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Abstract
We study the autonomous exploration (AX) prob-
lem proposed by Lim & Auer (2012). In this
setting, the objective is to discover a set of ε-
optimal policies reaching a set S→L of incremen-
tally L-controllable states. We introduce a novel
layered decomposition of the set of incremen-
tally L-controllable states that is based on the
iterative application of a state-expansion oper-
ator. We leverage these results to design Lay-
ered Autonomous Exploration (LAE), a novel al-
gorithm for AX that attains a sample complex-
ity of Õ(LS→L(1+ε)ΓL(1+ε)A log12(S→L(1+ε))/ε

2),
where S→L(1+ε) is the number of states that are
incrementally L(1 + ε)-controllable, A is the
number of actions, and ΓL(1+ε) is the branch-
ing factor of the transitions over such states.
LAE improves over the algorithm of Tarbouriech
et al. (2020b) by a factor of L2 and it is the
first algorithm for AX that works in a countably-
infinite state space. Moreover, we show that,
under a certain identifiability assumption, LAE
achieves minimax-optimal sample complexity of
Õ(LS→L A log12(S→L )/ε2), outperforming exist-
ing algorithms and matching for the first time the
lower bound proved by Cai et al. (2022) up to
logarithmic factors.

1. Introduction
A distinctive feature of intelligent beings is the ability to
explore an unknown environment without any supervision
or extrinsic reward while learning skills that solve tasks
(e.g., reaching goal states) of increasing difficulty. Lim
& Auer (2012) first proposed a formal framework of au-
tonomous exploration in reinforcement learning (RL) as
the process of progressively discovering states within a cer-
tain distance from an initial state s0 at the same time as

1University of Southern California 2Meta. Correspondence to:
Liyu Chen <liyuc@usc.edu>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

learning near-optimal policies to reach them. Lim & Auer
(2012) also devised the first sample efficient exploration
algorithm (UCBEXPLORE) for this setting, while its sample
complexity and optimality guarantees were later improved
by DISCO (Tarbouriech et al., 2020b) and VALAE (Cai
et al., 2022).

In this paper, we make several contributions to this problem:

• Given an initial state s0, the autonomous exploration
objective is built upon the concept of incrementally L-
controllable states, i.e., states that can be reached within
L steps from s0 by only traversing incrementally L-
controllable states1. While the original definition of the
set of incrementally L-controllable states S→L involves
considering all possible partial orders of states in the envi-
ronment, we derive an equivalent constructive definition
that reveals the layered structure of S→L , where each layer
can be obtained as the set of states that can be reached
in L steps by only traversing states in the previous layers
(see Section 2.1).

• We then leverage the layered structure of S→L to design
Layered Autonomous Exploration (LAE), a novel algo-
rithm that keeps exploring the environment to learn poli-
cies to reach newly discovered states until a new layer can
be consolidated and a new step of discovery and learning
is started. We prove that the sample complexity of LAE
is bounded as Õ(LS→L(1+ε)ΓL(1+ε)A/ε

2), where L is the
exploration radius, S→L(1+ε) is the number of states that
are incrementally controllable from the initial state within
L(1+ε) steps, ΓL(1+ε) is the branching factor of the tran-
sition function over such states, A is the number actions,
and ε is target accuracy. As illustrated in Table 1, this im-
proves the sample complexity of DISCO by a factor of L2

and it avoids the scaling with S→2L of VALAE, which in
some MDPs may be much larger than S→L(1+ε), thus mak-
ing the bound of LAE preferable. Indeed, in Lemma 43
in appendix we show that S→2L may be even exponentially
larger than S→L(1+ε).

• Under a certain layer identifiability condition (see As-
sumption 2), we further improve the sample complexity of

1We say that a state s is L-controllable if there exists a policy
that reaches s from s0 in less than L steps on average. In general
an L-controllable state may be reached by policies traversing states
that are not L-controllable themselves.
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Table 1. Comparison between this work and previous work. Here, L is the exploration radius, S is the number of states, S→L(1+ε) is the
number of incrementally L(1 + ε)-controllable states, ΓL(1+ε) is the branching factor of transition over such states, A is the number of
actions, and ε is the target accuracy. The AX objectives are defined in Definition 2 and are such that AX+ ⇒ AX? ⇒ AXL. We only
display the dominating term in 1/ε. Note that S→2L may be much larger (even exponentially) than S→L(1+ε) in certain MDPs (Lemma 43).

Algorithm Sample Complexity Objective S dependency

UcbExplore (Lim & Auer, 2012) Õ
(
L3S→L(1+ε)ΓL(1+ε)A/ε

3
)

AXL logS

DisCo (Tarbouriech et al., 2020b) Õ
(
L3S→L(1+ε)ΓL(1+ε)A/ε

2
)

AX? logS

VALAE (Cai et al., 2022) Õ
(
LS→2LA/ε

2
)

AX? logS

LAE (Algorithm 3) Ours Õ
(
LS→L(1+ε)ΓL(1+ε)A/ε

2
)

AX+ logS→L(1+ε)

LAE with Assumption 2 Ours Õ
(
LS→L A/ε

2
)

AX+ logS→L

Lower Bound
(S→L = S→L(1+ε) by construction) (Cai et al., 2022) Ω

(
LS→L A/ε

2
)

AXL -

LAE to Õ(LS→L A/ε
2), which improves w.r.t. VALAE

and matches the lower bound in (Cai et al., 2022).

• Similar to existing algorithms, the sample complexity
of LAE still depends on the logarithm of the total num-
ber of states S. Since in autonomous exploration the
state space is unknown and possibly unbounded, such
dependency is highly undesirable. We then design an
alternative version of LAE, which preserves its original
sample complexity but replaces the dependency on logS
with logS→L(1+ε), without requiring any prior knowledge
of S→L(1+ε) (see Section 4.1).

• LAE also leverages a novel procedure, POLICYCON-
SOLIDATION, that takes a set of states K as input and
returns goal-conditioned policies reaching each state in
K with multiplicative ε-optimality guarantees, which is
stronger than previous algorithms and better suited to the
autonomous exploration setting (see Section 4.2).

Related Work In reinforcement learning (RL), several
approaches to unsupervised exploration have been proposed
often grounded in concepts such as curiosity (Schmidhuber,
1991), intrinsic motivation (Singh et al., 2004; Oudeyer et al.,
2009; Bellemare et al., 2016; Colas et al., 2020) and with the
objective of learning skills in an unsupervised fashion (Gre-
gor et al., 2016; Eysenbach et al., 2019; Pong et al., 2020;
Bagaria et al., 2021; Kamienny et al., 2022). On the other
hand, a rigorous formalization and theoretical understand-
ing of unsupervised exploration has been rather sparse until
recently. Tarbouriech et al. (2020c) studied unsupervised
exploration for model estimation, Hazan et al. (2019) for-
malized the maximum entropy exploration objective, while
reward-free RL (e.g., Jin et al., 2020; Kaufmann et al., 2021;
Ménard et al., 2021; Zhang et al., 2021; Tarbouriech et al.,
2021a; 2022) studies how to efficiently explore an envi-
ronment to solve any downstream task near-optimally. As

autonomous exploration seeks to learn goal-conditioned
policies, it also carries strong technical and algorithmic
connections with exploration in the stochastic shortest path
problem (e.g. Bertsekas & Yu, 2013; Tarbouriech et al.,
2020a; 2021b; Chen & Luo, 2021; 2022).

2. Preliminaries
We consider a reward-free Markov Decision ProcessM =
(S,A, s0, P ), where S is a countable state space, A is
a finite action space, s0 is the initial state, and P =
{Ps,a}(s,a)∈S×A with Ps,a ∈ ∆S is the transition func-
tion, where ∆S is the simplex over S . In a general MDP, the
learner may get stuck in undesirable states and be unable
to return to s0. To avoid this issue, we make the following
assumption.

Assumption 1. The action space contains a RESET action
such that Ps,RESET(s0) = 1 for all s ∈ S.2

A deterministic stationary policy π ∈ AS is a mapping
that assigns an action π(s) to each state s, and we define
Π = AS as the set of all policies. To explicitly characterize
the behavior of a policy, we say a policy π is restricted on
X ⊆ S if π(s) = RESET for any s /∈ X , and we denote
by Π(X ) the set of policies restricted on X .

We measure the performance of a policy in navigating the
MDP as follows. For any policy π ∈ Π and a pair of states
(s, g) ∈ S2, let V πg (s) ∈ [0,+∞] be the expected number
of steps it takes to reach g (that is, the hitting time of g)

2This assumption is also adopted in all previous works (Lim
& Auer, 2012; Tarbouriech et al., 2020b; Cai et al., 2022) to our
knowledge.
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starting from s when executing policy π, that is,

V πg (s) , Eπ [ωg| s1 = s] ,

ωg , inf {i ≥ 0 : si+1 = g} .

Note that V πg (s) = +∞ if g is unreachable by playing π
starting from s. For any subset X ⊆ S and any goal state
g, define V ?X ,g(s) = minπ∈Π(X ) V

π
g (s) as the minimum

hitting time of g following a policy restricted on X . Note
that, if X ⊆ X ′, then V ?X ′,g(s) ≤ V ?X ,g(s) for any s, g ∈ S.
The objective of the learner is to efficiently navigate in the
vicinity of s0. A state s is L-controllable if there exists a
policy π such that V πs (s0) ≤ L. While discovering all L-
controllable states may be a reasonable objective for explor-
ing the vicinity of s0 (Tarbouriech et al., 2022), Lim & Auer
(2012) showed that this may still require the learner to ex-
plore the whole state space, since reaching a L-controllable
state may require navigating through non-L-controllable
states. To this end, Lim & Auer (2012) propose to only
focus on navigating among incrementally L-controllable
states: states that are L-controllable by policies restricted
on other incrementally controllable states.

Definition 1 (Incrementally L-controllable states S→L ).
Given a partial order ≺ on S, we define S≺L recursively
as 1) s0 ∈ S≺L and 2) if there exists a policy π ∈ Π

(
{s′ ∈

S≺L : s′ ≺ s}
)

with V πs (s0) ≤ L, then s ∈ S≺L . The
set S→L of incrementally L-controllable states is defined as
S→L , ∪≺S≺L , where the union is over all partial orders.

Instead of exploring the potentially infinite state space, the
objective of the learner is to discover the finite set S→L (Lim
& Auer, 2012, Prop. 6) and learn a corresponding set of
policies that reliably reach each state in S→L . We introduce
three different formulations of the objective.

Definition 2 (AX sample complexity). For any given length
L ≥ 1, error threshold ε > 0, and confidence level δ ∈
(0, 1), the sample complexities C(A, L, ε, δ), C?(A, L, ε, δ),
and C+(A, L, ε, δ) are defined as the number of steps re-
quired by a learning algorithm A to identify a set of states
K and a set of policies {πs}s∈K such that, with probability
at least 1− δ, we have S→L ⊆ K and

(AXL) ∀s ∈ S→L , V πss (s0) ≤ L(1 + ε),

(AX?) ∀s ∈ S→L , V πss (s0) ≤ V ?S→L ,s(s0) + Lε,

(AX+) ∀s ∈ S→L , V πss (s0) ≤ V ?S→L ,s(s0)(1 + ε).

Note that the three formulations above are increasingly more
demanding. AXL only requires to reach each state in S→L
withinL(1+ε) steps, which could correspond to a quite poor
performance for a state s with V ?S→L ,s(s0) � L. AX? re-
quires to learn a near-optimal policy for reaching each state
in S→L . However, the allowed error threshold (i.e., Lε) is uni-
form across all goal states, which again could correspond

to a bad performance for a state s with V ?S→L ,s(s0) � L.
AX+ solves this issue by requiring a multiplicative thresh-
old. This implies that the allowed error for reaching state s
(i.e., V ?S→L ,s(s0)ε) scales with the optimal value V ?S→L ,s(s0)
itself, hence making this formulation adaptive to the hard-
ness of reaching each goal state. No existing algorithm is
able to achieve AX+ guarantees, see Table 1.

Note that these conditions cannot be checked at algorith-
mic time since S→L is unknown to the algorithm. Ex-
isting algorithms verify these conditions directly on the
computed set K. Since they guarantee that S→L ⊆ K,
V ?K,g(s0) ≤ V ?S→L ,g(s0) for any g ∈ S→L and thus they sat-
isfy the performance in Definition 2.

Other notation Let S = |S| and A = |A|. For any L ≥ 1,
define S→L = |S→L |, N

s,a
L = {s′ ∈ S→L : Ps,a(s′) > 0},

Γs,aL = |N s,a
L | and ΓL = maxs∈S→L ,a Γs,aL . For simplicity,

we often write a = O(b) as a . b. For n ∈ N+, define
[n] = {1, . . . , n}.

2.1. A Constructive Definition of S→L
While Lim & Auer (2012, Proposition 6) showed that there
exists a partial order ≺ such that S→L = S≺L , no explicit
characterization of such partial order is provided. In the
following, we develop an alternative definition of S→L that
leads to an explicit constructive procedure to build the set.
This alternative definition is the main inspiration for the
design of our algorithms.

We introduce an operator TL which, given a set X ⊆ S,
selects all the states that are reachable in L steps by a policy
restricted on X and show its connection with S→L .

Lemma 1. Let P(S) be the set of all subsets of S . For any
L ≥ 1, define the operator TL : P(S) → P(S) as follows:
for any X ⊆ S, TL(X ) = {s ∈ S : V ?X ,s(s0) ≤ L}. Then,

1. S→L is the fixed-point of TL of smallest cardinality, i.e.,
S→L ⊆ X if X = TL(X ).

Let us denote by {K?j}j∈N the unique sequence such that
K?1 = {s0}, K?j = TL(K?j−1). Then,

2. For any j ≥ 1, K?j ⊆ K?j+1 ⊆ S→L ;

3. There exists J ≤ S→L such that K?j = S→L for all
j ≥ J (i.e., T JL (K?1) = limj→∞ T jL (K?1) = S→L ).

Proof. Note that there exists a partial ordering ≺? such that
S→L = S≺

?

L (Lim & Auer, 2012, Proposition 6).

LetX be s.t. S→L 6⊆ X . If S→L ∩X = ∅, then s0 /∈ X , which
implies that TL(X ) = {s0} since V ?X ,s0(s0) = 0 ≤ L and
V ?X ,g(s0) = ∞ for all g 6= s0. Thus, X cannot be a fixed
point of TL. Then, assume that S→L ∩ X 6= ∅. Order
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the states in X ∩ S→L according to the ordering ≺?. Let
si ∈ S≺

?

L be the first state s.t. s /∈ X (it exists since S→L 6⊆
X ). By definition of ≺? and S→L , V ?{s0,...,si−1},si(s0) ≤ L,
which implies that si ∈ TL(X ). As a consequence, X 6=
TL(X ). Thus, if X = TL(X ), we must have S→L ⊆ X .
This proves the first point.

Let us prove that K?j ⊆ K?j+1 for all j ≥ 1. Clearly, K?2 =
TL(K?1) = {s ∈ S : V{s0},s(s0) ≤ L} ⊇ {s0} = K?1.
Then, suppose that K?j−1 ⊆ K?j for some j ≥ 2. By def-
inition, for all s ∈ K?j , V ?K?j−1,s

(s0) ≤ L, which implies
that V ?K?j ,s(s0) ≤ L by the inductive hypothesis. Then,
K?j+1 = TL(K?j ) = {s ∈ S : VK?j ,s(s0) ≤ L} ⊇ K?j .

Now let us prove that K?j ⊆ S→L for all j ≥ 1. Clearly,
K?1 ⊆ S→L . Suppose that K?j ⊆ S→L for some j ≥ 1. Then,
if s ∈ K?j+1 for some s /∈ S→L , it must be that VK?j ,s(s0) ≤
L. By the inductive hypothesis, this implies that we found
an ordering of the states in which s is reachable in L steps
by a policy restricted on states of S→L . Hence, s ∈ S→L ,
which is a contradiction. This proves point 2.

Let us enumerate over S→L = {s0, . . . , sS→L −1} in a way
that obeys ≺?. We prove by induction that sj ∈ K?j+1 for
any 0 ≤ j < S→L . Given point 2, this implies point 3.
Clearly, s0 ∈ K?1. Now suppose that {s0, . . . , sj} ∈ K?j+1

for 0 ≤ j ≤ S→L − 2. Then, we clearly have sj+1 ∈
K?j+2 by the definition of K?j+2 and the fact that sj+1 is
L-controllable by a policy restricted on {s0, . . . , sj}.

This lemma shows that S→L is a fixed-point solution of TL.
Most importantly, it provides an iterative procedure to con-
struct S→L . Starting from {s0} or ∅, TL acts as an expansive
operator over sets (i.e., T j({s0}) ⊂ T j+1({s0})) until the
set S→L is built. From this point, TL acts as an identity
map since S→L is a fixed point. In other words, this proce-
dure builds S→L iteratevely starting from K?1, expanding it
to K?2 = TL(K?1), and so on until reaching S→L . For this rea-
son, we shall refer to the sets (K?j )j as layers. This process
is learnable since it evolves only through subsets of S→L and
it is at the core of the design of our algorithm.

It is worth noticing that not all the fixed-point solutions
of TL are learnable. In fact, Proposition 4 of Lim & Auer
(2012) implies that there exist MDPs with fixed points X =
TL(X ) 6= S→L which may require an exponential number of
samples to be learned. For example, there exist MDPs where
the whole set of states S is itself a fixed point of TL (that is,
all states are L-controllable) but S is exponentially larger
than S→L . This reveals an interesting connection between
the existence of a unique iterative process to reach the fixed-
point corresponding to S→L and its learnability.

3. AXL through Layer Discovery
Algorithm 1 illustrates Layer-Aware State Discovery
(LASD), a novel algorithm for AXL based on the itera-
tive construction of S→L introduced in Lemma 1. In Sec-
tion 4.2, we then introduce a policy consolidation proce-
dure that achieves AX+ when combined with LASD, lead-
ing to the LAE algorithm. LASD maintains a set K of
“known” states, i.e., states for which a policy π̃s ∈ Π(K)
with V π̃ss (s0) ≤ L(1 + ε) has been learned. These policies
are stored in ΠK. The set K is updated only when the algo-
rithm is confident enough to have identified a new layer. To
this purpose, K′ is used as a buffer for the new layer, i.e., for
states that have been found to be L-controllable by policies
restricted on K and that are waiting to be merged with K.
Finally, any other state discovered over time (and potential
candidate to be in S→L ) is stored in U .

At each round, LASD first uses the samples collected so far
to compute an optimistic policy for each state in U through
VISGO (Algorithm 4), a slight variant of the state-of-the-art
algorithm for exploration-exploitation in stochastic shortest
paths (Tarbouriech et al., 2021b), and it selects the state that
is optimistically closer to s0 as candidate goal g?.

If the optimistic distance of g? from s0 is larger than L, then
no additional state can be confidently added to the current
layer K′ and a set expansion round is triggered. LASD
updates the set of known states by adding the new layer K′
(K = K ∪K′) and starts a discovery process where policies
in ΠK are used to reach all states in K, then it executes all
possible actions in these states, and it adds newly observed
states to U . Notice that the samples obtained during this pro-
cess are not included in the policy improvement of VISGO
to avoid statistical dependencies. The sequence of expan-
sion rounds is designed to approximate the sequence {K?j}j .
With high probability, every update of K is not smaller than
the application of TL, i.e., if, for some j, K?j ⊆ K 6⊇ K?j+1

before an update (this holds for K?1 = {s0} at the first
round), then K?j+1 = TL(K?j ) ⊆ K after the update. Thus,
K′ is the increment toK to include the next layer. At the end
of the expansion round LASD executes an additional explo-
ration step to ensure that a minimum number of samples is
available for each (s, a) ∈ K ×A (see Line 10).

On the other hand, if the optimistic distance of g? is smaller
than L, LASD performs a policy evaluation round by run-
ning πg? to estimate whether the current policy is indeed
able to reach g? in less than L steps. If the number of visits
to some state-action pair is doubled within the current round,
then the current round is classified as a skip round. If the
test on the policy performance fails, then the current round
is classified as a failure round. In both cases, a new round
is started. Otherwise, the current round is classified as a
success round and g? is added to the new layer K′. The
samples collected in policy evaluation rounds are stored and
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Algorithm 1: Layer-Aware State Discovery (LASD)
Input: L ≥ 1, ε ∈ (0, 1], δ ∈ (0, 1).

1 Let N = {2j}j≥0, K ← ∅,U ← ∅, K′ ← {s0},ΠK = {π̃s0 a random policy}, N(·, ·)← 0,N(·, ·, ·)← 0.
2 for round r = 1, . . . do
3 εVI ← 1/max{16,

∑
s,aN(s, a)}.

/* Policy optimisation and goal selection */

4 Let g? = argming∈U
{
VK,g(s0)

}
where (QK,g, VK,g, πg) = VISGO(K, g, εVI,N,

δ
4r2S2 ) (see Algorithm 4).

5 if g? does not exist or VK,g?(s0) > L then
/* Expand or Terminate */

6 if K′ = ∅ then return K and ΠK.
7 Set K ← K ∪K′, K′ = ∅,U = ∅.
8 (_,U)← EXPLORE(K,ΠK, 0, 2L log(4SALr2/δ)) (see Algorithm 6).
9 Set nmin ← N0(K, δ

4r2S2 ) . L2|K| log(Sr/δ) (defined in Lemma 3).
10 (N, _)← EXPLORE(K,ΠK,N, nmin).
11 else

/* Policy evaluation */

12 Let τ̂ ← 0, λ← NDEV(32L, ε
256

, δ
4r2

) . 1
ε2

log4
(
Lr
εδ

)
(defined in Lemma 50).

13 for j = 1, . . . , λ do
14 k

+← 1, i← 1, and reset to sk1 ← s0 by taking action RESET.
15 while ski 6= g? do
16 Take aki = πg?(ski ), and transits to ski+1. Increase N(ski , a

k
i ), N(ski , a

k
i , s

k
i+1), and i by 1.

17 if
∑
s,aN(s, a) ∈ N or (ski ∈ K and N(ski , a

k
i ) ∈ N) then return to Line 2 (skip round).

18 Set τ̂ +← c(ski ,a
k
i )

λ
.

19 if τ̂ > VK,g?(s0) + εL/2 then return to Line 2 (failure round).
20 K′ ← K′ ∪ {g?}, U ← U \ {g?}, ΠK = ΠK ∪ {π̃g? := πg?} (success round).

used in all estimation and planning steps of the algorithm.

LASD terminates whenever the candidate goal g? has an
optimistic distance larger than L and the new layer is empty,
indicating that previous policy evaluation rounds could not
identify any good policy and, thus, all states in S→L have
been identified with high probability.

We prove that LASD achieves the following guarantee, the
proof can be found in Appendix C.4.

Theorem 1. Suppose S is finite. For any L ≥ 1, ε ∈ (0, 1]
and δ ∈ (0, 1), with probability at least 1 − δ, LASD
(Algorithm 1) outputs a setK such that S→L ⊆ K ⊆ S→L(1+ε)

and ΠK such that V πgg (s0) ≤ L(1 + ε) for any πg ∈ ΠK,
with sample complexity bounded by

O
(
S→L(1+ε)ΓL(1+ε)AL

ε2 ι+
S→L(1+ε)

2AL

ε ι+ L3S→L(1+ε)
2Aι

)
where ι = log8

(
SAL
εδ

)
.

Compared to the lower bound (see Table 1), LASD still
suffers from an extra ΓL(1+ε) dependence. This is because
in the analysis we use a Bernstein-like concentration in-
equality to control the deviation (P − P̄ )V , where P̄ are the
estimated transitions, for any value function V restricted on
K (i.e., V is constant on all states outsideK). Unfortunately,
we cannot leverage refined concentration inequalities since

K is random and can take an exponentially large amount of
values throughout the execution of LASD.

However, by inspecting the proof of (Cai et al., 2022), we
note that the construction of the lower bound leverages a
certain separation condition defined as follows.
Assumption 2 (identifiability of {K?j}j). We say {K?j}j
is ε-identifiable, if for any j ≥ 2, g /∈ K?j , we have
V ?K?j−1,g

(s0) > L(1 + ε).

This means that each layer K?j can be identified exactly by
an algorithm run with accuracy ε since states that do not
belong to the immediate next layer are clearly separated,
i.e., they are more than L(1 + ε)-steps away. This leads to
following remark.
Remark 1. Assumption 2 implies that S→L = S→L(1+ε).

How valid is Assumption 2? One might wonder whether
Assumption 2 is a realistic and cover many application sce-
narios. We have identified two large classes of MDPs that
satisfies Assumption 2: 1) deterministic MDPs and 2) MDPs
with tree structure. Details are deferred to Appendix A.2.

The fact that states g /∈ K?j are not reachable in L(1 + ε)
steps from K?j−1 allows LASD to uniquely identify the
layers. Indeed, under Assumption 2, LASD behaves as the
operator TL and, after each expansion, we have thatK = K?j
for some j ∈ [S→L ]. Thanks to this property, we can show
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that LASD is minimax optimal.3

Theorem 2. Suppose that S is finite. For any L ≥ 1, ε ∈
(0, 1] and δ ∈ (0, 1), if Assumption 2 holds, with probability
at least 1−δ, LASD (Algorithm 1) outputsK = S→L(1+ε) =

S→L and ΠK such that V πgg (s0) ≤ L(1+ε) for any πg ∈ ΠK,
with sample complexity bounded by

O
(
S→L AL

ε2
ι+

S→L
2AL

ε
ι+ L3S→L

2Aι

)
,

where ι = log8
(
SAL
εδ

)
.

The trick to remove the ΓL(1+ε) from Theorem 1 is that,
since layers are uniquely identified by the algorithm, we
only need to concentrate the term (P − P̄ )V for any value
function in the set {V ?K?j }j∈[S→L ].

Given the result above, one might wonder what is the true
sample complexity lower bound of this setting. We include
a short discussion in Appendix A.3.

Empirical Evaluations We implemented our LASD algo-
rithm and evaluated it empirically. Implementations can be
found in https://github.com/lchenat/AX_exp.
We manually tune the values of some parameters such as
nmin and λ to boost the empirical performance, and then
conducted experiments on a 4x4 GridWorld environment.
The learner has 5 actions in this environment: moving to-
wards one of the four directions by a grid or reset to s0

(the upper left corner). When the learner takes a directional
action, it has probability 0.9 of moving towards the corre-
sponding direction, and 0.1 probability of randomly moving
towards one of the four directions. We run LASD on Grid-
World with L = 4, ε = 0.01, and δ = 0.001. We also
identify the ground truth set of {K?j}j by value iterations.
Our experiment results show that LASD is able to exactly
identify the layers {K?j}j .

3.1. Proof Sketch

Here we report a sketch of the proof, while the detailed one
can be found in Appendix C. All the statements we report
here are to be considered to hold with high probability.

The first step of the proof (see Lemma 6) is to show by
induction that, at each round, K ⊆ S→L(1+ε). Thanks to the

fact that Õ(L2|K|) samples are always available for each
(s, a) ∈ K×A (Line 10) and the properties of VISGO, it is
possible to show that, for the goal g? selected at the current
round, ‖V πg?g? ‖ ≤ 2‖V πg?K,g?‖ ≤ 4L if Line 5 is passed.
Combining this with the properties of policy evaluation and
the inductive hypothesis, we have that τ̂ ≥ L(1 + ε/2) ≥
V
πg?

K,g?(s0)− Lε/2 if g? ∈ U \ S→L(1+ε). Thus a failure test

3Minimax optimality holds for ε ≤ min{1/S→L , 1/L}, which
makes the first term in Theorem 2 dominant (Cai et al., 2022).

is triggered and g? is never added to K. This shows that
states outside S→L(1+ε) are not added to K. By the same
reasoning, we can show that if a goal g? is added to K′, the
corresponding policy has bounded value function (important
prerequisite for policy consolidation) and satisfies AXL.
Furthermore, by properly selecting the number of rollouts
in the expansion phase (Line 8), we can show that U always
contains at least those states that are reachable in L steps
from K (see Lemma 7), i.e., TL(K) \ K ⊆ U .

Combining these results with optimism restricted on K?j
(see Lemma 8), we are able to show (see Lemma 9) that K
always expands by at least one layer at each update. For-
mally, if K?j ⊆ K at a certain update, then K ∪ K′ ⊇ K?j+1

at the next update in Line 7 (i.e., K?j+1 = TL(K?j ) ⊆ K),
see Lemma 23. If Assumption 2 holds, thanks to the identi-
fiability of the layers, we show that K = TL(K?j ) = K?j+1,
i.e., the algorithm replicates the TL operator (see Lemma 25).
In this case, K′ is exactly the set of states needed to move
from K?j to K?j+1. By induction, we conclude that S→L ⊆ K
when the algorithm stops, K = S→L with Assumption 2.

These results provide AXL guarantees when the algorithm
stops. For computing the sample complexity we use a reduc-
tion to a regret analysis of a stochastic shortest path problem
(SSP). We define the SSP regret asR =

∑K
k=1(Ik−Vk(s0))

where K is the total number of episodes done in policy
evaluation, Ik is the length of episode k, and Vk is the
optimistic value function of the goal selected at episode
k. Then, CK =

∑K
k=1 Ik is the sample complexity of

policy evaluation. Through the SSP regret analysis we
can show that R . c1

√
K + c2 and CK . LK, where

c1 = L
√

ΓL(1+ε)S
→
L(1+ε)A (resp. c1 = L

√
S→L(1+ε)A un-

der Assumption 2) and c2 = LS→L(1+ε)
2A, see Lemma 11

and Lemma 12. To conclude the analysis of the sample
complexity we need to bound K. We note that K = rtotλ .
rtot/ε

2 where rtot is the total number of rounds and λ is
the maximum number of episodes per round. Moreover,
rtot .

c21
L2 + c2ε

L can be controlled since the regret is sublin-
ear (see Lemma 14).

In the expansion phases we execute policies that reach
any state s ∈ K almost surely since, as mentioned above,
‖V πss ‖ ≤ 4L. By (Rosenberg & Mansour, 2021, Lemma
6) we can bound the number of steps required to reach
the goal by 8L. Then, considering the number of samples
that needs to be collected and that there are O(S→L(1+ε)) of
such phases, the total sample complexity of the expansion
phases is Õ(L3S→L(1+ε)

2A). Summing everything together
concludes the proof (see Theorem 6).
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4. Improved Algorithms
In this section, we present two improvements to LASD
that allow to i) replace the log(S) dependence with a much
milder log(S→L(1+ε)); ii) move from AXL to AX+.

4.1. Log-Adaptivity to S→L(1+ε)

Inspired by intrinsically motivated learning agents, Lim
& Auer (2012) originally focused on a learning scenario
where the environment is possibly infinite or at least no
prior knowledge about it is available. Unfortunately, all the
existing algorithms fail in dealing with this scenario since
they require prior knowledge of the cardinality of the state
space S. While the sample complexity only depends loga-
rithmically on S, this shows that inability of the algorithms
to exclusively focus on the portion of environment discov-
ered and consolidated over time and it thus prevents from
dealing with arbitrarily large or infinite environments.

In this section, we carefully identify all the aspects of the
algorithm causing this problem in LASD, and propose an
improved algorithm LASD+ (Algorithm 5 in Appendix D)
that replaces the log(S) dependency by log(S→L(1+ε)). This
is a much favorable dependency since S→L(1+ε) is finite even
when S is countably infinite (Lim & Auer, 2012, Prop. 6).
Below we list each source of log(S) dependency and the
corresponding modification to fix it.

A) Limiting the set of candidate goals. In the expansion
phase, LASD uses all the newly discovered states to build
the set U of candidates states for S→L . This phase could
potentially discover any state s ∈ S as long as the transition
probability to s from K is non-zero. This means that any
s ∈ S can be considered in the goal selection step (Line 4),
requiring a union bound over S when analyzing the con-
centration of the estimated value functions. To overcome
this issue, LASD+ performs a step of state filtering in the
construction of U (Algorithm 5-Line 28).4 The idea is to
include in U only goal states with estimated hitting time
upper bounded by L. To break statistical dependencies we
estimate the hitting time of each candidate goal state using
fresh samples (i.e., samples that are discarded after this step).
It can be showed (see Lemma 24) that using this filtering
scheme, U only includes states that are O(L)-controllable
by policies restricted on K, which is a much smaller candi-
date set of order S→L(1+ε).

B) Scaling the confidence bounds. While the state filter-
ing step allows to consider only states in S→L(1+ε) rather
than S , the knowledge of S→L(1+ε) is required to properly set
the confidence level when computing the estimated value

4A similar filter is used in DISCO to reduce computational
complexity, but as it does not use fresh samples, it still requires a
union bound over S to deal with statistical dependencies.

functions (Algorithm 5-Line 7). We thus maintain an esti-
mate z of S→L(1+ε). Each attempt on a specific value of z is
a trial indexed by τ (Algorithm 5-Line 2) that ends when
the total number of “known” states (|K ∪ K′|) exceeds the
estimated dimension z (Algorithm 5-Line 5). In this case,
we double the value of z. We can show (see Lemma 16)
that the total number of trials is bounded τ . log2(S→L(1+ε))

and z . S→L(1+ε).

C) Controlling the policy quality. An important step in
LASD is to gather a minimum number of samples for each
“known” state (Line 10) to ensure a reasonable performance
of the policy being evaluated. The right number of samples
also depends on S→L(1+ε). Unfortunately, we cannot leverage
z to compute this threshold since z is likely to be smaller
than S→L(1+ε) throughout the execution of the algorithm.
Using z will invalidate the properties of policy evaluation
that may lead to halt prematurely, without satisfying the
AX properties (e.g., S→L ⊆ K). This failure mode is not
captured by the condition used in Algorithm 5-Line 5 to in-
crease z. We thus introduce a Monte-Carlo reachability test
(Algorithm 5-Line 12) before policy evaluation. Intuitively,
if the test fails LASD+ gathers new samples to improve
the estimate of the MDP, otherwise the test guarantees that
‖V πg?g? ‖∞ . L (see Lemma 29).

Combining these three changes, we are able to obtain the
following sample complexity guarantee (see Appendix D.1),
which is S-independent.

Theorem 3. For any L ≥ 1, ε ∈ (0, 1] and δ ∈ (0, 1), with
probability at least 1 − δ, LASD+ (Algorithm 5) outputs
S→L ⊆ K ⊆ S→L(1+ε) and ΠK such that V πgg (s0) ≤ L(1+ ε)
for any πg ∈ ΠK, with sample complexity bounded by

O
(
LMAι

ε2
+
LS→L(1+ε)Aι

ε
+ L3S→L(1+ε)

3Aι

)
,

where ι = log12(
S→L(1+ε)AL

εδ ) and M = ΓL(1+ε)S
→
L(1+ε).

If Assumption 2 holds, then M = S→L and S→L(1+ε) = S→L .

4.2. Policy Consolidation

Both LASD and LASD+ discover a set K such that S→L ⊆
K ⊆ S→L(1+ε) and a set of goal-conditioned policies satis-
fying AXL. We now introduce a procedure that, given a
set K ⊆ S→L(1+ε) and associated goal-reaching policies ΠK
with bounded value function, learns a set of goal-condition
policies satisfying the AX+ condition.

POLICYCONSOLIDATION (Algorithm 2) is an algorithm
for Multi-Goal Exploration (MGE) (e.g., Tarbouriech et al.,
2022) over K. In each round, POLICYCONSOLIDATION
randomly selects an “unknown” goal state from L and com-
putes a policy to reach it (Line 6). It then evaluates the
performance of this policy by Õ( 1

ε2 ) rollouts, and based

7
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Algorithm 2: Policy Consolidation (PC)
Input: L ≥ 1, ε ∈ (0, 1], δ ∈ (0, 1), target state space

K ⊆ S→L(1+ε), and initial policies Π′ = {π′g}g∈K.
1 Set k ← 1, N = {2j}j≥0, L = K,

Π+
K = {π̃s0 a random policy}, N(·, ·),N(·, ·, ·)← 0.

2 (N, _)← EXPLORE(K,Π′,N, N1(|K| − 1, δ
|K| )) (see

Algorithm 6; N1 . L2|K| log( |K|
δ

) is defined in Lemma 4).
3 for r = 1, . . . do
4 if L = ∅ then return Π+

K.
5 εVI ← 1/max{16,

∑
s,aN(s, a)}.

6 Pick g? ∈ L arbitrarily and compute
(Q̂, V̂ , π̂) = VISGO(K \ {g}, g, εVI,N,

δ
|K| ).

7 Let λ← NDEV(32L, ε
256

, δ
2r2

) . 1
ε2

log4
(
Lr
εδ

)
(defined in

Lemma 50) and τ̂ ← 0.
8 for j = 1, . . . , λ do
9 k

+← 1, i← 1, and reset to sk1 ← s0 by taking action
RESET.

10 while ski 6= g? do
11 Take aki = π̂(ski ), and transits to ski+1.
12 Increase N(ski , a

k
i ), N(ski , a

k
i , s

k
i+1), and i by 1.

13 if
∑
s,aN(s, a) ∈ N or (ski ∈ K and

N(ski , a
k
i ) ∈ N) then return to Line 3 (skip

round).

14 Set τ̂ +← c(ski ,a
k
i )

λ
.

15 if τ̂ > V̂ (s0)(1 + ε/2) then return to Line 3 (failure
round).

16 L ← L \ {g?}, Π+
K ← Π+

K ∪ {π̃g? = π̂} (success round).

on the evaluation result, the current round is classified into
success, skip, or failure round similar to that in Algorithm 1.
While it shares a similar structure with VALAE, the cru-
cial difference is the condition of success round (Line 3),
which has a form similar to AX+. Thus, one can consider
Algorithm 2 as an improved version of VALAE.

Its simplicity and high sample efficiency, allow POLICY-
CONSOLIDATION to be integrated with any existing algo-
rithm for AXL or AX? at no cost. As showed in the follow-
ing lemma, the sample complexity of policy consolidation
matches the lower-bound for AX, thus providing a “minor”
contribution to the overall sample complexity. Details are
deferred to Appendix E.
Theorem 4. Given a target state space K ⊆ S→L(1+ε) for
some ε ∈ (0, 1) and a set of initial policies Π′ = {π′g}g∈K
such that

∥∥∥V π′gg ∥∥∥
∞

. L, with probability at least 1 − δ,
POLICYCONSOLIDATION (Algorithm 2) outputs a set of
policies {π̃g}g∈K such that V π̃gg (s0) ≤ V ?K,g(s0)(1 + ε) for
all g ∈ K, with sample complexity bounded by

Õ

(
LS→L(1+ε)Aι

ε2
+
LS→L(1+ε)

2Aι

ε
+ L3S→L(1+ε)

2Aι

)
,

where ι = log10(
S→L(1+ε)AL

εδ ).

To achieve this result we developed an improved regret-
based analysis. Instead of bounding the total number of
rounds as in VALAE, we directly bound the total number of
steps in all rounds, which takes varying length of trajectories
in different rounds into consideration. This enables POLI-
CYCONSOLIDATION to achieve a better guarantee on the
performance of the learned policies compared to VALAE,
preserving the same sample complexity.

4.3. AX+ through Layer Discovery and Consolidation

We combine all these improvement into Layered Au-
tonomous Exploration (LAE) whose pseudo code is re-
ported in Algorithm 3. Combining the previous results, we
can state the following guarantee for AX+.

Corollary 5. For any L ≥ 1, ε ∈ (0, 1] and δ ∈ (0, 1), with
probability at least 1−δ, LAE (Algorithm 3) outputs S→L ⊆
K ⊆ S→L(1+ε) and ΠK such that V πgg (s0) ≤ V ?K,g(s0)(1+ε),
for any πg ∈ ΠK, with sample complexity

O
(
LMAι

ε2
+
LS→L(1+ε)Aι

ε
+ L3S→L(1+ε)

3Aι

)

where ι = log12
(
S→L(1+ε)AL

εδ

)
and M = ΓL(1+ε)S

→
L(1+ε).

If Assumption 2 holds, then M = S→L and S→L(1+ε) = S→L .

This shows that LAE is the first algorithm able to i) achieve
the strongest performance AX+ ⇒ AX? ⇒ AXL, ii) match
the lower-bound under certain settings, and iii) completely
remove the dependence on S. In particular, the latter was an
open problem since the initial work by Lim & Auer (2012).5

Comparisons. LASD/LASD+ shares similarities with both
UCBEXPLORE and VALAE. While we leverage the same
condition as in VALAE for the failure test of policy evalua-
tion, the policy evaluation in VALAE is only for learning
goal-conditioned policies and not for consolidating states. In
fact, they first run DISCO for state discovery, and then learn
goal-conditioned policies on a potentially much larger set
subsuming S→2L. However, S→2L can be exponentially larger
than S→L(1+ε) (see Lemma 43) in general and thus the sample
complexity of VALAE is incomparable to other algorithms.
Therefore, VALAE only improves the sample complexity
of policy learning but not that of state discovery. Similarly
to UCBEXPLORE, we perform state and policy identifica-
tion simultaneously. Our evaluation phase is much more
sample efficient compared to UCBEXPLORE, which saves a
L2/ε factor in the leading-order term. Compared to DISCO,
our algorithm saves a L2 factor by i) adaptively collecting
samples to estimate state values instead of prescribing a
fixed number of samples to guarantee a uniformly-accurate

5UCBEXPLORE originally considered a countable, possibly
infinite state space; however this leads to a technical issue in the
analysis (Tarbouriech et al., 2020b, Footnote 2).
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Algorithm 3: Layered Autonomous Exploration (LAE)
Input: L ≥ 1, ε ∈ (0, 1], and δ ∈ (0, 1).

1 (K,ΠL
K) = LASD+(L, ε, δ) see Algorithm 5 in appendix (or

LASD for logS). // AXL
2 Π+

K = PC
(
L, ε, δ,K,ΠL

K
)
. // AX+

3 return K and Π+
K.

transition estimate over K, and ii) leveraging variance infor-
mation.

The tool enabling all these improvements is a new Bernstein-
type concentration inequality for restricted value functions
(see Lemma 46). The key difficulty in our analysis is that
the set on which value functions are restricted is random
since we learn K and ΠK simultaneously. In comparison,
in VALAE the set K is fixed after the initial phase of state
discovery, which makes the analysis much simpler. Specifi-
cally, leveraging the fact that the learned goal-conditioned
policies are all restricted on S→L(1+ε), we are able to make
use of the variance information without incurring a polyno-
mial dependency on S.

5. Conclusion
We introduced a layered decomposition of the set of in-
crementally L-controllable states. We built on this decom-
position and showed that our algorithm LAE attains the
strongest performance guarantee AX+, does not need to
know S and thus can be used with a countably-infinite
state space, and is minimax-optimal when the layers can be
uniquely identified. The natural future directions include 1)
designing an algorithm with minimax sample complexity
without Assumption 2; 2) extending the problem to con-
tinuous states and function approximation; 3) identifying
benchmarks that can be used to evaluate practical progresses
towards the AX capability.
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A. Preliminaries
A.1. Notation

Let (x)+ = max{0, x} and Is(s′) = I{s′ = s}. We say that a value function V is restricted on a subset X ⊆ S, if there
exists v > 0 such that V (s) = v for any s /∈ X . When value function V takes the same value within a subset of states y, we
define V (y) = V (s) for any s ∈ y. For any subset y ⊆ S and distribution P ∈ ∆S , define P (y) =

∑
s′∈y P (s′).

Trial In Algorithm 5, a trial is indexed by τ , and each trial corresponds to a value of z estimating S→L(1+ε) (Line 1). In
Algorithm 1 and Algorithm 2, we assume the whole learning procedure lies in an artificial trial.

Table 2. The notation adopted in this paper.
Symbol Meaning

S State Space
A Action Space (including the RESETaction)
P Transition function
π : S → A A policy
Π(X ) Policies restricted to X , RESET is taken outside X
L Exploration radius
S→L Incrementally L-controllable states
N s,a
L = {s′ ∈ S→L : Ps,a(s′) > 0} States in S→L reachable from (s, a)

Γs,aL = |N s,a
L |,ΓL = maxs∈S→L ,a Γs,aL Cardinality of N s,a

L and maximum value
TL(X ) = {g ∈ S : V ?X ,g(s0) ≤ L} Set of L controllable states restricted on X ⊆ S
{K?j}j : K?1 = {s0},K?j = TL(K?j−1) Layers defining S→L
O→L = (s1, . . . , sn) Ordering of states in S→L defining the layer {K?j}
K?z,j K?z,j = K?j when |K?j | < z, and K?z,j = {s1, . . . , sz} when |K?j | ≥ z
K?z,z = (s1, . . . , sz) The first z elements of O→L or S→L
U?z = T2L(K?z,z) States reachable in 2L steps from K?z,z
N (X , p) = {s′ /∈ X : P (s′|s, a) ≥ p for some (s, a) ∈ X ×A} States not in X reachable with high probability from X
Ū = {s′ ∈ S : ∃s ∈ S→L(1+ε), a ∈ A, P (s′|s, a) ≥ 1

2L} States that are reachable from S→L(1+ε) with high probability

Learning Algorithm

r ∈ N+ Round
τ ∈ N+ Trial
z An estimate of |S→L(1+ε)|. The value of z is updated at the beginning of each trial.
ε accuracy
K Set of “known” states, such that K?j ⊆ K for some j
U Set of “unknown” states
K′ Increment to K leading to include layer j + 1
N(s, a, s′) Number of visits to (s, a, s′)
λ Number of episodes for policy evaluation
τ̂ Average number of steps to reach the goal by policy πg?

A.2. How Valid is Assumption 2?

We have identified two large classes of MDPs that satisfy Assumption 2: 1) deterministic MDP. It is clear that when
transition is deterministic, we have K?j = {s ∈ S : d(s0, s) = j − 1}, where d(s0, s) is the distance of shortest path from
s0 to s. Moreover, states not in K?j are unreachable by any policy restricted on K?j−1 (any path from s0 to a state s with
d(s0, s) = j+ 1 must pass through a state s′ with d(s0, s

′) = j), thus satisfying Assumption 2. 2) MDPs with tree structure,
that is, states in the MDP are nodes in a tree; nodes (states) s and s′ has an edge if and only if there exist a 6= RESET
s.t. P (s′|s, a) > 0 or P (s|s′, a) > 0. With s0 being the root of the tree, we haveK?j ⊆ Dj , whereDj = {d′(s0, s) ≤ j−1}
and d′(s, s′) is the undirected distance on tree from s to s′. Clearly, this implies V ?K?j−1,g

(s0) =∞ for any g 6∈ K?j , satisfying
Assumption 2.

A.3. Thoughts on the Lower Bound

We believe that the lower bound should either scale with S→L(1+ε) or S→L(1+ε)ΓL(1+ε). However, verifying both cases
requires brand new ideas. If the lower bound indeed scales with S→L(1+ε) in general, then there is room for improvement for
existing algorithms and analysis. Unfortunately, due to the exponentially large amount of possible values of K, the standard
UCBVI style analysis does not help to remove the ΓL(1+ε) dependency. On the other hand, if the lower bound scales with
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S→L(1+ε)ΓL(1+ε) when Assumption 2 does not hold, then we need to show that having undistinguishable states (states in
S→L(1+ε) \ S

→
L ) actually worsen the sample complexity. This cannot be handled by the usual lower bound construction and

analysis, which counts the number of samples needed to distinguish states in S→L and out of S→L(1+ε).
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Algorithm 4: VISGO
Input: state subset X , goal state g /∈ X , precision εVI, counter n, and failure probability δ.
Require:

∥∥V ?X ,g∥∥∞ ≤ 8L.

Let c1 = 3, c2 = 512, and ιs,a = log
(

2|X |An(s,a)
δ

)
for all (s, a).

Let P̄s,a(s′) = n(s,a,s′)
n+(s,a) and P̃s,a(s′) = n(s,a)

n(s,a)+1 P̄s,a(s′) + I{s′=g}
n(s,a)+1 for all (s, a, s′).

Initialize: V (0)(·)← 0, i← 0.
while i = 0 or

∥∥V (i) − V (i−1)
∥∥
∞ > εVI do

1 if
∥∥V (i)

∥∥
∞ > 2L then return (∞,∞, π) with π being a random policy.

i← i+ 1.
for s ∈ X do

b(i)(s, a)← max

{
c1

√
V(P̄s,a,V (i−1))ιs,a

n+(s,a) ,
c2Lιs,a
n+(s,a)

}
.

Q(i)(s, a)← max
{

0, 1 + P̃s,aV
(i−1) − b(i)(s, a)

}
for a ∈ A.

V (i)(s)← minaQ
(i)(s, a)

V (i)(s)← (1 + V (i−1)(s0))I{s 6= g} for s /∈ X .
return (Q(i), V (i), π) with π(s) = argminaQ

(i)(s, a) for s ∈ X and πg(s) = RESET for s /∈ X .

B. Analysis of VISGO
The convergence of VISGO has been proved in (Cai et al., 2022, Lemma C.4). We further introduce some properties of the
algorithm.

Lemma 2 (Optimism). Let X ⊆ S , g ∈ S \ X , n be a counter incrementally collecting samples from transition function P ,
and δ ∈ (0, 1) be such that ‖V ?X ,g‖∞ ≤ 8L. For any precision ξ > 0, define (Qξ, Vξ, _) = VISGO(X , g, ξ, n, δ) as the
output of Algorithm 4. Let P be the probability operator on the process generating the counter n and assume that X and g
are independent of n. Then,

P
(
∀ξ > 0, s ∈ S, a ∈ A : Qξ(s, a) ≤ Q?X ,g(s, a), Vξ(s) ≤ V ?X ,g(s)

)
≥ 1− δ.

Proof. First, by Lemma 54 and a union bound over (s, a) ∈ X × A, we have with probability at least 1 − δ, for any
(s, a) ∈ X ×A,

∣∣(P̄s,a − Ps,a)V ?X ,g
∣∣ ≤ 2

√
2V(P̄s,a, V ?K,g) log 2|X |An(s,a)

δ

n+(s, a)
+

19 · 8L log 2|X |An(s,a)
δ

n+(s, a)

≤ c1
2

√
V(P̄s,a, V ?X ,g)ιs,a

n+(s, a)
+

c2Lιs,a
2n+(s, a)

, (1)

with ιs,a, c1, and c2 are defined in Algorithm 4. We then carry out the proof assuming that such event holds.

Fix a configuration (X , g, ξ, n, δ) of the inputs of VISGO and let (Q(i), V (i))i≥0 be the iterates of the algorithm. It suffices
to show that for any i ≥ 0, Q(i)(s, a) ≤ Q?X ,g(s, a) for all (s, a) ∈ X ×A and V (i)(s) ≤ V ?X ,g(s) for all s ∈ S . We prove
it by induction.

Note that Q(0)(·) = V (0)(·) = 0, thus the statement clearly holds for the base case i = 0. Suppose it holds at some iteration
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i− 1 ≥ 0. Under event of Eq. (1), for any i > 0 and (s, a) ∈ X ×A,

1 + P̃s,aV
(i−1) −max

{
c1

√
V(P̄s,a, V (i−1))ιs,a

n+(s, a)
,
c2Lιs,a
n+(s, a)

}

≤ 1 + P̃s,aV
?
X ,g −max

c1
√

V(P̄s,a, V ?X ,g)ιs,a

n+(s, a)
,
c2Lιs,a
n+(s, a)

 (induction step and Lemma 49)

≤ 1 + P̄s,aV
?
X ,g −max

c1
√

V(P̄s,a, V ?X ,g)ιs,a

n+(s, a)
,
c2Lιs,a
n+(s, a)

 (definition of P̃s,a)

≤ 1 + Ps,aV
?
X ,g + (P̄s,a − Ps,a)V ?X ,g −

c1
2

√
V(P̄s,a, V ?X ,g)ιs,a

n+(s, a)
− c2Lιs,a

2n+(s, a)
(max{a, b} ≥ a+b

2 )

≤ Q?X ,g(s, a). (Eq. (1))

This also proves that V (i)(s) ≤ V ?X ,g(s) for all s ∈ X . Moreover, for s /∈ X , s 6= g, V (i)(s) = 1 + V (i−1)(s0) ≤
1 + V ?X ,g(s0) = V ?X ,g(s). Finally, V (i)(g) = V ?X ,g(g) = 0. This proves that V (i)(s) ≤ V ?K,g(s) for all s ∈ S, thus
concluding the proof.

Lemma 3 (Bounded Error). There exists a function N0(z0, z
′
0, δ0, δ) . L2z0 log

z′0
δ0δ

such that, for goal set G with
S→L(1+ε) ⊆ G ⊆ S and δ0 ∈ (0, 1), with probability at least 1 − δ over the randomness of a counter n incrementally
collecting samples from transition function P , for any X ⊆ S→L(1+ε) with |X | ≤ z0, g ∈ G \ X , precision ξ ∈ (0, 1

8 ),
and δ′ ∈ [δ0, 1), if z′0 ≥ |G| and n(s, a) ≥ N0(z0, z

′
0, δ0, δ) for all (s, a) ∈ X × A, then V πgg (s) ≤ 2V (s) for all

s ∈ S , where (_, V, πg) = VISGO(X , g, ξ, n, δ′) is the output of Algorithm 4. Also define N0(z0, δ) = N0(z0, S, δ, δ) and
N→0 (δ) = N0(S→L(1+ε), |Ū |, δ, δ) (recall that |Ū | ≤ 2LAS→L(1+ε)).

Proof. Note that the statement clearly holds if VISGO returns a value function V =∞. Otherwise,
∥∥V (i)

∥∥
∞ ≤ 2L for any

i ≤ l, where l is the index of the last iteration in Algorithm 4. By Lemma 46, with probability at least 1− δ6, for any status
of n, (s, a) ∈ X ×A, and V s.t. ‖V ‖∞ ≤ 2L,∣∣∣(Ps,a − P̃s,a)V

∣∣∣ ≤ ∣∣(Ps,a − P̄s,a)V
∣∣+
∣∣∣(P̄s,a − P̃s,a)V

∣∣∣
. L

√
z0ι′

n(s, a)
+

Lz0ι
′

n(s, a)
+

(P̄s,a + Ig)V
n(s, a) + 1

,

where P̃s,a and P̄s,a are as defined in Algorithm 4 with counter n and ι′ = Õ(log
z′0
δ ) by |G| ≤ z′0. Clearly, there exists

n1 = Õ(L2z0 log(|G|/δ)), such that when n(s, a) ≥ n1, we have |(Ps,a − P̃s,a)V | ≤ 1
8 . Moreover, we have

b(l)(s, a) . max

{√
V(P̄s,a, V (l−1))

n(s, a)
,

L

n(s, a)

}
.

L√
n(s, a)

.

Then there exist n2 = Õ(L2 log(1/δ0)) such that when n(s, a) ≥ n2, b(l)(s, a) ≤ 1
8 . Thus when n(s, a) ≥ max{n1, n2}

for all s ∈ X , a ∈ A, we can apply the same conclusion as in the proof of Lemma 4 as get the desired result.

Lemma 4 (Bounded Error with Fresh Samples). There exists a functionN1(x, δ0, δ) . L2x log x
δ0δ

(also defineN1(x, δ) =
N1(x, δ, δ)) such that for X ⊆ S, g ∈ S \ X , δ0 ∈ (0, 1), δ ∈ (0, 1), n a counter incrementally collecting samples from
transition function P , and assume that X , g, δ0 are independent of n, with probability at least 1 − δ, for any precision
ξ ∈ (0, 1

8 ) and δ′ ∈ [δ0, 1), if n(s, a) ≥ N1(|X |, δ0, δ) for all (s, a) ∈ X ×A, then V πgg (s) ≤ 2V (s) for all s ∈ S, where
(_, V, πg) = VISGO(X , g, ξ, n, δ′) is the output of Algorithm 4.

6this holds under the same good event of Lemma 46, which does not depend on the chosen X , g, δ′, ξ
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Proof. Let y = S \ (X ∪ {g}) and ιns,a = log 4|X |2An(s,a)
δ . Consider the following events:

E1 :=

∀s ∈ X , a ∈ A, s′ ∈ X , n(s, a) ≥ 1 : |Ps,a(s′)− P̄s,a(s′)| ≤ 2

√
2Ps,a(s′)ιns,a
n(s, a)

+
2ιns,a
n(s, a)

 ,

E2 :=

∀s ∈ X , a ∈ A, n(s, a) ≥ 1 : |Ps,a(y)− P̄s,a(y)| ≤ 2

√
2Ps,a(y)ιns,a
n(s, a)

+
2ιns,a
n(s, a)

 .

By Lemma 54 and a union bound, they hold simultaneously with probability at least 1−δ. We carry out the proof conditioned
on these events holding.

For any X , g, ξ, n, δ′, the statement clearly holds if V = ∞. Otherwise,
∥∥V (i)

∥∥
∞ ≤ 2L for any i ≤ l, where l is the

index of the last iteration in Algorithm 4. Take any status of counter n, precision ξ ∈ (0, 1
8 ), δ′ ∈ [δ0, 1). Let V and πg

be the output of Algorithm 4 with these parameters such that ‖V ‖∞ ≤ 2L. Since V is restricted on X ∪ {g}, we have
V (s′) = 1 + V (l−1)(s0) for any s′ /∈ X ∪ {g}. Then, for any (s, a) ∈ X ×A,∣∣∣(Ps,a − P̃s,a)V

∣∣∣ ≤ ∣∣(Ps,a − P̄s,a)V
∣∣+
∣∣∣(P̄s,a − P̃s,a)V

∣∣∣
≤

∣∣∣∣∣∑
s′∈X

(Ps,a(s′)− P̄s,a(s′))V (s′)

∣∣∣∣∣+
∣∣∣(Ps,a(y)− P̄s,a(y))(1 + V (l−1)(s0))

∣∣∣+
∣∣∣(P̄s,a − P̃s,a)V

∣∣∣
≤ 2L

∑
s′∈X

∣∣Ps,a(s′)− P̄s,a(s′)
∣∣+ 2L

∣∣Ps,a(y)− P̄s,a(y)
∣∣+
∣∣∣(P̄s,a − P̃s,a)V

∣∣∣
.
L
√
|X | log(|X |)√
n(s, a)

+
L|X | log(|X |)

n(s, a)
+

(P̄s,a + Ig)V
n(s, a) + 1

,

where in the last step we applied Cauchy-Schwarz inequality, the good events, the definition of P̃s,a, and removed
logarithmic terms and constants. Clearly, there exists n1 = Õ(L2|X | log(|X |/δ)), such that when n(s, a) ≥ n1, we have
|(Ps,a − P̃s,a)V | ≤ 1

8 . Moreover, we have

b(l)(s, a) . max

{√
V(P̄s,a, V (l−1))

n(s, a)
,

L

n(s, a)

}
.

L√
n(s, a)

.

Then there exist n2 = Õ(L2 log(1/δ0)) such that when n(s, a) ≥ n2, b(l)(s, a) ≤ 1
8 . Thus when n(s, a) ≥ max{n1, n2}

for all s ∈ X , a ∈ A, for any s ∈ X ,

V (s) = V (l)(s) ≥ 1 + P̃s,πg(s)V
(l−1)(s)− b(l)(s, πg(s))

≥ 1− ξ + P̃s,πg(s)V
(l) − b(l)(s, πg(s))

≥ 1− ξ + Ps,πg(s)V −
∣∣∣(Ps,πg(s) − P̃s,πg(s))V

∣∣∣− b(l)(s, πg(s)) ≥ 1

2
+ Ps,πg(s)V (s),

where we used the definition of V (l), the stopping condition of VISGO, and the previously derived bounds. For s /∈ X , we
have V (s) = (1 + V (l−1)(s0))I{s 6= g} ≥ ( 1

2 + V (s0))I{s 6= g}. Applying this recursively gives V (s) ≥ 1
2V

πg
g (s). This

completes the proof.

Lemma 5. For any subsets X and X ′ such that X ⊆ X ′ ⊆ S, any g ∈ S \ X ′, ξ > 0, counter n, and δ ∈ (0, 1), we have
VX ′(s) ≤ VX (s) for any s ∈ S, where we define VX ′′ = VISGO(X ′′, g, ξ, n, δ) (see Algorithm 4) for any X ′′ ⊆ S.

Proof. For any X ′′ ⊆ S , denote by Q(i)
X ′′ and V (i)

X ′′ the values of Q(i) and V (i) in Algorithm 4 respectively when computing
VX ′′ . It suffices to prove that V (i)

X ′ (s) ≤ V
(i)
X (s) for any s ∈ S and i ≥ 0 by induction. The base case i = 0 is clearly true

by initialization. When i > 0, we consider three disjoint cases: 1) if s ∈ X , by the induction step and Lemma 49, for any
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a ∈ A,

1 + P̃s,aV
(i−1)
X ′ −max

c1
√

V(P̄s,a, V
(i−1)
X ′ )ιs,a

n+(s, a)
,
c2Lιs,a
n+(s, a)


≤ 1 + P̃s,aV

(i−1)
X −max

c1
√

V(P̄s,a, V
(i−1)
X )ιs,a

n+(s, a)
,
c2Lιs,a
n+(s, a)

 .

This implies that V (i)
X ′ (s) ≤ V

(i)
X (s) for s ∈ X . 2) if s ∈ X ′ \ X , we have: V (i)

X ′ (s) ≤ Q
(i)
X ′(s,RESET) ≤ 1 +

P̃s,RESETV
(i−1)
X ′

(i)
≤ 1 + V

(i−1)
X ′ (s0)

(ii)
≤ 1 + V

(i−1)
X (s0) = V

(i)
X (s), where step (i) is by Ps,RESET(s0) = 1 and step (ii)

is by the induction step. 3) if s ∈ S \ X ′, by the induction step we have V (i)
X ′ (s) = (1 + V

(i−1)
X ′ (s0))I{s 6= g} ≤

(1 + V
(i−1)
X (s0))I{s 6= g} = V

(i)
X (s). Combining these three cases completes the proof.
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C. Analysis of Algorithm 1
In this section, we assume the state space is finite (i.e., S = |S| <∞).

C.1. Properties of the sets built by Algorithm 1

Lemma 6. Denote by Kr the set K at the end of each round r, by g?r the goal selected in such a round, and by πg?r ,r its
corresponding policy (computed by VISGO in Line 4). With probability at least 1− δ over the randomness of Algorithm 1,
we have that, for any round r,

• Kr ⊆ S→L(1+ε);

• if Line 5 is False, then ‖V
πg?r ,r
g?r

‖∞ ≤ 4L which implies ‖V ?Kr−1,g?r
‖∞ ≤ 4L;

• for all g ∈ Kr, ‖V
π̃g
g ‖∞ ≤ 4L and V π̃gg (s0) ≤ L(1 + ε).

Proof. Clearly, K1 = {s0} ⊆ S→L(1+ε). Then, consider a round r ≥ 2 and suppose Kr−1 ⊆ S→L(1+ε) (inductive hypothesis).
If, in this round, the algorithm selects a goal g?r ∈ U \ S→L(1+ε), Line 5 is False, and a skip round is not triggered, then
Line 19 is reached. We now prove that the “failure test” in that line triggers.

Note that every time K is updated, the sampling at Line 10 guarantees that for all (s, a) ∈ Kr−1 × A, Nr−1(s, a) ≥
O(L2|Kr−1| log(S/δ)). By Lemma 3, since Kr−1 ⊆ S→L(1+ε) (inductive hypothesis), we have that

P
(
∀g ∈ S \ Kr−1 : V πgg (s) ≤ 2VKr−1,g(s)

)
≥ 1− δ

4r2
. (2)

where (_, VKr−1,g, _) = VISGO(Kr−1, g, ξr,Nr−1,
δ

4r2S2 ) and ξr is the value of εVI used in round r.

Note that VISGO returns a value function that is either∞ or bounded by 2L for all states (see Alg. 4). Since g?r passes
the test of Line 5, then V

πg?r ,r
g?r

(s) ≤ 2VKr−1,g?r
(s) ≤ 4L, for all s ∈ S. Combining this with Lemma 50 and definition of

λ = NDEV(32L, ε
256 ,

δ
4r2 ), we have τ̂ ≥ V πg?g? (s0)−Lε/2 with probability at least 1− δ

4r2 . By assumption on g?r and since
πg?r ,r is restricted on Kr−1 ⊆ S→L(1+ε), we have V

πg?r ,r
g?r

(s0) ≥ V ?Kr−1,g?r
(s0) ≥ V ?S→

L(1+ε)
,g?r

(s0) > L(1 + ε), which implies

that τ̂ ≥ L(1 + ε/2) ≥ VKr−1,g?r
(s0) + εL/2 with the same probability, where the last inequality is from the goal-selection

rule. Therefore, the failure test of Line 19 triggers and g?r is not added to K′r or Kr. Therefore, by the inductive hypothesis
Kr ⊆ S→L(1+ε). A union bound over all r ≥ 1 yields the first statement with probability at least 1− δ.

To prove the second statement, note that we already proved above that V
πg?r
g?r ,r

(s) ≤ 4L at any round r where Line 5 is
False (i.e., where g?r reaches the policy evaluation step). Since πg?r ,r is restricted on Kr−1, we clearly have V ?Kr−1,g?r

(s) ≤
V
πg?r ,r
g?r

(s) ≤ 4L. This proves the second statement for any round r, which holds with the same 1− δ probability.

Finally, the third statement is a simple consequence of the fact that any goal g ∈ Kr must have reached the policy evaluation
step in some round r′ < r and the round was successful, and thus ‖V π̃gg ‖∞ ≤ 4L by the second statement. Moreover, by
the definition of success round, value of λ and Lemma 50, we have that, for each g ∈ Kr, there exists r′ < r such that
V
π̃g
g (s0) = V

πg?
r′
,r′

g?
r′

(s0) ≤ τ̂ + Lε
2 ≤ VKr′−1,g

?
r′

(s0) +Lε ≤ L(1 + ε). This holds with the same 1− δ probability as above
since we have already union bounded across the application of Lemma 50 for all g?r at all r ≥ 1.

Lemma 7. With probability at least 1 − 2δ, for any round r ≥ 1 in which Kr is updated (i.e., Line 8 is executed),
TL(Kr) \ Kr ⊆ Ur.

Proof. For any round r, let Fr−1 denote the sigma-algebra generated by the history up to the previous round. Let Hk denote
the event “Line 8 is executed at round k”. Note that Hk is Fk−1-measurable since no random step happens before Line 8 in
round r. Moreover, define the events Er := {∀g ∈ Kr : ‖V π̃gg ‖∞ ≤ 4L} and E := {∀r ≥ 1 : Er}. Note that E holds with
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probability at least 1− δ by Lemma 6. We have

P (∃r ≥ 1 : Hr, TL(Kr) \ Kr 6⊆ Ur) ≤ P (∃r ≥ 1 : Hr, TL(Kr) \ Kr 6⊆ Ur, E) + P (¬E) (union bound)
≤ P (∃r ≥ 1 : Hr, TL(Kr) \ Kr 6⊆ Ur, Er) + δ (Lemma 6)

≤
∑
r≥1

P (TL(Kr) \ Kr 6⊆ Ur, Er, Hr) + δ. (union bound)

≤
∑
r≥1

P
(
N (Kr,

1

2L
) 6⊆ Ur, Er, Hr

)
+ δ. (TL(Kr) \ Kr ⊆ N (Kr, 1

2L ))

Now take any round r ≥ 1. Recall that Ur is built by sampling from each (s, a) ∈ Kr×A exactly µr := 2L log(4SALr2/δ)
times. For each (s, a) ∈ Kr × A, let si,s,a be the i-th sample (i.e., si,s,a ∼ Ps,a) for i ∈ [µr]. In order to collect each
sample si,s,a, we must play the policy π̃s from s0 until reaching s. Note that, under event Er, ‖V π̃ss ‖∞ ≤ 4L for all s ∈ Kr,
hence all the states in Kr are reached with probability one (so si,s,a is well defined for all s, a, i). Then, for any fixed Kr,

P
(
N (Kr,

1

2L
) 6⊆ Ur, Er, Hr | Kr

)
≤ P

(
∃s′ ∈ N (Kr,

1

2L
),∀(s, a) ∈ Kr ×A,∀i ∈ [µr] : si,s,a 6= s′ | Kr

)
≤

∑
s′∈N (Kr, 1

2L )

P (∀(s, a) ∈ Kr ×A,∀i ∈ [µ] : si,s,a 6= s′) (union bound)

≤
∑

s′∈N (Kr, 1
2L )

max
(s,a)∈Kr×A

P (∀i ∈ [µ] : si,s,a 6= s′) (trivial)

≤
∑

s′∈N (Kr, 1
2L )

max
(s,a)∈Kr×A

∏
i∈[µr]

(1− P (s′|s, a)) (all si,s,a are i.i.d.)

≤
∑

s′∈N (Kr, 1
2L )

(
1− 1

2L

)µr
(definition of N (Kr, 1

2L ))

≤
∑

s′∈N (Kr, 1
2L )

δ

4LASr2
≤ δ

2r2
.

Now let Ωr−1 denote the sample space under which Fr−1 is generated, such that
∑
ω∈Ωr−1

P(ω) = 1. Noting that Kr is
measurable w.r.t. Fr−1, define Kr(ω) as the set Kr obtained after history ω. Then,

P
(
N (Kr,

1

2L
) 6⊆ Ur, Er, Hr

)
=

∑
ω∈Ωr−1

P
(
N (Kr,

1

2L
) 6⊆ Ur, Er, Hr | ω

)
P(ω)

=
∑

ω∈Ωr−1:Er,Hr

P
(
N (Kr,

1

2L
) 6⊆ Ur | ω

)
P(ω)

=
∑

ω∈Ωr−1:Er,Hr

P
(
N (Kr,

1

2L
) 6⊆ Ur | Kr(ω), Er, Hr

)
P(ω) ≤ δ

2r2
.

Plugging this into our initial inequality, we get P (∃r ≥ 1 : Hr, TL(Kr) \ Kr 6⊆ Ur) ≤ 2δ.

Lemma 8 (Restricted Optimism). With probability at least 1− δ over the randomness of Algorithm 1, for any j ∈ [S] and
any round r ≥ 1, after executing Line 4, if K?j ⊆ Kr, then VKr,g(s) ≤ V ?K?j ,g(s) for any s ∈ S and g ∈ K?j+1 \ Kr, where
Kr is the set K immediately after the execution of Line 4.

Proof. Let j ∈ [S] and g ∈ K?j+1 \ K?j . Fix some round r ≥ 1 s.t. K?j ⊆ Kr. Let δr = δ
4r2S2 and (Qξ, Vξ, _) =

VISGO(K?j , g, ξ,N, δr). By Lemma 2 7,

P
(
∀ξ > 0, s ∈ S : Vξ(s) ≤ V ?K?j ,g(s)

)
≥ 1− δr. (3)

7Note that, by definition, ‖V ?K?j ,g‖∞ ≤ L+ 1 ≤ 2L for all g ∈ K?j+1 \ K?j (which is a prerequisite of Lemma 2).
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Then, from a union bound and |K?j+1 \K?j | ≤ S, the event above holds simultaneously across all j ∈ [S], and g ∈ K?j+1 \K?j
with probability at least 1− δ

4r2 . This implies that the same result holds for all g ∈ K?j+1 \Kr sinceK?j+1 \Kr ⊆ K?j+1 \K?j .
A union bound implies that this holds at all rounds simultaneously with probability at least 1− δ.

Now consider the execution of Line 4 and let Kr, δr, ξr,Nr be the values of the parameters used by VISGO in such a
round, such that K?j ⊆ Kr for some j ∈ [S]. For any g ∈ K?j+1 \ Kr, let (_, VKr,g, _) = VISGO(Kr, g, ξr,Nr, δr) and
(_, VK?j ,g, _) = VISGO(K?j , g, ξr,Nr, δr). Then, Eq. 3 implies that, for any s ∈ S, VK?j ,g(s) ≤ V

?
K?j ,g

(s). If K?j ⊆ Kr, by
the update rule of Algorithm 4 and Lemma 5, we also have VKr,g(s) ≤ VK?j ,g(s) ≤ V

?
K?j ,g

(s).

The following lemma shows that if a set K?j ⊆ K at some round, at the next update of K it must be that K?j+1 ⊆ K (if the
algorithm does not terminate) and ensures correctness, in the sense that the algorithm returns a set of states including S→L
with high probability.

Lemma 9 (Correctness). Denote by Kr (resp Ur) the set K (resp. U) at the end of each round r. With probability at least
1− 3δ, for any j ≥ 1 and round r ≥ 1 in which Kr is updated or returned (i.e., Line 8 is executed) and Kr−1 ⊇ K?j , we
have K?j+1 ⊆ Kr. Moreover, under the same probability, we have that, for any r ≥ 1, S→L ⊆ Kr if the algorithm terminates
at round r.

Proof. Define the eventE := {∀r ≥ 1 in which Kr is updated : TL(Kr)\Kr ⊆ Ur}. By Lemma 7, it holds with probability
at least 1− 2δ. Let us carry out the proof conditioned on E holding.

Take some round r such that Line 8 is executed and Kr−1 ⊇ K?j . Let r′ be the last round where Kr′ was updated (and
thus Ur′ was created). Note that Kr′ = Kr−1 ⊇ K?j . Then, event E and the definition of the sets (K?j )j directly imply that
K?j+1 := TL(K?j ) ⊆ TL(Kr′) ⊆ Ur′∪Kr′ . SinceKr can only be formed by adding states in Ur′ toKr′ , and the union of these
sets contains K?j+1, if K?j+1 6⊆ Kr, it must be that there exists g ∈ Ur−1 ∩ K?j+1 s.t. VKr−1,g(s0) > L. However, Lemma 8,
which holds with probability 1− δ, implies that, at any round r ≥ 1, if K?j ⊆ Kr−1, then VKr−1,g(s0) ≤ V ?K?j ,g(s0) ≤ L for
any g ∈ K?j+1 \ Kr−1. This is a contradiction, which implies that Ur−1 ∩ K?j+1 = ∅ and, thus, all states in K?j+1 must have
been added to Kr. A union bound over the application of Lemma 7 and Lemma 8 yields the statement.

To prove the second statement, let us use the same events as above. First note that, since K1 = K?1 = {s0}, it must be that, at
any round r, Kr ⊇ K?j for some j ≥ 1. Now take any round r in which the algorithm terminates and suppose Kr−1 6⊇ S→L .
Let j? be the largest j s.t. Kr ⊇ K?j . By Lemma 1, it must be that j < J , hence K?j?+1 ⊃ K?j? . Let r′ be the last round at
which Kr′ was updated. Since the algorithm terminates at round r it must be that K′r−1 = ∅, i.e., no state in Ur−1 = Ur′
has been found to be added to Kr. From the same argument as above, under E it must be that K?j?+1 ⊆ Ur′ ∪ Kr′ . Since
Kr−1 6⊇ S→L , and no addition toKr−1 is performed as the algorithm stops at r, it must be that there exists g ∈ Ur−1∩K?j?+1

s.t. VKr−1,g(s0) > L. However, in the first part of the proof, we already found a contradiction for this case under the
event of Lemma 8. This implies that the algorithm cannot stop at r since some state must be added. Hence, whenever the
algorithm stops it must be that Kr ⊇ S→L . This completes the proof.

Lemma 10 (Correctness under Assumption 2). Denote by Kr the set K at the end of each round r. With Assumption 2,
with probability at least 1− 5δ over the randomness of Algorithm 1, for any round r ≥ 1, we have that Kr = K?j for some
j ∈ [S→L ] and Kr = S→L if the algorithm terminates at round r.

Proof. By Lemma 6 and Lemma 9, with probability at least 1 − 4δ, we have S→L ⊆ Kr ⊆ S→L(1+ε) if the algorithm
terminates at round r. By Remark 1, K = S→L . Thus, it suffices to show that, at any round r, Kr = K?j for some j ≤ |S→L |.

The algorithm is such that K1 = K?1 = {s0}. Suppose at, in some round r ≥ 1, we have that Kr = K?j for some j ≥ 1.
By Lemma 9, with the same probability as above, if the condition of Line 7 becomes True for the first time in some round
r′ > r (i.e., the set K is updated in such round), then we must have K?j+1 ⊆ Kr′ at then end of round r′. We shall prove that
we also have Kr′ ⊆ K?j+1, which implies the statement.

Take any round r such that Kr−1 = K?j and g?r ∈ U \K?j+1. Since, the last time K was updated Line 10 was called, we must
have Nr−1(s, a) ≥ O(L2|K?j | log(S/δ)) for all (s, a) ∈ K?j ×A. Then, by Lemma 3, with probability at least 1− δ

4r2 , for
all s ∈ S, V

πg?r
g?r

(s) ≤ 2VKr−1,g?r
(s) ≤ 4L due to properties of VISGO if Line 5 is False. If a skip round is not triggered,

combining this with Lemma 50 and definition of λ, we have τ̂ ≥ V
πg?r
g?r

(s0)− Lε/2 with probability at least 1− δ
4r2 .
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By Assumption 2, assumption on g?r , and since πg?r is restricted onKr−1 = K?j , we have V
πg?r
g?r

(s0) ≥ V ?K?j ,g?r (s0) > L(1+ε),
which implies that τ̂ ≥ L(1 + ε/2) ≥ VKr−1,g?r

(s0) + εL/2 with the same probability, where the last inequality is from the
fact that Line 5 is False. Therefore, the failure test triggers and g?r is not added to K′r or Kr since a failure round is triggered.
This holds with probability at least 1 − δ across all rounds by a union bound. Therefore, for any round r in which K is
updated and Kr−1 = K?j , we must have Kr ⊆ K?j+1. This concludes the proof, and the statement holds with probability at
least 1− 5δ by a union bound.

C.2. Analysis of Policy Evaluation

We consider the regret over the trajectories generated in the policy evaluation phase. We concatenate all policy evaluation
episodes in all rounds and index them with k ≥ 1. To make the notation consistent with Algorithm 5, we treat the whole
learning procedure as an artificial trial. Let Kk, Vk, and Qk be the K, VK,g? , and QK,g? in episode k. Let πk and gk be
the corresponding policy πg? and goal g?. Denote by Fk the σ-algebra of events up to episode k. Let K be the total
number of episodes throughout the execution of Algorithm 1. For any sequence of indicators I = {1k}k with 1k ∈ Fk−1,
define RK′,I =

∑K′

k=1(Ik − Vk(s0))1k and CK′ =
∑K′

k=1 Ik for K ′ ∈ [K]. Define P ki = Pski ,aki . In episode k, when

ski ∈ K, denote by P̄ ki , P̃ ki , Nk
i , bki the values of P̄ski ,aki , P̃ski ,aki , n+(ski , a

k
i ), and b(l)(ski , a

k
i ), where P̄ , n+, b(l) are used

in Algorithm 4 to compute Vk and l is the final value of i in Algorithm 4; when ski /∈ K, define P̄ ki = Is0 , Nk
i =∞, and

bki = 0. Also define εk, δk as the value of εVI, δ used in Algorithm 4 to compute Vk. Note that Ik <∞ with probability 1 by
Line 17, and skIk+1 6= g only when a skip round is triggered in episode k.

C.2.1. REGRET BOUND WITHOUT ASSUMPTION 2

Lemma 11. For any sequence of indicators I = {1k}k with 1k ∈ Fk−1, we have, with probability at least 1− 6δ, for any
K ′ ∈ [K],

RK′,I . L log(SAL/δ)2 log(K)
√
S→L(1+ε)ΓL(1+ε)AK ′ + LS→L(1+ε)

2A(logK ′)2 log(SAL/δ)3.

Moreover, CK′ . LK ′ + LS→L(1+ε)
2A(logK ′)2 log(SAL/δ)3.

Proof. We start by decomposing the regret as

K′∑
k=1

(Ik − Vk(s0))1k ≤
K′∑
k=1

Ik∑
i=1

(
1 + Vk(ski+1)− Vk(ski )

)
1k (±

∑Ik
i=1 Vk(ski+1))

≤
K′∑
k=1

Ik∑
i=1

(
(Iski+1

− P ki )Vk + (P ki − P̄ ki )Vk + (P̄ ki − P̃ ki )Vk + bki + εk

)
1k, (definition of Vk)

where the last inequality uses that V (l)
k (s) = 1 + P̃ ks,aV

(l−1)
k − bks,a for any s ∈ Kk, a ∈ A, where l is the index of the last

iteration of VISGO when called with (_, Vk, πg) = VISGO(Kk, gk, εk,Nk, δk), and ‖V (l)
k − V

(l−1)
k ‖∞ ≤ εk by definition

of its termination condition (recall that Vk is bounded since Line 5 was passed). Note that, if ski /∈ Kk, then the i, k term in
the sum of the second line is clearly an upper bound to the corresponding term in the first line. We bound the terms above
separately.

First term By Lemma 55 and ‖Vk‖∞ ≤ 2L (by VISGO and since Line 5 was passed), with probability at least 1− δ,

K′∑
k=1

Ik∑
i=1

(Iski+1
− P ki )Vk1k ≤

√√√√ K′∑
k=1

Ik∑
i=1

1kV(P ki , Vk)ι+ Lι,

where ι = 9 log(16L2C3
K′/δ).

Second term Note that, by the event of Lemma 6, Kk ⊆ S→L(1+ε) in all episodes k. Moreover, when ski /∈ Kk, the k, i
term in the sum is zero by definition of P ki and P̄ ki . Therefore, we have all the preconditions to apply Lemma 46 on terms
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(P ki − P̄ ki )Vk for all i, k s.t. ski ∈ Kk, which yields, with probability 1− δ,

K′∑
k=1

Ik∑
i=1

(P ki − P̄ ki )Vk1k .
K′∑
k=1

Ik∑
i=1

√ΓL(1+ε)V(P ki , Vk)ι′

Nk
i

+
LS→L(1+ε)ι

′

Nk
i

 ,

where ι′ = O(log SALCK′
δ ). Note that Lemma 46 already union bounds across all possible counts, value functions and

state-action pair, so we do not need an extra union bound over episodes and steps here.

Then, by Lemma 40 and Cauchy-Schwarz inequality, with the same probability,

K′∑
k=1

Ik∑
i=1

(P ki − P̄ ki )Vk1k .

√√√√S→L(1+ε)ΓL(1+ε)A

K′∑
k=1

Ik∑
i=1

V(P ki , Vk)ι′′ + LS→L(1+ε)
2Aι′′,

where ι′′ = O(log(SALCK′/δ) log(CK′)).

Third term By the expressions of P̃ ki and P̄ ki (cf. Algorithm 4) and Lemma 40,

K′∑
k=1

Ik∑
i=1

(P̄ ki − P̃ ki )Vk1k ≤
K′∑
k=1

Ik∑
i=1

1k
(P̄ ki + Ig)Vk

Nk
i + 1

. LS→L(1+ε)A log(CK′). (Ig(s′) , I{s′ = g})

Fourth and fifth term By Lemma 39 and Lemma 41, with probability at least 1− δ,

K′∑
k=1

Ik∑
i=1

(bki + εk)1k .

√√√√S→L(1+ε)A

K′∑
k=1

Ik∑
i=1

V(P ki , Vk)ι′ + LS→L(1+ε)
1.5Aι′.

Combining all terms Note that all the derived bounds can be absorbed into the one of the second term. Plugging
everything back to our initial expression of the regret,

K′∑
k=1

(Ik − Vk(s0))1k .

√√√√S→L(1+ε)ΓL(1+ε)A

K′∑
k=1

Ik∑
i=1

V(P ki , Vk)ι′′ + LS→L(1+ε)
2Aι′′

.
√
LS→L(1+ε)ΓL(1+ε)ACK′ι′′ + LS→L(1+ε)

2Aι′′. (Lemma 36)

Note that ι′′ . log(SAL/δ)(logCK′)
2. Now assuming 1k = 1 for all k, we can solve an inequality to find CK . First, using

that log(x) ≤ xα/α for any x, α > 0 together with the derived regret bound, we can find the crude bound on CK ,

CK′ .

(
K∑
k=1

Vk(s0) + LS→L(1+ε)
2A log(SAL/δ)

)4

≤
(
K ′L+ LS→L(1+ε)

2A log(SAL/δ)
)4

.

This implies that ι′′ . (logK ′)2 log(SAL/δ)3. Plugging this into the regret bound, we get a quadratic inequality in CK′ .
Solving it yields

CK′ .
K′∑
k=1

Vk(s0) + LS→L(1+ε)
2A(logK ′)2 log(SAL/δ)3 ≤ LK ′ + LS→L(1+ε)

2A(logK ′)2 log(SAL/δ)3.

Plugging this back into the regret bound gives the stated bound. Throughout the proof we used following events with the
corresponding probabilities:

• Lemma 55: 1− δ

• Lemma 6: 1− δ
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• Lemma 46: 1− δ

• Lemma 39: 1− δ

• Lemma 36: 1− 2δ

A union bound concludes the proof.

C.2.2. REGRET BOUND UNDER ASSUMPTION 2

Lemma 12. Under Assumption 2, for any sequence of indicators I = {1k}k with 1k ∈ Fk−1, we have, with probability at
least 1− 14δ, for any K ′ ∈ [K],

RK′,I . L log(SAL/δ)2 log(K ′)
√
S→L(1+ε)AK

′ + LS→L(1+ε)
2A(logK ′)2 log(SAL/δ)3.

Moreover, CK′ . LK ′ + LS→L(1+ε)
2A(logK ′)2 log(SAL/δ)3.

Proof. Note that, under Assumption 2 and by Lemma 10, in any episode, K = K?j for some j ≤ J ≤ |S→L(1+ε)| ≤ S (cf.
Lemma 1). Moreover, by Lemma 6, for any round in which g? reaches the policy evaluation step, ‖V ?K,g?‖∞ ≤ 4L, which
implies that ‖V ?K?j ,g?‖∞ ≤ 4L for some j in that round. Let Gj := {g ∈ S : ‖V ?K?j ,g‖∞ ≤ 4L}. Consider the event

E :=

∀s ∈ S, a ∈ A, j ∈ [S], g ∈ Gj ,∀n(s, a) ≥ 1 : |(P̄ns,a − Ps,a)V ?K?j ,g| ≤

√
V(Ps,a, V ?K?j ,g

)ι′s,a

n(s, a)
+

Lι′s,a
n(s, a)

 ,

where ι′s,a = 8 log(2S3An(s, a)/δ). Clearly, by Lemma 54 and a union bound, E holds with probability at least 1 − δ.
Then, assuming E and the events of Lemma 10 and Lemma 6 hold, we clearly have, for all episodes k and steps i,

(P ki − P̄ ki )V ?k .

√
V(P ki , V

?
k )ι′

Nk
i

+
Lι′

Nk
i

, (4)

where ι′ = O(log(SALCK′/δ)). Note that we inflated the ι′ term with an extra L since it will simplify the bounds later.
Now we split the regret as

K′∑
k=1

(Ik − Vk(s0))1k ≤
K′∑
k=1

Ik∑
i=1

(
1 + Vk(ski+1)− Vk(ski )

)
1k (±

∑Ik
i=1 Vk(ski+1))

≤
K′∑
k=1

Ik∑
i=1

(
(Iski+1

− P ki )Vk + (P ki − P̄ ki )Vk + (P̄ ki − P̃ ki )Vk + bki + εk

)
1k, (definition of Vk)

where the last inequality uses that V (l)
k (s) = 1 + P̃ ks,aV

(l−1)
k − bks,a for any s ∈ Kk, a ∈ A, where l is the index of the last

iteration of VISGO when called with (_, Vk, πg) = VISGO(Kk, gk, εk,Nk, δk), and ‖V (l)
k − V

(l−1)
k ‖∞ ≤ εk by definition

of its termination condition (recall that Vk is bounded since Line 5 was passed). Note that, if ski /∈ Kk, then the i, k term in
the sum of the second line is clearly an upper bound to the corresponding term in the first line.

We bound the terms above separately.

First term By Lemma 55 and ‖Vk‖∞ ≤ 2L (by VISGO and since Line 5 was passed), with probability at least 1− δ,

K′∑
k=1

Ik∑
i=1

(Iski+1
− P ki )Vk1k ≤

√√√√ K′∑
k=1

Ik∑
i=1

1kV(P ki , Vk)ι+ Lι,

where ι = 9 log(16L2C3
K′/δ).

24



Layered State Discovery for Incremental Autonomous Exploration

Second term Note that, from (4),

K′∑
k=1

Ik∑
i=1

|(P ki − P̄ ki )Vk|1k ≤
K′∑
k=1

Ik∑
i=1

|(P ki − P̄ ki )Vk|

=

K′∑
k=1

Ik∑
i=1

(
|(P ki − P̄ ki )V ?k |+ |(P ki − P̄ ki )(Vk − V ?k )|

)
≤

K′∑
k=1

Ik∑
i=1

(√
V(P ki , V

?
k )ι′

Nk
i

+
Lι′

Nk
i

+ |(P ki − P̄ ki )(Vk − V ?k )|

)
.

Note that, by the event of Lemma 6, Kk ⊆ S→L(1+ε) in all episodes k. Moreover, for all k, i, either (ski , a
k
i ) ∈ Kk ×A or

the second term above is zero. Since ‖Vk − V ?k ‖∞ ≤ 6L, we have all the preconditions to apply Lemma 46 on the terms
|(P ki − P̄ ki )(Vk − V ?k )|, which yields, with probability 1− δ, for all i, k,

|(P ki − P̄ ki )(Vk − V ?k )| .

√
S→L(1+ε)V(P ki , Vk − V ?k )ι′

Nk
i

+
LS→L(1+ε)ι

′

Nk
i

,

where ι′ was defined above. Note that Lemma 46 already union bounds across all possible counts, value functions and state-
action pair, so we do not need an extra union bound over episodes and steps here. By VAR[X+Y ] ≤ 2(VAR[X] + VAR[Y ]),
we have that V(P ki , V

?
k ) ≤ 2V(P ki , Vk − V ?k ) + 2V(P ki , Vk) and thus

K′∑
k=1

Ik∑
i=1

|(P ki − P̄ ki )Vk| ≤
K′∑
k=1

Ik∑
i=1

√V(P ki , Vk)ι′

Nk
i

+

√
S→L(1+ε)V(P ki , Vk − V ?k )ι′

Nk
i

+
LS→L(1+ε)ι

′

Nk
i

 .

Then, by Cauchy-Schwarz inequality, with the same probability and Lemma 40,

K′∑
k=1

Ik∑
i=1

|(P ki − P̄ ki )Vk| .

√√√√S→L(1+ε)A

K′∑
k=1

Ik∑
i=1

V(P ki , Vk)ι′′ +

√√√√S→L(1+ε)
2A

K′∑
k=1

Ik∑
i=1

V(P ki , Vk − V ?k )ι′′ + LS→L(1+ε)
2Aι′′,

where ι′′ = O(log(SALCK′/δ) log(CK′)). Now by Lemma 13, with probability at least 1− 2δ,

K′∑
k=1

Ik∑
i=1

V(P ki , V
?
k − Vk) . L

K′∑
k=1

Ik∑
i=1

|(P ki − P̄ ki )Vk|+ L

√√√√S→L(1+ε)A

K′∑
k=1

Ik∑
i=1

V(P ki , Vk)ι′ + L2S→L(1+ε)
2Aι′,

where ι′ was defined above. Let ZK :=
∑K′

k=1

∑Ik
i=1 |(P ki − P̄ ki )Vk|. Plugging this into the previous inequality, using√

xy ≤ x+ y and ι′ ≤ ι′′, we get

ZK′ .
√
S→L(1+ε)

2ALι′′ZK′ +

√√√√S→L(1+ε)A

K′∑
k=1

Ik∑
i=1

V(P ki , Vk)ι′′ + LS→L(1+ε)
2Aι′′.

Solving thi quadratic inequality for ZK′ , we conclude with

K′∑
k=1

Ik∑
i=1

|(P ki − P̄ ki )Vk| .

√√√√S→L(1+ε)A

K′∑
k=1

Ik∑
i=1

V(P ki , Vk)ι′′ + LS→L(1+ε)
2Aι′′.

Third term By the expressions of P̃ ki and P̄ ki (cf. Algorithm 4) and Lemma 40,

K′∑
k=1

Ik∑
i=1

(P̄ ki − P̃ ki )Vk1k ≤
K′∑
k=1

Ik∑
i=1

1k
(P̄i + Ig)Vk
Nk
i + 1

. LS→L(1+ε)A log(CK′). (5)
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Fourth and fifth term By Lemma 39 and Lemma 41, with probability at least 1− δ,

K′∑
k=1

Ik∑
i=1

(bki + εk)1k .

√√√√S→L(1+ε)A

K′∑
k=1

Ik∑
i=1

V(P ki , Vk)ι′ + LS→L(1+ε)
1.5Aι′. (6)

Combining all terms Note that all the derived bounds can be absorbed into the one of the second term. Plugging
everything back to our initial expression of the regret,

K′∑
k=1

(Ik − Vk(s0))1k .

√√√√S→L(1+ε)A

K′∑
k=1

Ik∑
i=1

V(P ki , Vk)ι′′ + LS→L(1+ε)
2Aι′′

.
√
LS→L(1+ε)ACK′ι

′′ + LS→L(1+ε)
2Aι′′. (Lemma 36)

Note that ι′′ . log(SAL/δ)(logCK′)
2. Now assuming 1k = 1 for all k, we can solve an inequality to find CK′ . First,

using that log(x) ≤ xα/α for any x, α > 0 together with the derived regret bound, we can find the crude bound on CK′ ,

CK′ .

 K′∑
k=1

Vk(s0) + LS→L(1+ε)
2A log(SAL/δ)

4

≤
(
K ′L+ LS→L(1+ε)

2A log(SAL/δ)
)4

.

This implies that ι′′ . (logK ′)2 log(SAL/δ)3. Plugging this into the regret bound, we get a quadratic inequality in CK′ .
Solving it yields

CK′ .
K′∑
k=1

Vk(s0) + LS→L(1+ε)
2A(logK ′)2 log(SAL/δ)3 ≤ LK ′ + LS→L(1+ε)

2A(logK ′)2 log(SAL/δ)3.

Plugging this back into the regret bound gives the stated bound. Throughout the proof we used following events with the
corresponding probabilities:

• Lemma 10: 1− 5δ

• Lemma 6: 1− δ

• Event E in this proof: 1− δ

• Lemma 55: 1− δ

• Lemma 46: 1− δ

• Lemma 39: 1− δ

• Lemma 13: 1− 2δ

• Lemma 36: 1− 2δ

A union bound concludes the proof.

C.3. Auxiliary results for policy evaluation

Lemma 13. With probability at least 1 − 2δ, for any K ′ ∈ [K], if 1) ‖Vk‖∞ = O(L) for any k ∈ [K ′], and 2)
Vk(s) ≤ V ?k (s) for any k ∈ [K ′] and s ∈ S, then

K′∑
k=1

Ik∑
i=1

V(P ki , V
?
k − Vk) . L

K′∑
k=1

Ik∑
i=1

|(P ki − P̄ ki )Vk|+ L

√√√√S→L(1+ε)A

K′∑
k=1

Ik∑
i=1

V(P ki , Vk)ι′ + L2S→L(1+ε)
2Aι′,

where ι′ = O(log(SALCK′/δ)).
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Proof. First note that, by Condition 1) and 2), for any s ∈ S, V ?k (s)− Vk(s) ≥ 0 and V ?k (s)− Vk(s) ≤ O(L). Thus, by
Lemma 38, with probability at least 1− δ,

K′∑
k=1

Ik∑
i=1

V(P ki , V
?
k − Vk) .

K′∑
k=1

(V ?k (skIk+1)− Vk(skIk+1))2

︸ ︷︷ ︸
(a)

+

K′∑
k=1

Ik∑
i=1

(
(V ?k (ski )− Vk(ski ))2 − (P ki (V ?k − Vk))2

)
︸ ︷︷ ︸

(b)

+L2ι,

where ι = O(log(LCK′/δ)).

Bounding (a) Note that, since V ?k (gk) = Vk(gk) = 0, we must have (a) ≤
∑K′

k=1 I{skIk+1 6= g}. Since the event
{skIk+1 6= g} happens only in skip rounds, it must be that (a) . S→L(1+ε)A.

Bounding (b) Using that Vk(s) ≤ V ?k (s) for all s ∈ S (Condition 2), (a+ b)(a− b)+ for a, b ≥ 0,

K′∑
k=1

Ik∑
i=1

(
(V ?k (ski )− Vk(ski ))2 − (P ki (V ?k − Vk))2

)
. L

K′∑
k=1

Ik∑
i=1

(V ?k (ski )− Vk(ski )− P ki V ?k + P ki Vk)+

. L

K′∑
k=1

Ik∑
i=1

(1 + P ki Vk − Vk(ski ))+,

where in the second inequality we used V ?k (ski ) ≤ 1 + P ki V
?
k by definition of V ?k . Since, for all i, k, Vk(ski ) ≥ 1 + P̃ ki Vk −

bki − εk (cf. Algorithm 4), we also have

K′∑
k=1

Ik∑
i=1

(
(V ?k (ski )− Vk(ski ))2 − (P ki (V ?k − Vk))2

)
. L

K′∑
k=1

Ik∑
i=1

((P ki − P̃ ki )Vk + bki + εk)+

= L

K′∑
k=1

Ik∑
i=1

((P ki − P̄ ki )Vk + (P̄ ki − P̃ ki )Vk + bki + εk)+

≤ L
K′∑
k=1

Ik∑
i=1

(|(P ki − P̄ ki )Vk|+ |(P̄ ki − P̃ ki )Vk|+ bki + εk)

All terms but the first one are bounded in (5) and (6), which gives the following bound on (b) holding with probability at
least 1− 2δ,

(b) . L

K′∑
k=1

Ik∑
i=1

|(P ki − P̄ ki )Vk|+ L

√√√√S→L(1+ε)A

K′∑
k=1

Ik∑
i=1

V(P ki , Vk)ι′ + L2S→L(1+ε)
2Aι′,

where ι′ = O(log(SALCK′/δ)). Combining the bounds on (a) and (b) concludes the proof.

Lemma 14. Assume that for any sequence of indicators I = {1k}k such that 1k ∈ Fk−1, we have RK′,I .
c1
√
K ′ logp(K ′) + c2 logp(K ′) and CK′ . c3K

′ + logp(K ′)c4 for any K ′ ∈ [K], where c1 ≥ L and c4 & S→L(1+ε)A/ε.
Then, the total number rounds rtot with at least one episode is of order

c21
L2

log2p
(c1c4

ε

)
+
(c2ε
L

+ S→L(1+ε)A+
c1
L

√
S→L(1+ε)A

)
logp

(c1c2c4
ε

S→L(1+ε)A
)
.

Moreover, CK . c3rtot
ε2 + c4 logp(rtot/ε) with probability at least 1− 4δ.

Proof. Denote by V̄r, π̄r and ḡr the values of VK,g? , πg? , and g? used for policy evaluation in round r respectively. For
any R′ ≥ 1, let K ′ be the total number of episodes in the first R′ rounds. Denote by r′tot the total number of rounds with at
least one episode and rf the number of failure rounds within the first K ′ episodes. The number of success rounds is at most
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S→L(1+ε) by Lemma 6 (which holds with probability 1− δ), and the number of skip rounds is at mostO(S→L(1+ε)A log(CK′))
since we have a skip round only when the total number of steps or the number of visits of some state-action pair in K ×A
is doubled. Therefore, r′tot . rf + S→L(1+ε)A log(CK′) . rf + S→L(1+ε)A log(K ′) + S→L(1+ε)A log(c4), where the last
inequality is by assumption on CK′ .

Define W = {r : V π̄rḡr (s0) > V̄r(s0)}. Note that W includes all failure rounds with probability at least 1 − δ. This is
because, for any round r ≥ 1 in which V π̄rgr (s0) ≤ V̄r(s0) and the skip round condition is not triggered, by Lemma 50
and the value of λ in Algorithm 1 in round r, we have τ̂ ≤ V̄r(s0) + εL/2 with probability at least 1− δ

2r2 . This implies
that a success round is triggered. A union bound over all rounds proves that all failure rounds are indeed included in
W = {r : V π̄rḡr (s0) > V̄r(s0)} with probability at least 1− δ.

Define I = {1k}k such that 1k = I{r ∈ W} ∈ Fk−1 for any episode k in round r, the regret within these rounds satisfies

RK,I .
(c1
ε

√
rf + S→L(1+ε)A log(K ′) + S→L(1+ε)A log(c4) + c2

)
logp(K ′)

.
(c1
ε

√
rf + S→L(1+ε)A log(rf/ε) + S→L(1+ε)A log(c4) + c2

)
(log(rf/ε) + log(c4))

p

by K = r′totλ . r′tot
ε2 (since λ . 1/ε2) and log(K ′) . log(rf/ε) + log(S→L(1+ε)A/ε) . log(rf/ε) + log(c4) by assumption

on c4. This shows that if we bound r′tot we can also control CK′ .

Now we build a lower bound to RK′,I . For each failure round r, let C be the total number of steps within this round
and m the number of episodes within this round. By definition, the regret within this round satisfies C − mV̄r(s0) ≥
C − λV̄r(s0) = λ(τ̂ − V̄r(s0)) > λεL

2 = Ω(L/ε) (since C/λ = τ̂ > V̄r(s0) + εL/2 in a failure round).

For any round r ≥ 1, let m be its number of episodes and C be the total number of steps. By Lemma 51, mV π̄rḡr (s0) ≤
C + L

√
m log2 mLr

δ with probability at least 1− δ
2r2 . By a union bound, this holds simultaneously across all rounds with

probability at least 1− δ. Then, with such probability, for each success and skip round r inW ,

u′r∑
j=ur

(
Ij − V̄r(s0)

)
≥
u′r−1∑
j=ur

Ij −mV π̄rḡr (s0)− L & −L
√
λ log2(

λrL

δ
) & −L

ε
,

where {ur, . . . , u′r} are the episodes in round r, and we lower bound the regret in the last episode by Ω(−L) since the last
trajectory in a skipped round is truncated. Note that the first inequality holds since r ∈ W .

Since there are at most O(S→L(1+ε)A log(CK′)) = O(S→L(1+ε)A(log(rf/ε) + log(c4))) of these rounds, we have

Lrf
ε
−
LS→L(1+ε)A(log(rf/ε) + log(c4))

ε
. RK′,I

.
(c1
ε

√
rf + S→L(1+ε)A log(rf/ε) + S→L(1+ε)A log(c4) + c2

)
(log(rf/ε) + log(c4))

p
.

This implies,

rf .
(c1
L

√
rf +

c2ε

L
+ S→L(1+ε)A+

c1
L

√
S→L(1+ε)A

)
(log(rf/ε) + log(c4))p.

.

 c1
L︸︷︷︸

:=a

√
rf +

c2ε

L
+ S→L(1+ε)A+

c1
L

√
S→L(1+ε)A︸ ︷︷ ︸

:=b

 log(rf c4/ε︸︷︷︸
:=c

)p.

By Lemma 28 of (Chen et al., 2022a), a, b, c as defined above,

rf .
c21
L2

log2p
(c1c4

ε

)
+
(c2ε
L

+ S→L(1+ε)A+
c1
L

√
S→L(1+ε)A

)
logp

(c1c2c4
ε

S→L(1+ε)A
)
.

The proof is concluded by r′tot . rf + S→L(1+ε)A log(rf/ε) + S→L(1+ε)A log(c4) as showed above and setting K ′ = K (that
is, r′tot = rtot).
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C.4. Proof of Theorem 1 and Theorem 2

We restate and prove the two theorems together.
Theorem 6 (Unified statement of Theorem 1 and Theorem 2). With probability at least 1 − 23δ, after collecting Ntot

samples, Algorithm 1 outputs K and {π̃g}g∈K such that S→L ⊆ K ⊆ S→L(1+ε) and V π̃gg (s0) ≤ L(1 + ε) for all g ∈ K, where

• Ntot = O
(
S→L(1+ε)ΓL(1+ε)AL

ε2 ι+
S→L(1+ε)

2AL

ε ι+ L3S→L(1+ε)
2Aι

)
in the general case;

• Ntot = O
(
S→L(1+ε)AL

ε2 ι+
S→L(1+ε)

2AL

ε ι+ L3S→L(1+ε)
2Aι

)
with Assumption 2.

Here ι = log8
(
SAL
εδ

)
.

Proof. By Lemma 6 and Lemma 9, with probability 1− 4δ, the output K and {π̃g}g∈K clearly satisfy the first statement.

Let us bound the sample complexity. Each round can be classified into one of the following cases: 1) expansion of the sets
(Line 5 is true), and 2) policy evaluation is performed (from Line 12, so Line 5 is false). Note that the sample complexity of
case 2 is given by CK . We shall bound it later.

In case 1), the algorithm terminates or at least one state is added into K. Thus, the number of rounds satisfying case 1) in
each trial is at most 1 + S→L(1+ε) by Lemma 6. In a round satisfying case 1), if the algorithm terminates, then no samples are
collected. Otherwise, Line 8 and Line 10 are executed. Take any round r in which this happens and denote by Kr the set K
at the end of round r. Note that Line 10 collects at most O(L2|Kr| log(Sr/δ)) for each s ∈ Kr and a ∈ A, while Line 8
collects O(L log(SALr/δ)) samples from each state s ∈ Kr and a ∈ A, so the total number of samples collected from
each s ∈ Kr and a ∈ A is at most nr = O(L2|Kr| log(SALr/δ)).

Since, by Lemma 6, at any round r, ‖V π̃gg ‖∞ ≤ 4L for each g ∈ Kr, by Lemma 52, with probability 1− δ′ it takes no more
than 8L log(2/δ′) steps to reach the goal state g following π̃g. Therefore, by setting δ′ = δ

2r2|Kr||A|nr , with probability
1− δ

2r2 , all trajectories in round r reach the goal within 8L log(2/δ′) steps. Then, by a union bound over all rounds, with
probability at least 1− δ, the total sample complexity is Õ(L3|Kr|2|A| log2(SALr/δ)) at any round r.

Note that, among these samples, only Õ(L|Kr||A| log2(SALr/δ)) cumulate over rounds. This is because the sam-
pling of Line 10 is performed only if the current counters are below the sampling requirement. Since the number
of rounds in case 1) is at most 1 + S→L(1+ε) and the total number of rounds R performed by the algorithm satisfies
R ≤ rtot + S→L(1+ε) + 1 (by summing the rounds in both cases) and |Kr| ≤ S→L(1+ε) by Lemma 6, we have that Line 10

contributes to at most Õ(LS→L(1+ε)
2A log2(SALrtot/δ)) sample complexity and the total sample complexity of Case 1) is

thus Õ(L3S→L(1+ε)
2A log2(SALrtot/δ)).

We now conclude the sample complexity proof depending on whether Assumption 2 is considered or not.

Without Assumption 2 Plugging the regret bound of Lemma 11 into Lemma 14, using p = 2, c1 =

L log(SAL/δ)2
√
S→L(1+ε)ΓL(1+ε)A, c2 = LS→L(1+ε)

2A log(SAL/δ)3, c3 = L, c4 = LS→L(1+ε)
2A log(SAL/δ)3/ε,

rtot .
(

log(SAL/δ)4S→L(1+ε)ΓL(1+ε)A+ S→L(1+ε)
2A log(SAL/δ)3ε+ log(SAL/δ)2S→L(1+ε)

√
ΓL(1+ε)A

)
log4

(
SAL

ε

)
.
(
S→L(1+ε)ΓL(1+ε)A+ S→L(1+ε)

2Aε
)

log8

(
SAL

εδ

)
and

CK .
L

ε2

(
S→L(1+ε)ΓL(1+ε)A+ S→L(1+ε)

2Aε
)

log8

(
SAL

εδ

)
+
LS→L(1+ε)

2A

ε
log5

(
SAL

εδ

)
,

.

(
S→L(1+ε)ΓL(1+ε)AL

ε2
+
S→L(1+ε)

2AL

ε

)
log8

(
SAL

εδ

)
.
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Thus, the total sample complexity of the algorithm (which is given by CK plus the sample complexity of case 1) is(
S→L(1+ε)ΓL(1+ε)AL

ε2
+
S→L(1+ε)

2AL

ε
+ L3S→L(1+ε)

2|A|

)
log8

(
SAL

εδ

)
.

With Assumption 2 Plugging the regret bound of Lemma 12 into Lemma 14, using p = 2, c1 =

L log(SAL/δ)2
√
S→L(1+ε)A, c2 = LS→L(1+ε)

2A log(SAL/δ)3, c3 = L, c4 = LS→L(1+ε)
2A log(SAL/δ)3/ε,

rtot .
(

log(SAL/δ)4S→L(1+ε)A+ S→L(1+ε)
2A log(SAL/δ)3ε+ log(SAL/δ)2S→L(1+ε)

√
ΓL(1+ε)A

)
log4

(
SAL

ε

)
.
(
S→L(1+ε)A+ S→L(1+ε)

2Aε
)

log8

(
SAL

εδ

)
and

CK .
L

ε2

(
S→L(1+ε)A+ S→L(1+ε)

2Aε
)

log8

(
SAL

εδ

)
+
LS→L(1+ε)

2A

ε
log5

(
SAL

εδ

)
,

.

(
S→L(1+ε)AL

ε2
+
S→L(1+ε)

2AL

ε

)
log8

(
SAL

εδ

)
.

Thus, the total sample complexity of the algorithm (which is given by CK plus the sample complexity of case 1) is(
S→L(1+ε)AL

ε2
+
S→L(1+ε)

2AL

ε
+ L3S→L(1+ε)

2|A|

)
log8

(
SAL

εδ

)
.

A union bound over the events of adopted lemmas (Lemma 6, Lemma 9, Lemma 6 of (Rosenberg & Mansour, 2021),
Lemma 14, and Lemma 11 without Assumption 2 or Lemma 12 with Assumption 2) yields the result with probability at
least 1− 23δ.
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Algorithm 5: Improved Layer-Aware State Discovery (LASD+)
Input: L ≥ 1, ε ∈ (0, 1], and δ ∈ (0, 1).

1 Let τ ← 1, N = {2j}j≥0, z ← 2.
2 while True do
3 Let K ← ∅,U ← ∅, K′ ← {s0}, ΠK = {π̃s0 a random policy}, N(·, ·)← 0,N(·, ·, ·)← 0, nmin ← 1, k ← 0.
4 for round r = 1, . . . do
5 if |K ∪ K′| ≥ z then z ← 2|K ∪ K′|, τ +← 1, and return to Line 2.
6 εVI ← 1/max{16,

∑
s,aN(s, a)}.

7 Let g? = argming∈U
{
VK,g(s0)

}
where (QK,g, VK,g, πg) = VISGO(K, g, εVI,N,

δ
4τ2z4AL ) (see Algorithm 4).

8 if g? does not exist or VK,g?(s0) > L then
/* Expand or Terminate */

9 if K′ = ∅ then return K and ΠK.
10 Set K ← K ∪K′, K′ = ∅,U = ∅.
11 U ←ComputeU(K, ΠK, δ

4τ2r2).
12 else if RTEST(ΠK, πg? , g

?, δ
4(τr)2 ) = False (see Algorithm 7) then

13 nmin ← 2nmin.
14 (N, _)← EXPLORE(K,ΠK,N, nmin) (see Algorithm 6).
15 else

/* Policy evaluation */

16 Let τ̂ ← 0, λ← NDEV(32L, ε
256 ,

δ
2r2 ) . 1

ε2 log4(Lrεδ ) (defined in Lemma 50).
17 for j = 1, . . . , λ do
18 k

+← 1, i← 1, and reset to sk1 ← s0 by taking action RESET.
19 while ski 6= g? do
20 Take aki = πg?(ski ), and transits to ski+1. Increase N(ski , a

k
i ), N(ski , a

k
i , s

k
i+1), and i by 1.

21 if
∑
s,aN(s, a) ∈ N or (ski ∈ K and N(ski , a

k
i ) ∈ N) then return to Line 4 (skip round).

22 Set τ̂ +← c(ski ,a
k
i )

λ .
23 if τ̂ > VK,g?(s0) + εL/2 then return to Line 4 (failure round).
24 K′ ← K′ ∪ {g?}, U ← U \ {g?}, ΠK = ΠK ∪ {π̃g? := πg?} (success round).
25 Procedure ComputeU(X , ΠX , δ)
26 (_,U ′)← EXPLORE(X ,ΠX , 0, 2L log 4LA|X |

δ ) (see Algorithm 6).
27 (N′, _)← EXPLORE(X ,ΠX , 0, N1(|X |, δ

4|U ′| )) where N1 is defined in Lemma 4.
28 Let U = {g ∈ U ′ : V ′X ,g(s0) ≤ L} where (_, V ′X ,g, π

′
g) = VISGO(X , g, 1

16 ,N
′, δ

4|U ′| ).
29 return U

D. Analysis of Algorithm 5
Notation Define N (K, p) = {s′ /∈ K : P (s′|s, a) ≥ p for some (s, a) ∈ K ×A}. Fix any ordering O→L = (s1, . . . , sn)
of states in S→L such that it can be partitioned into J (defined in Lemma 1) segments with states in the j-th segment belonging
to K?j \K?j−1. For an arbitrary z ∈ N+, also define {K?z,j}j , such that K?z,j = K?j when |K?j | < z, and K?z,j = {s1, . . . , sz}
when |K?j | ≥ z. Therefore, K?z,z = (s1, . . . , sz) (the first z elements of O→L ) or S→L by definition. Define U?z = T2L(K?z,z).
Clearly, U?z ⊆ {s′ ∈ S : ∃s ∈ K?z,z, a ∈ A, P (s′|s, a) ≥ 1

2L}, and thus |U?z | ≤ 2zAL.

D.1. Proof of Theorem 3

Proof. We condition on the events of Lemma 20, Lemma 28, and Lemma 23, which happen with probability at least
1 − 7δ. By the events of Lemma 23 and Lemma 20, the output K and ΠK = {π̃g}g∈K clearly satisfy the statement.
By Lemma 16, there are at most O(logS→L(1+ε)) trials. Thus, it suffices to bound the number of samples used in each

trial. Define ι = log
LS→L(1+ε)A

δε . Each round in a trial can be classified into one of the following cases: 1) Line 8 is
verified, 2) Line 12 is verified, and 3) policy evaluation is performed (Line 16). In case 1), the algorithm terminates
or at least one state is added into K (Line 9). Thus, the number of rounds satisfying case 1) in each trial is at most
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1 + S→L(1+ε) by Lemma 23. By Lemma 15 and the update rule of nmin, the number of rounds satisfying case 2) is of
order O(log(LS→L(1+ε))). By Lemma 19 and Lemma 17, with probability at least 1 − 8δ, the total number of rounds
satisfying case 3) is of order O(S→L(1+ε)ΓL(1+ε)Aι

6 + S→L(1+ε)
2Aει6). So the total number of rounds in each trial is at most

O(S→L(1+ε)ΓL(1+ε)Aι
6 + S→L(1+ε)

2Aει6).

Now it suffices to bound the number of samples collected in a round satisfying each of the cases above in a trial. In a
round satisfying case 1), if the algorithm terminates, then no samples are collected. Otherwise, ComputeU is called,
and O(L3S→L(1+ε)

2Aι2) samples are collected with probability at least 1 − δ by Lemma 27 (Line 11 and a union bound
over all trials and rounds). In a round satisfying case 2), with probability at least 1 − 4δ, O(LS→L(1+ε)ι

2) samples are
collected in performing RTEST by Lemma 20 and Lemma 29 (Line 12 and a union bound over all trials and rounds), and
O(L3S→L(1+ε)

2Aι2) samples are collected in executing EXPLORE by Lemma 15 and Lemma 30. In a round satisfying case
3), with probability at leat 1− δ, O(LS→L(1+ε)ι

2) samples are collected in performing RTEST similar to that of case 2), and
O(Lι5/ε2) samples are collected by the value of λ and the fact that πg? passes the test in Line 12 (Lemma 29 and a union
bound over all trials and rounds). Thus, the total sample complexity is

3∑
i=1

[#rounds satisfying case i] · [#samples in a round satisfying case i] · ι

. S→L(1+ε) · L
3S→L(1+ε)

2Aι3 + L3S→L(1+ε)
2Aι4 + (S→L(1+ε)ΓL(1+ε)A+ S→L(1+ε)

2Aε) ·
(
L

ε2
+ LS→L(1+ε)

)
ι12

.

(
LS→L(1+ε)ΓL(1+ε)A

ε2
+
LS→L(1+ε)

2Aε

ε
+ L3S→L(1+ε)

3A

)
ι12.

This completes the proof. To prove the second statement, we can simply follow the proof above except that we involve
Lemma 18 instead of Lemma 17 when applying Lemma 19 to bound the total number of rounds satisfying case 3), which
holds with probability at least 1− 20δ.

Lemma 15. With probability at least 1 − 2δ, if the events of Lemma 23 and Lemma 24 hold, then nmin .
L2S→L(1+ε) logS→L(1+ε) throughout the execution of Algorithm 5.

Proof. In any trial τ , when nmin ≥ N→0 ( δ
4τ2z4AL ) (defined in Lemma 3), we have with probability at least 1 − δ

2τ2 ,∥∥V πg?g?

∥∥
∞ ≤ 2 ‖VK,g?‖∞ ≤ 2(1 + VK,g?(s0)) ≤ 4L in any round such that g? exists and VK,g?(s0) ≤ L. This implies that

with probability at least 1−
∑∞
r=1

δ
4τ2r2 ≥ 1− δ

2τ2 , the condition of Line 12 is always false by Lemma 29, and the value of
nmin will no longer change within this trial. A union bound over all trials and noting the update rule of nmin completes the
proof.

Lemma 16. Conditioned on the event of Lemma 23, we have z ≤ 2S→L(1+ε) + 2 and τ ≤ 1 + log2(S→L(1+ε) + 1) throughout
the execution of Algorithm 5.

Proof. The proof of Lemma 23 shows that s /∈ S→L(1+ε) will never be added to K′, which implies K ∪ K′ ⊆ S→L(1+ε)

throughtout the execution of Algorithm 5. Thus, when z ≥ S→L(1+ε) + 1, z will not be updated again. Then, the statement is
proved by the update rule of z and τ .

D.2. Lemmas for Policy Evaluation

Notation Let gk, Kk, Vk, Qk, V ?k be the values of g?, K, VK,g? , QK,g? , and V ?K,g? in episode k respectively. Denote
by Ik the number of steps in episode k. Note that Ik < ∞ with probability 1 by Line 21, and skIk+1 6= gk only when a
skip round is triggered in episode k. Denote by Fk the σ-algebra of events up to episode k. Define K as the total number
of episodes throughout the execution of Algorithm 5. For any sequence of indicators I = {1k}k and K ′ ≤ K, define
RK′,I =

∑K′

k=1(Ik − Vk(s0))1k and CK′ =
∑K′

k=1 Ik. Define P ki = Pski ,aki . In episode k, when ski ∈ K, denote by P̄ ki ,

P̃ ki , Nk
i , bki the values of P̄ski ,aki , P̃ski ,aki , n+(ski , a

k
i ), and b(l)(ski , a

k
i ), where P̄ , n+, b(l) are used in Algorithm 4 to compute

Vk and l is the final value of i in Algorithm 4; when ski /∈ K, define P̄ ki = Is0 , Nk
i =∞, and bki = 0. Also define εk as the

value of εVI used in Algorithm 4 to compute Vk.
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Lemma 17. With probability at least 1 − 5δ, if the events of Lemma 23 and Lemma 24 hold, then in any trial, for any
sequence of indicators I = {1k}k with 1k ∈ Fk−1, we have RK′,I .

√
S→L(1+ε)ΓL(1+ε)AL2K ′ι+ LS→L(1+ε)

2Aι for any

K ′ ≤ K, where ι = log2 LS→L(1+ε)AK
′

δ .

Proof. Note that by Lemma 42,

K′∑
k=1

(Ik − Vk(s0))1k ≤
K′∑
k=1

Ik∑
i=1

(
1 + Vk(ski+1)− Vk(ski )

)
1k

.
K′∑
k=1

Ik∑
i=1

(
(Iski+1

− P ki )Vk + (P ki − P̄ ki )Vk + bki + εk

)
1k.

We bound the sums above separately. By Lemma 55 and ‖Vk‖∞ ≤ 2L, with probability at least 1− δ,

K′∑
k=1

Ik∑
i=1

(Iski+1
− P ki )Vk1k .

√√√√ K′∑
k=1

Ik∑
i=1

V(P ki , Vk) log
LCK′

δ
+ L log

LCK′

δ
.

By Lemma 46, Kk ∈ S→L(1+ε) (Lemma 23), gk ∈ Ū \ Kk (Lemma 24), Cauchy-Schwarz inequality, and Lemma 40, with
probability at least 1− δ,

K′∑
k=1

Ik∑
i=1

(P ki − P̄ ki )Vk1k .
K′∑
k=1

Ik∑
i=1

1k

√
ΓL(1+ε)V(P ki , Vk)ι′

Nk
i

+
LS→L(1+ε)ι

′

Nk
i

(Nk
i =∞ when ski /∈ Kk and ι′ = log

S→L(1+ε)ACK′

δ )

.

√√√√S→L(1+ε)ΓL(1+ε)A

K′∑
k=1

Ik∑
i=1

V(P ki , Vk)ι′ + LS→L(1+ε)
2Aι′.

(ι′ = log
S→L(1+ε)ACK′

δ log(CK′))

Finally, by Lemma 39 and Lemma 41, with probability at least 1− δ,

K′∑
k=1

Ik∑
i=1

(bki + εk)1k .

√√√√S→L(1+ε)A

K′∑
k=1

Ik∑
i=1

V(P ki , Vk)ι′ + LS→L(1+ε)
1.5Aι′. (ι′ = log

S→L(1+ε)ACK′

δ )

Plugging these back, we have with probability at least 1− 2δ,

K′∑
k=1

(Ik − Vk(s0))1k .

√√√√S→L(1+ε)ΓL(1+ε)A

K′∑
k=1

Ik∑
i=1

V(P ki , Vk)ι′ + LS→L(1+ε)
2Aι′

.
√
S→L(1+ε)ΓL(1+ε)ALCK′ι′ + LS→L(1+ε)

2Aι′, (7)

where ι′ = log
LS→L(1+ε)ACK′

δ log(CK′) and in the last step we apply Lemma 36. Now assuming 1k = 1 for all k and
solving a “quadratic” inequality (Lemma 47) w.r.t. CK′ , we have

CK′ .
K′∑
k=1

Vk(s0) + LS→L(1+ε)
2Aι′ . LK ′ + LS→L(1+ε)

2Aι′. (ι′ = log2 LS→L(1+ε)AK
′

δ )

Plugging this back to Eq. (7) completes the proof.

Lemma 18. With Assumption 2, with probability at least 1 − 12δ, if the events of Lemma 28, Lemma 16, Lemma 25,
and Lemma 26 hold, in any trial, for any sequence of indicators I = {1k}k with 1k ∈ Fk−1, we have RK′,I .

L
√
S→L(1+ε)AK

′ι+ LS→L(1+ε)
2Aι for any K ′ ≤ K, where ι = log2 LS→L(1+ε)AK

′

δ .
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Proof. Note that with Assumption 2 and by Lemma 25 and Lemma 26, in any episode,K = K?j for some j ≤ z and g? ∈ U?z .
Thus by Lemma 54 and a union bound over {V ?K?z,j ,g}j∈[z],g∈U?z and (s, a) ∈ S→L(1+ε)×A, we have with probability at least
1− δ,

(P ki − P̄ ki )V ?k .

√
V(P ki , V

?
k )ι′

Nk
i

+
Lι′

Nk
i

, (8)

where ι′ = log
S→L(1+ε)ACK′

δ . Thus, with probability at least 1− δ,

K′∑
k=1

(Ik − Vk(s0))1k ≤
K′∑
k=1

Ik∑
i=1

(
1 + Vk(ski+1)− Vk(ski )

)
1k

.
K′∑
k=1

Ik∑
i=1

(
(Iski+1

− P ki )Vk + (P ki − P̄ ki )Vk + bki + εk

)
1k (Lemma 42)

.

√√√√ K′∑
k=1

Ik∑
i=1

V(P ki , Vk) log
LCK′

δ
+ L log

LCK′

δ
+

K′∑
k=1

Ik∑
i=1

(
(P ki − P̄ ki )V ?k 1k + (P ki − P̄ ki )(Vk − V ?k )1k + bki

)
,

where the last step is by Lemma 55 and Lemma 41. Note that by Eq. (8), Lemma 46, and ‖V ?k ‖∞ ≤ 2L+ 1 by Lemma 28
and Lemma 44, with probability at least 1− 2δ,

K′∑
k=1

Ik∑
i=1

(
(P ki − P̄ ki )V ?k 1k + (P ki − P̄ ki )(Vk − V ?k )1k + bki

)
.

K′∑
k=1

Ik∑
i=1

√V(P ki , V
?
k )ι′

Nk
i

+

√
ΓL(1+ε)V(P ki , Vk − V ?k )ι′

Nk
i

+
LΓL(1+ε)ι

′

Nk
i

+ bki

 (ι′ = log
S→L(1+ε)ACK′

δ )

.

√√√√S→L(1+ε)A

K′∑
k=1

Ik∑
i=1

V(P ki , Vk)ι′ +

√√√√S→L(1+ε)
2A

K′∑
k=1

Ik∑
i=1

V(P ki , Vk − V ?k )ι′ + LS→L(1+ε)
2Aι′.

(ι′ = log2 S→L(1+ε)ACK′

δ )

where the last step is by Lemma 40, Cauchy-Schwarz inequality, VAR[X + Y ] ≤ 2(VAR[X] + VAR[Y ]), and Lemma 39.
Plugging this back, applying Lemma 37 with Lemma 2 on {V ?K?j ,g}j∈[z],g∈U?z \K?j (where all V ?k lies in), Lemma 25, and
Lemma 26, and then applying AM-GM inequality, we have with probability at least 1− 8δ,

K′∑
k=1

(Ik − Vk(s0))1k .

√√√√S→L(1+ε)A

K′∑
k=1

Ik∑
i=1

V(P ki , Vk)ι′ + LS→L(1+ε)
2Aι′

.
√
LS→L(1+ε)ACK′ι

′ + LS→L(1+ε)
2Aι′, (Lemma 36)

where ι′ = log2 LS→L(1+ε)ACK′

δ . Now assuming 1k = 1 for all k and solving a “quadratic” inequality (Lemma 47), we have

CK′ .
K′∑
k=1

Vk(s0) + LS→L(1+ε)
2Aι′ ≤ LK ′ + LS→L(1+ε)

2Aι′. (ι′ = log2 LS→L(1+ε)AK
′

δ )

Plugging this back completes the proof.

Lemma 19. In any trial, with probability at least 1− 8δ, if for any sequence of indicators I = {1k}k with 1k ∈ Fk−1, we

have RK′,I . c1
√
K ′ logp(c3K ′) + c2 logp(c3K

′) with c1, c2 ≥ 1, and c3 =
LS→L(1+ε)A

δ for any K ′ ≤ K, then the total

number of rounds with at least one epsiode is of order O(S→L(1+ε)Aι
4 +

c21
L2 ι

p+4 + c2ει
p/L), where ι = log c1c2c3

εδ .
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Proof. For any R′ ≥ 1, let K ′ be the total number of episodes in the first R′ rounds. Denote by rtot the total number of
rounds with at least one episode, and rf the number of failure rounds in the first R′ rounds. First note that by Vk(s0) ≤ L
(Line 8) and setting 1k = 1, the regret guarantee in the assumption givesCK′ . LK ′+c1

√
K ′ logp(c3K ′)+c2 logp(c3K

′),
which gives log(CK′) . log(c1c2c3K

′). Moreover, K ′ . rtot
ε2 log4 Lrtot

εδ by the value of λ in each round (Line 16). Thus,
log(CK′) . log c1c2c3rtot

εδ and log(c3K
′) . log c1c2c3rtot

εδ .

Fixed a trial, denote by V̄r, π̄r and ḡr the values of VK,g? , πg? , and g? used for policy evaluation in round r respectively. It is
clear that in the firstR′ rounds, the number of success round is at most S→L(1+ε) by Lemma 23, and the number of skip rounds
is at most O(S→L(1+ε)A log(CK′)) since we have a skip round only when the total number of steps or the number of visits
of some state-action pair in K ×A is doubled. Therefore, rtot . rf + S→L(1+ε)A log(CK′) . rf + S→L(1+ε)A log c1c2c3rtot

εδ .
By Lemma 47, we have rtot . rf + S→L(1+ε)A log

c1c2c3rf
εδ . Now define ι(rf ) = log

c1c2c3rf
εδ . It remains to bound rf .

DefineW = {r : V π̄rḡr (s0) > V̄r(s0)}. Note thatW includes all failure rounds with probability at least 1− δ, since when
V π̄rḡr (s0) ≤ V̄r(s0) and r is not a skip round, by Lemma 50 and the value of λ in round r we have τ̂ ≤ V̄r(s0) + εL/2 in
round r. Define I = {1k}k such that 1k = I{r ∈ W} ∈ Fk−1 for any episode k in round r, the regret within these rounds
satisfies RK′,I . c1

ε

√
rf + S→L(1+ε)A+ c2.

RK′,I . c1
√
K ′ logp(c3K ′) + c2 logp(c3K

′) .
c1
ε

√
(rf + S→L(1+ε)Aι(rf ))ι(rf )p+4 + c2ι(rf )p

.
c1
ε

√
rf ι(rf )p+4 +

c21ι(rf )p+4

Lε
+
LS→L(1+ε)Aι(rf )

ε
+ c2ι(rf )p. (AM-GM inequality)

For each failure round r, let C be the total cost within this round and m the number of episodes within this round. By
definition, regret within this round satisfies C −mVK,g?(s0) ≥ C − λVK,g?(s0) = λ(τ̂ − VK,g?(s0)) > λεL

2 = Ω(L/ε).
By Lemma 51, with probability at least 1− δ, for each success and skip round r inW (V π̄rgr (s0) > V̄r(s0)),

u′r∑
j=ur

(
Ij − V̄r(s0)

)
&
u′r−1∑
j=ur

(
Ij − V π̄rḡr (s0)

)
− L & −L

√
λ log2 Lλ

δ
= −L

ε
log4 Lr

δε
,

where {ur, . . . , u′r} are the episodes in round r, and we lower bound the regret in the last episode by Ω(−L) since the last
trajectory in a skipped round is truncated. Since there are at most Õ(S→L(1+ε)A) these rounds, we have

Lrf
ε
−
LS→L(1+ε)A

ε
log4 Lrf

εδ
.
c1
ε

√
rf ι(rf )p+4 +

c21ι(rf )p+4

Lε
+
LS→L(1+ε)Aι(rf )

ε
+ c2ι(rf )p.

This gives rf . S→L(1+ε)Aι
4 +

c21
L2 ι

p+4 + c2ει
p/L, where ι = log c1c2c3

εδ . Setting R′ to be the total number rounds completes
the proof.

Lemma 20. With probability at least 1− 2δ, throughout the execution of Algorithm 5, for each g ∈ K we have V π̃gg (s0) ≤
L(1 + ε) and

∥∥∥V π̃gg ∥∥∥
∞
≤ 32L.

Proof. By Lemma 29 and a union bound over all trials and rounds, with probability at least 1− δ, we have
∥∥∥V π̃gg ∥∥∥

∞
≤ 32L

for each g ∈ K, since π̃g passes the test in Line 12. Moreover, by the definition of success round, value of λ, and Lemma 50,
with probability at least 1− δ, for each g ∈ K, in the round that g is added to K, we have V π̃gg (s0) = V

πg
g (s0) ≤ τ̂ + Lε

2 ≤
VK,g(s0) + Lε ≤ L(1 + ε).

D.3. Properties of the sets built by Algorithm 5

Lemma 21 (Restricted Optimism). With probability at least 1− δ over the randomness of Algorithm 5, at any trial and any
round, after executing Line 7, if K?z,j ⊆ K for some j ∈ [z], then VK,g(s) ≤ V ?K?z,j ,g(s) for any s ∈ S and g ∈ K?z,j+1 \ K.

Proof. For any τ ′ ≥ 1, z′ ≥ 1, j ∈ [z′], g ∈ K?z′,j+1 \ K?z′,j , by Lemma 2 and
∥∥∥V ?K?

z′,j ,g

∥∥∥
∞
≤ L + 1 (Lemma 44),

with probability at least 1 − δ
4(z′)4(τ ′)2 , for any status of N and ξ > 0, we have V (s) ≤ V ?K?

z′,j ,g
(s) for all s ∈ S where
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(_, V, _) = VISGO(K?z′,j , g, ξ,N, δ
4(τ ′)2(z′)4AL ). By a union bound, all events above hold simultaneously with probability

at least 1− δ.

At any trial τ and round, after executing Line 7, let (_, VK?z,j ,g, _) = VISGO(K?z,j , g, εVI,N, δ
′) (no need to compute

explicitly) for any j ∈ [z], and g ∈ K?z,j+1 \ K?z,j , where δ′ = δ
4τ2z4AL . The union bound above implies that VK?z,j ,g(s) ≤

V ?K?z,j ,g
(s) for any s ∈ S. Then by Lemma 5, we also have VK,g(s) ≤ V ?K?z,j ,g

(s) if K?z,j ⊆ K (VK,g is computed in
Line 7).

Lemma 22. For a given trial (τ, z), denote by Kr the set K at the end of each round r. With probability at least 1− 2δ, for
any j ≥ 1 and round r ≥ 1 in any trial in which Kr is updated or returned (i.e., Line 8 is executed) and Kr−1 ⊇ K?j , we
have K?j+1 ⊆ Kr.

Proof. In this lemma we denote by Ur the value of U at the end of round r. Define the event E := {for any trial, ∀r ≥
1 in which Kr is updated : TL(Kr) \ Kr ⊆ Ur}. By Lemma 28, it holds with probability at least 1− δ. Let us carry out the
proof conditioned on E holding.

In any trial, take some round r such that Line 8 is executed and Kr−1 ⊇ K?j . Let r′ < r be the last round where Kr′ was
updated (and thus Ur′ was created). Note thatKr′ = Kr−1 ⊇ K?j . Then, event E and the definition of the sets (K?j )j directly
imply that K?j+1 := TL(K?j ) ⊆ TL(Kr′) ⊆ Ur′ ∪ Kr′ . Since Kr can only be formed by adding states in Ur′ to Kr′ , and the
union of these sets contains K?j+1, if K?z,j+1 6⊆ Kr, it must be that there exists g ∈ Ur−1 ∩ K?z,j+1 s.t. VKr−1,g(s0) > L.
However, Lemma 21, which holds with probability 1− δ, implies that, at any round r ≥ 1, if K?j ⊆ Kr−1 (which implies
that z > |K?j | and K?j = K?z,j by Line 5), then VKr−1,g(s0) ≤ V ?K?j ,g

(s0) ≤ L for any g ∈ K?z,j+1 \ Kr−1. This is a
contradiction, which implies that Ur−1 ∩ K?z,j+1 = ∅ and, thus, all states in K?z,j+1 must have been added to Kr. Moreover,
since a new trial is not triggered in round r, by Line 5, we have z > |K?z,j+1| and K?z,j+1 = K?j+1. This completes the
proof.

Lemma 23. For a given trial (τ, z), denote by Kr the set K at the end of each round r inside the trial. With probability at
least 1− 4δ, at any trial (τ, z), we have Kr ⊆ S→L(1+ε) for any round r, and S→L ⊆ Kr if the algorithm terminates at round
r.

Proof. Fix any trial (τ, z). Clearly, K1 ⊆ S→L(1+ε). To prove the first statement, consider a round r ≥ 1 and suppose
Kr ⊆ S→L(1+ε). If, in this round, the algorithm selects a goal g? ∈ U \ S→L(1+ε), πg? passes the test of Line 12, and a skip
round is not triggered, then we show that the “failure test” in Line 23 is triggered.

Since πg? passed the test of Line 12, we have ‖V πg?g? ‖∞ ≤ 32L with probability at least 1− δ by Lemma 29 and a union
bound over all trials and rounds. Combining this with Lemma 50 and the value of λ (Line 16) (again by a union bound
over all trials and rounds), we have τ̂ ≥ V πg?g? (s0)− Lε/2 with probability at least 1− 2δ. By assumption on g? and since
πg? is restricted on Kr ⊆ S→L(1+ε), we have V πg?g? (s0) ≥ V ?Kr,g?(s0) ≥ V ?S→

L(1+ε)
,g?(s0) > L(1 + ε), which implies that

τ̂ ≥ L(1 + ε/2) ≥ VKr,g?(s0) + εL/2, where the last inequality is from the goal-selection rule. Therefore, the failure test
triggers and g? is not added to K′. Overall, any g /∈ S→L(1+ε) will never be added to K or K′ throughout the execution of
Algorithm 5.

To prove the second statement, let us consider any trial (τ, z) where the algorithm stops. Clearly, K?1 ⊆ K1 at the end
of round r = 1 in this last trial. Then, if r is the round where the algorithm terminates, and K?j ⊆ Kr−1 for some
j ≥ 1, we have K?j+1 ⊆ Kr with probability at least 1− 2δ by Lemma 22. Moreover, since K′ = ∅ in round r, we have
K?j+1 ⊆ Kr−1 = Kr. By a recursive application of Lemma 22, we have K?j ⊆ Kr for any j ≥ 1 (note that K′ = ∅ at the
beginning of round r). Lemma 1 then implies the statement.

Lemma 24. Conditioned on the events of Lemma 28 and Lemma 23, U ⊆ Ū at the beginning of any round in any trial.

Proof. This is clearly true at the beginning of the first round of any trial since U = ∅. Then by the events of Lemma 28 and
Lemma 23, U ⊆ T2L(K) \ K ⊆ Ū every time after executing Line 11. Moreover, we only remove elements from U except
when executing Line 11. This completes the proof.
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Lemma 25. Denote by Kr the set K at the end of each round r. With Assumption 2, with probability at least 1− 8δ over
the randomness of Algorithm 5, we have that Kr = K?j for some j ∈ [S→L ] at any round r and, Kr = S→L if the algorithm
terminates at round r.

Proof. By Lemma 23, with probability at least 1 − 4δ, we have S→L ⊆ K ⊆ S→L(1+ε) if the algorithm terminates. By
Remark 1, K = S→L . Thus, it suffices to show that at any trial K = K?j for some j ≤ S→L .

The algorithm is such that K?1 = K1 = {s0}. Suppose at the end of a round r we have that Kr = K?j for some j ≥ 1. By
Lemma 22, with probability at least 1− 2δ, if the condition of Line 8 is verified the first time in some round r′ > r, then we
must have K?j+1 ⊆ Kr′ . If we also have Kr′ ⊆ K?j+1, then the statement is proved.

In any round r such that K = K?j , g? ∈ U \ K?j+1, πg? passes the test of Line 12, and a skip round is not triggered, by
Lemma 50, the value of λ, and Lemma 29 (applying a union bound over all trials and rounds), we have τ̂ ≥ V πg?g? (s0)−Lε/2
with probability at least 1 − 2δ. By assumption on g? and since πg? is restricted on K ⊆ K?j , we have V πg?g? (s0) ≥
V ?K,g?(s0) ≥ V ?K?j ,g?(s0) > L(1 + ε), which implies that τ̂ ≥ L(1 + ε/2) ≥ VK,g?(s0) + εL/2, where the last inequality is
from the goal-selection rule. Therefore, the failure test triggers and g? is not added to K′ or K. This proves K ⊆ K?j+1 in
round r′.

Lemma 26. With Assumption 2, conditioned on the events of Lemma 28 and Lemma 25, in any trial, U ⊆ U?z at the
beginning of any round.

Proof. By Lemma 25, in any trial, we have K = K?j ⊆ K?z,z for some j ≤ z at the end of any round. Then by Lemma 28,
we have U ⊆ T2L(K) \ K ⊆ U?z every time Line 11 is executed.

D.4. Properties of U

Given X , ΠX = {πg}g∈X and δ as input of ComputeU, let D0 and D1 be the random samples collected respectively in
Line 26 and Line 27. Define

E0(D0) =

{
N (X , 1

2L
) 6⊆ U ′

}
,

E1(D0,D1) =
{
∃g ∈ U ′, V ′X ,g(s0) > V ?X ,g(s0)

}
,

E2(D0,D1) =
{
∃g ∈ U ′, V πgg (s) > 2V ′X ,g(s)

}
.

In this section we use E and P to denote expectation and probability w.r.t. these two random generation processes.

Lemma 27. With any X , {πg ∈ Π(X )}g∈X such that
∥∥V πgg ∥∥

∞ = O(L), and δ ∈ (0, 1) as input, ComputeU ensures

P (TL(X ) \ X ⊆ U ⊆ T2L(X ) \ X ) ≥ 1− δ.

With the same probability, the sample complexity of ComputeU is bounded by O(L3|X |2A log2 L|X |A
δ ).

Proof. Denote by {si,s,a}i,s,a the set of next state samples collected in Line 26 for each (s, a). Let µ = 2L log(4LA|X |/δ),
then

P (E0(D0)) = P

(
∃s′ ∈ N (X , 1

2L
),∀(s, a) ∈ X ×A,∀i ∈ [µ] : si,s,a 6= s′

)
≤

∑
s′∈N (X , 1

2L )

P (∀(s, a) ∈ X ×A,∀i ∈ [µ] : si,s,a 6= s′)

≤
∑

s′∈N (X , 1
2L )

∏
(s,a)∈X×A

∏
i∈[µ]

(1− P (s′|s, a)) ≤
∑

s′∈N (X , 1
2L )

(1− P (s′|s̄, ā))
µ

(s̄, ā such that P (s′|s̄, ā) ≥ 1
2L )

≤
∑

s′∈N (X , 1
2L )

(
1− 1

2L

)µ
≤

∑
s′∈N (X , 1

2L )

δ

4LA|X |
≤ δ/2. (|N (X , 1

2L )| ≤ 2LA|X |)
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Algorithm 6: EXPLORE

Input: States X , policies Π = {πx}x∈X such that ‖V πxx ‖∞ = O(L), counters n, target value n̄.
Snext ← ∅.
for (x, a) ∈ X ×A do

while n(x, a) < n̄ do
Reset to s0 and execute πx until reaching x.

Execute action a, observe x′ ∼ Px,a, and update n(x, a, x′)
+← 1.

if x′ /∈ X then Snext ← Snext ∪ {x′}.
return n and Snext.

Let N1 be defined as in Lemma 4. Then, from Lemma 2 and Lemma 4, by using δ/(4|U ′|), we have that
P (E1(D0,D1)|D0) ≤ δ/4 and P (E2(D0,D1)|D0) ≤ δ/4. Then, we can write that

P(E0(D0) ∪ E1(D0,D1) ∪ E2(D0,D1)) ≤ P(E0(D0)) + P(E1(D0,D1) ∪ E2(D0,D1))

≤ δ/2 +
∑
D0

P(D0)P(E1(D0,D1) ∪ E2(D0,D1)|D0)︸ ︷︷ ︸
≤δ/2,∀D0

= δ

We then carry out the proof under event E = ¬(E1(D0) ∪ E1(D0,D1) ∪ E2(D0,D1)) which hold with probability 1− δ.

Since π′g is restricted on X , we have that V ?X ,g(s0) ≤ V
π′g
g (s0) by the definition of optimal policy. We have that, for any

g ∈ U , V ?X ,g(s0) ≤ V π
′
g

g (s0) ≤ 2V ′X ,g(s0) ≤ 2L by the definition of U . This implies that U ⊆ T2L(X )∩U ′ ⊆ T2L(X ) \X
since U ′ ∩ X = ∅ by definition.

Finally, note that, by the definition of TL(X ) and the event ¬E0, TL(X ) \ X ⊆ N (X , 1
2L ) ⊆ U ′ w.h.p. Furthermore,

under the event ¬E1(D0,D1), we have that for any g ∈ U ′, if V ?X ,g(s0) ≤ L, then V ′X ,g(s0) ≤ V ?X ,g(s0) ≤ L. Thus,
TL(X ) \ X ⊆ U .

Sample complexity. Since ‖V πgg ‖∞ = O(L), by Lemma 30 with n̄ = µ and N1(|X |, δ
4|U ′| ), with probability at least

1− δ, the sample complexity is O(L|X |An′ log |X |An
′

δ ), where n′ = µ+N1(|X |, δ/(4|U ′|). Given that N1(|X |, δ
4|U ′| ) =

O(L2|X | log(|U ′||X |/δ)) (see Lemma 4), we have n′ = O(L2|X | log(L|X |A/δ)). Plugging this back, the sample
complexity is O(L3|X |2A log2 L|X |A

δ ).

Lemma 28. With probability at least 1− δ over the randomness of Algorithm 5, at any trial and round, TL(K) \ K ⊆ U ⊆
T2L(K) \ K after executing Line 11 (if it is executed).

Proof. This is simply by Lemma 27 and the choice of confidence level in Line 11 in each trial and round.

D.5. RTEST and EXPLORE

Here we show auxiliary algorithms and related lemmas used in Algorithm 5.

Lemma 29. For any X ⊆ S, {πg}g∈X , policy π ∈ Π(X ), goal state g ∈ S, and δ ∈ (0, 1), we have

P
(

RTEST(X , {πg}g∈X , π, g, δ) = TRUE|
∥∥V πg ∥∥∞ ≤ 4L

)
≥ 1− δ,

P
(

RTEST(X , {πg}g∈X , π, g, δ) = TRUE =⇒
∥∥V πg ∥∥∞ ≤ 32L

)
≥ 1− δ.

Moreover, if
∥∥V πgg ∥∥

∞ = O(L) for any g ∈ X , then with probability at least 1 − δ, the sample complexity is

Õ(L|X | log2 |X |
δ ).

Proof. Let {ηi}i∈[n] be rollouts of length at most l̄ generated running π from state s, and denote by pπ
l̄,g

(s) the probability
of reaching the goal g in at most l̄ steps by following policy π starting from s. Let 1(η) = 1 if the goal has been reached in
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Algorithm 7: RTEST

Input: reaching policy {πs}s∈X , test policy π ∈ Π(X ), goal state g, and failure probability δ.
Let n = 210 log 2|X |

δ .
for s ∈ X do

is ← 0.
for j = 1, . . . , n do

Reset to s0 and execute πs until s is reached.
Execute π until g is reached or 8L steps is taken.
if g is reached then is

+← 1

if is/n < 7
16 then return FALSE.

return TRUE.

rollout η, zero otherwise. Xi = 1g(ηi)− pπg (s) is a martingale difference sequence (|Xi| ≤ 1) and by Azuma’s inequality
(see Lemma 53), setting n = 210 log( 2|X |

δ ), we have

P

(
∀s ∈ X , 1

n

∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣ ≤ 1

16

)
≥ 1− δ. (9)

1) If
∥∥V πg ∥∥∞ ≤ 4L, by Markov’s inequality, pπ

l̄,g
(s) ≥ 1/2 when l̄ = 8L. This gives is

n =
∑
i
1g(ηi)
n ≥ pπg (s)− 1

16 ≥
7
16

for any s ∈ X , and thus the algorithm returns TRUE on termination.

2) If the output is TRUE, then is
n ≥

7
16 for all s ∈ X . By (9), we have that pπg (s) ≥ is

n −
1
16 ≥

3
8 . Thus for any s ∈ X ,

V πg (s) ≤ 8L+ 5
8

∥∥V πg ∥∥∞, which gives
∥∥V πg ∥∥∞ ≤ 1 + 8L+ 5

8

∥∥V πg ∥∥∞ by π ∈ Π(X ). This implies
∥∥V πg ∥∥∞ ≤ 32L.

Sample complexity. If ‖V πss ‖∞ = O(L) for any s ∈ X , by Lemma 52, with probability 1− δ, all trajectories generated
by πs for some s ∈ X reaches state s in O(L log(2n|X |/δ)) steps. Noting that we generate n trajectories for each s ∈ X
completes the proof.

Lemma 30. For any X ⊆ S, Π = {πx}x∈X , counter n, threshold n̄ ≥ 1, and δ ∈ (0, 1), with probability at least 1− δ,
the sample complexity of EXPLORE(X ,Π, n, n̄) is O(L|X |An̄ log |X |An̄δ ).

Proof. For any x ∈ X , since ‖V πxx ‖∞ = O(L), by Lemma 52, with probability 1 − δ′ it takes O(L log(1/δ′)) steps to
reach the goal state following πx from any s ∈ X . Therefore, by setting δ′ = δ

|X |An̄ , with probability 1− δ, all trajectories
reach the desired goal state within O(L log(1/δ′)) steps. Given that there are at most |X |An̄ trajectories, with probability at
least 1− δ, the total sample complexity is O(L|X |An̄ log |X |An̄δ ).
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E. Analysis of Policy Consolidation
In this section, we bound the sample complexity of Algorithm 2.

Notation We assume that all episodes lie in one (artificial) trial. Let gk, Kk, Vk V ?k be the values of g?, K \ {g?}, V̂ , and
V ?K,g? in episode k respectively. Denote by Ik the number of steps in episode k. Note that Ik <∞ with probability 1 by
Line 13, and skIk+1 6= gk only when a skip round is triggered in episode k. Denote by Fk the σ-algebra of events up to
episode k. Define K as the total number of episodes throughout the execution of Algorithm 2. For any K ′ ≤ K, define
RK′ =

∑K′

k=1(Ik − Vk(s0)) and CK′ =
∑K′

k=1 Ik. Define P ki = Pski ,aki . In episode k, when ski ∈ K, denote by P̄ ki , P̃ ki ,

Nk
i , bki the values of P̄ski ,aki , P̃ski ,aki , n+(ski , a

k
i ), and b(l)(ski , a

k
i ), where P̄ , n+, b(l) are used in Algorithm 4 to compute Vk

and l is the final value of i in Algorithm 4; when ski /∈ K, define P̄ ki = Is0 , Nk
i = ∞, and bki = 0. Also define εk as the

value of εVI used in Algorithm 4 to compute Vk. In this section, K ⊆ S→L(1+ε) is an input of Algorithm 2 and thus does not
have randomness.

Proof of Theorem 4. By Lemma 32, the output policies {π̃g}g clearly satisfies the statement. Define ι = log
(
LS→L(1+ε)A

δε

)
.

It suffices to bound the number of samples collected in Line 2 and policy evaluation. With probability at least 1− δ, the
number of samples collected in Line 2 is of order O(L3S→L(1+ε)

2Aι2) by Lemma 30 and Lemma 4. With probability at

least 1− 16δ, by Lemma 31 and Lemma 33 (c1 =
√
LS→L(1+ε)A, c2 = LS→L(1+ε)

2A, and p = 2), the number of samples

collected in policy evaluation is of order Õ
(
LS→L(1+ε)Aι

10

ε2 +
LS→L(1+ε)

2Aι10

ε

)
. Combining all cases completes the proof.

Lemma 31. With probability at least 1 − 4δ, if RK′ . c1

√∑K′

k=1 Vk(s0) logp(c3K ′) + c2 logp(c3K
′) for any K ′ ≥ 1

with c1, c2 ≥ 1 and c3 =
LS→L(1+ε)A

δ , then CK .
LS→L(1+ε)Aι

8

ε2 +
c21ι

p+8

ε2 + c2ι
p+4

ε , where ι = log c1c2c3
εδ .

Proof. For any R′ ≥ 1, let K ′ be the total number of episodes in the first R′ rounds. Let ZK′ =
∑K′

k=1 Vk(s0). First
note that the regret gives CK′ . ZK′ + c1

√
ZK′ logp(c3K ′) + c2 logp(c3K

′) and thus log(CK′) . log(c1c2c3ZK′).
By K ′ . CK′ and solving a “quadratic” inequality (Lemma 47), we have CK′ . ZK′ + (c21 + c2) logp(c1c2c3ZK′).
Denote by ḡr, V̄r, π̄r the value of g?, V̂ , and π̂ in round r respectively. For each failure round r, let C be the total
cost within this round and m the number of episodes within this round. By definition, regret within this round satisfies
C − mV̄r(s0) ≥ C − λV̄r(s0) = λ(τ̂ − V̄r(s0)) > λεV̄r(s0)

2 = Ω(V̄r(s0)/ε). For each success and skip round r, by
Lemma 35, Lemma 34, Lemma 51, and the value of λ, we have

u′r∑
j=ur

(
Ij − V̄r(s0)

)
&
u′r−1∑
j=ur

(
Ij − V π̄rḡr (s0)

)
− L & −L

√
λ log2 Lλ

δ
& −L

ε
log4 Lr

δε
& −L

ε
log4 LCK′

δε
,

where {ur, . . . , u′r} are the episodes in round r, and we lower bound the regret in the last episode by Ω(−L) since the last
trajectory in a skipped round is truncated. Denote byRf the total number of failure rounds within the first R′ rounds. By
the assumption in Algorithm 2 that K ⊆ S→L(1+ε), in the first R′ rounds, the number of success round is at most S→L(1+ε) and
the number of skip rounds is at most O(S→L(1+ε)A log(CK′)). Since there are at most O(S→L(1+ε)A log(CK′)) these rounds,

in each round there are at most Õ(
log4 LC

K′
δε

ε2 ) episodes (Line 7), and V̄r(s0) ≤ 2L in any round r by Lemma 35, we have

ZK′ .

∑
r∈Rf V̄r(s0) log4 LCK′

δε

ε2
+
LS→L(1+ε)A log5 c1c2c3ZK′

δε

ε2

.

∑
r∈Rf V̄r(s0) log4 c1c2c3ZK′

δε

ε2
+
LS→L(1+ε)A log5 c1c2c3ZK′

δε

ε2
.

By Lemma 47, this gives

ZK′ .

∑
r∈Rf V̄r(s0) log4(c4

∑
r∈Rf V̄r(s0))

ε2
+
LS→L(1+ε)A log5(c4

∑
r∈Rf V̄r(s0))

ε
,
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and log(ZK′) . log(
c1c2c3

∑
r∈Rf

V̄r(s0)

δε ) , log(c4
∑
r∈Rf V̄r(s0)), where c4 = c1c2c3

δε . Therefore, the regret upper and
lower bound and log(K ′) ≤ log(CK′) . log(c1c2c3ZK′) . log(c4

∑
r∈Rf V̄r(s0)) give

∑
r∈Rf V̄r(s0)

ε
−
LS→L(1+ε)A

ε
log4 LCK′

δε
. c1

√
ZK′ logp(c3K ′) + c2 logp(c3K

′)

.
c1
ε

√√√√√
∑
r∈Rf

V̄r(s0) + LS→L(1+ε)A log

c4 ∑
r∈Rf

V̄r(s0)

 logp+4

c4 ∑
r∈Rf

V̄r(s0)

+ c2 logp

c4 ∑
r∈Rf

V̄r(s0)

 .

Applying Lemma 47 gives
∑
r∈Rf V̄r(s0) . LS→L(1+ε)A log4(c4) + c21 logp+4(c4) + c2ε logp(c4) and

log(
∑
r∈Rf V̄r(s0)) . log(c4). Now by the regret bound and AM-GM inequality, we have

CK′ . ZK′ + c1
√
ZK′ logp(c3K ′) + c2 logp(c3K

′) . ZK′ + (c21 + c2) logp(c4)

.

∑
r∈Rf V̄r(s0) log4(c4ZK′)

ε2
+
LS→L(1+ε)A log5(c4ZK′)

ε2
+ (c21 + c2) logp(c4)

.
LS→L(1+ε)A log8(c4)

ε2
+
c21 logp+8(c4)

ε2
+
c2 logp+4(c4)

ε
.

Setting R′ to be the total number of rounds, we have K ′ = K and the proof completes.

Lemma 32. With probability at least 1− 4δ, we have V π̃gg (s0) ≤ V ?K,g(s0)(1 + ε) for g ∈ K throughout the execution of
Algorithm 2.

Proof. By Lemma 34 and Lemma 44, with probability at least 1 − 2δ, we have V π̂g?(s) ≤ 2V ?K,g?(s) ≤ 4V ?K,g?(s0) ≤
min{8L, 4V π̂g?(s0)} for any s ∈ S throughout the execution. For any g ∈ K, at the round that π̃g is determined (where

g? = g), by Lemma 50, value of λ and definition of success round, V π̃gg (s0) = V π̂g (s0) ≤ τ̂+ ε
256

∥∥V π̂g ∥∥∞ ≤ τ̂+ ε
4V

π̂
g (s0) ≤

V̂ (s0)(1 + ε
2 ) + ε

4V
π̂
g (s0). This gives V π̃gg (s0) ≤ 1+ ε

2

1− ε4
V̂ (s0) ≤ (1 + ε)V ?K,g(s0) by V̂ (s0) ≤ V ?K,g(s0) (Lemma 35) and

ε ∈ (0, 1].

Lemma 33. With probability at least 1 − 12δ, for any K ′ ≤ K, we have RK′ .
√
LS→L(1+ε)A

∑K′

k=1 Vk(s0)ι +

LS→L(1+ε)
2Aι, where ι = log2 LS→L(1+ε)AK

′

δ .

Proof. By Lemma 54 and a union bound on {V ?K,g}g∈K and (s, a) ∈ K×A, with probability at least 1−δ, (P ki − P̄ ki )V ?k .√
V(Pki ,V

?
k )ι′

Nk
i

+ Lι′

Nk
i

for any k ∈ [K ′] and i ∈ [Ik] (note that this holds even if ski /∈ K), where ι′ = log
S→L(1+ε)ACK′

δ .

Moreover, with probability at least 1− δ,

K′∑
k=1

(Ik − Vk(s0)) ≤
K′∑
k=1

Ik∑
i=1

(
1 + Vk(ski+1)− Vk(ski )

)
.

K′∑
k=1

Ik∑
i=1

(
(Iski+1

− P ki )Vk + (P ki − P̄ ki )Vk + bki + εk

)
(Lemma 42)

.

√√√√ K′∑
k=1

Ik∑
i=1

V(P ki , Vk) log
LCK′

δ
+

K′∑
k=1

Ik∑
i=1

(
(P ki − P̄ ki )V ?k + (P ki − P̄ ki )(Vk − V ?k ) + bki

)
+ L log

LCK′

δ
.
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where the last step is by Lemma 41 and Lemma 55. Now note that with probability at least 1− 2δ,

K′∑
k=1

Ik∑
i=1

(
(P ki − P̄ ki )V ?k + (P ki − P̄ ki )(Vk − V ?k ) + bki

)
.

K′∑
k=1

Ik∑
i=1

√V(P ki , V
?
k )ι′

Nk
i

+

√
ΓL(1+ε)V(P ki , Vk − V ?k )ι′

Nk
i

+
ΓL(1+ε)Lι

′

Nk
i

+ bki


(Lemma 46, ‖V ?k ‖∞ ≤ 2L+ 1, ι′ = log

S→L(1+ε)ACK′

δ )

.

√√√√S→L(1+ε)A

K′∑
k=1

Ik∑
i=1

V(P ki , Vk)ι′ +

√√√√S→L(1+ε)ΓL(1+ε)A

K′∑
k=1

Ik∑
i=1

V(P ki , Vk − V ?k )ι′ + LS→L(1+ε)
2Aι′,

where in the last step ι′ = log2 S→L(1+ε)ACK′

δ and we apply Lemma 40, Cauchy-Schwarz inequality, Lemma 39, and
VAR[X + Y ] ≤ 2(VAR[X] + VAR[Y ]). Thus, by Lemma 37 with Lemma 35 and AM-GM inquality, with probability at
least 1− 8δ, we continue with

CK′ −
K′∑
k=1

Vk(s0) .

√√√√S→L(1+ε)A

K′∑
k=1

Ik∑
i=1

V(P ki , Vk)ι′ + LS→L(1+ε)
2Aι′

.
√
LS→L(1+ε)ACK′ι

′ + LS→L(1+ε)
2Aι′, (Lemma 36)

where ι′ = log2 LS→L(1+ε)ACK′

δ . Solving a “quadratic” inequality w.r.t CK′ (Lemma 47), we have CK′ .
∑K′

k=1 Vk(s0) +

LS→L(1+ε)
2A log2 LS→L(1+ε)AK

′

δ . Plugging this back to the last inequality above completes the proof.

Lemma 34. With probability at least 1− 2δ, throughout the execution of Algorithm 2, V π̂g?(s) ≤ 2V ?K,g?(s) for any s ∈ S.

Proof. By Lemma 35, value of ν (Line 2), and applying Lemma 4 with X = K \ {g} for each g ∈ K, we have
V π̂g?(s) ≤ 2V̂ (s) ≤ 2V ?K,g?(s) for all s ∈ S.

Lemma 35. With probability at least 1− δ, throughout the execution of Algorithm 2, V̂ (s) ≤ V ?K,g?(s) for any s ∈ S.

Proof. This is simply by the value of V̂ in each round and applying Lemma 2 on {V ?K,g}g∈K.

F. Lemmas for Policy Evaluation
In this section, we present a set of lemmas related to regret analysis shared among Algorithm 1, Algorithm 5, and Algorithm 2.
In Algorithm 5, a trial is indexed by τ , and each trial corresponds to a value of z estimating S→L(1+ε) (Line 1). In Algorithm 1
and Algorithm 2, we assume the whole learning procedure lies in an artificial trial. Note that when lemmas below are
involved, we have bki = 0, Nk

i =∞, and P̄ ki = Is0 when ski /∈ Kk.

Lemma 36. Let G be the goal set such that S→L(1+ε) ⊆ G ⊆ S . In any trial, with probability at least 1−2δ, for anyK ′ ∈ [K],

if Kk ⊆ S→L(1+ε) and gk ∈ G \ Kk for any k ∈ [K ′], then
∑K′

k=1

∑Ik
i=1 V(P ki , Vk) . LCK′ + L2ΓL(1+ε)S

→
L(1+ε)Aι, where

ι = O(log(|G|ALCK′/δ) log(CK′)).
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Proof. Note that ‖Vk‖∞ ≤ 2L by the stopping condition (Line 1) of Algorithm 4, and with probability at least 1− δ,

K′∑
k=1

Ik∑
i=1

(
Vk(ski )2 − (P ki Vk)2

)
. L

K∑
k=1

Ik∑
i=1

(Vk(ski )− P ki Vk)+ (a2 − b2 ≤ (a+ b)(a− b)+ for a, b ≥ 0)

. L

K′∑
k=1

Ik∑
i=1

(
1 + (P̄ ki − P ki )Vk +

1

Nk
i

+ εk

)
+

(Lemma 42)

. LCK′ + L

K′∑
k=1

Ik∑
i=1

√ΓL(1+ε)V(P ki , Vk)ι′

Nk
i

+
LΓL(1+ε)ι

′

Nk
i

+ εk

 (Lemma 46 and Nk
i =∞ when ski /∈ Kk)

. LCK′ + L

√√√√ΓL(1+ε)S
→
L(1+ε)A

K′∑
k=1

Ik∑
i=1

V(P ki , Vk)ι′ log(CK′) + L2ΓL(1+ε)S
→
L(1+ε)Aι

′ log(CK′),

where ι′ = log(|G|ACK′/δ), and the last step is by Cauchy-Schwarz inequality, Lemma 40, and Lemma 41. Now let
ZK′ =

∑K′

k=1

∑Ik
i=1 V(P ki , Vk). Applying Lemma 38 and

∑K′

k=1 Vk(skIk+1)2 . L2S→L(1+ε)Aι
′ (this is because Vk(skIk+1)

is non-zero only in skip rounds), we have with probability a least 1− δ,

ZK′ . LCK′ + L
√

ΓL(1+ε)S
→
L(1+ε)AZK′ι+ L2ΓL(1+ε)S

→
L(1+ε)Aι,

where ι = O(log(|G|ALCK′/δ) log(CK′)). Solving a quadratic inequality completes w.r.t. ZK′ the proof.

Lemma 37. In any trial, with probability at least 1− 5δ, for any K ′ ∈ [K] if 1) {V ?k }k∈[K′] ⊆ V where V is determined
at the beginning of the trial, |V| is upper bounded by polynomials of S→L(1+ε), and ‖V ‖∞ = O(L) for any V ∈ V , 2)
Vk(s) ≤ V ?k (s) for any k ∈ [K ′] and s ∈ S , 3) Kk ⊆ S→L(1+ε) for any k ∈ [K ′], and 4) gk ∈ Ū \ Kk for any k ∈ [K ′], then∑K′

k=1

∑Ik
i=1 V(P ki , V

?
k −Vk) . L

√
S→L(1+ε)A

∑K′

k=1

∑Ik
i=1 V(P ki , Vk)ι′+L2S→L(1+ε)

2Aι′, where ι′ = log2 LS→L(1+ε)ACK′

δ .

Proof. First note that

K′∑
k=1

Ik∑
i=1

(
(V ?k (ski )− Vk(ski ))2 − (P ki (V ?k − Vk))2

)
. L

K′∑
k=1

Ik∑
i=1

(V ?k (ski )− Vk(ski )− P ki V ?k + P ki Vk)+

(Vk(s) ≤ V ?k (s) for all s and a2 − b2 ≤ (a+ b)(a− b)+ for a, b ≥ 0)

. L

K′∑
k=1

Ik∑
i=1

(1 + P ki Vk − Vk(ski ))+. (V ?k (ski ) ≤ 1 + P ki V
?
k )

Let P̄s,a(s′) = N(s,a,s′)
N+(s,a) . By Lemma 54, with probability at least 1− δ, for any (s, a) ∈ S→L(1+ε) ×A, V ∈ V , and status of

counter N:

(Ps,a − P̄s,a)V .

√
V(Ps,a, V )ι′

N(s, a)
+

Lι′

N(s, a)
, (10)

43



Layered State Discovery for Incremental Autonomous Exploration

where ι′ = log
S→L(1+ε)ACK′

δ . By Lemma 42, with probability at least 1− 2δ, we continue with

. L

K′∑
k=1

Ik∑
i=1

((P ki − P̄ ki )V ?k + (P ki − P̄ ki )(Vk − V ?k ) + bki + εk)+

. L

K′∑
k=1

Ik∑
i=1

√V(P ki , V
?
k )ι′

Nk
i

+

√
ΓL(1+ε)V(P ki , Vk − V ?k )ι′

Nk
i

+
ΓL(1+ε)Lι

′

Nk
i

+ bki + εk


(Eq. (10), Lemma 46, conditions 3) and 4), ι′ = log

S→L(1+ε)ACK′

δ )

. L


√√√√S→L(1+ε)A

K′∑
k=1

Ik∑
i=1

V(P ki , Vk)ι′ +

√√√√S→L(1+ε)
2A

K′∑
k=1

Ik∑
i=1

V(P ki , Vk − V ?k )ι′

+ L2S→L(1+ε)
2Aι′,

where in the last step ι′ = log2 S→L(1+ε)ACK′

δ and we apply VAR[X1 + X2] ≤ VAR[X1] + VAR[X2], Cauchy-Schwarz
inequality, Lemma 40, Lemma 41, and Lemma 39. Then applying Lemma 38 with ‖V ?k − Vk‖∞ . L and solving a

quadratic inequality w.r.t.
∑K′

k=1

∑Ik
i=1 V(P ki , V

?
k − Vk), we have with probability at least 1− δ,

K′∑
k=1

Ik∑
i=1

V(P ki , V
?
k − Vk)

.
K′∑
k=1

(V ?k (skIk+1)− Vk(skIk+1))2 + L

√√√√S→L(1+ε)A

K′∑
k=1

Ik∑
i=1

V(P ki , Vk)ι′ + L2S→L(1+ε)
2Aι′. (ι′ = log2 LS→L(1+ε)ACK′

δ )

The proof is completed by noting that V ?k (g) = Vk(g) = 0 and
∑K′

k=1 I{skIk+1 6= g} . S→L(1+ε)A.

Lemma 38. Let K ∈ N and {Vk}k∈[K] be a sequence of value functions with Vk ∈ [0, B]S for B > 0. With probability at
least 1− δ, for any K ′ ∈ [K],

K′∑
k=1

Ik∑
i=1

V(P ki , Vk) .
K′∑
k=1

Vk(skIk+1)2 +

K′∑
k=1

Ik∑
i=1

(
Vk(ski )2 − (P ki Vk)2

)
+B2ι,

where ι = log(BCK′/δ).

Proof. We decompose the sum as follows:

K′∑
k=1

Ik∑
i=1

V(P ki , Vk) =

K′∑
k=1

Ik∑
i=1

(
P ki (Vk)2 − Vk(ski+1)2

)
+

K′∑
k=1

Ik∑
i=1

(
Vk(ski+1)2 − Vk(ski )2

)
+

K′∑
k=1

Ik∑
i=1

(
Vk(ski )2 − (P ki Vk)2

)
.

For the first term, by Lemma 55, Lemma 48, and Ik <∞ for any k ∈ [K] by the skip-round condition, with probability at
least 1− δ, for all K ′ ∈ [K],

K′∑
k=1

Ik∑
i=1

(
P ki (Vk)2 − Vk(ski+1)2

)
.

√√√√ K′∑
k=1

Ik∑
i=1

V(P ki , (Vk)2)ι+B2ι

. B

√√√√ K′∑
k=1

Ik∑
i=1

V(P ki , Vk)ι+B2ι,

where ι = O(log(BCK′/δ)). The second term is clearly upper bounded by
∑K′

k=1 Vk(skIk+1)2. Putting everything together

and solving a quadratic inequality w.r.t.
∑K′

k=1

∑Ik
i=1 V(P ki , Vk) completes the proof.
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Lemma 39. Let G be the goal set such that S→L(1+ε) ⊆ G ⊆ S . In any trial, with probability at least 1− δ, for any K ′ ∈ [K],

if Kk ⊆ S→L(1+ε) and gk ∈ G \ Kk for any k ∈ [K ′], then
∑K′

k=1

∑Ik
i=1 b

k
i .

√
S→L(1+ε)A

∑K′

k=1

∑Ik
i=1 V(P ki , Vk)ι +

LS→L(1+ε)
1.5Aι, where ι = log(|G|ACK′/δ).

Proof. Note that with probability at least 1− δ,

K′∑
k=1

Ik∑
i=1

bki .
K′∑
k=1

Ik∑
i=1

(√
V(P̄ ki , Vk)ι

Nk
i

+
Lι

Nk
i

)
(definition of bki and max{a, b} ≤ a+ b)

.
K′∑
k=1

Ik∑
i=1

√V(P ki , Vk)ι

Nk
i

+
L
√
S→L(1+ε)ι

Nk
i

 (Lemma 45)

.

√√√√S→L(1+ε)A

K′∑
k=1

Ik∑
i=1

V(P ki , Vk)ι+ LS→L(1+ε)
1.5Aι. (Cauchy-Schwarz inequality and Lemma 40)

This completes the proof.

Lemma 40. In any trial, for any K ′ ∈ [K], if Kk ⊆ S→L(1+ε) for any k ∈ [K ′], we have
∑K′

k=1

∑Ik
i=1

1
Nk
i

.

S→L(1+ε)A log2(CK′).

Proof. Note that, for any i, k, if ski /∈ S→L(1+ε) we must have ski /∈ Kk, which implies that the corresponding count Nk
i is∞.

Then,

K∑
k=1

Ik∑
i=1

1

Nk
i

≤
∑

s∈S→
L(1+ε)

,a∈A

∑
0≤h≤log2(CK)

K∑
k=1

Ik∑
i=1

I
[
(ski , a

k
i ) = (s, a),Nk

i (s, a) = 2h
] 1

2h

≤ |S→L(1+ε)|A log2(Ck).

Lemma 41. In any trial, for any K ′ ∈ [K],
∑K′

k=1

∑Ik
i=1 εk = O(logCK′).

Lemma 42. In any trial, 1 + P̄ ki Vk − 2bki − εk ≤ Vk(ski ) ≤ 1 + P̄ ki Vk + εk for any k ∈ [K], i ∈ [Ik].

Proof. When ski /∈ Kk, we have bki = 1
Nk
i

= 0 and P̄ ki Vk = Vk(s0). Thus, the statement holds. When ski ∈ Kk, by the
definition of Vk and the stopping rule of Algorithm 4, we have

Vk(ski ) ≥ 1 + P̃ ki Vk − bki − εk ≥ 1 + P̄ ki Vk − bki − εk −
P̄ ki Vk
Nk
i

(definition of P̃ ki )

≥ 1 + P̄ ki Vk − 2bki − εk,

where the last step is by P̄ki Vk
Nk
i

≤ 2L
Nk
i

≤ bki . Moreover, Vk(ski ) ≤ 1 + P̃ ki Vk + εk ≤ 1 + P̄ ki Vk + εk. This completes the
proof.
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G. Auxiliary Results

Lemma 43. For any S ≥ 1, A ≥ 2, 3
2 ≤ L ≤ 1

2 + log(S/2)
2 log(A) , and 0 < ε < L−1

L , there exists an MDP with S states and A

actions (including action RESET) such that S→L(1+ε)ΓL(1+ε) = 1 while S→2L ≥ A2(L−1).

Proof. Consider an MDP with the following structure. At s0, taking any action transits to one of {s1, . . . , sL} with
probability 1

L . At any state in {s1, . . . , sL}, taking any action transits to state s?. States reachable from s? form a full A-ary
tree with depth 2(L− 1). The rest of the states are ignored (note that S ≥ 2A2L−1 ≥ 1 + L+

∑2(L−1)
i=0 Ai). It is not hard

to see that it takes 2L− 1 steps to reach any si for i ∈ [L] by a policy restricted on {s0}. Therefore, all unignored states are
2L incrementally controllable and thus S→2L ≥ A2(L−1) states. On the other hand, by L(1 + ε) < 2L− 1, S→L(1+ε) = {s0}
and ΓL(1+ε) = 1 (note that the agent can reach s0 from s0 by taking RESET).

Remark 2. The construction in Lemma 43 also have S→2L = Ω(S) while S→L(1+ε)ΓL(1+ε) = O(1).

Lemma 44. For any X ⊆ S and g ∈ S, we have
∥∥V ?X ,g∥∥∞ ≤ 1 + V ?X ,g(s0).

Proof. Clearly V ?X ,g(g) = 0 ≤ 1 +V ?X ,g(s0) and V ?X ,g(s) = 1 +V ?X ,g(s0) for any s ∈ S \ (X ∪{g}). For any s ∈ X \{g},
by Bellman optimality and RESET ∈ A we have V ?X ,g(s) ≤ 1 + V ?X ,g(s0).

Lemma 45. Let n be a counter incrementally collecting samples from transition function P , and define P̄ns,a(s′) := n(s,a,s′)
n+(s,a) .

Let G be the goal set such that S→L(1+ε) ⊆ G ⊆ S . With probability at least 1− δ, for any status of n, (s, a) ∈ S→L(1+ε) ×A,
X ⊆ S→L(1+ε), g ∈ G \ X , and value function V restricted on X ∪ {g} with ‖V ‖∞ ≤ B for some B > 0, we have

V(P̄ns,a, V ) . V(Ps,a, V ) +
ΓL(1+ε)B

2ι′s,a
n+(s,a) , where ι′s,a = O(log |G|An

+(s,a)
δ ).

Proof. Note that

V(P̄s,a, V ) ≤ P̄s,a(V − Ps,aV )2 (
∑
i pixi∑
i pi

= argminz
∑
i pi(xi − z)2)

= V(Ps,a, V ) + (P̄s,a − Ps,a)(V − Ps,aV )2

. V(Ps,a, V ) +B

√
ΓL(1+ε)V(Ps,a, V )ι′s,a

n+(s, a)
+

ΓL(1+ε)B
2ι′s,a

n+(s, a)
(Lemma 46 and Lemma 48)

. V(Ps,a, V ) +
ΓL(1+ε)B

2ι′s,a
n+(s, a)

. (AM-GM inequality)

This completes the proof.

Lemma 46. Let n be a counter incrementally collecting samples from transition function P , and define P̄ns,a(s′) := n(s,a,s′)
n+(s,a) .

Let G be the goal set such that S→L(1+ε) ⊆ G ⊆ S .8 With probability at least 1− δ, for any status of n, (s, a) ∈ S→L(1+ε) ×A,
X ⊆ S→L(1+ε), g ∈ G \ X , and value function V restricted on X ∪ {g} with ‖V ‖∞ ≤ B for some B > 0, we have

|(Ps,a − P̄ns,a)V | .

√
min{|X |,Γs,aL(1+ε)}V(Ps,a, V )ι′s,a

n+(s, a)
+
Bmin{|X |,Γs,aL(1+ε)}ι

′
s,a

n+(s, a)
,

where ι′s,a = O(log
S→L(1+ε)AΓ2

L(1+ε)|G|n
+(s,a)

δ ).

Proof. By Lemma 54 and a union bound, for any δ′ ∈ (0, 1), with probability at least 1− δ′

S→
L(1+ε)

AΓL(1+ε)(
Γ
s,a
L(1+ε)
i

)|G|
, for

each status of n, (s, a) ∈ S→L(1+ε) ×A, size i ∈ [Γs,aL(1+ε)], subset y′ ⊆ N s,a
L(1+ε) with |y′| = i, and g ∈ G \ y′,

|Ps,a(y)− P̄ns,a(y)| ≤ 2

√
2
Ps,a(y)(1− Ps,a(y)) log(2n+(s, a)/δ′)

n+(s, a)
+

log(2n+(s, a)/δ′)

n+(s, a)
,

8In most cases, we apply this lemma with G ∈ {S→L(1+ε),S}.
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where y = S \ (y′ ∪{g}). Let y′ = X ′ , X ∩N s,a
L(1+ε) such that y = S \ (X ′ ∪{g}). By another application of Lemma 54

and a union bound, for any δ′ ∈ (0, 1), with probability at least 1− δ′

|G| , for all s′ ∈ X ′ ∪ {g} ⊆ G,

|Ps,a(s′)− P̄ns,a(s′)| ≤ 2

√
2
Ps,a(s′)(1− Ps,a(s′)) log(2n+(s, a)/δ′)

n+(s, a)
+

log(2n+(s, a)/δ′)

n+(s, a)
.

Thus, setting δ′ = δ/2S→L(1+ε)AΓL(1+ε)

(Γs,a
L(1+ε)

i

)
|G| and using

(
n
i

)
≤ nmin{i,n−i}, the two inequalities above simplify as

|Ps,a(y)− P̄ns,a(y)| .

√
i · Ps,a(y)(1− Ps,a(y))ι′s,a

n+(s, a)
+

iι′s,a
n+(s, a)

, (11)

|Ps,a(s′)− P̄ns,a(s′)| .

√
Ps,a(s′)(1− Ps,a(s′))ι′s,a

n+(s, a)
+

ι′s,a
n+(s, a)

. (12)

These hold with probability at least 1− δ. Now define, for all s′ ∈ S,

V ′(s′) =

{
V (s′), s′ ∈ X ′ ∪ {g}
V (S \ (X ∪ {g})), otherwise

and V†(s′) = V ′(s′)− Ps,aV ′ for all s′. Clearly, V ′ and V† are restricted on X ′ ∪ {g}. Moreover, V (s′) 6= V ′(s′) =⇒
s′ ∈ X \ y′ =⇒ s′ ∈ X \ N s,a

L(1+ε) =⇒ Ps,a(s′) = 0 by X ⊆ S→L(1+ε). Thus, Ps,aV = Ps,aV
′, and

(Ps,a − P̄ns,a)V = (Ps,a − P̄ns,a)V ′ = (Ps,a − P̄ns,a)V†

=
∑
s′∈X ′

(Ps,a(s′)− P̄ns,a(s′))V†(s
′) + (Ps,a(g)− P̄ns,a(g))V†(g) + (Ps,a(y)− P̄ns,a(y))V†(y)

.
∑

s′∈X ′∪{g}

√
Ps,a(s′)ι′s,a
n+(s, a)

|V†(s′)|+

√
|X ′|Ps,a(y)ι′s,a

n+(s, a)
|V†(y)|+

B|X ′|ι′s,a
n+(s, a)

(Eq. (11) and Eq. (12))

.

√
|X ′|V(Ps,a, V )ι′s,a

n+(s, a)
+
B|X ′|ι′s,a
n+(s, a)

.

where in the last step we apply Cauchy-Schwarz inequality and∑
s′

Ps,a(s′)V†(s
′)2 =

∑
s′

Ps,a(s′)(V ′(s′)− Ps,aV )2 (Ps,aV = Ps,aV
′)

=
∑
s′

Ps,a(s′)(V (s′)− Ps,aV )2 (Ps,a(s′) = 0 when V ′(s′) 6= V (s′))

= V(Ps,a, V ).

This completes the proof.

Lemma 47. If x ≤ a
√
x logp(dx) + b logp(dx) + c for some a, b, c ≥ 0, d > 0 and some absolute constant p ≥ 1, then

x = O((a2 + b) logp((a+ b+ c)d) + c).

Proof. By AM-GM inequality and log x < x for x > 0, we have

x ≤ a
√
x logp(dx) + b logp(dx) + c ≤ x

2
+ (a2/2 + b) logp(dx) + c ≤ x

2
+ (a2/2 + b)(2p)p

√
dx+ c.

Solving a quadratic inequality w.r.t. x gives x = O((a2 + b)2d + c). Plugging this back to the original inequality gives
x ≤ a

√
xι+ bι+ c, where ι = logp((a+ b+ c)d). Further solving a quadratic inequality w.r.t x completes the proof.

Lemma 48. (Chen et al., 2023, Lemma 40) For any random variable X ∈ [−B,B], for some B > 0, we have VAR[X2] ≤
4B2VAR[X].
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Lemma 49. (Cai et al., 2022, Lemma C.2) For some B > 0, let Υ = {v ∈ RS≥0 : v(g) = 0, ‖v‖∞ ≤ B} and

f : ∆S ×∆S ×Υ× R+ × R+ → R with f(p̃, p, v, n, ι) = p̃v −max

{
c1

√
V(p,v)ι
n , c2

Bι
n

}
with some constants c1 ≥ 0

and c2 ≥ 2c21. Then f ensures for all v, n, ι, and p̃, p s.t. p̃(s)− 1
2p(s) ≥ 0 for all s 6= g,

1. f(p̃, p, v, n, ι) is non-decreasing in v(s), that is,

∀v, v′ ∈ Υ, v ≤ v′ =⇒ f(p̃, p, v, n, ι) ≤ f(p̃, p, v′, n, ι);

2. if p̃(g) > 0, then f(p̃, p, v, n, ι) is ρp̃-contractive in v(s), with ρp̃ = 1− p̃(g) < 1, that is,

∀v, v′ ∈ Υ, |f(p̃, p, v, n, ι)− f(p̃, p, v′, n, ι)| ≤ ρp̃ ‖v − v′‖∞ .

Lemma 50. There exist a function NDEV(L0, ε, δ) = O(log4 L0

εδ /ε
2), such that for any g ∈ S and policy π with

∥∥V πg ∥∥∞ ≤
L0 for some L0 > 0, we have with probability at least 1− δ, for all n ≥ NDEV(L0, ε, δ) simultaneously, |τ̂n − V πg (s0)| ≤∥∥V πg ∥∥∞ ε, where τ̂n = 1

n

∑n
i=1 Ci and each Ci is a realization of the total cost incurred by following π starting from s0

with goal state g.

Proof. By Lemma 51, with probability at least 1− δ,
∣∣τ̂n − V πg (s0)

∣∣ ≤ 8‖V πg ‖∞√
n

log2 8n2‖V πg ‖∞
δ for all n ≥ 1. Solving the

range of n for the inequality
8‖V πg ‖∞√

n
log2 8n2L0

δ ≤
∥∥V πg ∥∥∞ ε (Lemma 47) completes the proof.

Lemma 51. For any g ∈ S and policy π with
∥∥V πg ∥∥∞ ≤ L0 for some L0 ≥ 1, we have with probability at least 1− δ, for

all n ≥ 1 simultaneously, |τ̂n − V πg (s0)| ≤ 8L0√
n

log2 8n2L0

δ , where τ̂n = 1
n

∑n
i=1 Ci and each Ci is a realization of the

total cost incurred by following π starting from s0 with goal state g.

Proof. By Lemma 52 and a union bound,

P
(
∃i ≥ 1 : Ci > 4L0 log

8i2L0

δ

)
≤
∑
i≥1

P
(
Ci > 4L0 log

8i2L0

δ

)
≤
∑
i≥1

δ

4i2L0
≤ δ

2
.

Then, under the complement of the event above (which holds with probability at least 1− δ
2 ), we have τ̄n = τ̂n for all n ≥ 1,

where τ̄n = 1
n

∑n
i=1 CiI{Ci ≤ 4L0 log 8n2L0

δ }. Moreover, by Lemma 53 and a union bound,

P

∃n ≥ 1 : |τ̄n − E[τ̄n]| > 4L0 log
8n2L0

δ

√
2 log 8n2

δ

n

 ≤∑
n≥1

δ

4n2
≤ δ

2
.

A union bound on the complement of the two events above yields that, with probability at least 1 − δ, for all n ≥ 1
simultaneously,

τ̂n − V πg (s0) = τ̄n − V πg (s0) ≤ τ̄n − E[τ̄n] ≤ 4L0 log
8n2L0

δ

√
2 log 8n2

δ

n
,

and by Lemma 52,

V πg (s0)− τ̂n ≤ E[τ̄n]− τ̄n + L0 ·
1

2nL0
≤ 4L0 log

8n2L0

δ

√
2 log 8n2

δ

n
+

1

2n
.

Combining these two cases gives
∣∣τ̂n − V πg (s0)

∣∣ ≤ 8L0√
n

log2 8n2L0

δ .

Lemma 52. (Cohen et al., 2020, Lemma B.5) For a given g ∈ S, let π be a policy such that
∥∥V πg ∥∥∞ ≤ τ . Then, for any

n ∈ N, the probability that the cost of π to reach the goal state starting from any state is more than n, is at most 2e−
n
4τ .
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Lemma 53 (Azuma’s inequality). Let {Xt}nt=1 be a martingale difference sequence with |Xt| ≤ B. Then with probability

at least 1− δ, |
∑n
t=1Xi| ≤ B

√
2n log 2

δ .

Lemma 54. (Chen et al., 2021, Lemma 34) Let {Xt}t be a sequence of i.i.d random variables with mean µ, variance σ2,
and 0 ≤ Xt ≤ B. Then with probability at least 1− δ, the following holds for all n ≥ 1 simultaneously:∣∣∣∣∣

n∑
t=1

(Xt − µ)

∣∣∣∣∣ ≤ 2

√
2σ2n log

2n

δ
+ 2B log

2n

δ
.∣∣∣∣∣

n∑
t=1

(Xt − µ)

∣∣∣∣∣ ≤ 2

√
2σ̂2

nn log
2n

δ
+ 19B log

2n

δ
.

where σ̂2
n = 1

n

∑n
t=1X

2
t − ( 1

n

∑n
t=1Xt)

2.

Lemma 55. (Chen et al., 2022b, Lemma 50) Let {Xi}∞i=1 be a martingale difference sequence adapted to the filtration
{Fi}∞i=0 and |Xi| ≤ B for some B > 0. Then with probability at least 1− δ, for all n ≥ 1 simultaneously,∣∣∣∣∣

n∑
i=1

Xi

∣∣∣∣∣ ≤ 3

√√√√ n∑
i=1

E[X2
i |Fi−1] log

4B2n3

δ
+ 2B log

4B2n3

δ
.
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