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Abstract

We study the autonomous exploration (AX) prob-
lem proposed by Lim & Auer (2012). In this
setting, the objective is to discover a set of e-
optimal policies reaching a set S;” of incremen-
tally L-controllable states. We introduce a novel
layered decomposition of the set of incremen-
tally L-controllable states that is based on the
iterative application of a state-expansion oper-
ator. We leverage these results to design Lay-
ered Autonomous Exploration (LAE), a novel al-
gorithm for AX that attains a sample complex-
ity of O(LST{1, T L(140A log"( f(1+5))/€2),
where Sf(l +o) is the number of states that are
incrementally L(1 + €)-controllable, A is the
number of actions, and I'z,(14) is the branch-
ing factor of the transitions over such states.
LAE improves over the algorithm of Tarbouriech
et al. (2020b) by a factor of L? and it is the
first algorithm for AX that works in a countably-
infinite state space. Moreover, we show that,
under a certain identifiability assumption, LAE
achieves minimax-optimal sample complexity of
O(LS; Alog'?(S77)/€%), outperforming exist-
ing algorithms and matching for the first time the
lower bound proved by Cai et al. (2022) up to
logarithmic factors.

1. Introduction

A distinctive feature of intelligent beings is the ability to
explore an unknown environment without any supervision
or extrinsic reward while learning skills that solve tasks
(e.g., reaching goal states) of increasing difficulty. Lim
& Auer (2012) first proposed a formal framework of au-
tonomous exploration in reinforcement learning (RL) as
the process of progressively discovering states within a cer-
tain distance from an initial state sy at the same time as
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learning near-optimal policies to reach them. Lim & Auer
(2012) also devised the first sample efficient exploration
algorithm (UCBEXPLORE) for this setting, while its sample
complexity and optimality guarantees were later improved
by DiSCo (Tarbouriech et al., 2020b) and VALAE (Cai
et al., 2022).

In this paper, we make several contributions to this problem:

e Given an initial state sg, the autonomous exploration
objective is built upon the concept of incrementally L-
controllable states, i.e., states that can be reached within
L steps from sy by only traversing incrementally L-
controllable states'. While the original definition of the
set of incrementally L-controllable states S;” involves
considering all possible partial orders of states in the envi-
ronment, we derive an equivalent constructive definition
that reveals the layered structure of S;7, where each layer
can be obtained as the set of states that can be reached
in L steps by only traversing states in the previous layers
(see Section 2.1).

o We then leverage the layered structure of S;” to design
Layered Autonomous Exploration (LAE), a novel algo-
rithm that keeps exploring the environment to learn poli-
cies to reach newly discovered states until a new layer can
be consolidated and a new step of discovery and learning
is started. We prove that the sample complexity of LAE
is bounded as @(LS;(1+E)FL(1+€)A/62), where L is the
exploration radius, SL_’(1 +o) is the number of states that

are incrementally controllable from the initial state within

L(1+€) steps, I'1,(14¢) is the branching factor of the tran-

sition function over such states, A is the number actions,

and e is target accuracy. As illustrated in Table 1, this im-

proves the sample complexity of DISCO by a factor of L?

and it avoids the scaling with 557 of VALAE, which in

some MDPs may be much larger than S?(l +e) thus mak-

ing the bound of LAE preferable. Indeed, in Lemma 43

in appendix we show that S;; may be even exponentially

larger than Sal to)

e Under a certain layer identifiability condition (see As-
sumption 2), we further improve the sample complexity of

'We say that a state s is L-controllable if there exists a policy
that reaches s from s in less than L steps on average. In general
an L-controllable state may be reached by policies traversing states
that are not L-controllable themselves.
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Table 1. Comparison between this work and previous work. Here, L is the exploration radius, S is the number of states, Sal +o) is the
number of incrementally L(1 + €)-controllable states, T’ L(1+¢) is the branching factor of transition over such states, A is the number of
actions, and e is the target accuracy. The AX objectives are defined in Definition 2 and are such that AX*" = AX* = AXy. We only
display the dominating term in 1/e. Note that S57 may be much larger (even exponentially) than S?(l +¢) in certain MDPs (Lemma 43).

Algorithm Sample Complexity Objective | S dependency
UcbExplore (Lim & Auer, 2012) 0] <L3S§(1 +€)FL<1+E>A/63) AXy log S
DisCo (Tarbouriech et al., 20200) || O (L3871, TrasoA/e?) | AX* log S
VALAE (Cai et al., 2022) O (LS7;A/e?) AX* log S
LAE (Algorithm 3) Ours @) (LSZZHe)FL(He)A/GQ) AXT log SL_’(HE)
LAE with Assumption 2 Ours o (LSL_> A/ 62) AXT log ST’
o | cemwm | owsowe) | |

LAE to O(LS7” A/€?), which improves w.r.t. VALAE
and matches the lower bound in (Cai et al., 2022).

e Similar to existing algorithms, the sample complexity
of LAE still depends on the logarithm of the total num-
ber of states S. Since in autonomous exploration the
state space is unknown and possibly unbounded, such
dependency is highly undesirable. We then design an
alternative version of LAE, which preserves its original
sample complexity but replaces the dependency on log S
with log SL_El +ey without requiring any prior knowledge
of S?(l+e) (see Section 4.1).

e LAE also leverages a novel procedure, POLICYCON-
SOLIDATION, that takes a set of states K as input and
returns goal-conditioned policies reaching each state in
IC with multiplicative e-optimality guarantees, which is
stronger than previous algorithms and better suited to the
autonomous exploration setting (see Section 4.2).

Related Work In reinforcement learning (RL), several
approaches to unsupervised exploration have been proposed
often grounded in concepts such as curiosity (Schmidhuber,
1991), intrinsic motivation (Singh et al., 2004; Oudeyer et al.,
2009; Bellemare et al., 2016; Colas et al., 2020) and with the
objective of learning skills in an unsupervised fashion (Gre-
gor et al., 2016; Eysenbach et al., 2019; Pong et al., 2020;
Bagaria et al., 2021; Kamienny et al., 2022). On the other
hand, a rigorous formalization and theoretical understand-
ing of unsupervised exploration has been rather sparse until
recently. Tarbouriech et al. (2020c) studied unsupervised
exploration for model estimation, Hazan et al. (2019) for-
malized the maximum entropy exploration objective, while
reward-free RL (e.g., Jin et al., 2020; Kaufmann et al., 2021;
Meénard et al., 2021; Zhang et al., 2021; Tarbouriech et al.,
2021a; 2022) studies how to efficiently explore an envi-
ronment to solve any downstream task near-optimally. As

autonomous exploration seeks to learn goal-conditioned
policies, it also carries strong technical and algorithmic
connections with exploration in the stochastic shortest path
problem (e.g. Bertsekas & Yu, 2013; Tarbouriech et al.,
2020a; 2021b; Chen & Luo, 2021; 2022).

2. Preliminaries

We consider a reward-free Markov Decision Process M =
(S, A, s, P), where S is a countable state space, A is
a finite action space, so is the initial state, and P =
{Ps,a}(s,0)esx4 With P, € Ag is the transition func-
tion, where A is the simplex over S. In a general MDP, the
learner may get stuck in undesirable states and be unable
to return to sg. To avoid this issue, we make the following
assumption.

Assumption 1. The action space contains a RESET action
such that Ps reser(so) = 1 forall s € S.?

A deterministic stationary policy 7 € A is a mapping
that assigns an action 7(s) to each state s, and we define
IT = A? as the set of all policies. To explicitly characterize
the behavior of a policy, we say a policy 7 is restricted on
X C Sifn(s) = RESET for any s ¢ X, and we denote
by II(X) the set of policies restricted on X.

We measure the performance of a policy in navigating the
MDP as follows. For any policy 7 € II and a pair of states
(s,9) € 8%, let V7 (s) € [0, +00] be the expected number
of steps it takes to reach g (that is, the hitting time of g)

This assumption is also adopted in all previous works (Lim
& Auer, 2012; Tarbouriech et al., 2020b; Cai et al., 2022) to our
knowledge.
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starting from s when executing policy 7, that is,

Vg (s) 2 E™ [wy| 51 = 3],

wyg Zinf{i >0: 8,41 =g}.

Note that V(s) = +oo0 if g is unreachable by playing 7
starting from s. For any subset X C S and any goal state
g, define Vg (s) = mingen(x) V7 (s) as the minimum
hitting time of g following a policy restricted on X. Note
that, if ¥ C X", then V3, (s) < V3  (s)foranys,g € S.
The objective of the learner is to efficiently navigate in the
vicinity of sg. A state s is L-controllable if there exists a
policy 7 such that V" (sg) < L. While discovering all L-
controllable states may be a reasonable objective for explor-
ing the vicinity of sg (Tarbouriech et al., 2022), Lim & Auer
(2012) showed that this may still require the learner to ex-
plore the whole state space, since reaching a L-controllable
state may require navigating through non-L-controllable
states. To this end, Lim & Auer (2012) propose to only
focus on navigating among incrementally L-controllable
states: states that are L-controllable by policies restricted
on other incrementally controllable states.

Definition 1 (Incrementally L-controllable states S7”).
Given a partial order < on S, we define Si° recursively
as 1) so € St and 2) if there exists a policy m € TI({s' €
S7: s < s}) with VX(so) < L, then s € Si. The
set S77 of incrementally L-controllable states is defined as
S £ ULST, where the union is over all partial orders.

Instead of exploring the potentially infinite state space, the
objective of the learner is to discover the finite set S;” (Lim
& Auer, 2012, Prop. 6) and learn a corresponding set of
policies that reliably reach each state in S;”. We introduce
three different formulations of the objective.

Definition 2 (AX sample complexity). For any given length
L > 1, error threshold ¢ > 0, and confidence level § €
(0, 1), the sample complexities C(2, L, €,5), C*(2, L, ¢,d),
and C* (A, L,€,0) are defined as the number of steps re-
quired by a learning algorithm 2 to identify a set of states
IC and a set of policies {74} scxc such that, with probability
at least 1 — 9, we have S;7 C K and

(AX1) Vs e S;7, V=(so) < L(1+e¢),
(AX*) Vs e Sp, VT (sg) < Vs o(s0) + Le,
(AXT) Vs € S, V#(s0) < V& ,(s0)(1+e).

Note that the three formulations above are increasingly more
demanding. AX;, only requires to reach each state in S’
within L(1+¢) steps, which could correspond to a quite poor
performance for a state s with V& [(so) < L. AX" re-
quires to learn a near-optimal policy for reaching each state
in S;”. However, the allowed error threshold (i.e., Le) is uni-
form across all goal states, which again could correspond

to a bad performance for a state s with V§?,s(50) < L.

AXT solves this issue by requiring a multiplicative thresh-
old. This implies that the allowed error for reaching state s
(i.e., V§;7s(so)e) scales with the optimal value V§;7s(50)
itself, hence making this formulation adaptive to the hard-
ness of reaching each goal state. No existing algorithm is
able to achieve AX™ guarantees, see Table 1.

Note that these conditions cannot be checked at algorith-
mic time since S;” is unknown to the algorithm. Ex-
isting algorithms verify these conditions directly on the
computed set K. Since they guarantee that S;7 C K,
Vi g(s0) < Vi 4(s0) forany g € S and thus they sat-
isfy the performance in Definition 2.

Other notation Let S = |S| and A = | A|. Forany L > 1,
define S;7 =[S, N = {s' € 8 : Psq(s') > 0},
7% = Npland T, = maxses;,o ', For simplicity,
we often write a = O(b) as a < b. For n € Ny, define

[n] ={1,...,n}

2.1. A Constructive Definition of S}’

While Lim & Auer (2012, Proposition 6) showed that there
exists a partial order < such that S’ = S7°, no explicit
characterization of such partial order is provided. In the
following, we develop an alternative definition of S7” that
leads to an explicit constructive procedure to build the set.
This alternative definition is the main inspiration for the
design of our algorithms.

We introduce an operator 77, which, given a set X C S,
selects all the states that are reachable in L steps by a policy
restricted on X’ and show its connection with S7.

Lemma 1. Let P(S) be the set of all subsets of S. For any
L > 1, define the operator Ty, : P(S) — P(S) as follows:
forany X C S, Tp(X) ={s € §: Vy ,(s0) < L}. Then,

1. 877 is the fixed-point of T, of smallest cardinality, i.e.,
Sp C XX = TL(X).

Let us denote by {K}jen the unique sequence such that
Ki = {so}, K = TL(K}_,). Then,

2. Foranyj > 1, IC]*- - IC]*-+1

g SL_>)
3. There exists J < ST’ such that K = S’ for all

§>J (e, T (K3) =limj o0 TP (KX) = 7).

Proof. Note that there exists a partial ordering <* such that
S;7 =87 (Lim & Auer, 2012, Proposition 6).

Let X bes.t. S;” € X. If S;”NX = (), then 5o ¢ X, which
implies that 77, (X) = {so} since Vy ; (so) =0 < L and
V3 4(50) = oo for all g # s9. Thus, X cannot be a fixed
point of 7;. Then, assume that S;” N X # (. Order
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the states in X' N S;” according to the ordering <*. Let
5; € S5 be the first state s.t. 5 ¢ X (it exists since S;* Z
&X). By definition of <* and S, ‘/{ZOa---asi—l}asi(SO) <L,
which implies that s; € T1(X). As a consequence, X #
Tr(X). Thus, if X = T(X), we must have S;7 C X.
This proves the first point.

Let us prove that 7 C K7 forall j > 1. Clearly, K3 =
TL(KT) = {s € S : Visgys(s0) < L} 2 {so} = K.
Then, suppose that K7_; C K7 for some j > 2. By def-
inition, for all s € K7, Vlé*.,l,s(SO) < L, which implies
that Vi, ((so) < L by the inductive hypothesis. Then,
Kia=Tu(K;)={s€S: VK;,S(SO) <L} 2 K3

Now let us prove that K; C S forall j > 1. Clearly,
K7 € S;7. Suppose that IC;‘- C 837 for some j > 1. Then,
if s € K7 for some s ¢ S7, it must be that Vicx s(so) <
L. By the inductive hypothesis, this implies that we found
an ordering of the states in which s is reachable in L steps
by a policy restricted on states of S;”. Hence, s € S77,
which is a contradiction. This proves point 2.

Let us enumerate over S;” = {so,...,85> -1} in a way
that obeys <*. We prove by induction that s; € K7, for
any 0 < j < S7’. Given point 2, this implies point 3.
Clearly, so € K. Now suppose that {so,...,s;} € K7,
for 0 < j < S77 — 2. Then, we clearly have s;11 €
K%, by the definition of K7, and the fact that s;41 is
L-controllable by a policy restricted on {so,...,s;}. O

This lemma shows that S;” is a fixed-point solution of 7T7,.
Most importantly, it provides an iterative procedure to con-
struct S7”. Starting from {so} or 0, 77, acts as an expansive
operator over sets (i.e., 77 ({so}) C T9*1({s0})) until the
set S;” is built. From this point, 7;, acts as an identity
map since S;7 is a fixed point. In other words, this proce-
dure builds S;7 iteratevely starting from K7, expanding it
to K3 = T1(KY), and so on until reaching S;”. For this rea-
son, we shall refer to the sets (K5); as layers. This process
is learnable since it evolves only through subsets of S;” and
it is at the core of the design of our algorithm.

It is worth noticing that not all the fixed-point solutions
of Ty, are learnable. In fact, Proposition 4 of Lim & Auer
(2012) implies that there exist MDPs with fixed points X' =
Tr(X) # S;” which may require an exponential number of
samples to be learned. For example, there exist MDPs where
the whole set of states S is itself a fixed point of 77, (that is,
all states are L-controllable) but S is exponentially larger
than S;”. This reveals an interesting connection between
the existence of a unique iterative process to reach the fixed-
point corresponding to S;” and its learnability.

3. AX; through Layer Discovery

Algorithm 1 illustrates Layer-Aware State Discovery
(LASD), a novel algorithm for AX}, based on the itera-
tive construction of S;” introduced in Lemma 1. In Sec-
tion 4.2, we then introduce a policy consolidation proce-
dure that achieves AX™" when combined with LASD, lead-
ing to the LAE algorithm. LASD maintains a set IC of
“known” states, i.e., states for which a policy 75 € II(K)
with V7 (s9) < L(1 + €) has been learned. These policies
are stored in IIx. The set I is updated only when the algo-
rithm is confident enough to have identified a new layer. To
this purpose, K’ is used as a buffer for the new layer, i.e., for
states that have been found to be L-controllable by policies
restricted on C and that are waiting to be merged with .
Finally, any other state discovered over time (and potential
candidate to be in ;) is stored in /.

At each round, LASD first uses the samples collected so far
to compute an optimistic policy for each state in &/ through
VISGO (Algorithm 4), a slight variant of the state-of-the-art
algorithm for exploration-exploitation in stochastic shortest
paths (Tarbouriech et al., 2021b), and it selects the state that
is optimistically closer to s( as candidate goal g*.

If the optimistic distance of g* from s is larger than L, then
no additional state can be confidently added to the current
layer K’ and a set expansion round is triggered. LASD
updates the set of known states by adding the new layer K’
(K = K UK’) and starts a discovery process where policies
in ITx are used to reach all states in K, then it executes all
possible actions in these states, and it adds newly observed
states to /. Notice that the samples obtained during this pro-
cess are not included in the policy improvement of VISGO
to avoid statistical dependencies. The sequence of expan-
sion rounds is designed to approximate the sequence {K} } ;.
With high probability, every update of K is not smaller than
the application of 77, i.e., if, for some j, IC; cCK? ICJ*Jrl
before an update (this holds for K7 = {so} at the first
round), then K7 | = ’TL(IC;) C K after the update. Thus,
K is the increment to K to include the next layer. At the end
of the expansion round LASD executes an additional explo-
ration step to ensure that a minimum number of samples is
available for each (s,a) € K x A (see Line 10).

On the other hand, if the optimistic distance of g* is smaller
than L, LASD performs a policy evaluation round by run-
ning 74+ to estimate whether the current policy is indeed
able to reach g* in less than L steps. If the number of visits
to some state-action pair is doubled within the current round,
then the current round is classified as a skip round. If the
test on the policy performance fails, then the current round
is classified as a failure round. In both cases, a new round
is started. Otherwise, the current round is classified as a
success round and g* is added to the new layer X'. The
samples collected in policy evaluation rounds are stored and
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Algorithm 1: Layer-Aware State Discovery (LASD)

Input: L > 1,¢e € (0,1],9 € (0,1).

Let N = {27} 50, K < @,U + @, K' + {s0},lIx = {Fs, arandom policy}, N (-,

for roundr =1,...do
evi ¢ 1/max{16,3 _  , N(s,a)}.
/+ Policy optimisation and goal selection

if g* does not exist or Vic,g« (so) > L then
/+ Expand or Terminate

if ' = @ then return K and Ilx.
SetK «—~ KUK, K' =2,U =0.

(N, _) « EXPLORE(K, IIx, N, Nimmin ).
else
/+ Policy evaluation

Let 7 < 0, A + Npev(32L, 555, 25) S
Ado

forj=1,...,

while s” ;é g* do
Take a¥ = 7y« (s
if 3., N(s,a) € Nor(sf € Kand N(s},

k
Set# & clebab)

K+ K U{gh U+~ U\{g '}, Tl =

Let g* = argmin,;, {Vi,g(s0) } where (Qx,g, Vic,g,7g) =

(_,U) + EXPLORE(K, TIx, 0, 2L log(4S ALr?/§)) (see Algorithm 6).
Set nmin < No(KC, 4r252) < L2|IC\ log(Sr/6) (defined in Lemma 3).

)« 0,N(-,+,-) « 0.
*/
VISGO(K, g, evi, N, 4T2 57 ) (see Algorithm 4).
*/
*/

5 log* (%) (defined in Lemma 50).

k& 1,4 < 1, and reset to s’f < 5o by taking action RESET.

%), and transits to Sz+1 Increase N(s¥, a¥), N(s¥,aF, 5%, 1), and i by 1.
a; ) € M) then return to Line 2 (skip round).

if 7 > Vic g» (s0) + €L /2 then return to Line 2 (failure round).
I U {7g» := mg= } (success round).

used in all estimation and planning steps of the algorithm.

LASD terminates whenever the candidate goal ¢g* has an
optimistic distance larger than L and the new layer is empty,
indicating that previous policy evaluation rounds could not
identify any good policy and, thus, all states in S;” have
been identified with high probability.

We prove that LASD achieves the following guarantee, the
proof can be found in Appendix C.4.

Theorem 1. Suppose S is finite. Forany L > 1, € € (0, 1]
and § € (0,1), with probability at least 1 — §, LASD
(Algorithm 1) outputs a set KC such that S;7 C I C SL(1+e)
and i such that Vg *(so) < L(1 + ¢€) for any m, € Ik,
with sample complexity bounded by

SturolLaro AL L<1+e> *AL
o ( — L+ L+ LP SL(1+€) Au

where 1 = log® (SﬁSL).

Compared to the lower bound (see Table 1), LASD still
suffers from an extra I'7, (1) dependence. This is because
in the analysis we use a Bernstein-like concentration in-
equality to control the deviation (P — P)V, where P are the
estimated transitions, for any value function V restricted on
K (i.e., V' is constant on all states outside ). Unfortunately,
we cannot leverage refined concentration inequalities since

K is random and can take an exponentially large amount of
values throughout the execution of LASD.

However, by inspecting the proof of (Cai et al., 2022), we
note that the construction of the lower bound leverages a
certain separation condition defined as follows.
Assumption 2 (identifiability of {K}};). We say {K7};
is e-identifiable, if for any j > 2,9 ¢ K¥, we have
V,é;_il,g(so) > L(1+e).

This means that each layer K can be identified exactly by
an algorithm run with accuracy e since states that do not
belong to the immediate next layer are clearly separated,
i.e., they are more than L(1 + ¢)-steps away. This leads to
following remark.

Remark 1. Assumption 2 implies that S} = L_El tey
How valid is Assumption 2? One might wonder whether
Assumption 2 is a realistic and cover many application sce-
narios. We have identified two large classes of MDPs that
satisfies Assumption 2: 1) deterministic MDPs and 2) MDPs
with tree structure. Details are deferred to Appendix A.2.

The fact that states g ¢ K7 are not reachable in L(1 + ¢)
steps from K7_; allows LASD to uniquely identify the
layers. Indeed, under Assumption 2, LASD behaves as the
operator 77, and, after each expansion, we have that C = K}
for some j € [S;’]. Thanks to this property, we can show
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that LASD is minimax optimal.’

Theorem 2. Suppose that S is finite. Forany L > 1, € €
(0,1] and § € (0, 1), if Assumption 2 holds, with probability
at least 1 — 6, LASD (Algorithm 1) outputs I = S;(1+e) =
S;* and Uy such that Vy* (so) < L(1+¢) forany m, € Ik,
with sample complexity bounded by

— —2
0 (SL ALL—l— SAL

€2 €

L+ LBSL_)2AL> )

where 1 = log® (SﬁsL)

The trick to remove the I'r(14) from Theorem 1 is that,
since layers are uniquely identified by the algorithm, we
only need to concentrate the term (P — P)V for any value
function in the set {Vi&. }je (51

Given the result above, one might wonder what is the true
sample complexity lower bound of this setting. We include
a short discussion in Appendix A.3.

Empirical Evaluations We implemented our LASD algo-
rithm and evaluated it empirically. Implementations can be
found in https://github.com/lchenat/AX_exp.
We manually tune the values of some parameters such as
Nmin and A to boost the empirical performance, and then
conducted experiments on a 4x4 GridWorld environment.
The learner has 5 actions in this environment: moving to-
wards one of the four directions by a grid or reset to sg
(the upper left corner). When the learner takes a directional
action, it has probability 0.9 of moving towards the corre-
sponding direction, and 0.1 probability of randomly moving
towards one of the four directions. We run LASD on Grid-
World with L = 4, ¢ = 0.01, and 6 = 0.001. We also
identify the ground truth set of {7 }; by value iterations.
Our experiment results show that LASD is able to exactly
identify the layers {K% };.

3.1. Proof Sketch

Here we report a sketch of the proof, while the detailed one
can be found in Appendix C. All the statements we report
here are to be considered to hold with high probability.

The first step of the proof (see Lemma 6) is to show by
induction that, at each round, K C S L(i+e): Thanks to the

fact that O(L?|K|) samples are always available for each
(s,a) € K x A (Line 10) and the properties of VISGO, it is
possible to show that, for the goal g* selected at the current
round, ”ng I < 2||V,C“’ || < 4L if Line 5 is passed.
Combmmg this with the properties of policy evaluation and
the inductive hypothesis, we have that 7 > L(1 4 ¢/2) >
Vier (s0) — Le/2if g* € U\ S7}, . Thus a failure test

*Minimax optimality holds for ¢ < min{1/S7’,1/L}, which
makes the first term in Theorem 2 dominant (Cai et al., 2022).

L(1+e)

is triggered and g* is never added to /C. This shows that
states outside Sf(l 4+ are not added to IC. By the same
reasoning, we can show that if a goal g* is added to K’, the
corresponding policy has bounded value function (important
prerequisite for policy consolidation) and satisfies AXy .
Furthermore, by properly selecting the number of rollouts
in the expansion phase (Line 8), we can show that {/ always
contains at least those states that are reachable in L steps

from KC (see Lemma 7), i.e., 71, (K) \ L C U.

Combining these results with optimism restricted on K7
(see Lemma 8), we are able to show (see Lemma 9) that 1C
always expands by at least one layer at each update. For-
mally, if IC; C K at a certain update, then L U K’ D ICJ*- 11
at the next update in Line 7 (i.e., K74 = 7'L(IC;) C K,
see Lemma 23. If Assumption 2 holds, thanks to the identi-
fiability of the layers, we show that K = TL(IC;‘) =K1
i.e., the algorithm replicates the 77, operator (see Lemma 25).
In this case, K’ is exactly the set of states needed to move
from K} to K7 ;. By induction, we conclude that S77 C K
when the algorlthm stops, K = S with Assumption 2.

These results provide AX;, guarantees when the algorithm
stops. For computing the sample complexity we use a reduc-
tion to a regret analysis of a stochastic shortest path problem
(SSP). We define the SSP regretas R = Zszl (I —Vi(s0))
where K is the total number of episodes done in policy
evaluation, Iy is the length of episode k, and Vj is the
optimistic value function of the goal selected at episode
k. Then, Cx = Zszl I}, is the sample complexity of
policy evaluation. Through the SSP regret analysis we
can show that R < ¢;VK + ¢y and Cx < LK, where

~

cn=1L, /FL(H‘E)SL_ElJre)A (resp. c1 = L, /SL(IJr A un-

der Assumption 2) and co = LSL_E1 +e) 2A, see Lemma 11
and Lemma 12. To conclude the analysis of the sample
complexity we need to bound K. We note that K = rgA <
Tiot/ €? where r is the total number of rounds and \ is

the maximum number of episodes per round. Moreover,

Tot S 7 = + € L can be controlled since the regret is sublin-
ear (see Lemma 14).

In the expansion phases we execute policies that reach
any state s € K almost surely since, as mentioned above,
[lV7<|| < 4L. By (Rosenberg & Mansour, 2021, Lemma
6) we can bound the number of steps required to reach
the goal by 8L. Then, considering the number of samples
that needs to be collected and that there are O(ST{, ) of
such phases, the total sample complexity of the expansion
phases is (’)(L?’SL_’1 +o) 2 A). Summing everything together
concludes the proof (see Theorem 6).
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4. Improved Algorithms

In this section, we present two improvements to LASD
that allow to i) replace the log(.S) dependence with a much
milder log(S;EHe)); ii) move from AXy, to AX™.

4.1. Log-Adaptivity to SHHE)

Inspired by intrinsically motivated learning agents, Lim
& Auer (2012) originally focused on a learning scenario
where the environment is possibly infinite or at least no
prior knowledge about it is available. Unfortunately, all the
existing algorithms fail in dealing with this scenario since
they require prior knowledge of the cardinality of the state
space S. While the sample complexity only depends loga-
rithmically on .S, this shows that inability of the algorithms
to exclusively focus on the portion of environment discov-
ered and consolidated over time and it thus prevents from
dealing with arbitrarily large or infinite environments.

In this section, we carefully identify all the aspects of the
algorithm causing this problem in LASD, and propose an
improved algorithm LASD* (Algorithm 5 in Appendix D)
that replaces the log(.S) dependency by log(S?(1 +€)). This
is a much favorable dependency since S, ., is finite even
when § is countably infinite (Lim & Auer, 2012, Prop. 6).
Below we list each source of log(S) dependency and the
corresponding modification to fix it.

A) Limiting the set of candidate goals. In the expansion
phase, LASD uses all the newly discovered states to build
the set U/ of candidates states for S;”. This phase could
potentially discover any state s € S as long as the transition
probability to s from K is non-zero. This means that any
s € S can be considered in the goal selection step (Line 4),
requiring a union bound over S when analyzing the con-
centration of the estimated value functions. To overcome
this issue, LASD™ performs a step of state filtering in the
construction of U (Algorithm 5-Line 28).* The idea is to
include in U/ only goal states with estimated hitting time
upper bounded by L. To break statistical dependencies we
estimate the hitting time of each candidate goal state using
fresh samples (i.e., samples that are discarded after this step).
It can be showed (see Lemma 24) that using this filtering
scheme, U only includes states that are O(L)-controllable
by policies restricted on /C, which is a much smaller candi-
date set of order Sf(l+€).

B) Scaling the confidence bounds. While the state filter-
ing step allows to consider only states in Sf(l +e) rather
than S, the knowledge of SL_>(1 +eo) is required to properly set
the confidence level when computing the estimated value

*A similar filter is used in DISCO to reduce computational
complexity, but as it does not use fresh samples, it still requires a
union bound over S to deal with statistical dependencies.

functions (Algorithm 5-Line 7). We thus maintain an esti-
mate z of S77, .. Each attempt on a specific value of z is
a trial indexed by 7 (Algorithm 5-Line 2) that ends when
the total number of “known” states (| U K'|) exceeds the
estimated dimension z (Algorithm 5-Line 5). In this case,
we double the value of z. We can show (see Lemma 16)
that the total number of trials is bounded 7 < logy (S7{; )
and z < S?(l-s-e)'
C) Controlling the policy quality. An important step in
LASD is to gather a minimum number of samples for each
“known” state (Line 10) to ensure a reasonable performance
of the policy being evaluated. The right number of samples
also depends on SL_’(1 +¢)- Unfortunately, we cannot leverage
z to compute this threshold since z is likely to be smaller
than Sf(l +o) throughout the execution of the algorithm.
Using z will invalidate the properties of policy evaluation
that may lead to halt prematurely, without satisfying the
AX properties (e.g., S;7 € K). This failure mode is not
captured by the condition used in Algorithm 5-Line 5 to in-
crease z. We thus introduce a Monte-Carlo reachability test
(Algorithm 5-Line 12) before policy evaluation. Intuitively,
if the test fails LASD* gathers new samples to improve
the estimate of the MDP, otherwise the test guarantees that
HV;H* llooc < L (see Lemma 29).

~

Combining these three changes, we are able to obtain the
following sample complexity guarantee (see Appendix D.1),
which is S-independent.

Theorem 3. Forany L > 1, e € (0,1] and ¢ € (0, 1), with
probability at least 1 — §, LASD* (Algorithm 5) outputs
ST € K € Spiyy() and i such that Vg9 (s0) < L(1+¢)
for any 7y € I, with sample complexity bounded by

LMAL | LSpiaigd 3 3
O< s— + . + LSt 40 AL>,

€
where | = logu(%) and M = T'146S

—
L(14¢€)"
If Assumption 2 holds, then M = ST’ and SL_’( =

1+4e) — Sy

4.2. Policy Consolidation

Both LASD and LASD™ discover a set K such that S;7 C
K C SL_E1 +o) and a set of goal-conditioned policies satis-
fying AX;. We now introduce a procedure that, given a
set £ C 8?(1 1) and associated goal-reaching policies ITx
with bounded value function, learns a set of goal-condition
policies satisfying the AX™ condition.

POLICYCONSOLIDATION (Algorithm 2) is an algorithm
for Multi-Goal Exploration (MGE) (e.g., Tarbouriech et al.,
2022) over K. In each round, POLICYCONSOLIDATION
randomly selects an “unknown” goal state from £ and com-
putes a policy to reach it (Line 6). It then evaluates the
performance of this policy by (’N)(e%) rollouts, and based
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Algorithm 2: Policy Consolidation (PC)
Input: L > 1,¢e € (0,1], 6 € (0, 1), target state space
K C S7{146) and initial policies II" = {7y }gex.

Setk + 1,M ={2"};50,. L =K,

¥ = {s, arandom policy}, N(-,-),N(-,-,-) = 0.
(N, _) 4= EXPLORE(K, I', N, N1 (|K| — 1, 7)) (see

Algorithm 6; N7 < L?|K]| log(@) is defined in Lemma 4).
forr=1,...do

if £ = o then return II{.
vl < 1/max{16 Yosa N (s,a)}.

Pick g* € L arbitrarily and compute

Let )\ — NDEV(SQL, 555 25 ) < 52 log* (ﬁg) (defined in
Lemma 50) and 7 < 0.
forj=1,...,\do
k& 1,4 + 1, and reset to s¥ < so by taking action
RESET.
while s? 7ég do
Take af = 7 (s ) and transits to s7 .

Increase N(s¥,a¥), N(s¥ a¥, s, 1), and i by 1.
if Zs,a N(s,a) € Nor(sk € K and
N(s¥, a¥) € M) then return to Line 3 (skip
round)

c(s ak)

it 7 > V(s0)(1 + ¢/2) then return to Line 3 (failure
round).
L+ L\ {g*}, TIf + TIf U {74+ = 7} (success round).

on the evaluation result, the current round is classified into
success, skip, or failure round similar to that in Algorithm 1.
While it shares a similar structure with VALAE, the cru-
cial difference is the condition of success round (Line 3),
which has a form similar to AX™. Thus, one can consider
Algorithm 2 as an improved version of VALAE.

Its simplicity and high sample efficiency, allow POLICY-
CONSOLIDATION to be integrated with any existing algo-
rithm for AX;, or AX™ at no cost. As showed in the follow-
ing lemma, the sample complexity of policy consolidation
matches the lower-bound for AX, thus providing a “minor”
contribution to the overall sample complexity. Details are
deferred to Appendix E.

Theorem 4. Given a target state space K C Sf(l +e) for
some € € (0,1) and a set of initial policies 1" = {7} } sex

such that

< L, with probability at least 1 — 0,
POLICYCONSOLIDATION (Algorithm 2) outputs a set of
policies {7y} gexc such that V4 * (s) < ViE o (50)(1 + ) for
all g € I, with sample complexity bounded by

A LST; 1+e) LS_>1+€) A
€2 €

1()( SL(1+6)AL)
€0

+ LS, +€)2AL> :

where 1 = log

To achieve this result we developed an improved regret-
based analysis. Instead of bounding the total number of
rounds as in VALAE, we directly bound the total number of
steps in all rounds, which takes varying length of trajectories
in different rounds into consideration. This enables POLI-
CYCONSOLIDATION to achieve a better guarantee on the
performance of the learned policies compared to VALAE,
preserving the same sample complexity.

4.3. AX ™ through Layer Discovery and Consolidation

We combine all these improvement into Layered Au-
tonomous Exploration (LAE) whose pseudo code is re-
ported in Algorithm 3. Combining the previous results, we
can state the following guarantee for AX ™.

Corollary 5. Forany L > 1,€ € (0,1] and ¢ € (0, 1), with
probability at least 1 — 6, LAE (Algorithm 3) outputs S;7 C
K C SL_EHE) and Ty such that V" (sg) < V,é’g(so)(l—i—e),
for any m, € I, with sample complexity

LMA LS c
where 1 — log12 M and M = FL(1+e)S?(1+e)

If Assumption 2 holds, then M = ST’ and ST =57

L(1+4e¢) —
This shows that LAE is the first algorithm able to i) achieve
the strongest performance AX"T = AX* = AX7, ii) match
the lower-bound under certain settings, and iii) completely
remove the dependence on S. In particular, the latter was an
open problem since the initial work by Lim & Auer (2012).°

Comparisons. LASD/LASD™ shares similarities with both
UCBEXPLORE and VALAE. While we leverage the same
condition as in VALAE for the failure test of policy evalua-
tion, the policy evaluation in VALAE is only for learning
goal-conditioned policies and not for consolidating states. In
fact, they first run DISCO for state discovery, and then learn
goal- conditioned policies on a potentially much larger set
subsuming S;; . However, S5 can be exponentially larger
than SL_>1 te (see Lemma 43) 1n general and thus the sample
complexity of VALAE is incomparable to other algorithms.
Therefore, VALAE only improves the sample complexity
of policy learning but not that of state discovery. Similarly
to UCBEXPLORE, we perform state and policy identifica-
tion simultaneously. Our evaluation phase is much more
sample efficient compared to UCBEXPLORE, which saves a
L? /e factor in the leading-order term. Compared to D1sCo0,
our algorithm saves a L? factor by i) adaptively collecting
samples to estimate state values instead of prescribing a
fixed number of samples to guarantee a uniformly-accurate

>UcBEXPLORE originally considered a countable, possibly
infinite state space; however this leads to a technical issue in the
analysis (Tarbouriech et al., 2020b, Footnote 2).
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Algorithm 3: Layered Autonomous Exploration (LAE)

Input: L > 1,¢e € (0,1],and 6 € (0, 1).

(K,IIg) = LASD*(L, ¢, §) see Algorithm 5 in appendix (or
LASD for log S). // RXp

I = PC(L, €, 6, K, T0I%). // Bx*

return C and HE.

transition estimate over K, and ii) leveraging variance infor-
mation.

The tool enabling all these improvements is a new Bernstein-
type concentration inequality for restricted value functions
(see Lemma 46). The key difficulty in our analysis is that
the set on which value functions are restricted is random
since we learn IC and Il simultaneously. In comparison,
in VALAE the set K is fixed after the initial phase of state
discovery, which makes the analysis much simpler. Specifi-
cally, leveraging the fact that the learned goal-conditioned
policies are all restricted on Sf(l 4ey» WE are able to make
use of the variance information without incurring a polyno-
mial dependency on S.

5. Conclusion

We introduced a layered decomposition of the set of in-
crementally L-controllable states. We built on this decom-
position and showed that our algorithm LAE attains the
strongest performance guarantee AX ", does not need to
know S and thus can be used with a countably-infinite
state space, and is minimax-optimal when the layers can be
uniquely identified. The natural future directions include 1)
designing an algorithm with minimax sample complexity
without Assumption 2; 2) extending the problem to con-
tinuous states and function approximation; 3) identifying
benchmarks that can be used to evaluate practical progresses
towards the AX capability.
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A. Preliminaries
A.1. Notation

Let (x)+ = max{0,z} and I;(s") = I{s’ = s}. We say that a value function V' is restricted on a subset X C S, if there
exists v > 0 such that V(s) = v for any s ¢ X'. When value function V' takes the same value within a subset of states y, we
define V'(y) = V/(s) for any s € y. For any subset y C S and distribution P € As, define P(y) = > .., P(s").

Trial In Algorithm 5, a trial is indexed by 7, and each trial corresponds to a value of z estimating SL_’(

) (Line 1). In
Algorithm 1 and Algorithm 2, we assume the whole learning procedure lies in an artificial trial.

1+e€

Table 2. The notation adopted in this paper.

Symbol Meaning

S State Space

A Action Space (including the RESETaction)

P Transition function

m:S—>A A policy

TI(x) Policies restricted to X', RESET is taken outside X’

L Exploration radius

S;’ Incrementally L-controllable states

NP ={s €87 : P o(s') > 0} States in S}’ reachable from (s, a)

3% =N, T = maxgesy o [7° Cardinality of N7* and maximum value

To(X)={9€S:V3 (s0) <L} Set of L controllable states restricted on X C S

{K5}; : Ky = {s0}, K = To(K5_4) Layers defining S}’

07 =(81,...,5n) Ordering of states in S;” defining the layer {K}}

Kz K% ;= K5 when |K¥| < z,and K7 ; = {s1,..., 5.} when [K}] > z

K%, =(s1,-.-,82) The first z elements of 07" or S’

u: = T2 (K3 ) States reachable in 2L steps from K}

N(X,p)={s'" ¢ X : P(s'|s,a) > pforsome (s,a) € X x A} States not in X’ reachable with high probability from X

U={secS:3s¢ Sitite @ € A P(s|s,a) > o= States that are reachable from S, ) with high probability
Learning Algorithm

re Ny Round

TeNp Trial

z An estimate of \Sj(l +o) |. The value of z is updated at the beginning of each trial.

€ accuracy

K Set of “known” states, such that IC]*- C K for some j

u Set of “unknown” states

K’ Increment to K leading to include layer j + 1

N(s,a,s’) Number of visits to (s, a, s")

A Number of episodes for policy evaluation

T Average number of steps to reach the goal by policy g

A.2. How Valid is Assumption 2?

We have identified two large classes of MDPs that satisfy Assumption 2: 1) deterministic MDP. It is clear that when
transition is deterministic, we have K5 = {s € S : d(so, s) = j — 1}, where d(so, 5) is the distance of shortest path from
so to s. Moreover, states not in K} are unreachable by any policy restricted on K7_; (any path from s to a state s with
d(so, s) = j + 1 must pass through a state s’ with d(sg, s’) = j), thus satisfying Assumption 2. 2) MDPs with tree structure,
that is, states in the MDP are nodes in a tree; nodes (states) s and s’ has an edge if and only if there exist a # RESET
s.t. P(s'|s,a) > 0 or P(s|s’,a) > 0. With s being the root of the tree, we have K% C D;, where D; = {d'(s0,s) < j—1}
and d’(s, s') is the undirected distance on tree from s to s’. Clearly, this implies V,é;_l’ 4(80) = oo forany g ¢ K7, satisfying
Assumption 2. '

A.3. Thoughts on the Lower Bound

We believe that the lower bound should either scale with Sf(l 4oy OF Sf(l +€)F L(1+¢)- However, verifying both cases
requires brand new ideas. If the lower bound indeed scales with S?(l +o) in general, then there is room for improvement for
existing algorithms and analysis. Unfortunately, due to the exponentially large amount of possible values of /C, the standard
UCBVI style analysis does not help to remove the I'(14..) dependency. On the other hand, if the lower bound scales with

13
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Sf(l +€)F L(1+¢) When Assumption 2 does not hold, then we need to show that having undistinguishable states (states in

?(1 +o) \ S7") actually worsen the sample complexity. This cannot be handled by the usual lower bound construction and

analysis, which counts the number of samples needed to distinguish states in S;” and out of Sf(l toy

14
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Algorithm 4: VISGO
Input: state subset X, goal state g ¢ X, precision eyy, counter n, and failure probability ¢.
Require: HV;,QHOO < 8L.
Letc; = 3, ¢ca = 512, and ¢, , = log (%}L(s’“)) for all (s, a).
D n(s,a,s’ S n(s,a 5 I{s'=
Let Ps ,(s") = n(+(s,a)) and Ps ,(s') = n(s(,a)j-lpsva(sl) + n‘({s,a)ﬁ_}l for all (s,a, s’).
Initialize: V() (-) < 0,4 < 0.
while i = 0 or ||V — VE=D|| > ¢y do
if || V(]| > 2L then return (oo, oo, w) with 7 being a random policy.

i1+ 1.
for s € X do
7 N ps,a7v(i71) ls,a LLs,a
b (s,a) < max {01 ( 2 ) ) , ;’i(s’a) }

Q' (s,a) + max {0, 1+ P, , V=1 —pli) (s, a)} fora € A.
V@ (s) < min, Q¥(s,a)
V@ (s) « (1+ V(i_l)(so))ﬂ{s #g}fors¢ X.
return (Q¥), V) 1) with 7(s) = argmin, Q) (s, a) for s € X and 7,(s) = RESET for s ¢ X.

B. Analysis of VISGO

The convergence of VISGO has been proved in (Cai et al., 2022, Lemma C.4). We further introduce some properties of the
algorithm.

Lemma 2 (Optimism). Let X C S, g € S\ X, n be a counter incrementally collecting samples from transition function P,
and § € (0,1) be such that |V3 ||« < 8L. For any precision { > 0, define (Q¢, Ve, _) = VISGO(X, g,&,n,0) as the
output of Algorithm 4. Let P be the probability operator on the process generating the counter n and assume that X and g
are independent of n. Then,

IP’(V§ >0,s€8,a€A:Qc(s,a) < Q% 4(s,a), Ve(s) < V;é,g(s)) >1-0.

Proof. First, by Lemma 54 and a union bound over (s,a) € X x A, we have with probability at least 1 — ¢, for any
(s,a) € X x A,

P.._P.WE | <2 2V(Pya, Vit ;) log 2HALEA) g g1 g 2XIAn(0)

(Fon = PralVis| < nt(s,a) " nt(s,a)
_a V(Paa, Vi isa  caLisg N
- 9 n+($,a) 2n+($7a)7

with ¢ 4, ¢1, and ¢y are defined in Algorithm 4. We then carry out the proof assuming that such event holds.

Fix a configuration (X, g, &, n, §) of the inputs of VISGO and let (Q(), V(?)),5 be the iterates of the algorithm. It suffices
to show that for any i > 0, Q) (s, a) < Q% 4(s,a) forall (s,a) € X x Aand V(s) < Vg ,(s) forall s € S. We prove
it by induction.

Note that Q(9)(-) = V(©)(.) = 0, thus the statement clearly holds for the base case i = 0. Suppose it holds at some iteration
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¢ — 1 > 0. Under event of Eq. (1), for any 7 > 0 and (s,a) € X x A,

~ . V(P ., VE=1D), Lis,
1+Ps,av(l_1) —max{q\/ ( ek )L ) Caluts, }

nt(s,a) "nt(s,a)

V(Ps,av V/€‘7g)bs7a CQLLs,a
nt(s,a) "nt(s,a)

<1+ IBMV/Q g — max cl\/ (induction step and Lemma 49)

V(Ps,av V/€‘7g)bs,a CQLLs,a

<1+ PSﬂVKQQ — max cl\/ (definition of ﬁs«z)

nt(s,a) "nt(s,a)
i V(Pyo, Vi )i L
c1 s,ay Vx g)bs,a Colilg,q
ST+ PooVy g+ (Poa— Poa)Vx, — 2\/ Y ag) " 3t (s,0) (max{a,b} > aTer)
< Qi 4(s,0). (Fa- (1)

This also proves that V(") (s) < V3 (s) forall s € X. Moreover, for s ¢ X,s # g, VW (s) = 14+ VU= (s) <

1+ Vx ,(s0) = Vi ,(s). Finally, V@(g) = V¥ 4(g) = 0. This proves that V(s) < Vi ,(s) forall s € S, thus
concluding the proof. O

Lemma 3 (Bounded Error). There exists a function No(z9,2),30,0) < L%2glog ;,766 such that, for goal set G with
Sf(1+e) C G C Sanddy € (0,1), with probability at least 1 — & over the randomness of a counter n incrementally
collecting samples from transition function P, for any X C SL_EHE) with |X| < 29, g € G\ X, precision £ € (0, %),
and &' € [60,1), if zi, > |G| and n(s,a) > Ny(z0,2h,00,0) for all (s,a) € X x A, then V,?(s) < 2V(s) for all
s € S, where (_,V,my) = VISGO(X, g,&,n, ") is the output of Algorithm 4. Also define Ny(zo,0) = No(20,5,9,9) and

N7 (6) = NO(S]?(1+E), U], 6,6) (recall that [U| < 2LAS?<1+E)).

Proof. Note that the statement clearly holds if VISGO returns a value function V' = co. Otherwise, ||V(i) ||OO < 2L for any

i < 1, where [ is the index of the last iteration in Algorithm 4. By Lemma 46, with probability at least 1 — 6°, for any status
ofn, (s,a) € X x A,and V s.t. ||[V||oo < 2L,

s

(Ps a ﬁs,a)V’ S |(Ps,a - ps,a)v| +

(Ps,a - Igs,a)v‘

zol! Lzot (Pso+1,)V
n(s,a) n(s,a) n(s,a) + 1

SL ;

where ZSS,G and Ps,a are as defined in Algorithm 4 with counter n and ¢/ = @(log

ny = O(L?210g(|G|/3)), such that when n(s,a) > ny, we have |(Ps.o — Ps)V|

) by |G| < Z{,. Clearly, there exists

VAR KN

. Moreover, we have

V(P 4, V(=1 L L
b”(aa)imax{ o V) }5
n

n(saa) ’ n(sva) (s,a)
Then there exist np = O(L? log(1/dp)) such that when n(s,a) > na, b (s,a) < L. Thus when n(s,a) > max{n,n»}
forall s € X,a € A, we can apply the same conclusion as in the proof of Lemma 4 as get the desired result. O

Lemma 4 (Bounded Error with Fresh Samples). There exists a function N (x,5q,8) < L%z log 5.5 (also define Ny (z,0) =
Ni(z,0,0)) such that for X C S, g € S\ X, 6 € (0,1), § € (0,1), n a counter incrementally collecting samples from
transition function P, and assume that X , g, 6o are independent of n, with probability at least 1 — 6, for any precision
€€ (0,%)and 8’ € [6o,1), if n(s,a) > N1(|X],80,0) forall (s,a) € X x A, then Vy*(s) < 2V (s) forall s € S, where
(L, V,mg) = VISGO(X, g,&,n,d") is the output of Algorithm 4.

Sthis holds under the same good event of Lemma 46, which does not depend on the chosen X, g, 8, &
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Proof. Lety =S\ (X U{g}) and .7, = log w. Consider the following events:

_ 2PS)Q(8/)L;‘7G 207

Ei:=(VseX,ae A s € X,n(s,a) >1:|Psa(s') — Pso(s)] <2 >0

n(s,a) n(s,a)

— 2P8,a<y)L?a 2[‘?(1
Ey:=qVseX,ae An(s,a) >1:|Psq(y) — Pso(y)] <2 : :

5 =

n(s,a) n(s,a)

By Lemma 54 and a union bound, they hold simultaneously with probability at least 1 —§. We carry out the proof conditioned
on these events holding.

For any X, g,&,n,d’, the statement clearly holds if V' = oco. Otherwise, ’V(i) HOO < 2L for any 7 < [, where [ is the
index of the last iteration in Algorithm 4. Take any status of counter n, precision & € (0, %), 0’ € [6p,1). Let V and 7,
be the output of Algorithm 4 with these parameters such that ||Vl < 2L. Since V is restricted on X U {g}, we have
V(s') =1+ VU1 (sg) forany s’ ¢ X U{g}. Then, for any (s,a) € X x A,

‘(Ps,a - ]Bs,a)v‘ S ‘(Ps,a - Ps,a)v| + ’(ps,a - ﬁs,a)V’

S (Poals!) = Poa DV + [(Poa®) = Pa )1+ VD 50)| + [(Pr = o)V
s’eX
<2L Z |Ps,a(3/) - Ps,a(s/)’ +2L ‘P&a(y) - Ps7a(y)’ + ‘(P&a - ﬁ&a)v‘
s’eX
- LYIRTIR(R]) | LA los((X]) | (Pra +1,)V
~ n(s,a) n(s,a) n(s,a)+1"°

where in the last step we applied Cauchy-Schwarz inequality, the good events, the definition of ]557(1, and removed
logarithmic terms and constants. Clearly, there exists n; = O(L?|X|log(|X|/4)), such that when n(s,a) > ny, we have
|(Ps,a — Psa)V| < %. Moreover, we have

<

~

P (I=1)
b (s,a) < max{ Vilo VITD) L } L

n(S’a> ’ n(s,a) n(s,a)'

Then there exist 7, = O(L?log(1/dy)) such that when n(s, a) > ng, b)(s,a) < %. Thus when n(s,a) > max{n, no}
foralls € X,a € A, forany s € X,

V(s) = V(l)(s) >14+ ﬁsmg(s)V(l_l)(s) — b(l)(s,ﬂg(s))
>1- 5 + ﬁs,ﬂg(s)v(l) - b(l)(sa 7Tg(8))

~ 1
> 1- 5 + PS,ﬂ'g(S)V - (PS,ﬂ"y(S) - Ps,wg(s))v - b(l) (577TQ<5)) > § + Psm'g(s)v(s))

where we used the definition of V (), the stopping condition of VISGO, and the previously derived bounds. For s ¢ X, we
have V(s) = (1 4+ V=D (s0))I{s # g} > (3 + V(s0))I{s # g}. Applying this recursively gives V(s) > 1V (s). This
completes the proof. O

Lemma 5. For any subsets X and X' such that X C X' C S, anyg € S\ X', £ > 0, counter n, and § € (0, 1), we have
Vi (s) < Vx(s) forany s € S, where we define Vyr = VISGO (X", g,&,n,d) (see Algorithm 4) for any X" C S.

Proof. Forany X" C S, denote by Qgé),, and V)(j,), the values of Q) and V(%) in Algorithm 4 respectively when computing

V. It suffices to prove that V)(j,) (s) < V)((i)(s) for any s € S and ¢ > 0 by induction. The base case ¢ = 0 is clearly true
by initialization. When ¢ > 0, we consider three disjoint cases: 1) if s € X, by the induction step and Lemma 49, for any
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ac A,
14+ P, VI “max{c V(Psa, V?(Ci’il))%a calisq
s,a ’ - X ,
avxy 1 n‘*‘(s,a) n“‘(s,a)
5 i— V(P. V(Fl))L o
<1 ]DS av(z b _ 5, ' X s,a, s,a
S 14+ FsoVy max { €1 nt(s,a) nt(s,a)

This implies that V. (s) < V{)(s) for s € X. 2)if s € X"\ X, we have: V{/(s) < Q)(s,RESET) < 1+

;i (i) . (ii) . i
PS’RESETV(l,il) <1+ V/'(Vl,il)(SO) <1+ V/—(vlil)(SO) = Vg(;)(s), where step (i) is by Ps,RESET(SO) = 1 and step (i)
is by the induction step. 3) if s € S\ X’, by the induction step we have V(l,)(s) = (1+ ngl)(so))ﬂ{s # gt <
(1+ V/.Ef_l) (so)I{s # g} = V)(;)(s). Combining these three cases completes the proof. O
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C. Analysis of Algorithm 1

In this section, we assume the state space is finite (i.e., S = |S| < c0).

C.1. Properties of the sets built by Algorithm 1

Lemma 6. Denote by K, the set K at the end of each round r, by gy the goal selected in such a round, and by Ty . its
corresponding policy (computed by VISGO in Line 4). With probability at least 1 — § over the randomness of Algorithm 1,
we have that, for any round r,

o IC,. C SL_El+e)"

e if Line 5 is False, then HV;‘Q;’T lloo < 4L which implies ||[Vi& | . lleo < 4L;

o forallg € Ky, |Va?lloo < 4L and Vg (so) < L(1 +¢).

Proof. Clearly, K1 = {so} C S} L{i+e) Then, consider a round > 2 and suppose K1 C S;7 L(1+e) (inductive hypothesis).
If, in this round, the algorithm selects a goal g € U \ S L(14e) Line 5 is False, and a skip round is not triggered, then
Line 19 is reached. We now prove that the “failure test” in that line triggers.

Note that every time K is updated, the sampling at Line 10 guarantees that for all (s,a) € K,_1 x A, N,_1(s,a) >

O(L?|K,_1|log(S/6)). By Lemma 3, since K, _; C S1(1+¢ (inductive hypothesis), we have that

P (Vg€ S\ Koy VIo(s) < i, ols)) > 1 )

4r2’

where (_, Vic, ,.¢,_) = VISGO(K,_1,9,&,N,_1, #) and &, is the value of ey used in round .

Note that VISGO returns a value function that is either co or bounded by 2L for all states (see Alg. 4). Since g passes
the test of Line 5, then VT;”W (5) <2Vk,_, g:(s) < 4L, forall s € S. Combining this with Lemma 50 and definition of
)\ NDEV(32L
T+ is restricted on K,y € Sy

) 55 4TQ) we have T > V;ig* (so) — Le/2 with probability at least 1 — %. By assumption on ¢ and since
(11¢)» We have Vgigi’r(so) > Vg g (s0) > Vas g+ (s0) > L(1 + €), which implies
that 7 > L(1+€/2) > Vic,_, 4=(S0) + €L/2 with the same probability, where the last 1nequality is from the goal-selection
rule. Therefore, the failure test of Line 19 triggers and g is not added to K. or K,.. Therefore, by the inductive hypothesis
K. C SL_E1 +oy A union bound over all > 1 yields the first statement with probability at least 1 — 6.

To prove the second statement, note that we already proved above that V;iqi (s) < 4L at any round r where Line 5 is
False (i.e., where gy reaches the policy evaluation step). Since 7y - is restricted on K.y, we clearly have Vi¢ | . (s) <

Vgﬂf’*‘ ""(s) < 4L. This proves the second statement for any round r, which holds with the same 1 — ¢ probability.

Finally, the third statement is a simple consequence of the fact that any goal g € K, must have reached the policy evaluation
step in some round v’ < r and the round was successful, and thus ||V%g llco < 4L by the second statement. Moreover, by
the definition of success round, value of X and Lemma 50, we have that, for each g € K,., there exists ' < r such that
Vg (s0) = V . ( 0) STHLE <V, | .97, (s0) + Le < L(1 + ¢). This holds with the same 1 — § probability as above
since we have already union bounded across the application of Lemma 50 for all g atall » > 1. O

Lemma 7. With probability at least 1 — 26, for any round v > 1 in which K, is updated (i.e., Line 8 is executed),
TL(K)\ Ky C U

Proof. For any round r, let F,._; denote the sigma-algebra generated by the history up to the previous round. Let H}, denote
the event “Line 8 is executed at round £”. Note that Hy, is Fj,_1-measurable since no random step happens before Line 8 in
round . Moreover, define the events E,. := {Vg € K, : |V, ?||ooc < 4L} and E := {¥r > 1: E,.}. Note that E holds with

19



Layered State Discovery for Incremental Autonomous Exploration

probability at least 1 — § by Lemma 6. We have

PEr>1:H, To(K)\K, €U.) <PE@r>1:H, T (K)\K, LU, E) + P (=F) (union bound)
<PEr>1:H., T.(K)\K. LU, E,)+ 6 (Lemma 6)
< ZIP’ (T (KH)\ K, LU, E., H,.) + 0. (union bound)

r>1
1
SglP(N Krogp) EUBr ) 40 (T \ Ky € A (K3

Now take any round 7 > 1. Recall that 24, is built by sampling from each (s, a) € K, x A exactly j,. := 2L 1og(4SALr?/6)
times. For each (s,a) € K, X A, let s; 5 , be the i-th sample (i.e., ;5.4 ~ Ps,q) for i € [p,]. In order to collect each
sample s; s ., we must play the policy 7 from sq until reaching s. Note that, under event E,., |V || < 4L forall s € K,.,
hence all the states in /C,. are reached with probability one (so s; s o is well defined for all s, a, 7). Then, for any fixed KC;.,

1 1
P — < / _
P (N(ICT, 2L) Z U, E,., H, | ICT) <P (Els S N(ICT, 5T

Z P(V(s,a) € K, x AVi €[] @ Sis.a #8) (union bound)
S'GN(}CT,ﬁ)

), V(s,a) € Kr x A Vi € (1]t Sis0a # 8 | ICT)

IN

< 2 : P (Vi 1 Sis 4 trivial

> (s,agrel%XTXA ( 1€ [‘U] Si,s,a 7é S ) (HVla)
SEN(Kr,55)

= Z max H (1= P(s'|s,a)) (all s 5 areiid.)

(s,a)e,x A

s EN(Kr,55) i€ ]

1 Mo
Z (1 B 2L> (definition of N'(K;, 5-))
s'eEN(Kr,57)

Z 9 8
ALASr? — 2r2°
sEN( f"QL)

IN

IN

Now let £2,._; denote the sample space under which F,._ is generated, such that
measurable w.r.t. F,._1, define K,-(w) as the set K, obtained after history w. Then,

> P(N(/CT,ZL),@_UT,ET,H |w> P(w)

wWEN,_1

> p(N g 2t ) PE)

WEQ,_1:E,  H,

weq, , P(w) = 1. Noting that K. is

P (N(/cr, 57) & Up Br, H, )

)
= X (W) €U 1K), B ) Pl < 5
weQ,._1:E,.,H,
Plugging this into our initial inequality, we get P (Ir > 1: H,., T.(K,) \ K, Z U,.) < 26. O

Lemma 8 (Restricted Optimism). With probability at least 1 — & over the randomness of Algorithm 1, for any j € [S] and

any round v > 1, after executing Line 4, if Kj C KC;., then Vic, 4(s) < Vi&x (s) forany s € S and g € K51 \ K, where
%

KC,- is the set K immediately after the execution of Line 4.

Proof. Let j € [S]and g € Kj; \ Kj. Fix some round r > 1s.t. K7 C K,. Letd, = = o and (Q¢, Ve, ) =
VISGO(K3, g,&,N,4,). By Lemma 2 7,

P(VE > 0,5 € S 1 Vels) < Vs (5)) 2 1= 6. 3)
"Note that, by definition, ||V;c* glle L +1< 2L forall g € Ky \ K (which is a prerequisite of Lemma 2).
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Then, from a union bound and |K%,; \ K| < S, the event above holds simultaneously across all j € [S],and g € K7, 1 \ K}

with probability at least 1 — 4%. This implies that the same result holds for all g € K7, ; \ K, since K7, 1 \ K, € K51\ K7
A union bound implies that this holds at all rounds simultaneously with probability at least 1 — 4.

Now consider the execution of Line 4 and let IC;., §,-, &, N,. be the values of the parameters used by VISGO in such a

round, such that €5 C K, for some j € [S]. Forany g € K7, \ K;, let (_, Vi, 4,_) = VISGO(K,, ¢,&,, N, d,.) and

(L Vks.9,-) = VISGO(KY, g, &, Ny, 6;). Then, Eq. 3 implies that, for any s € S, Vicx 4(s) < Vi ((s). If KT C K, by

the update rule of Algorithm 4 and Lemma 5, we also have Vic, 4(s) < Vicx 4(s) < Vi&e ,(s). O
J 30

The following lemma shows that if a set IC]*- C K at some round, at the next update of I it must be that IC; 41 C KC (if the
algorithm does not terminate) and ensures correctness, in the sense that the algorithm returns a set of states including S;”
with high probability.

Lemma 9 (Correctness). Denote by KC,. (resp U,.) the set IC (resp. U) at the end of each round r. With probability at least
1 — 39, forany j > 1 and round v > 1 in which K, is updated or returned (i.e., Line 8 is executed) and K,_1 D IC;, we
have K5 € K. Moreover, under the same probability, we have that, for any r > 1, ;7 C K, if the algorithm terminates
at round r.

Proof. Define the event E := {Vr > 1 in which K, is updated : T (K,)\ K, C U, }. By Lemma 7, it holds with probability
at least 1 — 26. Let us carry out the proof conditioned on F holding.

Take some round 7 such that Line 8 is executed and IC,_1 2 IC;. Let 7/ be the last round where K, was updated (and
thus Uf,» was created). Note that /C,» = KC,._1 D IC;T. Then, event E and the definition of the sets (IC;) ; directly imply that
ICJ*- =T (IC;‘) C T.(K,) CU,»UK, . Since K, can only be formed by adding states in U4, to K,, and the union of these
sets contains IC;H, if IC;+1 Z IKC,., it must be that there exists g € U,._1 N IC;+1 s.t. Vi, _,.4(s0) > L. However, Lemma 8,
which holds with probability 1 — d, implies that, at any round r > 1, if Kj C K1, then Vic,_1.,4(s0) < VK*;} 9(80) < L for
any g € ICJ* 11 \ KC—1. This is a contradiction, which implies that /.1 N IC; = () and, thus, all states in ICJ* 1 must have
been added to KC,.. A union bound over the application of Lemma 7 and Lemma 8 yields the statement.

To prove the second statement, let us use the same events as above. First note that, since 1 = K7 = {s¢}, it must be that, at
any round r, K, 2 K5 for some j > 1. Now take any round r in which the algorithm terminates and suppose K1 2 S7”.
Let j* be the largest j s.t. KC. D IC;. By Lemma 1, it must be that j < J, hence ICJ**+1 D IC;*. Let 7’ be the last round at
which K, was updated. Since the algorithm terminates at round r it must be that K.._; = 0), i.e., no state in U._1 = Uy
has been found to be added to /C,.. From the same argument as above, under F it must be that ICJ*-* 41 U UK, Since
Kr—1 2 S;’, and no addition to /C,._; is performed as the algorithm stops at r, it must be that there exists g € U,_1 N IC} 11
s.t. Vi,_,.g(s0) > L. However, in the first part of the proof, we already found a contradiction for this case under the
event of Lemma 8. This implies that the algorithm cannot stop at r since some state must be added. Hence, whenever the
algorithm stops it must be that K,, O S;”. This completes the proof. O

Lemma 10 (Correctness under Assumption 2). Denote by K, the set K at the end of each round r. With Assumption 2,
with probability at least 1 — 56 over the randomness of Algorithm I, for any round r > 1, we have that K, = K7 for some
j €[Sy’ and K, = Sy if the algorithm terminates at round r.

Proof. By Lemma 6 and Lemma 9, with probability at least 1 — 46, we have S;7 C K, C SL_’(1 +o) if the algorithm
terminates at round r. By Remark 1, K = S;’. Thus, it suffices to show that, at any round r, K, = ICJ* for some j < |S;7|.

The algorithm is such that 1 = K} = {so}. Suppose at, in some round r > 1, we have that K, = IC;‘- for some j > 1.
By Lemma 9, with the same probability as above, if the condition of Line 7 becomes True for the first time in some round
r’ > r (i.e., the set K is updated in such round), then we must have K741 € Ky at then end of round r’. We shall prove that
we also have K, C ICJ* 1> which implies the statement.

Take any round 7 such that K, 1 = K7 and gr € U \ K7 ;. Since, the last time K was updated Line 10 was called, we must
have N,._1 (s, a) > O(L?|K}|log(S5/4)) for all (s,a) € K} x A. Then, by Lemma 3, with probability at least 1 — g, for

4r2>
all s € S, V;ig; (s) <2Vk,_, gz(s) < 4L due to properties of VISGO if Line 5 is False. If a skip round is not triggered,
s

4r?

combining this with Lemma 50 and definition of A, we have 7 > Vgﬂf”*“ (s0) — Le/2 with probability at least 1 —
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By Assumption 2, assumption on gy, and since my; is restricted on K, = K7, we have V;;"; (s0) > V,é;7g: (s0) > L(1+e),
which implies that 7 > L(1 +¢/2) > Vi, _, 4+ (S0) + €L/2 with the same probability, where the last inequality is from the
fact that Line 5 is False. Therefore, the failure test triggers and g is not added to K!. or K, since a failure round is triggered.
This holds with probability at least 1 — § across all rounds by a union bound. Therefore, for any round r in which K is
updated and ;1 = K7, we must have K. C K% ;. This concludes the proof, and the statement holds with probability at
least 1 — 59 by a union bound. O

C.2. Analysis of Policy Evaluation

We consider the regret over the trajectories generated in the policy evaluation phase. We concatenate all policy evaluation
episodes in all rounds and index them with £ > 1. To make the notation consistent with Algorithm 5, we treat the whole
learning procedure as an artificial trial. Let KCy, Vi, and @y, be the K, Vi ¢+, and Qi ¢4+ in episode k. Let 7, and gj, be
the corresponding policy 74+ and goal g*. Denote by Fj, the o-algebra of events up to episode k. Let K be the total
number of episodes throughout the execution of Algorithm 1. For any sequence of indicators Z = {1}, with 1, € Fj_1,

define Rg' 1 = Zfll(lk — Vi(s0))1x and Cxr = Z,[f/l I for K’ € [K]. Define PF = P, k q¢- In episode k, when
sk € KC, denote by PF, P’c N¥, b¥ the values of P, k gk P, k gk nt(sk, ak), and b (s, ak), where P,nt, b® are used

in Algorithm 4 to compute V}, and [ is the final Value of 7 in Algorlthm 4; when sf ¢ K, define Pik = IL,, Nf = 00, and
bf = 0. Also define €, dy as the value of eyy, d used in Algorithm 4 to compute V},. Note that I, < co with probability 1 by
Line 17, and s’}kﬂ = g only when a skip round is triggered in episode k.

C.2.1. REGRET BOUND WITHOUT ASSUMPTION 2

Lemma 11. For any sequence of indicators T = {1}, with 1}, € Fj_1, we have, with probability at least 1 — 66, for any
K' € [K],

Ry 7 < Llog(SAL/S)? log(K) \/SRHE)FL(HE)AK’ + LST}1 402 Allog K')? log(SAL/)®.

Moreover, Crer < LK' + LS7, 2 A(log K')? log(SAL/5)>.

L(1+e€)

Proof. We start by decomposing the regret as

K’ K' Iy
DI =Vilso) L < D03 (14 Valsk) = Vi) 1 (£ 3005 Valshi)
k=1 k=1 1:1=1
K' I
< Z 3 ( BV, 4+ (PF — PEYV, + (PF — PF)V;, + bF + ek) 1y, (definition of Vi)
k=1 =1

where the last inequality uses that Vk(l) (s)=1+4 ]BsfaVk(l*l) — b’;)a forany s € K, a € A, where [ is the index of the last

iteration of VISGO when called with (_, V3, 7,) = VISGO(K, g&, €k, N, 6 ), and ||Vk(l) — Vk(l_l) lloo < €k by definition
of its termination condition (recall that V}, is bounded since Line 5 was passed). Note that, if sf ¢ Kk, then the 4, k term in
the sum of the second line is clearly an upper bound to the corresponding term in the first line. We bound the terms above
separately.

First term By Lemma 55 and ||V} ||, < 2L (by VISGO and since Line 5 was passed), with probability at least 1 — J,

K' I K’ Iy
P> (M, =PIl < | >0 LV(PE Vi + L,
k=11i=1 k=1 i=1

where ¢ = 9log(16L2C%., /6).

Second term Note that, by the event of Lemma 6, I, C SL_’(1 +eo) in all episodes k. Moreover, when sf ¢ K, the k,
term in the sum is zero by definition of P* and Pi’“. Therefore, we have all the preconditions to apply Lemma 46 on terms
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(PF — PF)V, forall i,k s.t. s¥ € K, which yields, with probability 1 — 6,

K’

Iy, K’ k — ’
F € PiaVk:Ll LS ol
ISRV o ol [ |

k=11i=1 k=11i=1

where ¢/ = O(log M) Note that Lemma 46 already union bounds across all possible counts, value functions and

state-action pair, so we do not need an extra union bound over episodes and steps here.

Then, by Lemma 40 and Cauchy-Schwarz inequality, with the same probability,

K' Iy K’ Iy
Z D (P =PRI S|S0l LaroA Y Y V(PF Vi) + LS, oA,
k=11:=1 k=11i=1

where " = O(log(SALCk- /§)log(Ck)).

Third term By the expressions of ZSZ’“ and PF (cf. Algorithm 4) and Lemma 40,

K' I K' I
PF+1,)Vy
E E Pk Wil < E E 1kﬁ LSL(I-{-e Alog(Ck). (I, (s") 21{s' =g}
k=11=1 k=11i=1 g

Fourth and fifth term By Lemma 39 and Lemma 41, with probability at least 1 — 4,

K I K’ I

k
DD O+ e le S| STl A D D V(P Vi) + LS, ) AL
k=11i=1 k=11i=1

Combining all terms Note that all the derived bounds can be absorbed into the one of the second term. Plugging
everything back to our initial expression of the regret,

K’ K’ Iy
Z (Ik - Vk(So)) ]-k ,S Sﬁl+e)FL(1+€)A Z ZV(PZC, Vk)LN + LSJ?(1+E)2ALH
k=1 k=11=1
< \/LSL—EHG)FL(HE)ACK/ v+ LS o2 AL (Lemma 36)

Note that " < log(SAL/8)(log Ck+)?. Now assuming 1, = 1 for all k, we can solve an inequality to find C. First, using
that log(x) < 2%/« for any z, a > 0 together with the derived regret bound, we can find the crude bound on Ck,

K 4 A
Cxr < <Z Vi(so) + LSz}, +6)2Alog(SAL/6)> < (K’L+Ls;(1 +e)2Alog(SAL/5))
k=1

This implies that ¢ < (log K')? log(SAL/6)3. Plugging this into the regret bound, we get a quadratic inequality in C'x.
Solving it yields

K/
Crr Y Vi(so) + LSgy o A(log K')? log(SAL/6)* < LK + LS7}, , *Alog K')* log(SAL/5)?.
k=1

Plugging this back into the regret bound gives the stated bound. Throughout the proof we used following events with the
corresponding probabilities:

e Lemma55:1—¢

e Lemma6:1—4§
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e Lemma46:1—¢
e Lemma39:1—¢

e Lemma 36: 1 — 2§
A union bound concludes the proof. O

C.2.2. REGRET BOUND UNDER ASSUMPTION 2

Lemma 12. Under Assumption 2, for any sequence of indicators T = {1y}, with 1), € F_1, we have, with probability at
least 1 — 149, for any K' € [K],

Rz S Llog(SAL/8)?10g(K')\ /STty 4o AK' + LSL1 4o Alog K')?log(SAL/6)?.

Moreover, Crer < LK' 4+ LS7%, . \*A(log K')?log(SAL/6)5.

L(14e)
Proof. Note that, under Assumption 2 and by Lemma 10, in any episode, K = K7 for some j < J < |SL(1+F)| < S (cf.

Lemma 1). Moreover, by Lemma 6, for any round in which g* reaches the policy evaluatlon step, ||V - gt lloo < 4L, which
implies that [|[Vi&« .|l < 4L for some j in thatround. Let G; := {g € S : [V}, |loc < 4L}. Consider the event
37 o

s,a

_ V(P a0, Vigs g)L,s.a L
E:=(VseS,ac A jel[S],g€G;Vn(s,a)>1: |(nga_Ps,a)V]€;}g‘ < 97

n(s,a) n(s,a)

where 1} , = 8log(25%An(s,a)/6). Clearly, by Lemma 54 and a union bound, E holds with probability at least 1 — 4.
Then, assuming E and the events of Lemma 10 and Lemma 6 hold, we clearly have, for all episodes & and steps i,

- V(PE Ve LY
(PF=PHVE < zNikk NE “4)
where ¢/ = O(log(SALCk:/9)). Note that we inflated the ¢’ term with an extra L since it will simplify the bounds later.
Now we split the regret as

K’ K' Iy
D T =Vilso) L < 3D (14 Vilstin) = Vilsh)) 1 (£ 3005 Vi(sk )
k=1 k=1 1:1=1
K' I
< Z 3 ( BV 4 (PF — PRV, + (PF — PRV, +bF + ek> 1, (definition of Vi)
k=1 1i=1

where the last inequality uses that Vk(l) (s) =1+ EsaVél_l) — b(’j’a for any s € Ky, a € A, where [ is the index of the last

iteration of VISGO when called with (_, Vi, 7y) = VISGO (K, gk, €&, N, 6x), and ||V — V.I™V|| < ¢, by definition
of its termination condition (recall that V}, is bounded since Line 5 was passed). Note that, if sf ¢ Ky, then the i, k term in
the sum of the second line is clearly an upper bound to the corresponding term in the first line.

We bound the terms above separately.

First term By Lemma 55 and ||V}||, < 2L (by VISGO and since Line 5 was passed), with probability at least 1 — 0,

K I K’ Iy
DO (@ Wil < ([ D) 1V(PE, Vi) + L,
k=11:=1 k=11:=1

where ¢ = 9log(16L2C%., /6).
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Second term Note that, from (4),

K' Iy K' Iy
ZZK - P} Vk\1k<ZZ| — PMV|
k=11=1 k=1 1i=1

Iy

— PRV + [(PF — BV — V))

Z
Tx k * L
Z(VJDV>+;+K ﬂm-wﬂ.

in all episodes k. Moreover, for all k, 7, either (s¥,a¥) € K}, x A or

,i

Note that, by the event of Lemma 6, K, C SL L4e)

the second term above is zero. Since ||V}, — V,C lloo < 6L, we have all the preconditions to apply Lemma 46 on the terms
|(PF — PF)(Vi, — V;¥)|, which yields, with probability 1 — §, for all 4, k,

/
L(1+e)t

V(Pik, Vi — Vk*)e’ LS
NF TN

_ ST,
<ﬁﬁm@vms¢L“>

where ¢/ was defined above. Note that Lemma 46 already union bounds across all possible counts, value functions and state-
action pair, so we do not need an extra union bound over episodes and steps here. By VAR[X + Y] < 2(VAR[X] + VAR[Y]),
we have that V(PF, V) < 2V(PF,Vj, — V}¥) + 2V(PF, V) and thus

K’ Ik / *

V(PF, Vi) L1+e V(Pf Vk_v) LSt ot
PP Vkl<ZZ : 2 + —
k=1 i=1 k=1 i=1 N Ni

Then, by Cauchy-Schwarz inequality, with the same probability and Lemma 40,

K' Iy K' Iy K Iy
Z D P = BRI S ([ STas0A D Y V(PE VI + 4| STiae AY > V(PE Vi = Vi) + LS, )2 A,
k=11i=1 k=11i=1 k=11i=1

where " = O(log(SALCk/ /6)log(Ck-)). Now by Lemma 13, with probability at least 1 — 24,

K' I K' Iy K I
S UPE Ve) £ 3SR P+ S50 A S VPV IS A
k=1 i=1 k=1 i=1 k=1i=1
where ./ was defined above. Let Z := Z el Z L |(PF — PF)V|. Plugging this into the previous inequality, using

Vay <z +yand <., we get

K’ Iy

T < \/SL—’(1+E)2ALL”ZK« o STia0 A D S V(BE Vi + LS o A
k=11=1

Solving thi quadratic inequality for Zg-, we conclude with

K’ K’ Iy

Iy
Z D_PE = PRYVALS | SiiagaA D D VP Vi) + LS 14" A"

k=1 1i=1 k=1 i=1

Third term By the expressions of Igf and PF (cf. Algorithm 4) and Lemma 40,

K' I B K' I P —|—]I
SN (P - PRVi1, < Z > 1k S LSL0Alog(Cer). (5)
k=11:=1 k=11:1=1
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Fourth and fifth term By Lemma 39 and Lemma 41, with probability at least 1 — 4,

K' Iy K’ I
DD O+ e le S| STl A DD V(P Vi) + LS, AL 6)
k=11i=1 k=11i=1

Combining all terms Note that all the derived bounds can be absorbed into the one of the second term. Plugging
everything back to our initial expression of the regret,

K’ K Iy
D I =Vils0)) 1k S o | StiapaA DD V(PE Vi + LST{1 02 A
k=1 k=1 i=1
< \/LSL_EHe)ACK'L" + LS?(1+€)2AL”. (Lemma 36)

Note that " < log(SAL/8)(log Ck+)?. Now assuming 1, = 1 for all k, we can solve an inequality to find C. First,
using that log(z) < 2%/« for any z, o > 0 together with the derived regret bound, we can find the crude bound on Ck,

4

4
Cxr < Z Vi(s0) + L8140 *Alog(SAL/5) (K L+ L8740 2Alog(SAL/6))

This implies that «”" < (log K')? log(SAL/6)3. Plugging this into the regret bound, we get a quadratic inequality in C'x.
Solving it yields

K/
Crr Y Vi(so) + LSgy o> A(log K')? log(SAL/6)* < LK + LS7}, , *A(log K')? log(SAL/5)?.
k=1

Plugging this back into the regret bound gives the stated bound. Throughout the proof we used following events with the
corresponding probabilities:

e Lemma 10: 1 — 54

e Lemma6:1—¢

e Event F in this proof: 1 —§
e Lemmas55:1—§

e Lemmad6:1—§

e Lemma39:1—§

e Lemma 13: 1 — 26

e Lemma36:1—26
A union bound concludes the proof. O

C.3. Auxiliary results for policy evaluation

Lemma 13. With probability at least 1 — 25, for any K' € [K], if 1) |Vi|, = O(L) for any k € [K'], and 2)
Vie(s) < Vi (s) forany k € [K'] and s € S, then

K’ Iy K’ Iy, K’ Iy
SN VEPEVE-VR)SLY D I(PF =PIVl + Ly | S; HE)AZZV (PF, Vi + L*Siy 4o AL,
k=11=1 k=11i=1 k=1 1i=1

where ! = O(log(SALCk /9)).
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Proof. First note that, by Condition 1) and 2), forany s € S, V' (s) — Vi(s) > 0 and V;*(s) — Vi(s) < O(L). Thus, by
Lemma 38, with probability at least 1 — 4,

K/ Ik K/ / Ik
SN VEPEVE = Vi) Y (VE(sE ) = Vilsh )+ Z S ((VE(sF) = Vi(sh)? = (PF(VE = Va))?) +L7,
k=1 1i1=1 k=1 k=111=1

(a) (b)
where ¢ = O(log(LCk/6))

Bounding (a) Note that, since V,*(gx) = Vi(gx) = 0, we must have (a) < 25;1 I{s§ ., # g}. Since the event
{s’fk_|r1 # g} happens only in skip rounds, it must be that (a) < Sti4o4-

Bounding (b) Using that Vi (s) < V*(s) for all s € S (Condition 2), (a + b)(a — b)1 fora,b > 0,

K' I K' Iy
ZZ ((Vk*(si'c) — V(s )) (Pk(Vk < LZZ V(s ) Pka —I—Pka)
k=11i=1 k=11i=1
’ I
SLY Y (14 PPV = Vi(s))s,
k=1 i=1

where in the second inequality we used V;*(s¥) < 1+ PFV;* by definition of V}*. Since, for all i, k, Vj,(s¥) > 1 + P’C Vie —
b¥ — ¢, (cf. Algorithm 4), we also have

K' Iy K' Iy
SO T(VE () — Valsh))? — (PE(VE — <LZZ — PRV + 0 + )+
k=1 11=1 k=11i=1
KL
_LZZ — PV + (PF — PV, + 08 4 €1) 4
k=11=1
Ic
<LZZ — PEYVi| + |(PF — PF)Vi| + b8 + )
k=11i=1

All terms but the first one are bounded in (5) and (6), which gives the following bound on (b) holding with probability at
least 1 — 26,

K' I K' I

) < LZZ' — PEYWal+ Ly | Spii0AD Y V(PR Vi + LS, o * AL,
k=11:i=1 k=11=1

where ' = O(log(SALCk/d)). Combining the bounds on (a) and (b) concludes the proof. O

Lemma 14. Assume that for any sequence of indicators T = {1y} such that 1, € Fi_1, we have R/ 7 <
aaVEK'"ogP(K') + cologP (K') and Cr < csK' + 1ogP (K')ey for any K' € [K|, where ¢; > L and ¢y 2 S5

L +€)A /€.
Then, the total number rounds r,, with at least one episode is of order

le log (%) + (026 + ST A+ T H[SEieoA) log! (

Moreover, Cx S <35 + cqlog? (r10:/€) with probability at least 1 — 49.

Proof. Denote by V,., 7, and g, the values of Vi 4+, 7y, and g* used for policy evaluation in round r respectively. For
any R’ > 1, let K’ be the total number of episodes in the first R’ rounds. Denote by ry, the total number of rounds with at
least one episode and 7 ¢ the number of failure rounds within the first & episodes. The number of success rounds is at most
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Sf(l +¢) by Lemma 6 (which holds with probability 1 — 4), and the number of skip rounds is at most (Q(Sf(1 +E)A log(Ck))
since we have a skip round only when the total number of steps or the number of visits of some state-action pair in K x A
is doubled. Therefore, /o < 7y + StatoAlog(Ckr) S e+ L_)(HE)Alog(K') + ST(11eAlog(ca), where the last

inequality is by assumption on C'k-.
Define W = {r : V" (so) > Vi(so)}. Note that W includes all failure rounds with probability at least 1 — &. This is
because, for any round » > 1 in which V7 (s9) < V;.(so) and the skip round condition is not triggered, by Lemma 50

and the value of \ in Algorithm 1 in round 7, we have 7 < V;.(sq) + €L /2 with probability at least 1 — % This implies
that a success round is triggered. A union bound over all rounds proves that all failure rounds are indeed included in
W = {r: V" (s0) > V;(s0)} with probability at least 1 — 4.

Define Z = {1} such that 1, = I{r € W} € Fj_; for any episode k in round r, the regret within these rounds satisfies

Rxz1 < ( \/rf + St ALog(K') + S1i, , Alog(ca) + 02) log” (K')

C
S (5 frs + Stinsg ALos(rs/€) + Spiy o Alog(ca) + ez (log(ry /€) +log(ca))”

by K = [, A < Z‘;,' (since A < 1/€%) and log(K”) < log(rg/e) + log(ST(11eA/€) S log(rs/€) 4 log(cs) by assumption
on c4. This shows that if we bound 77, we can also control C.

Now we build a lower bound to Rk~ 7. For each failure round r, let C' be the total number of steps within tl}is round
and m the number of episodes within this round. By definition, the regret within this round satisfies C' — mV..(so) >
C — AV, (s0) = M7 — V;.(s0)) > 2L = Q(L/e) (since C/A =7 > V,(so) + €L /2 in a failure round).

For any round r > 1, let m be its number of episodes and C be the total number of steps. By Lemma 51, mV’?T (s0) <

C+ Lym log2 mLr with probability at least 1 — -25. By a union bound, this holds simultaneously across all rounds with
probability at least 1 — 6. Then, with such probablhty, for each success and skip round r in W,

u! ul —1
= - . - ArL L
Z(Ij—VT(SO))ZZI]‘—ngTv(s) L> L\/710 ( 5 )N—?,
J=u, J=u,
where {u,, ..., u]} are the episodes in round r, and we lower bound the regret in the last episode by Q(—L) since the last

trajectory in a skipped round is truncated. Note that the first inequality holds since » € W.
Since there are at most O(Sp7, , . Alog(Ck)) = O(ST,, A(log(ry/€) +1og(cs))) of these rounds, we have

Lry  LSpiiyoA(log(ry/e) +log(ea)) -
€ € ~

C
S (%\/rf + SRHG)AlOg(W/E) + SL_EHE)AlOg(CzL) + 02) (log(ry/€) +log(ca))” .

K' T

This implies,

N ( \F-I- —|— S—>1+€)A —|— S?(HE)A) (log(rys/e€) + log(ca))P.

< f+ ‘4 Sti+04 + STiuroA [log(rsca/e)”.
L —

=c

=a :=b
By Lemma 28 of (Chen et al., 2022a), a, b, ¢ as defined above,

( C1C2Cy4

S s b o P(F) + (5 Stlso A+ T fStisg4) o SThsod)-

The proof is concluded by r{ S 7 + S7(y . Alog(rs/e) + Sriy . Alog(ca) as showed above and setting K = K (that
iS, 1oy = Ttot)- O
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C.4. Proof of Theorem 1 and Theorem 2

We restate and prove the two theorems together.
Theorem 6 (Unified statement of Theorem 1 and Theorem 2). With probabilityfzt least 1 — 230, after collecting Ny,

samples, Algorithm 1 outputs K and {7y} gex such that S;” € K € 87, ) and Vy(s0) < L(1+¢€) forall g € K, where

€

ST 14 TLsa AL S, o 2AL .
e Nip=0 ( LOte) LOQ+I2, 4 L<1+ ! L+ L3 SL(1+5) A > in the general case;

Sf(l+€)2AL

e N, =0 <SL(1:26)ALL + v+ L3 SL(1+E) A > with Assumption 2.

Here 1 = log® (SAL)

Proof. By Lemma 6 and Lemma 9, with probability 1 — 44, the output IC and {7, } e clearly satisfy the first statement.

Let us bound the sample complexity. Each round can be classified into one of the following cases: 1) expansion of the sets
(Line 5 is true), and 2) policy evaluation is performed (from Line 12, so Line 5 is false). Note that the sample complexity of
case 2 is given by C'c. We shall bound it later.

In case 1), the algorithm terminates or at least one state is added into K. Thus, the number of rounds satisfying case 1) in
each trial is at most 1 + S?(l +eo) by Lemma 6. In a round satisfying case 1), if the algorithm terminates, then no samples are
collected. Otherwise, Line 8 and Line 10 are executed. Take any round r in which this happens and denote by K, the set X
at the end of round r. Note that Line 10 collects at most O(L?|K,.| log(Sr/d)) for each s € K, and a € A, while Line 8
collects O(Llog(SALr/§)) samples from each state s € K, and a € A, so the total number of samples collected from
each s € K, and a € A is at most n,, = O(L?|K,.|log(SALr/6)).

Since, by Lemma 6, at any round 7, HV;" lloo < 4L for each g € K., by Lemma 52, with probability 1 — §’ it takes no more
than 8L log(2/¢") steps to reach the goal state g following 7,. Therefore, by setting &’ = W, with probability
1- 2T2 , all trajectories in round r reach the goal within 8L log(2/4§") steps Then, by a union bound over all rounds, with

probability at least 1 — 4, the total sample complexity is O(L?|K,.|2|.A| log?(SALr/4)) at any round r.

Note that, among these samples, only O(L|K,||.A|log®(SALr/5)) cumulate over rounds. This is because the sam-
pling of Line 10 is performed only if the current counters are below the sampling requirement. Since the number
of rounds in case 1) is at most 1 + Sf(l +e) and the total number of rounds R performed by the algorithm satisfies

R < rg + SL_El 4o T 1 (by summing the rounds in both cases) and || < SL_El +e) by Lemma 6, we have that Line 10

contributes to at most (’~)(LSL_E1 +€)2A log?(SALvy/d)) sample complexity and the total sample complexity of Case 1) is

thus O(L3S L}, , o ?Alog®(SALri/5)).

We now conclude the sample complexity proof depending on whether Assumption 2 is considered or not.

Without Assumption 2 Plugging the regret bound of Lemma 11 into Lemma 14, using p = 2, ¢ =
Llog(SAL/S)? /S?(l+€)FL(1+E)A, co = LSL_’(HE)QAlog(SAL/(SP, c3=1L,cy = LS;’(HS)QAlog(SAL/(S)B/e,

2 4 SAL
Ttot = (log(SAL/(S) 1+€)FL(1+5 A + SL(1+6 AlOg(SAL/(S) €+ log(SAL/(S) 1+€) FL(1+6)A> log T

SAL
s (S?(I+G)FL(1+€)A + SL_>(1+6)2A6) log® (55)

and

SAL LS+ A SAL
K S (SL(1+5)FL(1+5)A+SL (1+¢) Ae) log® ( = )+ (6 ) 10g5( = ),

L
=]
( 1+e)FL(1+e)AL ST 1+e)2AL> log® (SAL)
og 5 )
€ €

N
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Thus, the total sample complexity of the algorithm (which is given by C'x plus the sample complexity of case 1) is

Siisal . AL STise ZAL SAL
< Lite 20+ L T IAI> log” ()
€ € €l
With Assumption 2 Plugging the regret bound of Lemma 12 into Lemma 14, using p = 2, ¢ =

L1og(SAL/8)?\ [STi110A c2 = LS[y o2 Alog(SAL/6), 3 = L, ea = LSy o Alog(SAL/6)? /e,

SAL
Por < (1og(5AL/5) STiso A+ Siiio2Alog(SAL/S) e + 10g(SAL/6)*S 1400 /Tt 1+€)A) log* ( : )

SAL
5 (Sal—‘re)A + Sal+e)2A€) IOgS (a;)

and

L SAL\ LSp oA . (SAL
Ok £ 5 (StireoA+ Stig*Ac) 1°g8< e >+ . 10%5( e >

2
(Sf(1+e)AL n STlte) AL) log® (SAL)
~ € *

€2 €d
Thus, the total sample complexity of the algorithm (which is given by C'x plus the sample complexity of case 1) is

ST ogAL S AL SAL
( (1-61-2) + (1+€) +L3Sal+5)2|~’4| 10g8 (65> )

A union bound over the events of adopted lemmas (Lemma 6, Lemma 9, Lemma 6 of (Rosenberg & Mansour, 2021),
Lemma 14, and Lemma 11 without Assumption 2 or Lemma 12 with Assumption 2) yields the result with probability at
least 1 — 239. O
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Layered State Discovery for Incremental Autonomous Exploration

Algorithm 5: Improved Layer-Aware State Discovery (LASD™)

Input: L > 1,e € (0,1],and 6 € (0,1).

Lett <+ 1,0 = {Qj}jzo, z 4+ 2.

while True do

Let K « @,U < &, K' < {s0}, lIx = {75, arandom policy}, N(+,-) <— 0,N(-,-,:) <= 0, nin < 1, k < 0.
for roundr =1,...do

if KUK'| > zthen z + 2IKUK'|, 7 & 1, and return to Line 2.

evi < 1/max{16,>_  , N(s,a)}.

Let g* = argmin ¢, {V;Cyg(so)} where (Qx ¢, Vic.g: g) = VISGO(K, g, evi, N, m) (see Algorithm 4).

if g* does not exist or Vic g« (so) > L then
/* Expand or Terminate */

if ' = @ then return K and Ilx.
Set K —~ KUK, K' =2,U =02.
U +ComputeU (I, Tk, W)'
else if RTEST(IIic, 7y, g™, W) False (see Algorithm 7) then
Nmin < 2nmln-
(N, _) + EXPLORE(K, II)c, N, npin ) (see Algorithm 6).
else
/* Policy evaluation x/
Let T < 0, A <= Npgy(32L, 555, 27ﬂz) e log* (Lr) (defined in Lemma 50).
forj=1,...,\do
k& 1,4 < 1, and reset to s¥ < s by taking action RESET.
while s¥ ;é g* do
Take a¥ = 74+ (sF), and transits to s¥,_,. Increase N(s¥, aF), N(sF,a¥, s% ), and i by 1.
if Y-, ,N(s,a) € Nor (s} € Kand N(s},a}) € M) then return to Line 4 (skip round).
k

b
k
Set 7 & (s’/\’a )

if 7 > Vic g« (so) + €L/2 then return to Line 4 (failure round).

K+ K'U{g}, U« U\{g*}, Uk = U {7y := my} (success round).
Procedure ComputeU (X, Ily, J)

(_,U’) + EXPLORE(X, Iy, 0, 2L log *EA11) (see Algorithm 6).

(N’,_) + EXPLORE(X, Iy, 0, Ny (|X], 4|u' )) where NV is defined in Lemma 4.
Letd ={geU':Vy ,(s0) < L} where (_,Vy ,,m;) = VISGO(X, g, = N, ﬁ).
return U

D. Analysis of Algorithm 5

Notation Define N'(K,p) = {s' ¢ K : P(s'|s,a) > p for some (s,a) € K x A}. Fix any ordering O7" = (s1,...,5n)
of states in S7” such that it can be partitioned into J (defined in Lemma 1) segments with states in the j-th segment belonging
to K5 \ K5_;. For an arbitrary z € N, also define {K} ; };, such that K7 ; = K5 when |K}| < z,and K} ; = {s1,...,5.}
when |K5| > 2. Therefore, K7 , = (s1,..., ) (the first z elements of O}’) or S;* by definition. Define U} = T2r(K7 ).
Clearly, U* C {s' € S:3s € ICZ . a € A P(s'|s,a) > 5+ }, and thus |U}| < 2zAL.

D.1. Proof of Theorem 3

Proof. We condition on the events of Lemma 20, Lemma 28, and Lemma 23, which happen with probability at least
1 — 76. By the events of Lemma 23 and Lemma 20, the output K and IIxx = {7,}exc clearly satisfy the statement.
By Lemma 16, there are at most O(log S_>1 (1+¢) ) trials. Thus, it suffices to bound the number of samples used in each
trial. Define ¢« = log M. Each round in a trial can be classified into one of the following cases: 1) Line 8 is
verified, 2) Line 12 is Verlﬁed, and 3) policy evaluation is performed (Line 16). In case 1), the algorithm terminates

or at least one state is added into X (Line 9). Thus, the number of rounds satisfying case 1) in each trial is at most
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1+ Sf(l +e) by Lemma 23. By Lemma 15 and the update rule of n,;,, the number of rounds satisfying case 2) is of
order O(log(LS7{,,.))). By Lemma 19 and Lemma 17, with probability at least 1 — 84, the total number of rounds

A+ S
L(1+¢€)

satisfying case 3) is of order O(S 2 Aer5). So the total number of rounds in each trial is at most

O(Sal-i-e)FL(l‘Ff)Ab + ST

o
L(1+6)
2 Ael®).

L(14¢€)
L(1+e)

Now it suffices to bound the number of samples collected in a round satisfying each of the cases above in a trial. In a
round satisfying case 1), if the algorithm terminates, then no samples are collected. Otherwise, ComputeU is called,

and (’)(L?’SL_’(IJrE % A1) samples are collected with probability at least 1 — § by Lemma 27 (Line 11 and a union bound
over all trials and rounds). In a round satisfying case 2), with probability at least 1 — 40, (O(LSF(1 toyt 1?) samples are

collected in performing RTEST by Lemma 20 and Lemma 29 (Line 12 and a union bound over all trials and rounds), and
(Q(L?’Sf(1 +€)2AL2) samples are collected in executing EXPLORE by Lemma 15 and Lemma 30. In a round satisfying case
3), with probability at leat 1 — 6, (’)(LSL(IJrE
O(Ld5 /€?) samples are collected by the value of X and the fact that 7+ passes the test in Line 12 (Lemma 29 and a union

bound over all trials and rounds). Thus, the total sample complexity is

1?) samples are collected in performing RTEST similar to that of case 2), and

3
Z [#rounds satisfying case 7] - [#samples in a round satisfying case 4] - ¢
i=1

L
S SL_EHE) 'LgsL_ElJre)QAbg + LSSI_4>(1+E)2AL4 + (SI_,>(1+€)FL(1+5)A + SRHE)QA@ : ( + LSL(IJre ) o2

< LSL(1+) (1+e)A LS 1+5)A
~ €2 €

+ LSS;(1+E)3A> 12

This completes the proof. To prove the second statement, we can simply follow the proof above except that we involve
Lemma 18 instead of Lemma 17 when applying Lemma 19 to bound the total number of rounds satisfying case 3), which
holds with probability at least 1 — 206. O

Lemma 15. With probability at least 1 — 20, if the events of Lemma 23 and Lemma 24 hold, then nmyin
LQS’L(HE) log S7; L(i4e) throughout the execution of Algorithm 5.

~

Proof. In any trial 7, when nyin, > Nj~» (W) (defined in Lemma 3), we have with probability at least 1 — 2T2 s
||Vg7ig* o 2 Vel <201+ V;C g (80)) < 4L in any round such that g* exists and Vic 4+ (s9) < L. This implies that
with probability at least 1 — >_°° >1- 2—2, the condition of Line 12 is always false by Lemma 29, and the value of

r=1 47’ 412r2
Tmin Will no longer change within this trial. A union bound over all trials and noting the update rule of n,,;,, completes the

proof. O

Lemma 16. Conditioned on the event of Lemma 23, we have z < 25;’(1+6) +2and T <1+log, (SL_El+e) + 1) throughout
the execution of Algorithm 5.

Proof. The proof of Lemma 23 shows that s ¢ S;7 L(1+e) will never be added to X', which implies X U K’ C L(l o)
throughtout the execution of Algorithm 5. Thus, when z > S77 Lite T 1, z will not be updated again. Then, the statement is
proved by the update rule of z and 7. O

D.2. Lemmas for Policy Evaluation

Notation Let g, Kp, Vi, Qr, VI be the values of g*, K, Vi ¢+, Qi g+, and Vié,g* in episode k respectively. Denote
by I the number of steps in episode k. Note that I;, < oo with probability 1 by Line 21, and s’}k 41 7# gk only when a
skip round is triggered in episode k. Denote by Fj, the o-algebra of events up to episode k. Define K as the total number
of episodes throughout the execution of Algorithm 5. For any sequence of indicators Z = {14}, and K’ < K, define
Ry 1 = Zﬁl(lk — Vi(s0))1% and Cgr = Zf/l I;.. Define PF = P, k ok In episode k, when sk € K, denote by PF,
Pk, NF, bk the values of Pyr gk ﬁsf,af, nt(sF aF), and b0 (5%, a¥), where P nt, b are used in Algorithm 4 to compute
Vi and [ is the final value of 7 in Algorithm 4; when s¥ ¢ K, define P¥ = I, N¥ = oo, and b¥ = 0. Also define ¢, as the
value of eyy used in Algorithm 4 to compute V.
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Lemma 17. With probability at least 1 — 59, if the events of Lemma 23 and Lemma 24 hold, then in any trial, for any

sequence of indicators T = {1y}, with 1y, € Fj_1, we have Rir 7 S \/SZ1+€)FL(1+E)AL2K/L + LSL_EHE)

2 Au for any

LSy AK'
K' < K, where 1 = log? =200

Proof. Note that by Lemma 42,

K’ K' Iy
Z (I, — Vi(s0)) 1 < Z Z (14 Vi(sipr) = Va(sh)) 1k
k=1 k=1i=1
K' I
522( = PEYVi+ (P} Pk)vk+bk+€k)]—
k=11=1

We bound the sums above separately. By Lemma 55 and ||V, ||, < 2L, with probability at least 1 — 4,

& USL LC LC

K’ K’
kg El(Hs§+l 7131]6)‘/]61]“ 5 kg 51V(Pi’€,Vk) log 5 +L10g T
=11= =11i=

By Lemma 46, K, € S77
probability at least 1 — 4,

K’ Iy K’ Iy
Lra+eV(PEV LS4
D LTI 3 AT A

(1+4e) (Lemma 23), gi € u \ Kr (Lemma 24), Cauchy-Schwarz inequality, and Lemma 40, with

k=1 i=1 =
(N¥ = 0o when s¥ ¢ ), and v/ = log M)
K Iy
S| Stlirolrarod Z Z V(PF, Vi)t + LSy o) A
k=1 i=1

(V' = log 75“1*})140}(/ log(Ck+))

Finally, by Lemma 39 and Lemma 41, with probability at least 1 — 4,

K’ Iy

K' I
3 Z O + €)1k S (| ST ADD S VPR, Vi) + LS, AL (' = log Jla 20
k=1 i=1 k=1 i=1
Plugging these back, we have with probability at least 1 — 24,

K’ K’ I

DUk =Vils0) Lk S §| STisoTraraA Y D VPE Vi) + LS, o* A

k=1 k=1 i=1

S \/STso Laro ALK + LSl " A, @

where ./ = log M log(Ck-) and in the last step we apply Lemma 36. Now assuming 1; = 1 for all k and

solving a “quadratic” inequality (Lemma 47) w.r.t. C'x/, we have

K/
CK, S Z Vk SO + LSL(1+6)2AL/ S LK/ + LSL(1+5 A[,/. ([/ — 10g2 M)
k=1
Plugging this back to Eq. (7) completes the proof. 0

Lemma 18. With Assumption 2, with probability at least 1 — 120, if the events of Lemma 28, Lemma 16, Lemma 25,
and Lemma 26 hold, in any trial, for any sequence of indicators T = {1y}, with 1, € Fj_1, we have Ry 7 <

L\ /SttioAK L+ LST 4 o 2 Au for any K' < K, where 1 = log® M.
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Proof. Note that with Assumption 2 and by Lemma 25 and Lemma 26, in any episode, K = K7 for some j < zand g* € U.

Thus by Lemma 54 and a union bound over {Vi¢. ' }jefz) gerss and (s,a) € Spiy .y X A, we have with probability at least
D B z €

1-46,

V(PF, V)W LY

k pk *
where ¢/ 1ogM Thus, with probability at least 1 — &,

K’ K Iy
> Ik = Vi(s0)) ZZ L+ Vilsty) = Va(sh)) 1
k=1 k=1 i=1

K I
<3 ((Hs;_c+ — PMV; + (PF Pk)vk+bk+ek)1 (Lemma 42)

k=11:=1

LC LO &

< V(PF, Vi) log ==& + Llog =& — PFYVi1y, + (PF — PF)(Vi, — V)1, + b))
Nklil(zk)gé 2::2:: WLy + (P = PP)(Vie = Vi)l +b7)

where the last step is by Lemma 55 and Lemma 41. Note that by Eq. (8), Lemma 46, and ||V}*|| ., < 2L + 1 by Lemma 28
and Lemma 44, with probability at least 1 — 24,

K' I
> ((PF = POV, + (PF = PF)(Vie = Vi) 1 + b))
k=11=1
K' I k k %Y,/ ’
V(PF, Vi PratoV(PE Ve = VI LUpaqet k G AC s
S \/ NE + NE + NE +b; (' =log M)
k=1 1i=1 z z z
K’ Iy K’ Iy
Sl ST AD Y VIPE VI + 4| S0 A D V(PF Vi = Vi + LSy 40 AL
k=11i=1 k=11i=1

/ 2 S;1+e AC
(t/ = log? “LUE—I)

where the last step is by Lemma 40, Cauchy-Schwarz inequality, VAR[X + Y| < 2(VAR[X] 4+ VAR[Y]), and Lemma 39.

Plugging this back, applying Lemma 37 with Lemma 2 on {Vi&, g}jG[Z] geUs\K? (where all V;* lies in), Lemma 25, and
J El ’ z

Lemma 26, and then applying AM-GM inequality, we have with probability at least 1 — 84,

K’ K’ Iy
> (I = Vi(s0) 1 < STi40A SN V(PE Vi + LS[y o A
k=1 k=11i=1

S/ LSt o ACK Y + LST1 40 2A/, (Lemma 36)

LS7 .o AC s . . s .
2 L0 K Now assuming 1, = 1 for all & and solving a “quadratic” inequality (Lemma 47), we have

where ./ = log

KI
Crr D Vilso) + LSpjy 1o AV < LK' + LS, o2 Al (= log? Porusa 200,
k=1
Plugging this back completes the proof. O

Lemma 19. In any trial, with probability at least 1 — 89, if for any sequence of indicators T = {1}, with 1, € Fj_1, we
A
have R 1 < c14/ K" 1ogP (esK') + cologf (es K') with ¢1, ¢ > 1, and ¢3 = %for any K’ < K, then the total

2
number of rounds with at least one epsiode is of order O(SL_>(1+5)AL4 + %LT’H + cpel? /L), where 1 = log <5<,
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Proof. Forany R’ > 1, let K’ be the total number of episodes in the first R’ rounds. Denote by 7 the total number of
rounds with at least one episode, and r; the number of failure rounds in the first R’ rounds. First note that by V4 (sg) < L
(Line 8) and setting 1;, = 1, the regret guarantee in the assumption gives Crr < LK'+c11/ K’ logP (c3K')+calogP (cs K'),
which gives log(Cx+) < log(cicaczK'). Moreover, K/ < st log* Ll by the value of A in each round (Line 16). Thus,

~ €

log(Cgr) < log ©22530 and log(c3 K') < log “e25amet,

Fixed a trial, denote by V., 7, and g, the values of Vic .g*» Tg~, and g* used for policy evaluation in round r respectively. It is
clear that in the first R’ rounds, the number of success round is at most 577 (146) by Lemma 23, and the number of skip rounds
is at most (Q(SJ.?(1 +€)A log(Ck-)) since we have a skip round only when the total number of steps or the number of visits

of some state-action pair in /C x A is doubled. Therefore, 7o S 75 + 5L(1+5)A log(Crr) Sy + SL(H_E)Alog GLezcali,

. It remains to bound .
Define W = {r : V" (sg) > V;(s0)}. Note that W 1ncludes all failure rounds with probablllty at least 1 — §, since when
VI (s0) < V;(s0) and r is not a skip round, by Lemma 50 and the value of A in round r we have 7 < V,.(s9) 4+ €L/2 in
round r. Define Z = {1}, such that 1, = I{r € W} € Fj,_; for any episode k in round r, the regret within these rounds

satisfies Ryr 7 S 4, /1y + ST A+ co.

(‘1(‘2(‘3 f

By Lemma 47, we have r S ry + SL_’(lJré Alog w Now define «(r;) = log

(1+¢)

Ric 1 S erKTog (e K7) + e2log(esK') 5 L [y + Sy Al ilr)PH + eaulry)?
Gu(rpptt | LSp o Alry)
+
Le €

< L\ frpulryyrd +
€

+ cou(ry)P. (AM-GM inequality)

For each failure round r, let C' be the total cost within this round and m the number of episodes within this round. By

definition, regret within this round satisfies C' — mVic g« (s0) > C — AV ¢= (s0) = AT — Vi ¢+ (50)) > 2l = Q(L/e).

By Lemma 51, with probability at least 1 — §, for each success and skip round r in W (V;;r (s0) > Vi-(s0)),

’

u u —1
= - c . LA L Lr
T 2 _ 4
Z (17 — ‘/T(So)) Z Z (Ij — Vgr (50)) — L Z —L\F)\log T = — c —lo og 66
j=ur J=ur
where {u,, ..., u..} are the episodes in round r, and we lower bound the regret in the last episode by Q2(—L) since the last

trajectory in a skipped round is truncated. Since there are at most (’)(S A) these rounds, we have

L(1+e€)

Lry LS?(He)AI g Lry <a
€ € €

Au(rp)rt LSL(1+E)AL(T'J£)
Le €

rpu(ry)Ptt + + cou(ry)”.

This gives 7y < S77 L{1+e) AL —|— LP+4 +coer? /L, where © = log €192, Setting R’ to be the total number rounds completes
the proof. O

Lemma 20. With probability at least 1 — 26, throughout the execution of Algorithm 5, for each g € K we have Vg%g (s0) <
L( Vv, < 32L.

< 32L
for each g € K, since 7, passes the test in Line 12. Moreover, by the definition of success round, value of A, and L%omma 50,

with probability at least 1 — 4, for each g € K, in the round that g is added to K, we have Vfg (s0) = Vg ?(s0) < T+ % <
Vic,g(s0) + Le < L(1 +¢). O

Proof. By Lemma 29 and a union bound over all trials and rounds, with probability at least 1 — &, we have HVgﬁq

D.3. Properties of the sets built by Algorithm 5

Lemma 21 (Restricted Optimism). With probability at least 1 — § over the randomness of Algorithm 5, at any trial and any
round, after executing Line 7, if K% ; C K for some j € [z], then Vic 4(s) < V&, (s) forany s € Sand g € K% ;1 \ K.
? z,5° )

< L + 1 (Lemma 44),
with probability at least 1 — W‘s(ﬂ)?, for any status of N and { > 0, we have V(s) < V&, _,g( s) for all s € S where

Proof. Forany 7" > 1,2 > 1,j € [2'], g € K%, ;41 \ K}, ;, by Lemma 2 and HV’C

2.5’ 19
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LV, = VISGO(IC; 9,6 N, W). By a union bound, all events above hold simultaneously with probability
at least 1 — 9.

At any trial 7 and round, after executing Line 7, let (_, Vicx  g,_) = VISGO(K? ;, g, evi, N, ") (no need to compute

explicitly) for any j € [z], and g € K ;. ; \ K7 ;, where ¢’ = ﬁ The union bound above implies that Vic:  4(s) <

Ve 4(s) forany s € S. Then by Lemma 5, we also have Vic 4(s) < V&, () if KZ; € K (Vic g is computed in
z,57 2,37 Z,7

Line 7). O

Lemma 22. For a given trial (1, z), denote by K, the set K at the end of each round r. With probability at least 1 — 20, for
any j > 1 and round r > 1 in any trial in which K. is updated or returned (i.e., Line 8 is executed) and IC,._1 O IC;‘-, we
have IC;+1 C K,.

Proof. In this lemma we denote by U, the value of U at the end of round r. Define the event E := {for any trial, Vrr >
1 in which I, is updated : T7,(K,.) \ K- C U,-}. By Lemma 28, it holds with probability at least 1 — §. Let us carry out the
proof conditioned on E holding.

In any trial, take some round r such that Line 8 is executed and /C,.—1 D IC;. Let ' < r be the last round where K, was
updated (and thus U/, was created). Note that IC,» = K,._1 D IC]*. Then, event E' and the definition of the sets (IC]*) ; directly
imply that K7 | = ’TL(ICJ*) C T (Ky) €U, UK, Since K, can only be formed by adding states in U, to K., and the
union of these sets contains K5, 1, if K7 ;. € K, it must be that there exists g € U1 N K% ;14 s.t. Vie, , 4(s0) > L.
However, Lemma 21, which holds with probability 1 — 4, implies that, at any round 7 > 1, if K7 C K1 (which implies
that z > [K}] and K% = K7 ; by Line 5), then Vi, , 4(s0) < V,é* (s0) < Lforany g € K ;. \ K;—1. Thisis a

contradiction, which implies that Ur—1 N K% ;41 = 0 and, thus, all States in K%, ;1 must have been added to K,.. Moreover,
since a new trial is not triggered in round r, by Line 5, we have z > |K% ; ;| and K} ;. = K. This completes the
proof. O

Lemma 23. For a given trial (1, z), denote by K, the set K at the end of each round r inside the trial. With probability at
least 1 — 49, at any trial (1, z), we have IC,. C 877 for any round r, and S;7 C K, if the algorithm terminates at round
T.

L(1+c€)

Proof. Fix any trial (7, z). Clearly, £; C S7/ L{1+e)" To prove the first statement, consider a round r > 1 and suppose
K, CS;7) L(+e) . If, in this round, the algorithm selects a goal g* € U \ SL_El te)» Tg+ passes the test of Line 12, and a skip
round is not triggered, then we show that the “failure test” in Line 23 is triggered.

Since 74+ passed the test of Line 12, we have HVgﬂf’* lloo < 32L with probability at least 1 — § by Lemma 29 and a union
bound over all trials and rounds. Combining this with Lemma 50 and the value of A (Line 16) (again by a union bound
over all trials and rounds), we have 7 > V;g "(s0) — Le/2 with probability at least 1 — 26. By assumption on g* and since
T+ is restricted on K, C S77;, ), we have Vo (s0) > Vi, g+ (80) > V§?<1+e>’9* (so) > L(1 + €), which implies that
T>L(1+¢/ 2) > Vi, g+ (50) + €L/2, where the last inequality is from the goal-selection rule. Therefore, the failure test
triggers and g* is not added to K. Overall, any g ¢ S;7 will never be added to X or K’ throughout the execution of
Algorithm 5.

(1+4¢€)

To prove the second statement, let us consider any trial (7, z) where the algorithm stops. Clearly, K C K; at the end
of round » = 1 in this last trial. Then, if r is the round where the algorithm terminates, and IC;» C K,_; for some
7 > 1, we have IC; +1 € K, with probability at least 1 — 20 by Lemma 22. Moreover, since K' = & in round r, we have
K3+ € Kr—1 = K. By arecursive application of Lemma 22, we have K7 C ;. for any j > 1 (note that K' = @ at the
beginning of round 7). Lemma 1 then implies the statement. O

Lemma 24. Conditioned on the events of Lemma 28 and Lemma 23, U C U at the beginning of any round in any trial.

Proof. This is clearly true at the beginning of the first round of any trial since {/ = &. Then by the events of Lemma 28 and
Lemma 23, U C 721, (K) \ K C U every time after executing Line 11. Moreover, we only remove elements from U except
when executing Line 11. This completes the proof. O
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Lemma 25. Denote by K, the set K at the end of each round r. With Assumption 2, with probability at least 1 — 86 over
the randomness of Algorithm 5, we have that K, = K5 for some j € [S7’] at any round r and, K., = S if the algorithm
terminates at round 7.

Proof. By Lemma 23, with probability at least 1 — 49, we have S;7 C K C SL_E1 4o if the algorithm terminates. By
Remark 1, K = S;’. Thus, it suffices to show that at any trial X = ICJ*- for some j < S7.

The algorithm is such that KT = K1 = {so}. Suppose at the end of a round r we have that XC,, = K% for some j > 1. By
Lemma 22, with probability at least 1 — 24, if the condition of Line 8 is verified the first time in some round 7’ > r, then we
must have ICJ* 41 C IC,. If we also have KC,» C IC; 41, then the statement is proved.

In any round r such that K = K7, g* € U \ K7, ;, 7y passes the test of Line 12, and a skip round is not triggered, by
Lemma 50, the value of A\, and Lemma 29 (applying a union bound over all trials and rounds), we have 7 > V;ig* (so)—Le/2
with probability at least 1 — 26. By assumption on g* and since 7+ is restricted on K C K7, we have V;i"* (s0) >
Vi g+ (s0) > V,é;_’g* (s0) > L(1+ ¢€), which implies that 7 > L(1 + €/2) > Vi 4« (s0) + €L /2, where the last inequality is
from the goal-selection rule. Therefore, the failure test triggers and g* is not added to X’ or K. This proves K C K3y in
round 7.

Lemma 26. With Assumption 2, conditioned on the events of Lemma 28 and Lemma 25, in any trial, U C U} at the
beginning of any round.

Proof. By Lemma 25, in any trial, we have K = K7 C K7, for some j < z at the end of any round. Then by Lemma 28,
we have U C To1,(K) \ KK C UZ every time Line 11 is executed. O

D.4. Properties of U/

Given X, IIxy = {7y} 4cx and 0 as input of ComputeU, let Dy and D; be the random samples collected respectively in
Line 26 and Line 27. Define

Eo(Dy) = {N(X, i) Z U/} ,
E1(Do, Dy) = {3g € U', Vi 4(s0) > V3 ,(s0)} ,
52(D07D1) = {Hg S Z/{’, Vgﬁg (S) > QV‘;/YQ(S)} .

In this section we use [E and P to denote expectation and probability w.r.t. these two random generation processes.
Lemma 27. With any X, {ry € II(X)}gex such that ||Vy* HOO = O(L), and § € (0,1) as input, ComputeU ensures

P(TL(X)\X CUCTon(X)\X)>1-0.
. . . . A
With the same probability, the sample complexity of ComputeU is bounded by O(L?|X|? Alog? %)

Proof. Denote by {s; s.4}i,s,q the set of next state samples collected in Line 26 for each (s, a). Let u = 2L log(4LA|X|/0),
then

P (E(Dyg)) = P (Els’ eN(X i),V(s,a) EXXANi€ [ :SisaF s’)

"2L

< Z P(V(s,a) € X x A,VZ S [/J,} : Sis.a 7& 8/)

SEN(X,55)
> I[I I[a-PElsa)< > (1-P(sa)"

s/EN(Xﬂﬁ) (s,a)EX X Ai€[u] S'EN(X,ﬁ

(8,a such that P(s'|s,a) > ﬁ)
1\* S

< 11— — < —— < 2. X 13 < LAY
S < 2L) s 2 izax] =% (N(X, 55)| < 2LAJX)

Ve veX @
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Algorithm 6: EXPLORE

Input: States X, policies IT = {7, },cx such that ||V | = O(L), counters n, target value .
Snext — J.
for (z,a) € X x Ado
while n(z,a) < 7 do
Reset to s( and execute 7, until reaching x.

Execute action a, observe 2’ ~ P, ,, and update n(z, a, z’) hagl
if ZC/ ¢ X then Snext — Snext U {x/}
return n and S,.,;.

Let N; be defined as in Lemma 4. Then, from Lemma 2 and Lemma 4, by using 6/(4|U’
P (&1(Do, D1)|Do) < 6/4 and P (E3(Dy, D1)| Do) < 6/4. Then, we can write that

), we have that

]P(S()(Do) U gl(Do,Dl) U 52(D07D1)) < ]P)(So(’Do)) + P(g (Do,Dl) U 52(D07D1))

<6/24 ) P(Dy)P(£1(Do, D) U E(Do, D) Do) = 6
Do

<5/2,¥Do
We then carry out the proof under event E = —(&1(Dy) U &1 (Do, D1) U E2(Dy, D1)) which hold with probability 1 — 4.

Since 7, is restricted on X', we have that V3  (so) < V, “(s0) by the definition of optimal policy. We have that, for any

geU,Vz (s0) < V,?(s0) < 2V ,(s0) < 2L by the definition of /. This implies thatid C Tor,(X) NU' C Tor,(X)\ X
since Y’ N X = () by definition.

Finally, note that, by the definition of 77 (&) and the event —&, T.(X) \ X C N (X, 3 L) C U’ w.h.p. Furthermore,
under the event =& (Do, D1), we have that for any g € U', if V¥ (so) < L, then Vy  (s0) < Vg (so) < L. Thus,
To(X)\ X CU.

Sample complexity. Since ||V, | = O(L), by Lemma 30 with 7 = p and N; (| X, 4|u' ) with probability at least
1 — 4, the sample complexity is O(L|X|An' log IXI#)’ where n’ = p+ Ny (|X],8/(4|U']). Given that Ny (|X], 4|u/

O(L?|X|1log(lU']|X|/5)) (see Lemma 4), we have n’ = O(L?|X|log(L|X|A/§)). Plugging this back, the sample
complexity is O(L?|X[>Alog? LIX14), O

Lemma 28. With probability at least 1 — & over the randomness of Algorithm 5, at any trial and round, Tr,(K)\ K CU C
Tor(K) \ K after executing Line 11 (if it is executed).

Proof. This is simply by Lemma 27 and the choice of confidence level in Line 11 in each trial and round. O

D.5. RTEST and EXPLORE

Here we show auxiliary algorithms and related lemmas used in Algorithm 5.

Lemma 29. Forany X C S, {my}4ecx, policy T € II(X), goal state g € S, and 6 € (0, 1), we have
P (RTEST(X, {mg}gex,m, 9,0) = TRUE| ||V]|| < 4L) >1—9,

P (RTEST(X, {mg}gex,m 9,6) = TRUE = ||V < 32L) >1-—0.

Moreover, if ||V;“’HOO = O(L) for any g € X, then with probability at least 1 — 4, the sample complexity is
O(L|X|log? 11y,

Proof. Let {1;};c[s) be rollouts of length at most I generated running 7 from state s, and denote by pl—?g(s) the probability
of reaching the goal g in at most [ steps by following policy 7 starting from s. Let 1(n) = 1 if the goal has been reached in
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Algorithm 7: RTEST
Input: reaching policy {7 }scx, test policy m € II(X'), goal state g, and failure probability 4.
Letn = 20 log 2|X‘
for s € X do
is < 0.
forj=1,...,ndo
Reset to sg and execute 7, until s is reached.
Execute 7 until g is reached or 8L steps is taken.

if g is reached then i |
if is/n < 1% then return FALSE.
return TRUE

rollout 7, zero otherwise. X; = 14(n;) — pj (s) is a martingale difference sequence (|.X;| < 1) and by Azuma’s inequality

(see Lemma 53), setting n = 210 log(m ‘) we have

n

1
n |2

P (Vs cX,
i=1

1
<16>>1—5. ©))

D IF[|[VT]| L, < 4L, by Markov’s inequality, pT_(s) > 1/2 when [ = SL. This gives & = 3=, 21 > p7(s) — > |

?
for any s € X, and thus the algorithm returns TRUE on termination.

@“'

2) If the output 1s TRUE, then 171 > 16 for all s € X. By (9), we have thatp (s) > is _ 1—16 > %. Thus for any s € &,
V7(s) <8L+ 3 HVg’THOO, which gives HVg”HOO <1+48L+2 HV;‘HOO by 7 € TI(X). This implies HVQ”HOO < 32L.

3

Sample complexity. If ||V | = O(L) for any s € X, by Lemma 52, with probability 1 — ¢, all trajectories generated
by 7 for some s € X reaches state s in O(L log(2n|X|/J)) steps. Noting that we generate n trajectories for each s € X
completes the proof. O

Lemma 30. Forany X C S, Il = {7, },cx, counter n, threshold i > 1, and § € (0, 1), with probability at least 1 — 6,
the sample complexity of EXPLORE(X 11, n, 71) is O(L|X|An log ‘X‘A")

Proof. For any x € X, since |V,[= ||, = O(L), by Lemma 52, with probability 1 — ¢’ it takes O(L log(1/4")) steps to
reach the goal state following 7, from any s € X. Therefore, by setting §' = ‘X‘%, with probability 1 — 4, all trajectories
reach the desired goal state within O(L log(1/¢")) steps. Given that there are at most | X'| A7 trajectories, with probability at
least 1 — §, the total sample complexity is O(L|X|An log ‘X‘%). O
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E. Analysis of Policy Consolidation

In this section, we bound the sample complexity of Algorithm 2.

Notation We assume that all episodes lie in one (artificial) trial. Let g, Kr, Vi V¥ be the values of g*, I\ {g*}, V, and
Vg 4+ in episode k respectively. Denote by I the number of steps in episode k. Note that [}, < co with probability 1 by
Line 13, and s’}'k 41 7 gk only when a skip round is triggered in episode k. Denote by F}, the o-algebra of events up to
episode k. Define K as the total number of episodes throughout the execution of Algorithm 2. For any K’ < K, define
Ry = ZkK/l(Ik — Vi(s0)) and Cr = Zfll I.. Define P¥ = P,. . In episode k, when s* € K, denote by P¥, Pk,

é (l

N7, bf the values of Py ,x, P, kobs (57, af), and 0V (sF, af ), where P, nt, b®) are used in Algorithm 4 to compute Vj,

70 Y 190 [t

and ! is the final value of ¢ in Algorlthm 4; when s¥ ¢ K, define P = I, N¥ = oo, and b} = 0. Also define ¢, as the
value of eyy used in Algorithm 4 to compute V. In thls section, L C 877 L(1+e) is an input of Algorlthm 2 and thus does not
have randomness.

Proof of Theorem 4. By Lemma 32, the output policies {7}, clearly satisfies the statement. Define ¢ = log (W

It suffices to bound the number of samples collected in Line 2 and policy evaluation. With probability at least 1 — J, the

number of samples collected in Line 2 is of order (’)(L35L_’(1 +6)2AL2) by Lemma 30 and Lemma 4. With probability at

least 1 — 169, by Lemma 31 and Lemma 33 (¢; = , /LSL_EHE)A, Cco = LSL(lJrE 24, and p = 2), the number of samples

LSt 1o At® i LSt 02 A
€2 €

collected in policy evaluation is of order O ( ) . Combining all cases completes the proof. [J

Lemma 31. With probability at least 1 — 49, if Rxr < ¢1 \/Zkfil Vie(s0) logP (cs K') + co logP (e3 K') for any K/ > 1

8
LS, LSy oAl | 2,08

. p+4
with c¢i,co > 1 and c3 = % then Cx < 4 + 95—+ 02: , where | = log <625,

Proof. For any R’ > 1, let K’ be the total number of episodes in the first R’ rounds. Let Zx/ = Zﬁl Vie(so). First
note that the regret gives Cxr S Zgr + c1/Zk logP (c3K') + c2logP (c3K') and thus log(Cr) < log(eicacs Zkr).
By K’ < Cg/ and solving a quadratlc inequality (Lemma 47), we have Cxr < Zg + (¢ + o) logP (creacs Zkr).
Denote by g,, V., @, the value of g%, V, and 7 in round r respectively. For each failure round r, let C be the total
cost within this round and m the number of episodes within this round. By definition, regret within this round satisfies
C — mV,(s0) > C — AVi(s0) = AT — Vi(so)) > 2¥=l50) — (¥, (s0)/e). For each success and skip round , by
Lemma 35, Lemma 34, Lemma 51, and the value of A\, we have

wu! ul —1
: _ : - LAN_ L, 4Lr_ L, ,LCx
jzzu (IJ—V;(S())) ijzu ([j_‘/;?r (80)) L> L\/’]og 7 Z_*l 0og 5 ;log Se
where {u,, ..., u,} are the episodes in round r, and we lower bound the regret in the last episode by Q(—L) since the last

trajectory in a skipped round is truncated. Denote by R ; the total number of failure rounds within the first R’ rounds. By
the assumption in Algorithm 2 that £ C S ﬁl (14+¢)° in the first R’ rounds, the number of success round is at most Sf(l +o) and

the number of skip rounds is at most O(SL(l—‘rE)A log(C'x+)). Since there are at most O(S7, ;) Alog(Ck)) these rounds,

LC e/ _
in each round there are at most (’)(Ogeizﬁ) episodes (Line 7), and V;.(sg) < 2L in any round r by Lemma 35, we have

ZTeRf V (30) 10g4 LCK/ Ls—>

5 cicacsZgr
L(1+eA108 de
2

2
5 cicacs Ly
Alog® =221

2

ZK/ ,S
€

Erer, mnog‘*% s
2

€

< (1+4€)

€ €

By Lemma 47, this gives

X rem, Veloo) 08" (e Sy, Vr(s0) | LSTir0 418" (e Crer, Vels0)

2 € ’

ZK/ S
€
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cicacs E"'ERf Vi (s0) A = cieac
and log(Zk+) < log( 5 ) = log(eq ZTeRf V;(s0)), where ¢, = <522, Therefore, the regret upper and

lower bound and log(K") < log(Ck/) < log(cieacsZx) < log(ey ZTeRf V,(s0)) give

ZreRf ‘77‘(80) _ LSLTZl+6)A

€ €

LCg
log" 5? S eV Zir logh (esK') + ¢y logP (c3 K')

S &= Z Vi (s0) + LS4 0Alog [ ca Z Vi (s0) log"** | es Z Vi(so) | + c2log? Z Vi (s0)
€ T‘ERf T‘ERf T‘ERf R

Applying Lemma 47 gives ZreRf Vi(so) < LS]?(1+6)Alog4(c4) + Aloght(cs) + coelogP(cy) and
log(>°, R, Vi (s0)) < log(cs). Now by the regret bound and AM-GM inequality, we have

Cr' S Zgr 4+ c1/ Zgr logh (esK') + ez logP (esK') < Zger + (C% + ¢2) logP (c4)
>rer, Vil(so)log(caZx) . LST1, o Alog®(caZk)

S = = + (cf + c2) log”(ca)
< LSL_>(1+E)A10g8(C4) A logP*®(cs)  caloglt(cy)
N 5 + 5 + .
€ € €
Setting R’ to be the total number of rounds, we have K’ = K and the proof completes. O

Lemma 32. With probability at least 1 — 40, we have Vg%g (s0) < Vi ,(s0)(1 + €) for g € K throughout the execution of
Algorithm 2.

Proof. By Lemma 34 and Lemma 44, with probability at least 1 — 2§, we have Vgﬁ (s) < 2VE ,o(s) < 4VE .(s0) <
min{8L, 4V (s9)} for any s € S throughout the execution. For any g € K, at the round that 7, is determined (where
g* = g), by Lemma 50, value of ) and definition of success round, V;* (sq) = V% (s0) < T+355 ||V% || < T+ V%(so) <
Viso)(1+ 5)+ in(so). This gives Vfg(so) t2 V(so) (1+¢€)Vi ,(s0) by V(so) < Vi 4(s0) (Lemma 35) and

€ (0,1]. O

Lemma 33. With probability at least 1 — 126, for any K' < K, we have R, < +/LS7 A Kzl Vi(so)t +
L(1+e) k=1

. 9 9 LS, AK'
LSL(1+5) Au, where + = log ——,

Proof. By Lemma 54 and a union bound on {V}¢ _},cx and (s, a) € K x A, with probability at least 1 — 4§, (P} — P})V;» <

R / . : . STise ACK)
WN’ig’f) + & forany k € [K'] and i € [I;] (note that this holds even if s¥ ¢ K), where // = log =H0+9—1

Moreover, with probability at least 1 — 4,

K’ K I

Z(Ik*Vk(So ZZ 1+ Vi(sia) — Vi(st))

k=1 k=1i=1
K I

< Z ((Hsﬁl PMYVi + (PF — PEYV; +0F + ek> (Lemma 42)
k=11i=1

LCK

K’ Iy K' I
g\l V(Pf,Vk)logLC&K/JrZ ((PF — PFYVE + (PF — BF)(Vi = Vi) + b5 + Llog
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where the last step is by Lemma 41 and Lemma 55. Now note that with probability at least 1 — 24,

K I
SN ((PF = PRV + (PF = PF)(Vie — Vi) + bf)
k=1 1=1
K I )L’ FL(1+6)V(Pika Vi = Vi) Trareold k
> - N + b
k=11=1 [ i
(Lemma 46, ||V || < 2L+ 1,1/ = log “Eux9 4%
K' Iy K' Iy
SNy Z ZV(Pf, Vi)' + 4| Stisol oA Z prf, Vi = Vi + LSL o AL,
k=1 1i1=1 k=1 1i1=1

where in the last step ¢/ = log® SraroA%x and we apply Lemma 40, Cauchy-Schwarz inequality, Lemma 39, and

VAR[X + Y] < 2(VAR[X] + VAR[Y]). Thus, by Lemma 37 with Lemma 35 and AM-GM inquality, with probability at
least 1 — 84, we continue with

K’ Ig
Crr = Vilso) S STisoA >N V(PE VY + LS5y o AV
k=1 1i=1
S/ LSLiaioACK Y + LS4 o2 AL, (Lemma 36)

9 LST} 40 ACK:
5

where ¢/ = log . Solving a “quadratic” inequality w.r.t C'x+ (Lemma 47), we have Cxr < ZkK:/1 Vie(so) +

LSy, AK'
LS—> 2A1 2 L(lgs)

L(i+e) . Plugging this back to the last inequality above completes the proof. O

Lemma 34. With probability at least 1 — 26, throughout the execution of Algorithm 2, Vf* (8) <2VE . (s) forany s € S.

Proof. By Lemma 35, value of v (Line 2), and applying Lemma 4 with X = K \ {g} for each ¢ € K, we have
Vi (s) <2V(s) <2V¢ . (s) forall s € S. O

Lemma 35. With probability at least 1 — 6, throughout the execution of Algorithm 2, ‘7(8) < Vg g (s) forany s € S.

Proof. This is simply by the value of V in each round and applying Lemma 2 on {VE g }oex- O

F. Lemmas for Policy Evaluation

In this section, we present a set of lemmas related to regret analysis shared among Algorithm 1, Algorithm 5, and Algorithm 2.
In Algorithm 5, a trial is indexed by 7, and each trial corresponds to a value of z estimating Sf(l +e) (Line 1). In Algorithm 1
and Algorithm 2, we assume the whole learning procedure lies in an artificial trial. Note that when lemmas below are
involved, we have b¥ = 0, N¥ = oo, and P} = I, when s¥ ¢ KCj,.

Lemma 36. Let G be the goal set such that S?(1+ e G C S. In any trial, with probability at least 1 —20, for any K' € [K],
lfle C Sttt and gi € G\ Ky for any k € [K'], then fo:/l Zfil V(PF, Vi) S LOK + L2FL(1+E)SL_’(1+E)AL, where
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Proof. Note that ||V}|| ., < 2L by the stopping condition (Line 1) of Algorithm 4, and with probability at least 1 — 4,

K' Iy K I
DY (i(sH)? = (PFVR)?) SLY D (Vils) — PfVi)y (a® —b* < (a +b)(a - b)4 fora,b > 0)
k=1 1=1 k=1 1i=1
K 1
< LZZ (1 + (PF — PFYV, + NF + ek) (Lemma 42)
k=11=1 +
K L TraaoV(PE VY LT a0l
< LCg' + LZZ \/ LO+ )l\ik i Vi) + LliIllj ) + €, (Lemma 46 and N¥ = oo when s¥ ¢ K},)
k=11=1 ? ?
K’ Ik
S LOks + Ly | TS 404 Z ZV( PF Vi)t 1og(Cier) + LT (14)ST1 4.0 At log(Cer),
k=1 1=1

where /) = log(|g|AC’ Kk+/0), and the last step is by Cauchy- Schwarz inequality, Lemma 40, and Lemma 41. Now let

Zier = Sor Ik V(PF, V). Applying Lemma 38 and Zk Vi(sh L) S LQSL_EIJr A (this is because Vi (s§ )
is non-zero only in sk1p rounds), we have with probability a least 1 — 4,

Zrr < LOgr + L\/FL(HE)S?(HE)AZK/L + LT 1140/ ST1 40 Al

where ¢ = O(log(|G|ALCk/d)1og(Ck-)). Solving a quadratic inequality completes w.r.t. Zx- the proof. O

Lemma 37. In any trial, with probability at least 1 — 50, for any K’ € [K]if 1) {V] }re[x) C V where V is determined
is upper bounded by polynomials of S?(l+€), and |V, = O(L) forany V €V, 2)
Vi(s) < Vii(s) forany k € [K'] and s € S, 3) Ki, € Sp{y ) forany k € [K'), and 4) g). € U\ Ky, for any k € [K'), then

SE S VP Ve -1 5L\/531+6)A2,§;’1 S0 V(PE Vi) +L2S 4 o Al where = log? ZoE10 20K

Proof. First note that

K' I
DD ((VE(s) = Vi(sh)? = (PF(VE = Vi))?)
k=1i=1
K' Iy
SLY Y (VE(sh) = Vil(s) — PFVE + PFVi) ¢
k=1 1i=1
(Vi(s) < V¥(s) forall s and a® — b < (a + b)(a — b)4 fora,b > 0)
K' I
SLY Y (14 PPV = Vi(sh))4 (ViE(sF) <14 PFVY)
k=1 1i1=1

Let P ,(s') = NN(f’(i:ZI)) . By Lemma 54, with probability at least 1 — 6, for any (s, a) € S, ) x A, V € V, and status of
counter N:

_ V(Pya, V) . L
R N(s,a) N(s,a)’

(10)

43



Layered State Discovery for Incremental Autonomous Exploration

where ./ = log L(l“i)ACK . By Lemma 42, with probability at least 1 — 24, we continue with
/ k; ~
< LZ > ((BF = POV + (PF = PF)(Vie = Vi) +bF + i)+
k=11i=1
K/
(PF V LroasoV(PE Ve =V TrasolLd
LZ \/ ) +\/ (o) NF ) + (;k) + 05 + e
k=11:=1 7 i
(Eq. (10), Lemma 46, conditions 3) and 4), ./ = log M)
K' Iy K' I
YA NEZS) 35 SN RATRINESSI ) I R /aT Ny
k=11i=1 k=11i=1

where in the last step ¢/ = log? M and we apply VAR[X; + X5] < VAR[X}] + VAR[X3], Cauchy-Schwarz
inequality, Lemma 40, Lemma 41, and Lemma 39. Then applying Lemma 38 with ||V;* — Vi|| .. < L and solving a

quadratic inequality w.r.t. ZkK:,I Zfi L V(PF, V¥ — V), we have with probability at least 1 — §,

’

Iy
DD VPRV - V)

k=1i=1
K' I
* LST1 40 ACK
SO VR (h) = Valsh o)) + Ly [ STieaA Y D V(PE VI + LPSii1,0 A (/) = log? —Hs—I0)
= k=1 =1
The proof is completed by noting that V*(¢g) = Vi(g) = 0 and Zszll H{s’fﬁl # 9} S St1104- O

Lemma 38. Let K € N and {V}.}rc|k) be a sequence of value functions with Vi, € [0, BJ® for B > 0. With probability at
least 1 — 6, forany K' € [K],

K’ K' I

/ k

ZZVP Vi) Z (sE )+ DD (Ve(sh)? = (PFW)?) + B,

k=1i=1 k=1i=1
where . = log(BCk /9).
Proof. We decompose the sum as follows:
K’ Iy K’ Iy K’ Iy K’ Iy
SN vk v ZZ (PFVE? = Vi(sh)?) + D00 (Vilsk ) = Va(sh)?) + D0 (Vi(sh)? — (PFVR)?)
k=11i=1 k=11i=1 k=11i=1 k=11i=1

For the first term, by Lemma 55, Lemma 48, and I}, < oo for any k € [K] by the skip-round condition, with probability at
least 1 — 0, for all K’ € [K],

K' I K’ Iy
SO (PR = Vilst)?) S 4| D1 D VIPE, (Vi)?)e + B
k=1 1=1 k=11i=1
K’ Iy
> D V(P Vi) + B2,
k=1 1=1

where « = O(log(BCk-/§)). The second term is clearly upper bounded by 22{:/1 Vk(s’}k +1)?. Putting everything together
and solving a quadratic inequality w.r.t. Zéil Zfil V(PF, Vi) completes the proof. O
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Lemma 39. Let G be the goal set such that ‘SI?(1+ ) € G C S. In any trial, with probability at least 1 — 6, for any K' € [K],

if Ki C SL_ZHE) and g, € G\ Ky, for any k € [K'], then ZkK:/1 Ef"l b < \/SL(H_e) fil V(PF, Vi)t +

LS;El+€) % Av, where 1 = log(|G|ACK: /9).

Proof. Note that with probability at least 1 — 6,

/ Iy K’ Iy P Vk)[, L[, N .
Z Z by Z Z + NF (definition of b} and max{a,b} < a + b)
k=1 i=1 k=1 i=1 i
K' Iy k L,/S7 L
P L(14€
< V’“) Ly ,i ) (Lemma 45)
N~
k=11=1 g
K' I,
S| Shiio4 Z ZV(PZ-’“, Vie)e + LS’L_>(1+6)1'5AL. (Cauchy-Schwarz inequality and Lemma 40)
k=1i=1
This completes the proof. O
Lemma 40. In any trial, for any K' € [K], if Kx © Sp{, for any k € [K'], we have Zk 1Zz 1 Nk S
ST 1se Alogs (Crcr).
Proof. Note that, for any 4, k, if s ¢ S7, ., we must have s}’ ¢ Ky, which implies that the corresponding count N} is co.
Then,
K Ik K I 1
S N % S ifhal = o N =2
k=11i=1 865?(1+€),a€A 0<h<log,(Ck) k=11i=1
< ISL{146)1Alogy (Ch)-
O
Lemma 41. In any trial, for any K' € [K], Zk 1 Zl 1€k = O(log Ck).

Lemma 42. In any trial, 1 + PFV}, — 20F — ¢, < Vi (s¥) < 1+ PFVi + e forany k € [K],i € [I1).

Proof. When s} ¢ Ky, we have bf = 1z = 0 and P['Vj, = Vi.(so). Thus, the statement holds. When s} € Ky, by the

definition of V}, and the stopping rule of Algorithm 4, we have

PFV;,
Nk

(3

Vi(sF) > 14+ PV —bF —ep > 1+ PPV —bF — ¢, — (definition of P¥)

> l—s—Pka —2b§€ — €k

where the last step is by —; B V’“ < 2L < b’C Moreover, Vi (s; <1+ Pka ‘e <1+ Pka + €x. This completes the

— Nk —
z

proof. O
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G. Auxiliary Results

Lemma 43. Forany S > 1, A > 2, 5 <L< l + lgolgo(;/j)) and 0 < e < @ there exists an MDP with S states and A

actions (including action RESET) such that SL(lJrE Lr(14e) = 1 while S5}, > A=),

Proof. Consider an MDP with the following structure. At s, taking any action transits to one of {sl, ...,81} with
probability % At any state in {sy, ..., s}, taking any action transits to state s*. States reachable from s* form a full A-ary

tree with depth 2(L — 1). The rest of the states are ignored (note that S > 2A4%L=1 > 1 + L + Z (L=1) A% Ttis not hard
to see that it takes 2L — 1 steps to reach any s; for ¢ € [L] by a policy restricted on {sg}. Therefore, all umgnored states are
2L incrementally controllable and thus S5 > A%(L=Y states. On the other hand, by L(1 + ¢) < 2L — Stite = {so}
and ', (1) = 1 (note that the agent can reach sy from sq by taking RESET).

Remark 2. The construction in Lemma 43 also have S3;, = Q(S) while Sii, , jT'r11e) = O(1).
Lemma 44. Forany X C S and g € S, we have HV;,!IHOO <1+Vz ,(s0)

Proof. Clearly V3 (9) =0<1+Vx (so)and Vg (s)=1+Vx (so)foranyse S\ (XU{g}). Foranys e X'\ {g},

by Bellman optimality and RESET € A we have Vi () <14+ VZ  (s0). O
Lemma 45. Let n be a counter incrementally collecting samples from transition function P, and define Pga(s' )= Z(f (‘ZZ,))

Let G be the goal set such that S77 C G C S. With probability at least 1 — 6, for any status of n, (s,a) € Stire XA

L(1+6)
X C S g € G\ X, and value function V restricted on X U {g} with ||V'|| < B for some B > 0, we have

L(1+e)
27
V(P2 V) SV(P o, V) + 71““;:()51,3&;5{ where i), , = O(log 7@“4”;(5’“) ).
Proof. Note that
V(Py 0, V) < Py o(V — Py, V)? (% = argmin, Y, p;(z; — 2)?)

V(Ps a>V) (Psa_Ps,a)(V_Ps,aV)2

T OV (Ps.a, V)i, Tr o B2l
SV(Pse,V)+B L1te) ( > ) 2 4 L(l+e) 5,4 (Lemma 46 and Lemma 48)
’ nt(s,a) nt(s,a)

PL(1+5)B25/5,(1

SV(Ps o, V) + (AM-GM inequality)

’ nt(s,a)
This completes the proof. O
Lemma 46. Let n be a counter incrementally collecting samples from transition function P, and define Pga () := T;ﬁ ’(‘;’Z/)).

Let G be the goal set such that S, , ., € G C S.% With probability at least 1 — 8, for any status of n, (s, a) € Sti14e XA
X C 'SL(1+e)’ g € G\ &, and value function V' restricted on X U {g} with ||V'|| ., < B for some B > 0, we have

(Pow— PP V| < min{|X\7FSL’?1+E)}V(PS,a, V)i, Bmin{|X]|, I‘L(lJrE)} Ls.a
sast iy nt(s,a) nt(s,a) ’

STaaATZ 1L 4 G|nT (s,a)
where i, , = O(log —=F2—=Cde) ).
6/
- TLG ’
. StaroATLaro( FG+9)Id]
with |y'| =i,and g € G\ ¢/,

Proof. By Lemma 54 and a union bound, for any ¢’ € (0, 1), with probability at least 1 — for

subset ' C N7

each status of n, (s, a) € Sy, X A, sizei € [ry I L(1+e)

1+6)]

Pont)— PR )] <2 \/QPS,G(y)(l—Ps,a<y>>1og<2n+<s,a>/a'> , log(2n*(s,a)/9)

nt(s,a) nt(s,a) ’
8In most cases, we apply this lemma with G € {Stii46), S}
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where y = S\ (' U{g}). Lety = X' 2 XN z’((i+6) such thaty = S\ (X" U{g}). By another application of Lemma 54

and a union bound, for any ¢’ € (0, 1), with probability at least 1 — \%I’ foralls' € X' U{g} CG,

P, o (s")(1 — Ps q(s")) log(2n*(s,a)/d") N log(2n*(s,a)/d")
nt(s,a) nt(s,a)

|Pea(s') = PLo(s)] < 2\/2

Thus, setting &' = §/257,, ) AT1(14¢) (FZ’§+€)) |G| and using (7)) < n™in{&7=% the two inequalities above simplify as

5 i Poa(y)(1 = Psa(y))tsa il o
P .(y) — P < . . : — 11
Paaly) ~ PLay)] S ¢ e + s (an
_ Py o(8") (1 — Pso(8))e L
PS a AN Pn !/ < ) ) s,a Ss,a . 12
Poals) s,a<s>|N\/ e e (12
These hold with probability at least 1 — 0. Now define, for all s’ € S,
Vi(s') = V(s), s’ e X" U{g}
V(S\ (XU{g})), otherwise

and V;(s') = V'(s') — P, V' for all s'. Clearly, V' and V; are restricted on X’ U {g}. Moreover, V(s') # V'(s') =
seX\y = seX\ z’(‘hé) = Ps.(s)=0by X C Sii4e) Thus, P,V = P, V', and
(PS,a - P;,La)v = (Ps.,a - Pga)v/ = (PS,a - psna)v’r

= > (Puals) = PL(SNDVA(S) + (Poalg) = PLa(9)Vi(9) + (Poa(y) = Plla(y)Vi(y)

s'EX!
Ps o (s | X7 | Ps,a(y)t! B|X'|
< s s,a / > 5,8 —_sa Eq. (11 d Eq. (12
~ Z nt(s,a) nt(s,a) f nt(s,a) (Eq. (11) and Eg. (12))
s’eXx’'U{g}
< ‘X/|V(PS,avV)Lfs,a B|X/|Lfs,a
~ nt(s,a) nt(s,a)

where in the last step we apply Cauchy-Schwarz inequality and

D Poa(sWi(s)? =) Poa(s)(V'(s') = PuaV)? (PsoV = Py ,V')
= ZPS’G<S/)(V<S/) —P,,V)? (Ps,a(s") = 0 when V'(s") # V(s'))
=V (P, V).
This completes the proof. O

Lemma 47. If z < av/xlogP(dx) + blog? (dz) + ¢ for some a,b,c > 0, d > 0 and some absolute constant p > 1, then
x = O((a®+b)log?((a + b+ c)d) + c).

Proof. By AM-GM inequality and log x < x for x > 0, we have
x < av/xzlogP (dx) + blogf (dz) + ¢ < g + (a*/2 + b) log”(dz) + ¢ < g + (a?/2 + b)(2p)PVdx + c.

Solving a quadratic inequality w.r.t. z gives # = O((a® + b)?d + ¢). Plugging this back to the original inequality gives
z < ay/zt + bt + ¢, where ¢ = log? ((a + b + c)d). Further solving a quadratic inequality w.r.t = completes the proof. [
Lemma 48. (Chen et al., 2023, Lemma 40) For any random variable X € [—B, B), for some B > 0, we have VAR[X 2] <
4B2VAR[X].
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Lemma 49. (Cai et al., 2022, Lemma C.2) For some B > 0, let T = {v € R‘;O cu(g) = 0,|v] < B} and

V(pv)e . B

f:As x As x T xRy x Ry — Rwith f(p,p,v,n,t) =pv — max{cl - ,an} with some constants ¢; > 0

and co > 2¢3. Then f ensures for all v, n, 1, and p, p s.t. p(s) — %p(s) > 0forall s # g,

1. f(p,p,v,n,1) is non-decreasing in v(s), that is,

VU,’U/ S T7/U S U/ — f(ﬁ>pav7n7 L) S f(ﬁ7p7fvl7nﬂ L)a
2. ifp(g) > 0, then f(p,p,v,n,t) is py-contractive in v(s), with p; = 1 — p(g) < 1, that is,

V’U7’Ul € Tv |f(ﬁap7v7naL) - f(ﬁ7p7 UI,TL, L)| < pf)”U - U/HOO .

Lemma 50. There exist a function Npgy (Lo, €,8) = O(log* %/62), such that for any g € S and policy © with HVQTr ||
Ly for some Ly > 0, we have with probability at least 1 — 6, for all n > Npgy (Lo, €, ) simultaneously, |7,, — Vg”(so | <
|| vV ||Oo €, where T, = % Yoi, C; and each C; is a realization of the total cost incurred by following 7 starting from so
with goal state g.

VASIVAN

Proof. By Lemma 51, with probability at least 1 — 4,

N 8l|lvr 8n2||vr .
Ty — Vq”(so)] < I \;TLHW log? ”6" L for all n > 1. Solving the

Vﬂ'
range of n for the inequality il \gfn‘lm log? S"ZLO < HVQTr HOO € (Lemma 47) completes the proof. O

Lemma 51. Forany g € S and policy w with HVQ”HOO < Lg for some Ly > 1, we have with probability at least 1 — 6, for

o~ 2 —~ . . .
Tn =V (so)| < &ﬁ? log? %, where T,, = % >iy C; and each C; is a realization of the

total cost incurred by following m starting from sg with goal state g.

all n > 1 simultaneously,

Proof. By Lemma 52 and a union bound,

8i% L, 8i% L, 1) 1)
P(3i>1:C;> 4Ll <> P|C; > 4Ll < : < .

Then, under the complement of the event above (which holds with probability at least 1 — %), we have 7,, = 7, foralln > 1,
where 7,, = % Yo CI{C; < 4Lglog 8"2%}. Moreover, by Lemma 53 and a union bound,

8n?
8n2L0 2 log 5 S Z )

2 <
0 n 4n? —

n>1

P|3n>1:|7 — E[T,]| > 4L log

N

A union bound on the complement of the two events above yields that, with probability at least 1 — 6, forall n > 1
simultaneously,

8n2Ly [2log 8°

T — Vi (50) = T — Vi (50) < 7 — E[7] < Lo log

5 n
and by Lemma 52,
1 8n2Ly [2log 8n2 1
V™ (s0) — Tu < E[7n] — T + Lo - —— < 4Lg1 S 4 —.
g (s0) = T < E[7,)] T+02nL0_ 0108 — " +2n
Combining these two cases gives ‘?n - Vg”(so)| < % log? 8”2%. O

Lemma 52. (Cohen et al., 2020, Lemma B.5) For a given g € S, let 7 be a policy such that ||Vg7r ||Oo < 1. Then, for any
n € N, the probability that the cost of 7 to reach the goal state starting from any state is more than n, is at most 2e~ - .
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Lemma 53 (Azuma’s inequality). Ler { X;}}_, be a martingale difference sequence with | X;| < B. Then with probability

atleast 1 — 6, | > | X;| < By/2nlog %.

Lemma 54. (Chen et al., 2021, Lemma 34) Let { X} } be a sequence of i.i.d random variables with mean y, variance o2,

and 0 < Xy < B. Then with probability at least 1 — 6, the following holds for all n > 1 simultaneously:

2 2
< 2\/202n10g?n + 2Blog ?n

n

D (X — )

t=1

- 2 2
S (X - )| < 2/262nlog ?" +19Blog 7"
t=1

where 67, = %E?:l X7 - (% t1 Xe)2
Lemma 55. (Chen et al., 2022b, Lemma 50) Let { X;}5°, be a martingale difference sequence adapted to the filtration
{Fi}2, and | X;| < B for some B > 0. Then with probability at least 1 — 6, for all n. > 1 simultaneously,

n

D X

i=1

. 4B2n3 4B?n?
<3 ZE[XﬂE—l]log 671 +2Blog 671

=1
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