our method than
the baselines, which implies that ours can better retain the linguistic knowledge than the baselines.

We can actually test if the finetuned models have acquired knowledge transferable across the lan-
guages by evaluating on some unseen languages without further finetuning. In Table 3, we test the
finetuned QA models on five unseen languages from MLQA dataset (Lewis et al., 2020b). Again,
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Table 4: Zero-shot cross lingual transfer from English (SQuAD) to six unseen languages (MLQA).

SQuAD→MLQA (F1/EM)

Method ar de es hi vi zh Avg.

MTL 48.0 / 29.9 59.1 / 44.6 64.2 / 46.2 44.6 / 29.0 56.8 / 37.8 55.2 / 34.7 54.6 / 37.0
RecAdam 47.3 / 29.8 58.8 / 44.0 64.3 / 46.2 45.5 / 29.9 57.9 / 38.4 54.8 / 34.1 54.7 / 37.0
GradNorm 48.7 / 31.3 59.8 / 44.6 64.8 / 46.3 47.2 / 31.2 57.2 / 37.8 55.0 / 33.9 55.4 / 37.5
PCGrad 47.7 / 29.8 59.2 / 44.1 65.4 / 46.1 41.0 / 26.0 57.4 / 37.4 54.6 / 34.0 54.4 / 36.2
GradVac 45.3 / 28.3 58.2 / 43.4 63.9 / 45.9 42.4 / 27.9 56.3 / 37.1 53.0 / 32.9 53.1 / 35.9
SWEP 49.5 / 31.0 60.5 / 46.2 65.0 / 47.3 47.6 / 31.9 57.9 / 38.8 56.9 / 36.3 56.2 / 38.5
Reptile 46.8 / 29.9 58.7 / 44.4 65.1 / 47.5 41.5 / 27.9 56.1 / 37.7 53.9 / 33.9 53.6 / 36.8

Seq.Reptile 52.8 / 34.3 60.7 / 45.9 67.1 / 48.7 50.6 / 35.6 60.7 / 40.8 57.3 / 36.5 58.2 / 39.3

Table 5: Zero shot cross lingual transfer from English (MNLI) to fourteen unseen languages (XNLI).
MNLI→ XNLI (Accuracy)

Method ar bg de el es fr hi ru sw th tr ur vi zh Avg.

MTL 65.1 68.8 71.3 66.4 74.3 72.6 59.2 68.8 50.1 52.8 61.8 57.9 69.4 69.0 64.8
RecAdam 63.5 66.9 69.4 65.2 72.7 72.2 58.8 67.3 49.9 51.9 61.0 56.5 67.9 67.7 63.6
GradNorm 64.0 68.2 70.6 67.0 74.1 72.9 58.8 68.0 48.9 53.2 61.0 56.8 70.3 69.3 64.5
PCGrad 64.0 68.7 69.8 66.5 74.3 71.8 59.4 68.3 51.0 53.1 60.7 57.4 69.7 69.3 64.5
GradVac 62.3 67.8 69.2 65.9 72.6 72.2 59.6 67.1 51.1 52.9 61.7 56.4 68.8 68.0 63.9
SWEP 64.8 69.4 70.5 67.1 74.8 74.4 58.7 69.7 49.2 53.7 60.2 57.1 69.8 68.4 64.8
Reptile 63.3 66.6 69.4 64.9 72.6 71.3 58.3 66.9 46.4 47.5 58.6 55.9 68.6 66.9 62.6

Seq.Reptile 67.2 69.3 71.9 67.8 75.1 74.1 60.6 69.5 51.2 55.1 63.8 59.1 70.8 69.6 66.0

Sequential Reptile outperforms all the baselines. The results confirm that the gradient alignment
between tasks is key for obtaining common knowledge transferable across the languages.

4.3 ZERO-SHOT CROSS LINGUAL TRANSFER

We next validate our method on zero-shot cross lingual transfer task, motivated from the previous
results that our method can learn common knowledge well transferable across the languages. We
train a model only with English annotated data and evaluate the model on target languages without
further finetuning on the target datasets. To utilize the methods of MTL, we cluster the data into four
groups with Gaussian mixture model. We focus on QA and natural language inference (NLI) task.
For QA, we train the model on SQuAD (Rajpurkar et al., 2016) dataset and evaluate the model on six
languages from MLQA dataset (Lewis et al., 2020b). For NLI, we use MNLI (Williams et al., 2018)
dataset as a source training dataset and test the model on fourteen languages from XNLI (Conneau
et al., 2018) as a target languages.

Baselines As well as the baselines from the previous experiments, we additionally include
SWEP (Lee et al., 2021). It learns to perturb word embeddings and uses the perturbed input as
extra training data, which is empirically shown to be robust against out-of distribution data.

Implementation Detail We finetune multilingual BERT-base model with AdamW. For QA, we
use the same hyperparameter in multi-task learning experiment. For NLI, we use batch size 32 and
choose the learning rate 3 · 10−5 or 5 · 10−5 with AdamW optimizer based on the performance
on the validation set. For our model, we set the outer learning rate η to 0.1 and the number inner
steps K to 1000. In order to construct multiple tasks from a single dataset, we cluster concatenation
of questions and paragraphs from SQuAD or sentences from MNLI into four groups. Following
Aharoni & Goldberg (2020), we encode the paragraphs or sentences into hidden representations
with pretrained multilingual BERT. Then, we reduce the dimension of hidden representations with
PCA and run Gaussian mixture model to partition them into disjoint four clusters. Since the number
of training instances are almost evenly distributed for each task, we sample mini-batches from all
the four tasks for all the baselines and set pt = 1/4 for our model.

Results and Analysis The results of zero-shot cross lingual transfer show essentially the same
tendency as those of multi-task learning in the previous subsection. Firstly, our model largely out-
performs all the baselines for QA and NLI tasks as shown in Table 4 and 5. To see where the
performance improvements come from, we compute the average pairwise cosine similarity between
the gradients computed from different tasks in Fig. 4c and 4d. Again, Sequential Reptile shows
much higher similarity than the baselines, which implies that our method can effectively filter out
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Figure 6: (a,b) Masked Language Modeling (MLM) loss. (c,d) `2 distance from the pretrained BERT model.
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Figure 7: (a) Trade-off shown in Fig. 1: average cosine similarity between task gradients vs. MTL training
loss. (b) Effect of the strength of gradient alignment: Average cosine similarity between task gradients and
test performance (EM) vs. inner-learning rate. (c) Computational efficiency: Test performance (EM) vs. the
cumulative count of (inner-) gradient steps used for training.

task-specific knowledge incompatible across the languages and thereby prevent negative transfer.
As a result, Fig. 6a and 6b show that our method can better retain the linguistic knowledge obtained
from the pretraining in terms of relatively lower MLM loss. Further, Fig. 6c and 6d confirm this
tendency with shorter `2 distance from the initially pretrained BERT model.

4.4 FURTHER ANALYSIS

(a) Trade-off shown in Fig. 1: In Fig. 7a, MTL loss and cosine similarity decrease as we finetune
the model from top-right to the bottom-left corner. Meanwhile, Sequential Reptile shows much
higher cosine similarities between task gradients at the points of similar MTL losses, achieving
better trade-off than Reptile. It explains why simple early stopping cannot outperform Sequential
Reptile (see Fig. 7c) that directly enforces gradient alignment across tasks.

(b) Effect of the strength of gradient alignment: Then the next question is, how can we further
control the trade-off to maximize performance? According to Eq. 7, we can strengthen or weaken
the gradient alignment by increasing or decreasing the inner-learning rate α, respectively. Fig. 7b
shows that while we can control the cosine similarity by varying α as expected, the best-performing
α is around 3 ·10−5, which is indeed the most commonly used value for finetuning the BERT model.

(c) Computational efficiency: Lastly, one may suspect training Sequential Reptile takes signifi-
cantly longer wall clock time because inner steps are not parallelizable as in Reptile (See Fig. 2).
This is not true. Fig. 7c shows that whereas base MTL requires around 40K gradient computations
to achieve 64 EM score, Sequential Reptile requires only around 15K. As a result, although we run
Sequential Reptile with a single GPU at a time, the wall-clock time becomes even comparable to the
base MTL that we run in parallel with 8 GPUs. Please see wall clock comparison on Appendix D.

5 CONCLUSION

We showed that when finetuning a well-pretrained language model, it is important to align gradients
between the given set of downstream tasks to prevent negative transfer and retain linguistic knowl-
edge acquired from the pretraining. We proposed a simple yet effective method aligning gradients
between tasks with efficiency. Specifically, instead of performing multiple inner-optimizations sep-
arately for each task, we performed a single inner-optimization by sequentially sampling batches
from all the tasks, followed by a Reptile outer update. We extensively validated the efficacy of our
method on various MTL and zero-shot cross-lingual transfer tasks, where ours largely outperformed
all the baselines we considered.
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A ALGORITHM

We provide the pseudocode for Sequential Reptile described in section 3.1:

Algorithm 1 Sequential Reptile

1: Input: pretrained language model parameter φ, a set of task-specific data {D1, . . . ,DT }, prob-
ability vector (p1, . . . , pT ) for categorical distribution, the number of inner steps K, inner step-
size α, outer-step size η.

2: while not converged do
3: θ(0) ← φ
4: for k = 1 to k = K do
5: Sample a task tk ∼ Cat(p1, . . . , pT )

6: Sample a mini-batch B(k)tk
from the dataset Dtk

7: θ(k) ← θ(k−1) − α
∂L(θ(k−1);B(k)tk

)

∂θ(k−1)

8: end for
9: MG(φ) = φ− θ(K)

10: φ← φ− η ·MG(φ)
11: end while

Table 6: The number of train/validation instances for each language from TYDI-QA dataset.

Split ar bn en fi id ko ru sw te Total

Train 14,805 2,390 3,696 6,855 5,702 1,625 6490 2,755 5,563 49,881
Val. 1,034 153 449 819 587 306 914 504 828 5,594

Table 7: The number of train/validation instances for each language from WikiAhn dataset.

Split de en es hi jv kk mr my sw te tl yo Total

Train 20,000 20,017 20,000 5,001 100 1,000 5,000 106 1,000 10,000 100 100 82,424
Val. 10,000 10,003 10,000 1,000 100 1,000 1,000 113 1,000 1,000 1,000 100 36,316

B DATASET

TYDI-QA (Clark et al., 2020) It is multilingual question answering (QA) dataset covering 11
languages, where a model retrieves a passage that contains answer to the given question and find
start and end position of the answer in the passage. Since we focus on extractive QA tasks, we
use “Gold Passage” 1 in which ground truth paragraph containing answer to the question is pro-
vided. Since some of existing tools break due to the lack of white spaces for Thai and Japanese,
the creators of the dataset does not provide the Gold Passage of those two languages. Following the
conventional preprocessing for QA, we concatenate a question and paragraph and tokenize it with
BertTokenizer (Devlin et al., 2019) which is implemented in transformers library (Wolf et al., 2020).
We split the tokenized sentences into chunks with overlapping words. In Table 6, we provide the
number of preprocessed training and validation instances for each language.

WikiAhn (Pan et al., 2017) It a multilingual NER dataset which is automatically constructed from
Wikipedia. We provide the number of instances for training and validation in Table 7.

XNLI (Conneau et al., 2018) It is the dataset for multilingual NLI task, which consists of 14
languages other than English. Since it targets for zero-shot cross-lingual transfer, there is no training
instances. It provides 7,500 human annotated instances for each validation and test set.

1https://github.com/google-research-datasets/tydiqa/blob/master/gold_
passage_baseline/README.md
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Table 8: The number of train/validation instances for each language from MLQA dataset.

Split ar de en es hi vi zh Total

Val. 517 512 1,148 500 507 511 504 4,199
Test 5,335 4,517 11,590 5,253 4,918 5,495 5,137 42,245

MLQA (Lewis et al., 2020b) It is the dataset for zero-shot multilingual question answering task.
As XNLI dataset, it only provides only validation and test set for 6 languages other than English. In
Table 8, we provide data statistics borrowed from the original paper (Lewis et al., 2020b)

Common Crawl 100 (Conneau et al., 2020; Wenzek et al., 2020) It is multilingual corpus con-
sisting of more than 100 language that is used for pretraining XLM-R (Conneau et al., 2020) model.
We download the preprocessed corpus 2 provided by Wenzek et al. (2020). We sample 5,000 in-
stances for each language and evaluate masked language modeling loss.

C IMPLICIT GRADIENT ALIGNMENT OF SEQUENTIAL REPTILE

In this section, we provide derivation of implicit gradient alignment of Sequential Reptile in the
equation 7. Firstly, we define the following terms from Nichol et al. (2018).

θ(0) = φ (initial point) (8)

gtk =
∂L(θ(k−1);B(k)tk

)

∂θ(k−1)
(gradient obtained during SGD with mini-batch B(k)tk

) (9)

θ(k) = θ(k−1) − αgtk (sequence of parameter vectors) (10)

gtk =
∂L(θ(k−1);B(k)tk

)

∂φ
(gradient at initial point with mini-batch with B(k)tk

) (11)

Htk =
∂2L(θ(k−1);B(k)tk

)

∂φ2
(Hessian at initial point) (12)

where α denotes a learning rate for inner optimization. tk ∈ {1, . . . , T} is a task index and B(k)tk
is

a mini-batch sampled from the task tk.

Corollary. After K steps of inner-updates, expectation of
∑K
k=1 gtk over the random sampling of

tasks approximates the following:

E

[
K∑
k=1

gtk

]
≈

K∑
k=1

gtk −
α

2

K∑
k=1

k−1∑
j=1

〈
gtk , gtj

〉
(13)

where 〈·, ·〉 denotes a dot-product in Rd.

Proof. We borrow the key idea from the theorem of Reptile (Nichol et al., 2018) that task specific
inner-optimization of Reptile implicitly maximizes inner products between mini-batch gradients
within a task. First, we approximate the gradient gtk as follows.

gtk =
∂L(φ;B(k)tk

)

∂φ
+
∂2L(φ;B(k)tk

)

∂φ2
(θ(k) − φ) +O(‖θ(k) − φ‖22)

= gtk − αHtk

k−1∑
j=1

gtj +O(α2)

= gtk − αHtk

k−1∑
j=1

gtj +O(α2)

2http://data.statmt.org/cc-100/
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Figure 8: (a) Computational efficiency: Test performance (EM) vs. wall clock. (b) Effect of the the number
of inner steps: Test performance (EM) vs the number of inner steps for Sequential Reptile.

After K gradient steps, we approximate the expectation of the meta-gradient MG(φ) over the task
t1, . . . , tK , where tk ∼ Cat(p1, . . . , pT ) for k = 1, . . . ,K.

E [MG(φ)] = E

[
K∑
k=1

gtk

]
≈ E

 K∑
k=1

gtk − α
K∑
k=1

k−1∑
j=1

Htkgtj


= E

[
K∑
k=1

gtk

]
− E

α
2

 K∑
k=1

k−1∑
j=1

Htkgtj +

K∑
k=1

k−1∑
j=1

Htjgtk


= E

[
K∑
k=1

gtk

]
− E

α
2

K∑
k=1

k−1∑
j=1

∂
〈
gtk , gtj

〉
∂φ


= E

 K∑
k=1

gtk −
α

2

K∑
k=1

k−1∑
j=1

∂
〈
gtk , gtj

〉
∂φ


= E

 K∑
k=1

gtk −
α

2

∂

∂φ

 K∑
k=1

k−1∑
j=1

〈
gtk , gtj

〉
= E

 ∂

∂φ

 K∑
k=1

L(φ;B(k)tk
)− α

2

K∑
k=1

k−1∑
j=1

〈
∂L(φ;B(k)tk

)

∂φ
,
∂L(φ;B(j)tj )

∂φ

〉
=

∂

∂φ
E

 K∑
k=1

L(φ;B(k)tk
)− α

2

K∑
k=1

k−1∑
j=1

〈
∂L(φ;B(k)tk

)

∂φ
,
∂L(φ;B(j)tj )

∂φ

〉

Similarly, Smith et al. (2021) show implicit regularization of SGD. After one epoch of SGD, it
implicitly biases a model to minimize difference between gradient of each example and full batch
gradient. As a result, it approximately aligns gradient of each instance with the full-batch gradient.

D FURTHER ANALYSIS

Computational efficiency In Figure 8a, we plot test Exact Match score as a function of wall clock
time. Although training Sequential Reptile is not parallelizable, it shows tolerable computational
efficiency compared to MTL model. For MTL, it takes about 1 hour and 15 minutes while Sequential
Reptile takes 1 hour and 45 minutes to reach 64 EM score.

Inner steps As shown in Figure 8b, Sequential Reptile is robust to the number of steps for the inner
optimization. It shows consistent performance with little variance.
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Table 9: We train MTL models on 8 tasks from GLUE dataset and report their performance.

GLUE

Method CoLA MNLI MRPC QNLI QQP RTE SST2 STSB Avg.

MTL 80.82 83.47 82.10 90.50 90.16 68.23 90.13 89.73 84.39
RecAdam 81.78 82.88 79.16 90.00 90.35 71.84 91.20 89.12 84.54
Reptile 82.07 78.81 81.30 89.29 87.57 72.56 88.76 88.55 83.61

Seq. Reptile 82.35 83.02 83.30 90.50 89.40 73.28 92.31 89.40 85.44

Table 10: We finetune MTL models with pretrained ResNet18 backbone on 8 image classification tasks.

Image Classification

Method TIN-1 TIN-2 CIFAR100 Dogs Aircraft CUB F-MNIST SVHN Avg.

MTL 56.26 53.40 54.43 33.44 44.97 29.48 90.10 87.70 56.22
Reptile 23.56 23.28 9.64 12.20 10.02 6.61 60.87 20.86 20.88

Seq. Reptile 58.12 56.83 57.46 38.05 59.55 35.96 87.44 88.86 60.28

E ADDITIONAL EXPERIMENTS

In order to show that our model Sequential Reptile is generally applicable to various multi-task
learning problems, we additionally perform experiments on monolingual text classification and im-
age classification.

Text classification Following (Pilault et al., 2021), we train BERT base model on 7 text classifica-
tion tasks — CoLA, MNLI, MRPC, QNLI,QQP, RTE, SST2 and one text similarity score regression
— STSB from GLUE dataset (Wang et al., 2019a). We share the BERT encoder across all the task
and add linear layer on top of the encoder for each task. For Reptile, we use learned initialization
with each task specific head for prediction at test time. For STSB task, we use Pearson correlation
coefficient to measure the performance of the baselines and ours. For the other 7 task, we evaluate
all the models with accuracy. As shown in Table 9, Sequential Reptile outperforms the Reptile and
MTL on 4 tasks – CoLA, MRPC, RTE, SST2 and shows comparable performance on the other tasks.

Image classification Following the experimental setup from Shin et al. (2021), we use 7 datasets
— Tiny-ImageNet (Le & Yang, 2015), CIFAR100 (Krizhevsky et al., 2009), Stanford Dogs (Khosla
et al., 2011), Aircraft (Maji et al., 2013), CUB (Wah et al., 2011), Fashion-MNIST (Xiao et al.,
2017), and SVHN (Netzer et al., 2011). We class-wisely divide Tiny-ImageNet into two splits which
are denoted as TIN-1 and TIN-2, respectively, and consider each split as a distinct task, which results
in total 8 tasks for multi-task learning image classification. We finetune ResNet18 (He et al., 2016)
which is pretrained on ImageNet (Deng et al., 2009) with a randomly initialized linear classifier
for each task. For all the models, the pretrained ResNet is shared across tasks. As the previous
experiments, we use shared initialization of Reptile with task specific linear classifiers. We measure
accuracy of each image classification task and report the average score.

As shown in Table 10, Sequential Reptile outperforms MTL and Reptile with large margin other
than Fashion MNIST (F-MNIST). We observe that Reptile fails on image classification, which is
contrast to text classification tasks where it shows reasonable accuracy compared to MTL model.
We conjecture that Reptile needs adaptation to the target task since the set of image datasets are
more heterogeneous than the set of text datasets.

F VISUALIZATION OF LEARNING TRAJECTORY

In Figure 9, 10, and 11, we visualize learning trajectory of the MTL models and cosine similarity
between task gradients with three different initialization as described in section 4.1. The similar
pattern holds for all different initialization. All the MTL baselines except Reptile fall into one of
local optima. On the other hand, Sequential Reptile avoid such local minima while maximizing
cosine similarities of task gradients.
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Figure 11: (a)∼(g) Loss surface and learning trajectory of each method. (h) Heatmap shows average pair-wise
cosine similarity between the task gradients.
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