
Differentiable Synthesis of Program Architectures

Guofeng Cui
Department of Computer Science

Rutgers University
gc669@cs.rutgers.edu

He Zhu
Department of Computer Science

Rutgers University
hz375@cs.rutgers.edu

Abstract

Differentiable programs have recently attracted much interest due to their inter-
pretability, compositionality, and their efficiency to leverage differentiable training.
However, synthesizing differentiable programs requires optimizing over a combina-
torial, rapidly exploded space of program architectures. Despite the development
of effective pruning heuristics, previous works essentially enumerate the discrete
search space of program architectures, which is inefficient. We propose to encode
program architecture search as learning the probability distribution over all possible
program derivations induced by a context-free grammar. This allows the search
algorithm to efficiently prune away unlikely program derivations to synthesize
optimal program architectures. To this end, an efficient gradient-descent based
method is developed to conduct program architecture search in a continuous relax-
ation of the discrete space of grammar rules. Experiment results on four sequence
classification tasks demonstrate that our program synthesizer excels in discovering
program architectures that lead to differentiable programs with higher F1 scores,
while being more efficient than state-of-the-art program synthesis methods.

1 Introduction

Program synthesis has recently emerged as an effective approach to address tasks in several fields
where deep learning is applied traditionally. A synthesized program in a domain-specific language
(DSL) provides a powerful abstraction for summarizing discovered knowledge from data and offers
greater interpretability and transferability across tasks than a deep neural network model, while
achieving competitive task performance [1–4].

A differentiable program encourages interpretability by using structured symbolic primitives to
compose a set of differentiable modules with trainable parameters in its architecture. These parameters
can be efficiently learned with respect to a differentiable loss function over the program’s outputs.
However, synthesizing a reasonable program architecture remains challenging because the architecture
search space is discrete and combinatorial. Various enumeration strategies have been developed to
explore the program architecture space, including greedy enumeration [1, 2], evolutionary search
[5], and Monte Carlo sampling [6]. To prioritize highly likely top-down search directions in the
combinatorial architecture space, NEAR [7] uses neural networks to approximate missing expressions
in a partial program whose F1 score serves as an admissible heuristic to effective graph search
algorithms such as A∗ [8]. However, since the discrete program architecture search space is intractably
large, enumeration-based search strategies are inefficient in general.

We propose to encode program architecture search as learning the probability distribution over all
possible program architecture derivations induced by a context-free DSL grammar. This problem
bears similarities with searching the structure of graphical models [9] and neural architecture search.
Specifically, to support differentiable search, DARTS [10] uses a composition of softmaxes over all
possible candidate operations between a fixed set of neural network nodes to relax the discrete search
space of neural architectures. However, applying this method to program synthesis is challenging

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

because the program architecture search space is much richer [7]. Firstly, different sets of operations
take different input and output types and may only be available at different points of a program.
Secondly, there is no fixed bound on the number of expressions in a program architecture.

To address the aforementioned challenges, we learn the probability distribution of program archi-
tectures in a continuous relaxation of the search space of DSL grammar rules. We conduct program
architecture search in a program derivation graph, in which nodes encode architectures with missing
expressions, and paths encode top-down program derivations. For each partial architecture f on a
graph node, we relax the categorical choice of production rules for expanding a missing expression in
f to a softmax over all possible production rules with trainable weights. A program derivation graph
essentially expresses all possible program derivations under a context-free grammar up to a certain
depth bound (on the height of program abstract syntax trees), which can be iteratively increased during
search to balance accuracy and architecture complexity. We encode a program derivation graph itself
as a differentiable program whose output is weighted by the outputs of all the programs involved. We
seek to optimize program architecture weights with respect to an accuracy loss function defined over
the encoded program’s output. The learned weights allow our synthesis algorithm to efficiently prune
away search directions to unlikely program derivations to discover optimal programs. Compared with
enumeration-based synthesis strategies, differentiable program synthesis in the relaxed architecture
space is easier and more efficient with gradient-based optimization.

One major challenge of differentiable program architecture synthesis is that a program derivation
graph involves an exponential number of programs and a huge set of trainable variables including
architecture weights and program parameters. To curb the large program derivation search space, we
introduce node sharing in program derivation graphs and iterative graph unfolding. Node sharing
allows two partial architectures to share the same child nodes if the missing expressions in the two
architectures can be expanded using the same grammar rules. Iterative graph unfolding allows the
synthesis algorithm to construct a program derivation graph on the fly focusing on higher-quality
program derivations than all the rest. These optimization strategies significantly reduce the program
architecture search space, scaling differentiable program synthesis to real-world classification tasks.
We evaluate our synthesis algorithm in the context of learning classifiers in sequence classification
applications. We demonstrate that our algorithm substantially outperforms state-of-the-art methods for
differentiable program synthesis, and can learn programmatic classifiers that are highly interpretable
and are comparable to neural network models in terms of accuracy and F1-scores.

As a summary, this paper makes three contributions. Firstly, we encode program synthesis as learning
the probability distribution of program architectures in a continuous relaxation of the discrete space
defined by programming language grammar rules, enabling differentiable program architecture search.
Secondly, we instantiate differentiable program architecture synthesis with effective optimization
strategies including node sharing and iterative graph unfolding, scaling it to real-world classification
tasks. Lastly, we present state-of-the-art results in learning programmatic classifiers for four sequence
classification applications.

2 Problem Formulation

A program in a domain-specific language (DSL) is a pair (α, θ), where α is a discrete program
architecture and θ is a vector of real-valued parameters of the program. Given a specification over
the intended input-output behavior of an unknown program, program synthesis aims to discover the
program’s architecture α and optimize the program parameters θ.

In this paper, we focus on learning programmatic classifiers for sequence classification tasks [11].
We note that the proposed synthesis technique is applicable to learning any differentiable programs.

Program Architecture Synthesis. A program architecture α is typically synthesized based on a
context-free grammar [12]. Such a grammar consists of a set of production rules αk → {σj}Jj=0 over
terminal symbols Σ and nonterminal symbols Y where αk ∈ Y and σj ∈ Σ ∪ Y . As an example,
consider the context-free grammar of a DSL for sequence classification depicted in the standard
Backus-Naur form [13] in Fig. 1, adapted from [7]. A terminal in this grammar is a symbol that
can appear in a program’s code, e.g. x and the map function symbol, while a nonterminal stands
for a missing expression (or subexpression), e.g. α2 and α3. Any program in the DSL operates
over a real vector or a sequence of real vector x. It may use constants c, arithmetic operations
Add and Multiply, and an If-Then-Else branching construct ITE. To avoid discontinuities for

2

α ::= x | c | Add α1 α2 |Multiply α1 α2 | ITE α1 ≥ 0 α2 α3 | FS,θ(x) | map (fun x1.α1) x |
mapprefix (fun x1.α1) x | fold (fun x1.α1) c x | SlideWindowAvg (fun x1.α1) x

Figure 1: Context-free DSL Grammar for Sequence Classification (adapted from [7]).

…

…

0.2 0.34 0.46
0.5 0.17 0.33
0 0 0

𝐴𝑑𝑑: 𝛼!
",$

𝐼𝑇𝐸: 𝛼!
","

𝑀𝑎𝑝: ∅

𝐹𝑜𝑙𝑑 𝐴𝑣𝑔 𝑥

𝑾

𝑾

Depth 0

Depth 1

Depth 2

Depth 3

Depth 0

Depth 1

… … … … Depth 2

𝑾

0.45 0.2 0.35𝐴𝑑𝑑: 𝛼"
",$

𝐴𝑑𝑑 𝑀𝑢𝑙 𝑥

𝑾

0

0

1

2 3

4 5

𝐴𝑑𝑑
𝛼"
",$ 𝛼!

",$
𝐼𝑇𝐸

𝛼"
"," 𝛼!

","𝛼%
","

𝑀𝑎𝑝
𝛼"
",!

𝐴𝑑𝑑
𝛼"
!,$ 𝛼!

!,$
𝑀𝑢𝑙

𝛼"
!," 𝛼!

!,"
𝑥
∅

𝐹𝑜𝑙𝑑
𝛼"
%,$ 𝛼"

%,"
𝐴𝑣𝑔 𝑥

∅

𝐼𝑇𝐸
𝛼"
&,"𝛼!

&,"𝛼%
&,"

𝑀𝑢𝑙
𝛼"
&,! 𝛼!

&,!
𝐴𝑑𝑑

𝛼"
&,% 𝛼!

&,%
𝐼𝑇𝐸

𝛼"
',"𝛼!

',"𝛼%
',"

𝑀𝑢𝑙
𝛼"
',! 𝛼!

',!
𝑥
∅

𝑆𝑡𝑎𝑟𝑡
𝛼"
$,$

𝑆𝑡𝑎𝑟𝑡
𝛼"
$,$

1
𝐴𝑑𝑑

𝛼"
",$ 𝛼!

",$
𝐼𝑇𝐸

𝛼"
"," 𝛼!

","𝛼%
","

𝑀𝑎𝑝
𝛼"
",!

2
𝐴𝑑𝑑

𝛼"
!,$ 𝛼!

!,$
𝑀𝑢𝑙

𝛼"
!," 𝛼!

!,"
𝑥
∅ 3

𝐹𝑜𝑙𝑑
𝛼"
%,$ 𝛼"

%,"
𝐴𝑣𝑔 𝑥

∅

Figure 2: Program Derivation Graph of the grammar in Fig. 1.

differentiability, we interpret it in terms of a smooth approximation: JITE(α1 ≥ 0, α2, α3)K(x) =
σ(Jα1K(x)) · Jα2K(x) + (1 − σ(Jα1K(x)) · Jα3K(x) where σ is the sigmoid function. A program
may invoke a customized library of differentiable, parameterized functions. In our context, these
functions are in the shape FS,θ(x) that extract a vector consisting of a predefined subset S of the
dimensions of an input x and pass the extracted vector through a linear function with trainable
parameters θ. A program may also use a set of higher-order combinators to recurse over sequences
including the standard map and fold combinators. The higher-order combinators takes as input an
anonymous function fun x.e(x) that evaluates an expression e(x) over the input x. For a sequence x,
the mapprefix higher-order combinator returns a sequence f(x[1 : 1]), f(x[1 : 2]), . . . , f(x[1 : n]),
where x[1 : i] is the i-th prefix of x. The SlideWindowAvg function computes the average of a
sequence over a moving window of frames.

We define the complexity of a program architecture α. Let each grammar rule r have a non-negative
real-valued cost c(r). The structural cost c(α) is the sum of the costs of the multi-set of rules used to
create α. Intuitively, program architectures with lower structural cost are more interpretable. In the
context of this paper, program synthesis aims to learn a simple program (in terms of structure cost)
that satisfies some specifications over program input-output behaviors. In this paper, we set c(r) = 1
for any production rule r.

Program Synthesis Specifications. In a sequence classification task, a set of feature sequences
{ik}Kk=1 are taken as input and we expect to classify ik into a certain category ok. Each ik is a
sequence of observations. Each observation captures features extracted at a frame as a 1-dimensional
real-valued vector. We aim to synthesize a program P (·; α, θ) as a classifier with high accuracy and
low architecture cost. Our program synthesis goal is formalized as follows:

arg min
θ,α

Eik,ok∼D[`
(
P (ik; α, θ), ok

)
] + c(α) (1)

where D(ik, ok) is an unknown distribution over input sequences ik and labels ok. The first term of
Equation (1) defines some prediction error loss ` of a program P (·) for a classification task over P ’s
predicted labels and the ground truth labels. The second term enforces program synthesis to learn an
architecturally simple programmatic classifier.

3 Differentiable Program Architecture Synthesis

We formulate program architecture derivation as a form of top-down graph traversal. Given the
context-free grammar G of a DSL, an architecture derivation starts with the initial nonterminal (i.e. the
empty architecture), then applies the production rules in G to produce a series of partial architectures
which consist in expressions made from one or more nonterminals and zero or more terminals, and
terminates when a complete architecture that does not include any nonterminals is derived.

3

Formally, program architecture synthesis with respect to a context-free grammar G is performed
over a directed acyclic program derivation graph G = {V,E} where V and E indicate graph nodes
and edges. Fig. 2 depicts a program derivation graph for the sequence classification grammar in
Fig. 1. A node u ∈ V is a set of partial or complete program architectures permissible by G. An
edge (u, u′) ∈ E exists if one can obtain the architectures in u′ by expanding a nonterminal of an
architecture in u following some production rules of G. For simplicity, Fig. 2 only shows three partial
or complete architectures in any node of the program derivation graph. In the graph node at depth
1, we expand the initial nonterminal α0,0

1 to the Add, ITE and Map functions (each with missing
expressions) using the grammar rules in Fig. 1. Notice that the edge direction in a program derivation
graph indicates search order. However, program dataflow through each edge (u, u′) is in the opposite
direction. The output of u′ is calculated first and then passed as input to u.

The main challenge of program architecture synthesis is that the search space embedded in a program
derivation graph is discrete and combinatorial. Enumeration-based synthesis strategies are inefficient
in general because of the intractable search space. Instead, we aim to learn the probability distribution
of program architectures within a program derivation graph in a continuous relaxation of the search
space. Specifically, to expand a nonterminal of a partial program architecture, we relax the categorical
choice of production rules in a context-free grammar into a softmax over all possible production rules
with trainable weights. For example, in Fig. 2, if we expand the initial nonterminal α0,0

1 to a partial
architecture Add α1,0

1 α1,0
2 on node 1, we have several choices to further expand the architecture’s

first nonterminal α1,0
1 , weighted by the probability matrix w (obtained after softmax) drawn in Fig. 2.

Based on w, the synthesizer will choose to expand α1,0
1 to Add α2,0

1 α2,0
2 on node 2. Our main idea

to learn architecture weights is to encode a program derivation graph itself as a differentiable program
Tw,θ whose output is weighted by the outputs of all programs included in Tw,θ, where w represents
architecture weights and θ includes program parameters of all the mixed programs in the graph. The
parameters w and θ can be jointly optimized with respect to a differentiable loss function ` over
program outputs via bi-level optimization. Similar to DARTS [10], we train θ and w on a parameter
training dataset Dθ and an architecture validation dataset Dw respectively until convergence:

θ′ = θ −∇θEik,ok∼Dθ`
(
Tw,θ(ik), ok

)
w′ = w −∇wEik,ok∼Dw`

(
Tw,θ′(ik), ok

) (2)

However, a program derivation graph includes an exponential number of programs. Therefore, it
involves a huge set of trainable variables including program architecture weights w and unknown
program parameters θ. To curb the large program derivation search space, we introduce node sharing
(Sec. 3.1) and iterative graph unfolding (Sec. 3.2).

3.1 Node Sharing

Intuitively, node sharing in a program derivation graph allows two partial architectures to share
the same child nodes if the nonterminals in the two architectures can be expanded using the same
grammar production rules. Fig. 3 depicts the compressed program derivation graph for the sequence
classification grammar in Fig. 1. At depth 1, three partial architectures Add α1,0

1 α1,0
2 , ITE α1,1

1 ≥
0 α1,1

2 α1,1
3 , and Map (fun x1.α1,2

1) are expanded from the initial nonterminal α0,0
1 . Because only

one of the three partial architectures would be used to derive the final synthesized program, we allow
the nonterminals α1,0

2 , the second parameter of Add, and α1,1
2 , the second parameters of ITE, to

share the same child node 3, weighted by the probability matrix w drawn in Fig. 3. Importantly, node
sharing takes function arities and types into account. The matrix w has 0 probability for the Map
partial architecture because unlike Add and ITE it does not contain a second parameter.

Formally, in a program derivation graph, let Ku be the number of program architectures on node
u. Denote fuk

(
αu,k1 , . . . , αu,kη(fuk)

)
as the k-th (partial) architecture on u where η(fuk) is the number

of nonterminals contained in fuk and αu,ki is the i-th nonterminal of fuk . For the grammar of Fig. 1,
essentially each fuk is a function application with missing argument expressions αu,ki , 1 ≤ i ≤ η(fuk),
and η(fuk) is the arity of the function. Assume that u′ is the i-th child of u from left to right in the
program derivation graph. The weight we of the edge e = (u, u′) is of the shape RKu×Ku′ where the
matrix rows refer to the partial architectures on u and the matrix columns refer to architectures on u′.
We have we[(k, k′)] proportional to the probability of expanding the i-th nonterminal of fuk to fu

′

k′

4

…

…

0.2 0.34 0.46
0.5 0.17 0.33
0 0 0

𝐴𝑑𝑑: 𝛼!
",$

𝐼𝑇𝐸: 𝛼!
","

𝑀𝑎𝑝: ∅

𝐹𝑜𝑙𝑑 𝐴𝑣𝑔 𝑥

𝑾

𝑾

Depth 0

Depth 1

Depth 2

Depth 3

Depth 0

Depth 1

… … … … Depth 2

𝑾

0.45 0.2 0.35𝐴𝑑𝑑: 𝛼"
",$

𝐴𝑑𝑑 𝑀𝑢𝑙 𝑥

𝑾

0

0

1

2 3

4 5

𝐴𝑑𝑑
𝛼"
",$ 𝛼!

",$
𝐼𝑇𝐸

𝛼"
"," 𝛼!

","𝛼%
","

𝑀𝑎𝑝
𝛼"
",!

𝐴𝑑𝑑
𝛼"
!,$ 𝛼!

!,$
𝑀𝑢𝑙

𝛼"
!," 𝛼!

!,"
𝑥
∅

𝐹𝑜𝑙𝑑
𝛼"
%,$ 𝛼"

%,"

𝐴𝑣𝑔 𝑥
∅

𝐼𝑇𝐸
𝛼"
&,"𝛼!

&,"𝛼%
&,"

𝑀𝑢𝑙
𝛼"
&,! 𝛼!

&,!
𝐴𝑑𝑑

𝛼"
&,% 𝛼!

&,%
𝐼𝑇𝐸

𝛼"
',"𝛼!

',"𝛼%
',"

𝑀𝑢𝑙
𝛼"
',! 𝛼!

',!
𝑥
∅

𝑆𝑡𝑎𝑟𝑡
𝛼"
$,$

𝑆𝑡𝑎𝑟𝑡
𝛼"
$,$

1
𝐴𝑑𝑑

𝛼"
",$ 𝛼!

",$
𝐼𝑇𝐸

𝛼"
"," 𝛼!

","𝛼%
","

𝑀𝑎𝑝
𝛼"
",!

2
𝐴𝑑𝑑

𝛼"
!,$ 𝛼!

!,$
𝑀𝑢𝑙

𝛼"
!," 𝛼!

!,"
𝑥
∅ 3

𝐹𝑜𝑙𝑑
𝛼"
%,$ 𝛼"

%,"
𝐴𝑣𝑔 𝑥

∅

Figure 3: Node Sharing on Program Derivation Graphs.

(obtained after softmax), e.g. the w matrix drawn in Fig. 3. To make the architecture search space
continuous, we relax the categorical choice of expanding a particular nonterminal αu,ki to a softmax
over all possible grammar production rules for αu,ki in the program derivation graph:

Jαu,ki K(x) =

Ku′∑
k′=0

exp(we[(k, k
′)])∑Ku′

j=0 exp(we[(k, j)])
· Jfu

′

k′
(
αu
′,k′

1 , . . . , αu
′,k′

η(fu
′

k′)

)
K(x)

where u′ is the i-th child of u and e = (u, u′)

(3)

Complexity. Let D be the depth of a program derivation graph, Kmax be the number of productions
rules, and ηmax be the maximum number of nonterminals in any rules of a context-free grammar.
With node sharing, we reduce the space complexity of the program derivation graph from O([Kmax ·
ηmax]D+1) to O([ηmax]D+1). In a program synthesis task, Kmax is typically much larger than ηmax.
Without compression, the program derivation graph of a grammar with a large Kmax even hardly fits
GPU memory.

3.2 Iterative Graph Unfolding

Node sharing significantly restricts the width of a program derivation graph. However, a derivation
graph still grows exponentially with its depth, which limits the scalability of differentiable architecture
search. To address this problem, we propose an on-the-fly approach that unfolds program derivation
graphs iteratively and prunes away unlikely candidate architectures at the end of each iteration based
on their weights. Fig. 4 depicts the iterative procedure of derivation graph unfolding.

At the initial iteration, the program derivation graph is shallow as it only contains architectures up to
depth ds. We set ds = 2 in Fig. 4. For any partial program architecture fuk

(
αu,k1 , . . . , αu,kη(fuk)

)
on any

node u of the depth-bounded graph, our algorithm substitutes neural networks for the nonterminals
αu,ki to approximate the missing expressions. These networks are type-consistent. For example, a
recurrent neural network is used to replace a missing expression whose inputs are supposed to be
sequences. For a program derivation graph as such, the unknown program parameters θ come from
both parameterized functions like fuk and the neural modules. The goal is to optimize the architecture
weights and the unknown program parameters using Equation 2. The qualities of candidate partial
architectures on each graph node are ranked based on the learned architecture weights.

In the next iteration, on each graph node, our synthesis algorithm retains top-N program architectures
as children for each partial architecture on the node’s parent, which are defined to be those assigned
with higher weights on the node’s incoming edge in the previous iteration. We set N = 2 in the
example of Fig. 4. After top-N preservation on each node, our synthesis algorithm increases the
depth of the program derivation graph by expanding the nonterminals (that were replaced with
neural modules in the previous iteration) ds depths deeper. Suitable neural networks are leveraged to
substitute any new nonterminals at depth 2ds + 1. Our algorithm again jointly optimizes architecture
weights and unknown program parameters and performs top-N preservation on each node based on

5

Top-2 Sel.
0

∅

Extend

Train𝑤/𝜃

Top-2 Sel.Extend

Train𝑤/𝜃

…

𝑾′

0.5 0.41 ⋯ 0.02
0.6 0.02 ⋯ 0.29

𝑾′

0.55 0.45 0
0.67 0 0.33

Search

w. train

0

1

3

5

6 7

…
𝑾

0.3 0.36 ⋯ 0.02 0

1

NN

2 …
…
𝑾

0

1

NN

2

0

1

3

5 …
6 7… …

𝑾′

0

1

3

5

6 7

𝑾′

Top-2 Preserve
0

∅

Unfold

Train𝑤/𝜃

Top-2 PreserveUnfold

Train𝑤/𝜃

…

𝑾′

0.5 0.41 ⋯ 0.02
0.6 0.02 ⋯ 0.29

𝑾′

0.55 0.45 0
0.67 0 0.33

…
𝑾

0.3 0.36 ⋯ 0.02 0

1

NN

3 …
…
𝑾

2 …
NN

0

1

NN

3

NN

2

0

1

3

4 …
5 6… …

𝑾′

2

0

1

3

4

5 6

𝑾′

2
Search

0

1

3

4

5 6

2

Figure 4: Differentiable program architecture synthesis with iterative graph unfolding.

learned architecture weights, as depicted in Fig. 4. Such a process iterates until the unfolded program
derivation graph contains no nonterminals or the maximum search depth is reached. Our differentiable
program architecture synthesis method is outlined in (the first while loop of) Algorithm 1.

3.3 Searching Optimal Programs

Algorithm 1: Program Archit. Synthesis
Input :Grammar G, Graph expansion

depth ds, Top-N parameter
Output :Synthesized Program P
G contains only the initial nonterminal;
while G contains nonterminals do

Extend G depth ds deeper w.r.t. G;
Optimize w and θ in G w.rt. Eq. 2;
Top-N preservation in G’s nodes;

Q := [G];
while Q 6= ∅ do

q := arg minq∈Q f(q);
Q := Q \ {q};
if q is a well-typed program then

return q;
u is the top-left most node in q with
more than one architecture choice;

for each partial archit. fuk on u do
q′ := q[u/fuk];
Compute g(q′), h(q′), s(q′);
Q := Q ∪ {q′};

Once we have an optimized program derivation graph
G, due to the top-N preservation strategy, each node
retains a small number of partial architectures. From
G, we could greedily obtain a discrete program ar-
chitecture top-down by replacing each graph node
containing mixed partial architectures with the most
likely partial architecture based on learned architec-
ture weights. However, the performance estimation
ranked by architecture weights in a program deriva-
tion graph can be inaccurate due to the co-adaption
among architectures via node sharing. Recent work
also discovers that relaxed architecture search meth-
ods tend to overfit to certain functions that lead to
more rapid gradient descent than others [14–17] and
thus produce unsatisfying performance.

To overcome this potential disadvantage of differen-
tiable architecture search, our algorithm introduces a
search procedure as depicted in Fig. 4. The core idea
is that while one super program derivation graph may
not be able to model the entire search space accu-
rately, multiple sub program derivation graphs can be
used to effectively address the limitation by having
each sub graph modeling one part of the search space.

In the search, Algorithm 1 maintains a queue Q of
program derivation graphs sorted by their quality that
is initialized to [G]. Our algorithm measures the
quality of a program by both its task performance and structure cost. The algorithm dequeues one
graph q from Q and extracts the top-most and left-most node u of q that still contains more than one
partial architecture for search. As u co-adapts multiple architectures, we separate the entire search
space into disjoint partitions by picking each available architecture fuk

(
αu,k1 , . . . , αu,kη(fuk)

)
from the

compound node u and assign a sub program derivation graph to model each partition. The algorithm
computes a quality score s for each option of retaining only fuk on u, denoted as q[u/fuk]:

s(q[u/fuk]) = g(q[u/fuk]) + h(q[u/fuk])

The g(q[u/fuk]) function measures the structure cost of expanding the initial nonterminal up to u
(Sec. 2) and h(q[u/fuk]) is an ε-Admissible heuristic estimate of the cost-to-go from node u [18]:

h(q[u/fuk]) = 1− F1(Tw∗,θ∗ [u/fuk], Dval) where w∗, θ∗ = arg min
w,θ

Eik,ok∼D[`
(
Tw,θ[u/fuk]), ok

)
]

where T encodes the program derivation graph q itself via Equation (3) as a differentiable program
whose output is weighted by the output of all complete programs included in q, w and θ are the sets of
architecture weights and unknown program parameters in the subgraph rooted at u in q[u/fuk]. The h

6

function fine-tunes these trainable variables using the training datasetD to provide informed feedback
on the contribution to program quality of the choice of only retaining fuk on node u, measured by
the program’s F1 score. In practice, to avoid overfitting, we use a separate validation dataset Dval

to obtain the F1 score. After computing the quality score s, we add q[u/fuk] back to the queue Q
sorted based on s-scores. The search algorithm completes when the derivation graph with the least
s-score from Q is a well-typed program, i.e. each graph node contains only one valid architecture
choice. Our architecture selection algorithm is optimal given the admissible heuristic function h —
the returned program optimally balances program accuracy and structure complexity among all the
programs contained in G. The proof is given in Appendix A.

4 Experiments

We have implemented Algorithm 1 in a tool named dPads (domain-specific Program architecture
differentiable synthesis) [19], and evaluated it on four sequence classification datasets.

4.1 Datasets for Evaluation

We partition a dataset to training, validation, and test datasets. dPads uses the training dataset to
optimize the architecture weights and program parameters in a program derivation graph. When
searching a final program from a converged program derivation graph, we use the validation dataset to
obtain the program’s F1 score to guide the search. We use the test dataset to obtain the final accuracy
and F1 score of a program. Additionally, in training we construct two separate datasets by randomly
selecting 60% of a training dataset as Dθ to optimize program parameters θ and using the remaining
40% as Dw to train architecture weights w via Equation 2.

Crim13 Dataset. The dataset collects social behaviors of a pair of mice. We cut every 100 frames as
a trajectory. Each trajectory frame is annotated with an action by behavior experts [20]. For each
frame, a 19-dimensional feature vector is extracted including the positions and velocities of the two
mice. The goal is to synthesize a program to classify each trajectory to action sniff or no sniff. In total
we have 12404, 3077, and 2953 trajectories in the training set, validation set, and test set respectively.

Fly-vs-fly Dataset. We use the Boy-meets-boy, Aggression and Courtship datasets collected in the
fly-vs-fly environment for monitoring two fruit flies interacting with each other [21]. Each trajectory
frame is a 53-dimensional feature vector including fly position, velocity, wing movement, etc. We
subsample the dataset similar to [7], which results in 5341 train trajectories, 629 validation trajectories,
and 1050 test trajectories. We aim to synthesize a program to classify each trajectory as one of 7
actions displaying aggressive, threatening, and nonthreatening behaviors.

Basketball Dataset. The dataset tracks the movement of a basketball, 5 defensive players and 5
offensive players [22]. Each trajectory has 25 frames with each frame as a 22-dimensional feature
vector of ball and player position information. We aim to learn a program that can predict which
offensive player handles the ball or whether the ball is being passed. In total we have 18000, 2801,
and 2693 trajectories in the training set, validation set, and test set respectively.

Skeletics 152 Dataset. The dataset [23] contains 152 human pose actions as well as related YouTube
Videos subsampled from Kinetics-700 [24]. For each video frame, 25 3-D skeleton points are
collected, resulting in a 75-dimensional feature vector per frame. We extract 100 frames from each
trajectory to reduce noise. Finally, the training set contains 8721 trajectories, the validation set
contains 2184 trajectories, and the test set contains 892 trajectories. We aim to learn a program to
classify a pose trajectory as one of 10 actions.

As discussed in Sec. 2, the DSL for each dataset is equipped with a customized library of differentiable
and parameterized functions FS,θ(x). We define these functions in Appendix B. In this paper, we
focus on sequence classification benchmarks. However, dPads is a general program synthesis
algorithm and is not limited to sequence classification. In Appendix C.6, we evaluate dPads on
cryptographic circuit synthesis to demonstrate the generalizability of dPads.

4.2 Experiment Setup

To train architecture weights w and unknown program parameters θ in a differentiable program
architecture derivation graph, we use the Adam optimizer [25]. In Algorithm 1, we set N = 2

7

Table 1: Experiment results on the performance of dPads compared with NEAR [7]. All results are
reported as the average of runs on five random seeds. Costs of time are set in minutes.

Crim13-sniff Fly-vs-fly Bball-ballhandler SK152-10 actions
F1 Acc. Time F1 Acc. Time F1 Acc. Time F1 Acc. Time

RNN .481 .851 - .964 .964 - .980 .980 - .414 .428 -
A∗-NEAR .286 .820 164.92 .828 .764 243.82 .940 .934 553.01 .312 .315 210.23

IDS-BB-NEAR .323 .834 463.36 .822 .750 465.57 .793 .768 513.33 .314 .317 848.44
dPads .458 .812 147.87 .887 .853 348.25 .945 .939 174.68 .337 .337 162.70

𝑌! ∷= 𝑥 | 𝑌"
𝑌" ∷= 𝑀𝑎𝑝 𝑌" 𝑥 𝑀𝑎𝑝𝑝𝑟𝑒𝑓𝑖𝑥 𝑌" 𝑥 𝐹𝑜𝑙𝑑 𝑌" 𝑥 | 𝐼𝑇𝐸 𝑌!, 𝑌!, 𝑌! |

𝑠𝑙𝑖𝑑𝑒𝑊𝑖𝑛𝑑𝑜𝑤 𝑌! 𝐴𝑑𝑑 𝑌!, 𝑌! 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑦 𝑌!, 𝑌! | 𝐹𝑒𝑎𝑡𝑢𝑟𝑒#(𝑥)

Map(
Multiply(
PositionSelectθ1(xt),DistanceSelectθ2(xt))) x

SlideWindowAvg(Add(
Multiply(LegsAffineθ1(xt), LegsAffineθ2(xt)),
Multiply(ArmsAffineθ3(xt), ArmsAffineθ4(xt)))) x

Time (min)

F1
Sc
or
e

Time (min)

F1
Sc
or
e

(a) Crim13-sniff (d) SK152-10 actions
Time (min)

(c) Bball-ballhandler

F1
Sc
or
e

Time (min)

F1
Sc
or
e

(b) Fly-vs-fly(a) Crim13 (b) SK152

MapPrefixes(
Fold(
if DistanceSelectθ1(xt)
then PositionSelectθ2(xt) else PositionSelectθ3(xt)))) x

Map(
if AccelerationSelectθ1(xt)
then if PositionSelectθ2(xt)

then PositionSelectθ3(xt) else VelocitySelectθ4(xt)
else Multiply(DistanceSelectθ5(xt), DistanceSelectθ6(xt))) x

Fold(
Add(
Add(PositionalSelectθ1(xt), WingSelectθ2(xt)),
RatioSelectθ3(xt))) x

Fold(
Add(
Add(AngularSelectθ1(xt), WingSelectθ2(xt)),
Add(RatioSelectθ3(xt), RatioSelectθ4(xt)))) x

(a) Crim13 (b) Fly-vs-fly

SlideWindowAvg(
Add(
if ArmsXYZAffineθ1(xt)
then ArmsXYZAffineθ2(xt) else ArmsXYZAffineθ3(xt),

if LegsXYZAffineθ4(xt)
then FaceXYZAffineθ5(xt) else LegsXYZAffineθ6(xt))) x

Map(
Multiply(
Add(BallXYAffineθ1(xt), OffenseXYAffineθ2(xt)),
Add(OffenseXYAffineθ3(xt), BallXYAffineθ4(xt)))) x

(c) SK152 (d) Basketball

Figure 5: Experiment results on the Crim13, Fly-vs-fly, Basketball and SK152 datasets over five
random seeds. x axis refers to costs of time recorded in minutes and y axis refers to F1 scores.

for top-N preservation and set graph expansion depth ds to 2. For evaluation, we compare dPads
with the state-of-the-art program learning algorithms A∗-NEAR and IDS-BB-NEAR [7]. We only
report a comparison with NEAR because NEAR significantly outperforms other program learning
methods based on top-down enumeration, Monte-Carlo sampling, Monte-Carlo tree search, and
genetic algorithms [7]. All experiments were performed on Intel 2.3-GHz Xeon CPU with 16 cores,
equipped with an NVIDIA Quadro RTX 6000 GPU. More experiment settings including learning
rates and training epochs are given in Appendix C.1 and C.2.

4.3 Experiment Results

For a fair comparison with NEAR [7], for any of the four datasets, all tools search over the same
DSL. We use random seeds 0, 1000, 2000, 3000, 4000 and report average F1 scores, accuracy rates
and execution times for both methods. We also report the results achieved using a highly expressive
RNN baseline which provides a task performance upper bound on F1-scores and accuracy.

Table 1 shows the experiment results. On both the Crim13 and SK152 datasets, dPads outperforms
A∗-NEAR and IDS-BB-NEAR achieving higher F1 scores and using much less time consumption.
dPads also achieves competitive accuracy with NEAR on Crim13. On the Basketball dataset, although
dPads achieves a bit higher F1 score, the architectures synthesized by dPads and A*-NEAR are
exactly the same. However, dPads takes 70% less time to get the result. While A∗-NEAR completes
the search faster than dPads on Fly-vs-fly, the program architecture synthesized by dPads leads
to a program with a much better F1 score and higher accuracy. More quantitative analyses of the
experiment results are given in Appendix C.3.

We visualize the results of dPads and NEAR in terms of F1 scores (y axis) and running times (x axis)
on the 5 random seeds in Fig. 5 where red triangles refer to the results of dPads, and black plus marks
and rectangles refer to the results of A∗-NEAR and IDS-BB-NEAR. dPads consistently outperforms
NEAR in achieving higher F1 scores with less computation and is closer to the RNN baseline.

Although the RNN baseline provides better performance, dPads learns programs that are more
interpretable. Fig. 6 depicts the best programs synthesized by dPads on Crim13 and SK152 (among all
the 5 random seeds). The program for Crim13 has a simple architecture and achieves a high F1 score
0.475 (only 0.006 less than the RNN result). It invokes two FS,θ library functions: PositionAffine
and DistanceAffine. This program is highly human-readable: it evaluates the likelihood of "sniff" by
applying a position bias and if the distance between two mice is small they are doing a "sniff". The
programmatic classifier for SK152 achieves an F1 score 0.35 which is close to the RNN baseline. It
uses the arm and leg positions of a 3-D skeleton to complete a human-action classification. We show
more examples about the interpretability of programs learned by dPads in Appendix C.5.

8

Map(
Multiply(

PositionAffineθ1 (xt)),
DistanceAffineθ2 (xt))) x

SlideWindowAvg(Add(
Multiply(LegsAffineθ1 (xt),

LegsAffineθ2 (xt)),
Multiply(ArmsAffineθ3 (xt),

ArmsAffineθ4 (xt)))) x

Figure 6: Synthesized Programs for Crim13-sniff (left) and SK152-10 actions (right).

Table 2: Ablation study on the importance of node sharing and iterative graph unfolding as two
optimization strategies in dPads. All results are reported as the average of runs on five random seeds.
Costs of time are set in minutes. OOM represents an out-of-memory error.

Crim13-sniff Fly-vs-fly Bball-ballhandler SK152-10 actions
Variants of dPads F1 Acc. Time F1 Acc. Time F1 Acc. Time F1 Acc. Time
dPads w/o Node Sharing .453 .800 334.93 - - > 1440 - - > 1440 .321 .322 252.81
dPads w/o Graph Unfolding .449 .818 280.67 - - OOM .848 .832 348.09 .348 .346 273.95
dPads in full .458 .812 147.87 .887 .853 348.25 .945 .939 174.68 .337 .337 162.70

4.4 Ablation Studies

We introduce two more baselines to study the importance of node sharing and iterative graph unfolding.
The first baseline does not use node sharing to reduce the size of a program derivation graph but
still performs iterative graph unfolding. The second baseline directly expands a program derivation
graph to the maximum depth but still applies node sharing. We report the comparison results over
5 random runs in Table 2. Without the two optimizations, limited by the size of GPU memory,
dPads may either time-out or encounter out-of-memory error when searching programs that need
deep structures to ensure high accuracy. This is because the size of a program derivation graph
grows exponentially large with the height of program abstract syntax trees and the number of DSL
production rules. Moreover, while being more complete, training without these two optimizations
does not necessarily produce better results even when there is not OOM or timeout. For example, on
Basketball, dPads achieves .945 F1 score. dPads without iterative graph unfolding only obtains .848
F1 score. We suspect this is because the program derivation graph without top-N preservation and
iterative unfolding is more difficult to train as it contains significantly more parameters.

We further investigate the effect of the top-N preservation strategy in program architecture synthesis
(Sec. 3.2) and its impact on searching optimal programs (Sec. 3.3). We set N to 1, 2, 3 respectively
and study how dPads responds to these changes. Table 3 summarizes the average results of F1 scores,
accuracy rates, time costs, and the standard deviations of these results. When N = 1, dPads extracts
final programs greedily from optimized program derivation graphs without conducting further search.
There is a significant decrease in time consumption compared with N = 2. However, dPads in
this condition achieves less F1 scores and the results have higher variances, which suggests that
architecture weights learned using only differentiable synthesis overfit to sub-optimal programs.
dPads gets similar F1 scores when setting N = 3 compared to N = 2 but consumes more time. It
even times-out on the Basketball dataset while searching an optimal program from the converged
program derivation graph, since N = 3 incurs a much larger search space. This result confirms that
scaling discrete program search to large architecture search spaces is challenging. dPads addresses this
fundamental limitation by leveraging differentiable search of program architectures to significantly
prune away unlikely search directions. Therefore, it suffices to set N = 2 in our experiments to
balance search optimality and efficiency. Additional ablation study results are given in Appendix C.4.
The limitations of dPads are discussed in Appendix D.1.

5 Related Work

Program Synthesis. Tasks in program synthesis aim to search for programs in a DSL to satisfy a
specification over program inputs and outputs. There is also a growing literature on applying deep
learning methods to guide the search over program architectures [6, 26–34]. There exist efforts
that extend this line of research to program synthesis from noisy data [1, 2, 35–37, 3, 4]. These
approaches either require a detailed hand-written program template or simply enumerate the discrete

9

Table 3: Ablation study on the value of N for the top-N preservation strategy used in dPads. All
results are reported as the average of runs on five random seeds. Costs of time are set to minutes.

N dPads
F1 Acc. Time Std. F1 Std. Acc.

Crim13-sniff
1 .272 .627 50.85 .111 .218
2 .458 .812 147.87 .014 .008
3 .450 .811 441.12 .025 .008

Fly-vs-fly
1 .769 .716 95.36 .052 .062
2 .887 .853 348.25 .010 .006
3 .866 .818 620.48 .017 .039

Bball-ballhandler
1 .808 .785 41.14 .042 .045
2 .945 .939 174.68 .004 .004
3 - - > 1440 - -

SK152-10 actions
1 .310 .310 40.34 .020 .024
2 .337 .337 162.70 .017 .017
3 .336 .338 609.14 .011 .010

space of program architectures permitted by a DSL. Additionally, most of these literature methods
build models that are trained using corpora of synthesis problems and solutions, which are not
available in our setting. The most closest work to our technique includes [38, 7] that enumerate the
space of program architectures prioritizing search directions with feedback from machine learning
models. Specifically, Lee et al. [38] uses a probabilistic model (trained from a synthesis problem
corpus) to guide an A∗ search over discrete program syntax trees and NEAR [7] uses neural networks
to approximate missing expressions in a partial program whose F1 score serves as an admissible
heuristic to guide an A∗ search again over discrete program syntax trees. As opposed to these efforts,
our method more efficiently conducts program synthesis in a continuous relaxation of the discrete
space of language grammar rules and only searches the optimal program in a much reduced search
space after differentiable architecture synthesis for addressing its gradient bias problem [14].

Differentiable Architecture Search. Neural architecture search has attracted much interest as a
promising approach to automate deep learning tasks [39–42]. Particularly, our program architecture
synthesis algorithm is inspired by DARTS [10]. This method uses a composition of softmaxes over
all possible candidate operations between a fixed set of neural network nodes to relax the neural
architecture search space. Various methods further improve neural architecture search efficiency
and accuracy [14–17, 43, 44]. Applying this line of algorithms to program synthesis is challenging
because the space of program architectures is much richer. Different operations take different number
and types of inputs/outputs and may only be available at different points of a program. There is
also no fixed bound on the number of program expressions. By relaxing the discrete search space
of language grammar rules with node sharing and iterative unfolding of program derivation graphs,
our method addresses the aforementioned challenges. To the best of our knowledge, this is the first
approach that applies differentiable architecture search to program synthesis.

6 Conclusions

This paper presents a novel differentiable approach to program synthesis. With gradient descent,
our method learns the probability distribution of program architectures induced by the context-free
grammar of a DSL in a continuous relaxation of the discrete space of language grammar rules. This
allows the synthesis algorithm to efficiently prune away unlikely program derivations to discover
optimal program architectures. We have instantiated differentiable program architecture synthesis
with effective optimization strategies including node sharing and iterative graph unfolding, scaling
it to real-world sequence classification tasks. Experiment results demonstrate that our algorithm
substantially outperforms state-of-the-art program learning approaches.

Programmatic models in high-level DSLs are a powerful abstraction for summarizing discovered
knowledge from data in a human-interpretable way. Programmatic models incorporate inductive bias
through structured symbolic primitives in a DSL and open opportunities for programmers to influence
the semantic meaning of learned programs. However, the programming biases in a DSL may also
leave opportunities to attack on the security and fairness of a learned model. One direction for future
work is to apply formal program reasoning to enhance the trustworthiness of programmatic models.

10

Acknowledgments and Disclosure of Funding

We thank the anonymous reviewers for their comments and suggestions. This work was supported by
NSF Award #CCF-2124155 and the DARPA Symbiotic Design for Cyber Physical Systems program.

References
[1] Abhinav Verma, Vijayaraghavan Murali, Rishabh Singh, Pushmeet Kohli, and Swarat Chaudhuri. Pro-

grammatically interpretable reinforcement learning. In International Conference on Machine Learning,
pages 5045–5054. PMLR, 2018.

[2] Abhinav Verma, Hoang Minh Le, Yisong Yue, and Swarat Chaudhuri. Imitation-projected programmatic
reinforcement learning. In Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-
Buc, Emily B. Fox, and Roman Garnett, editors, Advances in Neural Information Processing Systems 32:
Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019,
Vancouver, BC, Canada, pages 15726–15737, 2019.

[3] Alexander L. Gaunt, Marc Brockschmidt, Nate Kushman, and Daniel Tarlow. Differentiable programs
with neural libraries. In Doina Precup and Yee Whye Teh, editors, Proceedings of the 34th International
Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017, volume 70 of
Proceedings of Machine Learning Research, pages 1213–1222. PMLR, 2017.

[4] Alexander L. Gaunt, Marc Brockschmidt, Rishabh Singh, Nate Kushman, Pushmeet Kohli, Jonathan
Taylor, and Daniel Tarlow. Terpret: A probabilistic programming language for program induction. CoRR,
abs/1608.04428, 2016.

[5] Lazar Valkov, Dipak Chaudhari, Akash Srivastava, Charles Sutton, and Swarat Chaudhuri. HOUDINI:
lifelong learning as program synthesis. In Advances in Neural Information Processing Systems 31: Annual
Conference on Neural Information Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal,
Canada, pages 8701–8712, 2018.

[6] Kevin Ellis, Maxwell I. Nye, Yewen Pu, Felix Sosa, Josh Tenenbaum, and Armando Solar-Lezama.
Write, execute, assess: Program synthesis with a REPL. In Hanna M. Wallach, Hugo Larochelle, Alina
Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett, editors, Advances in Neural
Information Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019,
NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pages 9165–9174, 2019.

[7] Ameesh Shah, Eric Zhan, Jennifer J. Sun, Abhinav Verma, Yisong Yue, and Swarat Chaudhuri. Learning
differentiable programs with admissible neural heuristics. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia
Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin, editors, Advances in Neural Information Processing
Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December
6-12, 2020, virtual, 2020.

[8] Judea Pearl. Heuristics: Intelligent Search Strategies for Computer Problem Solving. Addison-Wesley
Longman Publishing Co., Inc., USA, 1984. ISBN 0201055945.

[9] Jing Xiang and Seyoung Kim. A* lasso for learning a sparse bayesian network structure for continuous
variables. In Advances in Neural Information Processing Systems 26: 27th Annual Conference on Neural
Information Processing Systems 2013. Proceedings of a meeting held December 5-8, 2013, Lake Tahoe,
Nevada, United States, pages 2418–2426, 2013.

[10] Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS: differentiable architecture search. In 7th
International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net, 2019.

[11] Thomas G. Dietterich. Machine learning for sequential data: A review. In Terry Caelli, Adnan Amin,
Robert P. W. Duin, Mohamed S. Kamel, and Dick de Ridder, editors, Structural, Syntactic, and Statistical
Pattern Recognition, Joint IAPR International Workshops SSPR 2002 and SPR 2002, Windsor, Ontario,
Canada, August 6-9, 2002, Proceedings, volume 2396 of Lecture Notes in Computer Science, pages 15–30.
Springer, 2002. doi: 10.1007/3-540-70659-3_2.

[12] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to automata theory, languages, and
computation, 3rd Edition. Pearson international edition. Addison-Wesley, 2007. ISBN 978-0-321-47617-3.

[13] Glynn Winskel. The formal semantics of programming languages - an introduction. Foundation of
computing series. MIT Press, 1993. ISBN 978-0-262-23169-5.

11

[14] Xin Chen, Lingxi Xie, Jun Wu, and Qi Tian. Progressive differentiable architecture search: Bridging the
depth gap between search and evaluation. In Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), October 2019.

[15] Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen Heng, Zechun Liu, Yichen Wei, and Jian Sun. Single path
one-shot neural architecture search with uniform sampling. In Andrea Vedaldi, Horst Bischof, Thomas
Brox, and Jan-Michael Frahm, editors, Computer Vision - ECCV 2020 - 16th European Conference,
Glasgow, UK, August 23-28, 2020, Proceedings, Part XVI, volume 12361 of Lecture Notes in Computer
Science, pages 544–560. Springer, 2020. doi: 10.1007/978-3-030-58517-4_32.

[16] Yiyang Zhao, Linnan Wang, Yuandong Tian, Rodrigo Fonseca, and Tian Guo. Few-shot neural architecture
search. In Marina Meila and Tong Zhang, editors, Proceedings of the 38th International Conference on
Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event, volume 139 of Proceedings of Machine
Learning Research, pages 12707–12718. PMLR, 2021.

[17] Ruochen Wang, Minhao Cheng, Xiangning Chen, Xiaocheng Tang, and Cho-Jui Hsieh. Rethinking
architecture selection in differentiable NAS. In 9th International Conference on Learning Representations,
ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021.

[18] Larry R. Harris. The heuristic search under conditions of error. Artif. Intell., 5(3):217–234, 1974. doi:
10.1016/0004-3702(74)90014-9.

[19] Guofeng Cui and He Zhu. dPads Source Code. https://github.com/
RU-Automated-Reasoning-Group/dPads, 2021. [Online; accessed 26-Oct-2021].

[20] Xavier P Burgos-Artizzu, Piotr Dollár, Dayu Lin, David J Anderson, and Pietro Perona. Social behavior
recognition in continuous video. In 2012 IEEE Conference on Computer Vision and Pattern Recognition,
pages 1322–1329. IEEE, 2012.

[21] Eyrun Eyjolfsdottir, Steve Branson, Xavier P.Burgos-Artizzu, Eric D. Hoopfer, Jonathan Schor, David J.
Anderson, and Pietro Perona. Fly v. fly dataset, 2021. URL https://data.caltech.edu/records/
1893.

[22] Yisong Yue, Patrick Lucey, Peter Carr, Alina Bialkowski, and Iain Matthews. Learning fine-grained spatial
models for dynamic sports play prediction. In 2014 IEEE international conference on data mining, pages
670–679. IEEE, 2014.

[23] Pranay Gupta, Anirudh Thatipelli, Aditya Aggarwal, Shubh Maheshwari, Neel Trivedi, Sourav Das, and
Ravi Kiran Sarvadevabhatla. Quo vadis, skeleton action recognition ?, 2020.

[24] Joao Carreira, Eric Noland, Chloe Hillier, and Andrew Zisserman. A short note on the kinetics-700 human
action dataset. arXiv preprint arXiv:1907.06987, 2019.

[25] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[26] Maxwell I. Nye, Luke B. Hewitt, Joshua B. Tenenbaum, and Armando Solar-Lezama. Learning to infer
program sketches. In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the 36th
International Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California,
USA, volume 97 of Proceedings of Machine Learning Research, pages 4861–4870. PMLR, 2019.

[27] Matej Balog, Alexander L. Gaunt, Marc Brockschmidt, Sebastian Nowozin, and Daniel Tarlow. Deepcoder:
Learning to write programs. In 5th International Conference on Learning Representations, ICLR 2017,
Toulon, France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017.

[28] Jacob Devlin, Jonathan Uesato, Surya Bhupatiraju, Rishabh Singh, Abdel-rahman Mohamed, and Pushmeet
Kohli. Robustfill: Neural program learning under noisy i/o. In International conference on machine
learning, pages 990–998. PMLR, 2017.

[29] Emilio Parisotto, Abdel-rahman Mohamed, Rishabh Singh, Lihong Li, Dengyong Zhou, and Pushmeet
Kohli. Neuro-symbolic program synthesis. In 5th International Conference on Learning Representations,
ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017.

[30] Vijayaraghavan Murali, Letao Qi, Swarat Chaudhuri, and Chris Jermaine. Neural sketch learning for
conditional program generation. In 6th International Conference on Learning Representations, ICLR 2018,
Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings. OpenReview.net, 2018.

12

https://github.com/RU-Automated-Reasoning-Group/dPads
https://github.com/RU-Automated-Reasoning-Group/dPads
https://data.caltech.edu/records/1893
https://data.caltech.edu/records/1893

[31] Rudy Bunel, Matthew J. Hausknecht, Jacob Devlin, Rishabh Singh, and Pushmeet Kohli. Leveraging
grammar and reinforcement learning for neural program synthesis. In 6th International Conference on
Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track
Proceedings. OpenReview.net, 2018.

[32] Amit Zohar and Lior Wolf. Automatic program synthesis of long programs with a learned garbage collector.
In Samy Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman
Garnett, editors, Advances in Neural Information Processing Systems 31: Annual Conference on Neural
Information Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada, pages
2098–2107, 2018.

[33] Xinyun Chen, Chang Liu, and Dawn Song. Execution-guided neural program synthesis. In 7th Inter-
national Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net, 2019.

[34] Yaroslav Ganin, Tejas Kulkarni, Igor Babuschkin, S. M. Ali Eslami, and Oriol Vinyals. Synthesizing
programs for images using reinforced adversarial learning. In Jennifer G. Dy and Andreas Krause, editors,
Proceedings of the 35th International Conference on Machine Learning, ICML 2018, Stockholmsmässan,
Stockholm, Sweden, July 10-15, 2018, volume 80 of Proceedings of Machine Learning Research, pages
1652–1661. PMLR, 2018.

[35] Kevin Ellis, Daniel Ritchie, Armando Solar-Lezama, and Josh Tenenbaum. Learning to infer graphics
programs from hand-drawn images. In Samy Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen
Grauman, Nicolò Cesa-Bianchi, and Roman Garnett, editors, Advances in Neural Information Processing
Systems 31: Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018, December
3-8, 2018, Montréal, Canada, pages 6062–6071, 2018.

[36] Kevin Ellis, Armando Solar-Lezama, and Joshua B. Tenenbaum. Unsupervised learning by program
synthesis. In Corinna Cortes, Neil D. Lawrence, Daniel D. Lee, Masashi Sugiyama, and Roman Garnett,
editors, Advances in Neural Information Processing Systems 28: Annual Conference on Neural Information
Processing Systems 2015, December 7-12, 2015, Montreal, Quebec, Canada, pages 973–981, 2015.

[37] Brenden Lake, Ruslan Salakhutdinov, and Joshua Tenenbaum. Human-level concept learning through
probabilistic program induction. Science, 350:1332–1338, 12 2015. doi: 10.1126/science.aab3050.

[38] Woosuk Lee, Kihong Heo, Rajeev Alur, and Mayur Naik. Accelerating search-based program synthesis
using learned probabilistic models. In Jeffrey S. Foster and Dan Grossman, editors, Proceedings of the
39th ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2018,
Philadelphia, PA, USA, June 18-22, 2018, pages 436–449. ACM, 2018. doi: 10.1145/3192366.3192410.

[39] Barret Zoph and Quoc V. Le. Neural architecture search with reinforcement learning. In 5th International
Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference
Track Proceedings. OpenReview.net, 2017.

[40] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning transferable architectures
for scalable image recognition. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 8697–8710, 2018.

[41] Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan Yuille,
Jonathan Huang, and Kevin Murphy. Progressive neural architecture search. In Proceedings of the
European conference on computer vision (ECCV), pages 19–34, 2018.

[42] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V. Le. Regularized evolution for image classifier
architecture search. In The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019, The Thirty-
First Innovative Applications of Artificial Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium
on Educational Advances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27 -
February 1, 2019, pages 4780–4789. AAAI Press, 2019. doi: 10.1609/aaai.v33i01.33014780.

[43] Yufan Jiang, Chi Hu, Tong Xiao, Chunliang Zhang, and Jingbo Zhu. Improved differentiable architecture
search for language modeling and named entity recognition. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), pages 3576–3581, 2019.

[44] Chenxi Liu, Liang-Chieh Chen, Florian Schroff, Hartwig Adam, Wei Hua, Alan L. Yuille, and Li Fei-Fei.
Auto-deeplab: Hierarchical neural architecture search for semantic image segmentation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2019.

13

