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ABSTRACT

Calibration is crucial in deep learning applications, especially in fields like health-
care and autonomous driving, where accurate confidence estimates are vital for
decision-making. However, deep neural networks often suffer from miscalibra-
tion, with reliability diagrams and Expected Calibration Error (ECE) being the
only standard perspective for evaluating calibration performance. In this paper,
we introduce the concept of consistency as an alternative perspective on model
calibration, inspired by uncertainty estimation literature in large language models
(LLMs). We highlight its advantages over the traditional reliability-based view.
Building on this concept, we propose a post-hoc calibration method called Con-
sistency Calibration (CC), which adjusts confidence based on the model’s consis-
tency across perturbed inputs. CC is particularly effective in locally uncertainty
estimation, as it requires no additional data samples or label information, instead
generating input perturbations directly from the source data. Moreover, we show
that performing perturbations at the logit level significantly improves computa-
tional efficiency. We validate the effectiveness of CC through extensive compar-
isons with various post-hoc and training-time calibration methods, demonstrating
state-of-the-art performance on standard datasets such as CIFAR-10, CIFAR-100,
and ImageNet, as well as on long-tailed datasets like ImageNet-LT. Code is avail-
able at https://anonymous.4open.science/r/Consistency-Calibration-E248.

1 INTRODUCTION

Calibration is essential in many deep learning applications where accurate confidence estimates
are as important as the predictions themselves. In fields like healthcare Chen et al. (2018) and
autonomous driving Feng et al. (2019), decisions often rely not only on the model’s output but also
on how confident the model is in its predictions. A well-calibrated model should reflect the ground
truth uncertainty. In healthcare, for instance, a model that accurately reflects uncertainty can help
doctors trust the system’s confidence when diagnosing critical conditions.

However, current deep learning models are often found to be miscalibrated (Guo et al., 2017). To
evaluate calibration performance, Naeini et al. (2015) introduced ECE, which has become the gold
standard, based on the reliability diagram (DeGroot & Fienberg, 1983). Although several improved
metrics have since been proposed, such as AdaptiveECE (AdaECE) (Nixon et al., 2019) and Class-
wiseECE (CECE) (Kull et al., 2019), they all adopt the same fundamental perspective on calibration:
if a model assigns 80% confidence to its predictions, then, ideally, 80% of those predictions should
be correct. We refer to this classical approach as the reliability view, which seeks to align predicted
confidence levels with actual model accuracy.

The concept of consistency has gained increasing importance in black-box uncertainty estimation,
particularly in recent developments in large language models (LLMs) (Wang et al., 2022; Tam et al.,
2022; Xiong et al., 2023b; Geng et al., 2023). If an LLM is confident in its answer, it should provide
consistent responses to similar questions. For instance, if an LLM confidently answers the question
“What is the answer to 5 + 3?” with “8”, it should also consistently provide “8” for the similar
question “What is the result of five plus three?” In this paper, we extend this concept of consistency
to model calibration, proposing a new perspective of calibration called consistency.
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Specifically, in a classification task, if a model is confident in its prediction, it should consistently
provide the same output across multiple perturbed versions of the input. Consistency measures how
often a model’s prediction remains unchanged when the input is perturbed within a small neigh-
borhood. A high consistency score implies that the model’s predictions are stable and confident.
In this view, a perfectly calibrated model should have its predicted confidence levels align with the
consistency observed across these perturbed inputs.

In the following sections, we discuss the differences between calibration from the perspectives of
reliability and consistency in Sections 2.1 and 2.2. Section 2.3 highlights the advantages of the con-
sistency approach over the reliability view through a toy example. In Section 2.4, CC is introduced,
which involves perturbing the logits. We provide empirical evidence to explain its effectiveness in
Section 2.6. Finally, in Section 2.5, we demonstrate that consistency can serve as a reliable method
for local uncertainty estimation.

Our contributions can be summarized as follows:

• We introduce a novel perspective on calibration based on consistency and highlight its
advantages over traditional reliability view represented by ECE.

• We propose an easy-to-implement and computationally efficient post-hoc calibration
method called Consistency Calibration, which replaces the original confidence score with
a consistency measure calculated from perturbed logits using data neighbors.

• CC serves as a reliable and effective method for local uncertainty estimation, as it does not
require additional data samples or label information. Instead, it generates data neighbor-
hoods based on the source data.

• We conduct comparisons with multiple post-hoc and training-time calibration methods,
demonstrating state-of-the-art performance on standard datasets, including CIFAR-10,
CIFAR-100, and ImageNet, as well as in long-tailed scenarios like ImageNet-LT.

2 METHODOLOGY

In a classification task, let X represent the input space and Y the label space. The neural network
f(·) and projection head g(·) maps x → X to a vector of logits z = g(f(x)) → RK , where each zk is
the logit for class k. These logits are then transformed into a probability distribution p̂ = softmax(z)
over K classes using the softmax function:

p̂k =
ezk

∑K
i=1 e

zi
, k = 1, . . . ,K, (1)

where k = argmaxi p̂i denotes the predicted label index. The ground-truth label y → Y represents
the true class, and ŷ → Y is the predicted label. The confidence score p̂k represents the predicted
probability assigned to the predicted label k.

2.1 CALIBRATION IN THE VIEW OF RELIABILITY

Calibration in the view of reliability has been widely accepted since the introduction of the reliability
diagram by DeGroot & Fienberg (1983). In this view, a classifier is considered perfectly calibrated
if its predicted confidence p̂ accurately represents the true probability of correctness. Formally, this
is expressed as:

P(ŷ = y | p̂ = p) = p for all p → [0, 1]. (2)

In other words, if a model assigns a confidence score of 80%, the prediction ŷ should be correct
80% of the time. To move beyond visual inspection of reliability diagram, Naeini et al. (2015)
developed a quantitative metric from the reliability diagram called the Expected Calibration Error

(ECE). ECE provides a more precise measurement of miscalibration by calculating the average
discrepancy between a model’s predicted confidence and the actual accuracy of predictions at the
same confidence level. ECE is defined as:

ECE = Ep̂ [|P(ŷ = y | p̂)↑ p̂|] . (3)
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In practice, due to finite sample sizes, an approximation is used by binning predictions into M
equally spaced confidence intervals, {Bm}Mm=1. Each bin Bm contains predictions with confidence
scores p̂ →

[
m
M , m+1

M

)
. For each bin, the average confidence Cm and accuracy Am are computed as:

Cm =
1

|Bm|
∑

i→Bm

p̂i, Am =
1

|Bm|
∑

i→Bm

(ŷi = yi), (4)

where is the indicator function, and |Bm| is the number of samples in bin Bm. The approximate
ECE is then computed as the weighted average of the absolute difference between bin accuracy and
bin confidence:

ECE =
M∑

m=1

|Bm|
N

|Am ↑ Cm| , (5)

where N is the total number of samples. Several variants of ECE exist. For instance, AdaECE uses
adaptive binning to ensure equal sample sizes in each bin and avoid the issue of uneven confidence
distribution in ECE, while CECE computes ECE on a per-class basis, enabling better detection of
class-specific calibration errors.

2.2 CALIBRATION IN THE VIEW OF CONSISTENCY

We offer an alternative perspective on calibration by examining it through the concept of consistency.
In a real-world scenario, an individual confident in their answer tends to maintain that answer, even
when faced with external doubts or minor alterations to the question. On the other hand, someone
who is uncertain might change their response when presented with slightly misleading information
or variations in the question. We define this adherence to the original answer as consistency.

Recent advances in LLMs, particularly black-box models utilize factual consistency to enhance
performance (Wang et al., 2022; Tam et al., 2022; Xiong et al., 2023b; Geng et al., 2023). These
studies frame the consistency of a model’s responses as an indicator of its uncertainty. In the context
of classification tasks, calibration can also be described in terms of consistency. Specifically, for
classification models, we can formalize this relationship as follows:
Proposition 1. If a model is confident in its prediction, it should consistently output the same pre-

diction when the input is slightly perturbed. The consistency c of a sample x is defined as

ck(x) =
1

T

T∑

t=1

(ŷ(x̃t) = k), where d(x̃t, x) < ω↑, for k = 1, . . . ,K (6)

where T is the number of perturbed neighbors, ŷ(x̃t) is the predicted label for the perturbed input

x̃t, and the distance between the original sample x and its perturbed version x̃t is smaller than a

constant ω↑, according to some distance metric d. A model is said to be perfectly calibrated if, for all

samples x, given a suitable set of perturbed neighbors {x̃t | t = 1, . . . , T}, the predicted confidence

score p̂(x) satisfies:

p̂k(x) = ck(x), for k = 1, . . . ,K (7)

However, identifying a suitable perturbed neighborhood is non-trivial—it is challenging to deter-
mine an appropriate constant ω↑ and distance metric d. Fortunately, in image classification tasks, a
perturbed neighbor is often considered a data-augmented version of the original image. Thus, we
begin our exploration by using image data augmentation.

To evaluate the effectiveness of consistency-based confidence, we design an experimental setting
using a ResNet-50 model trained on CIFAR-10 with data augmentation (RandomCrop and Ran-
domHorizontalFlip). We generate perturbed neighbors by applying various levels of data augmen-
tation to the entire CIFAR-10 test set, creating 100 perturbed neighbors for each test sample. The
calibration performance of consistency is assessed on the test set in the following settings:

• Baseline: Confidence score is extracted on the original test set, serving as the baseline.
• Weak Augmentation (Train Augmentation): The confidence score is replaced with consis-

tency derived from perturbed neighbors generated using train-time augmentation (Random-
Crop and RandomHorizontalFlip), denoted by the yellow star.
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• Moderate Augmentation (Train Augmentation + ColorJitter): The confidence score is re-
placed with consistency measured from perturbed neighbors generated using train-time
augmentation and varying strengths of ColorJitter, as indicated by the x-axis values.

• Stronger Augmentation (Train Augmentation + ColorJitter + Blur): The confidence score
is replaced with consistency measured from perturbed neighbors generated using train-time
augmentation, ColorJitter, and Blur, represented by the red triangle.

The evaluation results are shown in Figure 1a. Consistency using neighbors generated with weak
augmentation significantly reduces calibration error compared to the baseline. As we increase the
perturbation strength with moderate augmentation, as shown by the x-axis values, the calibration
error continues to decrease with minimal impact on accuracy, outperforming the commonly used
calibration method, Temperature Scaling, up to a certain perturbation threshold.

However, when moderate augmentation with strength exceeds 0.1, accuracy begins to decline, and
ECE increases sharply. With neighbors generated from Stronger Augmentation, both calibration and
prediction accuracy deteriorate. This likely occurs because stronger perturbations distort the input
to the extent that the model can no longer recognize the data, leading to degraded performance. This
suggests that consistency has the potential to provide accurate uncertainty estimates when a suitable
perturbed neighborhood is identified.

(a) Perturbation applied to images with
different augmentations. Consistency
calculated using weak or moderate
augmentation neighbors significantly
reduces calibration error.

(b) Toy dataset generated from
two two-dimensional Gaussian
distributions. Samples near the
diagonal are uncertain to belong
to class 0 or class 1.

: Point of Interest
: Confidence Neighbours
: Data Neighbours

(c) Heatmap of ground truth un-
certainty calculated from the PDF,
as given by Eq. 8. Circle and
box indicate different neighbour-
hood selection criteria.

Figure 1: Illustrations of Consistency, Toy Data Distributions, and Ground Truth Uncertainty.

2.3 CONSISTENCY AS A REPRESENTATION OF GROUND TRUTH UNCERTAINTY

On one hand, the reliability approach estimates calibration error by comparing the prediction confi-
dence with the average correctness of samples that have similar confidence levels. In this view, the
average correctness of such sample neighborhood is treated as an approximation of the ground truth
uncertainty. On the other hand, the consistency approach directly uses consistency as a measure
of ground truth uncertainty. Thus, we are interested in determining which of these two approaches
more accurately approximates this uncertainty.

To explore this, we constructed a toy dataset consisting of two two-dimensional Gaussian distribu-
tions representing two groups of data: N (µ0,!),N (µ1,!) where µ0 and µ1 are the mean vectors,
and ! is the shared covariance matrix for both groups, labeled 0 and 1, respectively. We generated
1,000,000 data points from each group to form the training dataset, which was used to train a CNN
model. An additional 50,000 samples from each group were used to create the test dataset. The
input space is X = R2, and the label space is Y = {0, 1}, as illustrated in Figure 1b.

The ground truth uncertainty, ε(x), is calculated from the probability density function (PDF) of each
distribution:

ε(x) =
p0(x)

p0(x) + p1(x)
(8)

where p0(·) and p1(·) are the PDFs of the two distributions. The ground truth uncertainty is illus-
trated in Figure 1c. For each label, the ground truth confidence can be expressed as (ε(x), 1↑ε(x)).
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In Figure 1c, for a point of interest (marked by a star), the reliability-based approach estimates
ground truth uncertainty by calculating the average correctness A = 1

|B|
∑

i→B (ŷi = yi), over a
“confidence neighborhood” B (i.e., samples with similar confidence, enclosed by the white boxes),
similar to the definition Eq. 4 in ECE. In contrast, the consistency approach estimates uncertainty
by considering “data neighborhood,” as illustrated by the orange circle. While the reliability ap-
proach relies on the availability of multiple data samples within the confidence neighborhood, the
consistency approach generates data neighborhoods by perturbing the data.

The key differences between the reliability and consistency views lie in their neighborhood selection
criteria S and aggregation methods. The reliability view selects a neighborhood B based on confi-
dence similarity and aggregates the correctness of the samples, while the consistency view selects
a neighborhood based on data perturbations and computes consistency, as described in Eq. 9. To
compare the two approaches, we evaluate them under three neighborhood selection criteria:

• Figure 2a: Reliability view (ECE): B = {x̃ | |p̂(x)↑ p̂(x̃)| < ω}

• Figure 2b: Reliability view (AdaECE): B = {x̃ | Top K closest confidence neighbors}

• Figure 2c: Consistency view (perturbing data): B = {x̃ | x̃ = x+ ω}

In Figures 2a and 2b, we use the reliability approach to approximate ground truth uncertainty based
on two confidence-neighbor selection criteria. In Figure 2a, we replicate the standard ECE (Guo
et al., 2017) approach by selecting confidence neighbors solely based on confidence differences.
The x-axis represents the allowed confidence difference between neighbors and the point of interest,
while the y-axis shows the average error between estimated and ground truth uncertainty across the
test set. In Figure 2b, we replicate the AdaECE (Nixon et al., 2019) approach by selecting the top-
K nearest confidence neighbors to estimate uncertainty, with the lowest error (0.57%) achieved by
selecting the top 9 nearest neighbors.

In Figure 2c, we apply Gaussian noise ω to perturb the data samples and compute consistency across
100 generated neighbors, with the x-axis representing the noise strength. We compare the uncer-
tainty estimates from the consistency approach with those from the reliability approach. The dashed
lines indicate the minimal error achieved by each method. Within a certain range of perturbation
strengths, the consistency approach outperforms, yielding a ground truth uncertainty estimation with
an overall error as low as 0.3%.

(a) Reliability view: Estimat-
ing ground truth uncertainty using
neighbors with confidence differ-
ences indicated on the x-axis.

(b) Reliability view: Estimating
ground truth uncertainty using the
top-k nearest confidence neighbors
as indicated on the x-axis.

(c) Consistency view: Estimating
ground truth uncertainty using data
neighbors perturbed within ω as in-
dicated on the x-axis.

Figure 2: Comparison of Consistency vs. Reliability in Estimating Ground Truth Uncertainty

It is important to note that the reliability approach using confidence neighborhoods is essentially
equivalent to the ECE measurement, where the allowed confidence gap functions similarly to the
hyperparameter “number of bins” in ECE. As shown in Figure 2, the estimation error is sensitive to
the allowed confidence gap—meaning that the choice of “number of bins” can significantly impact
the ability of ECE to estimate the ground truth uncertainty. Similarly, this sensitivity is also observed
in the consistency method, where the strength of perturbation noise affects the uncertainty approxi-
mation. Despite this sensitivity, the consistency approach achieves a lower overall estimation error,
suggesting its potential as a robust alternative calibration metric.
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2.4 MORE EFFICIENT CONSISTENCY CALIBRATION

Due to numerous types of data augmentations, determining the optimal perturbation strength using a
continuous variable is challenging. To address this, we extend the perturbation process to the feature
and logit levels by introducing noise with varying intensities. This approach yields effects similar to
those observed with image-level perturbations, as demonstrated in Figure 3a and Figure 3b.

Interestingly, feature- and logit-level perturbations maintain significant calibration performance
while offer huge computational advantages. With image-level perturbations, inference must be per-
formed on the entire model T times. In contrast, feature-level require evaluating only the classifica-
tion head, while logit-level only compute the argmax operation T times. This results in substantial
reductions in computational costs. Experiments on other layers can be found in Appendix B.
Proposition 2. We propose a unified definition of our calibration methods, termed Consistency

Calibration (CC), which identifies perturbed neighbors at different levels. The calibrated prediction

confidence score p̂↓ is formally defined as:

p̂↓k =
1

T

T∑

t=1

(
argmax q

(
h̃(x)

t
)

= k

)
, for k = 1, . . . ,K, (9)

where h(x) is the representation of data x, h̃(x)
t

is the perturbed representation, and q is the

pipeline to extract the logits z.

Specifically, for data-level perturbations: h(·) = I(·), h̃(x) is the augmented data, q = g(f(·)). For

feature-level perturbations: h(·) = f(·), h̃(x)
t
= h(x) + ωt, q = g(·). For logit-level perturbations:

h(·) = g(f(·)), h̃(x)
t
= h(x) + ωt, q = I(·). Here, I(·) is the identity function, ωt represents

the noise added to features or logits, with its strength determined by minimizing the ECE on a
validation set. Given the strong calibration performance and computational efficiency of logit-level
perturbations, we refer to logit-level consistency calibration as CC when no specification is provided.

(a) Performance of consistency calibra-
tion using data neighbors with feature
perturbations at varying noise levels.

(b) Performance of consistency calibra-
tion using data neighbors with logit per-
turbations at varying noise levels.

(c) Performance of local
uncertainty estimation us-
ing consistency calibration.

Figure 3: Evaluation of Consistency Calibration under Different Perturbation Settings.

2.5 CONSISTENCY AS A LOCAL UNCERTAINTY ESTIMATION

Consistency-based methods do not rely on label information or additional data, as they generate
their own neighborhood by perturbing the input data. This property allows consistency to serve
as a criterion for instance-level uncertainty measurement. As illustrated in Figure 3c, we examine a
miscalibrated (incorrect prediction with high confidence) CIFAR-10 test sample, where a ResNet-50
model trained with Cross-Entropy (CE) shows overconfidence, assigning a confidence score of 0.997
despite being incorrect. Using optimal temperature, determined via a validation set, the confidence
after temperature scaling decreases slightly, but the model remains overconfident at 0.903.

For comparison, we apply CC by perturbing the logits (“CC (logits)”), applying train time data
augmentation (“CC (Train Aug)”), and using a moderate augmentation method (“CC (Train Aug
+ Jitter)”). The confidence significantly decreases with these approaches. However, too strong
augmentations may negatively impact model accuracy, which requires the need for a validation set
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to tune the augmentation strength, so we recommend using training-time augmentation to avoid the
use of validation set while keeping the prediction accuracy.

Unlike many post-hoc calibration methods that require a large validation set to fine-tune hyperpa-
rameters, consistency-based confidence with train-time augmentation can directly provide calibrated
confidence scores while maintaining recognizable by models. This approach is particularly valuable
in data-limited scenarios, allowing consistency to produce an accurate local uncertainty estimation.

2.6 WHY CONSISTENCY CALIBRATION WORKS?

Perturbing images results in straightforward and intuitive image neighborhoods, but the effectiveness
of perturbations at the logit level requires further explanation. To understand why logit perturbations
work, we examined the differences between highly confident correct predictions and overconfident
incorrect ones. These represent well-calibrated and poorly calibrated samples, respectively. During
logit disturbance, the label with second-largest logit most likely to become the prediction label. To
investigate this, we plotted box plots for both the maximum and second-largest logits for correct and
incorrect predictions, as shown in Figure 4a.

For CIFAR-10 test samples, we selected predictions with confidence higher than 99%. We refer to
the maximum logit of correct predictions as “Corr. Max” and that of incorrect predictions as “Incorr.
Max.” Similarly, “Corr. 2nd” represents the second-largest logit of correct predictions, while “Incorr.
2nd” refers to the second-largest logit of incorrect predictions. As shown in Figure 4a, the maximum
logit for correct predictions is significantly higher than for incorrect predictions. Additionally, the
second-largest logit in correct predictions is much lower than that in incorrect predictions. This
indicates that the gap between the maximum and second-largest logits is much larger for correct
predictions than for incorrect ones. Despite large difference, due to softmax saturation, the model
assigns abnormally high confidence (greater than 99%) to both correct and incorrect predictions,
leading to overconfident miscalibration.

Interestingly, we can leverage this difference in the logit gaps between correct and incorrect predic-
tions. Perturbations can easily alter the predictions of overconfident, miscalibrated samples, while
having minimal effect on well-calibrated, correct predictions. This different response to perturba-
tions explains why consistency calibration is effective at the logit level. We observed similar patterns
in experiments with CIFAR-100 and ImageNet, as shown in Figure 4b and Figure 4c.

(a) CIFAR-10 (b) CIFAR-100 (c) ImageNet-1K

Figure 4: Distribution of the max logit and second-largest logit for correct and incorrect predic-
tions with more than 99% confidence, representing well-calibrated and miscalibrated samples on
ResNet-50 across different datasets. The difference between the max logit and second-largest logit
is significantly smaller for miscalibrated samples compared to well-calibrated samples.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

Datasets We conduct experiments on several benchmark datasets, including CIFAR-10, CIFAR-
100 (Krizhevsky et al., 2009), and ImageNet (Deng et al., 2009). To assess calibration performance
in data-imbalance scenarios, we also include ImageNet-LT (Liu et al., 2019), characterized by its
long-tailed class distribution. CIFAR-10 and CIFAR-100 contain 60,000 images of size 32↓32 pix-
els, with 10 and 100 classes, respectively, split into 45,000 training, 5,000 for validation and 10,000
test images. For ImageNet-1K, we split 20% of the original validation set as the new validation set,

7
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with the remainder used as the test set. We use the ω searched on ImageNet-1k validation set to
calibrate ImageNet-LT test set. The testing batch size for all datasets is set to 128.

Models We evaluate our approach across various neural network architectures, including ResNet-
50 and ResNet-110 (He et al., 2016), Wide ResNet (Zagoruyko & Komodakis, 2016), DenseNet-
121 (Huang et al., 2017), and Vision Transformers (ViT-B/16 and ViT-B/32) (Dosovitskiy et al.,
2021). These models represent a diverse range of architectures and complexities, allowing us to
assess the robustness of our method in different settings. For CIFAR-10 and CIFAR-100, we use
pretrained weights from prior work (Mukhoti et al., 2020). All models are trained using stochastic
gradient descent (SGD) with a momentum of 0.9 and weight decay of 5↓ 10↔4 for 350 epochs.The
learning rate is initialized at 0.1 for the first 150 epochs, reduced to 0.01 for the next 100, and
further decreased to 0.001 for the final 100 epochs. For ImageNet, we use pretrained models from
PyTorch (Paszke et al., 2019), following the training recipe available on PyTorch’s model page.

Evaluation Metrics and Other Settings Calibration performance is primarily evaluated using
ECE, with additional metrics including AdaECE, CECE, Negative Log-Likelihood (NLL), and top-
1 accuracy. All experiments are conducted on an NVIDIA 4090 GPU, with results averaged over
five runs to ensure fairness. For all experiments, we set the number of perturbations to T = 1000
and search the perturbation strength ω and noise type by minimizing ECE on the validation set.

Dataset Model Vanilla TS ETS PTS CTS GC CC (ours)

CIFAR-10 ResNet-50 4.34 1.38 1.37 1.36 1.46 1.04 0.78
Wide-ResNet 3.24 0.93 0.93 0.93 0.93 1.33 0.36

CIFAR-100 ResNet-50 17.52 5.71 5.68 5.64 6.05 3.55 1.25
Wide-ResNet 15.34 4.63 4.58 4.52 4.86 2.14 1.61

ImageNet-1K

ResNet-50 3.76 2.09 2.09 2.08 3.14 2.54 1.53
DenseNet-121 6.59 1.64 1.66 1.68 1.94 2.51 1.48

Wide-ResNet-50 5.49 3.03 3.04 3.04 4.13 2.16 1.33
Swin-B 5.02 3.90 3.90 3.93 5.43 1.61 1.58

ViT-B-16 5.61 3.61 3.62 3.64 5.50 1.75 1.66
ViT-B-32 6.40 3.76 3.78 3.84 5.74 1.39 1.72

ImageNet-LT

ResNet-50 3.67 2.00 1.99 2.00 2.21 1.4 1.24
DenseNet-121 6.65 1.65 1.64 1.66 1.59 1.81 1.23

Wide-ResNet-50 5.39 2.97 2.96 2.96 3.52 1.49 1.27
Swin-B 4.66 4.02 4.03 4.08 5.02 1.66 1.44

ViT-B-16 5.57 3.61 3.62 3.64 4.94 1.76 1.61
ViT-B-32 5.15 5.67 5.67 5.68 5.71 1.48 1.74

Table 1: Comparison of Post-Hoc Calibration Methods Using ECE↔ Across Various Datasets
and Models. ECE values are reported with 15 bins. The best-performing method for each dataset-
model combination is in bold, and our method (CC) is highlighted. Results are averaged over 5 runs.

3.2 COMPARISON WITH POST-HOC CALIBRATION METHODS

We compare our proposed CC with widely used post-hoc calibration techniques, including Temper-
ature Scaling (TS) (Guo et al., 2017), Ensemble Temperature Scaling (ETS) (Zhang et al., 2020),
Parameterized Temperature Scaling (PTS) (Tomani et al., 2022), Class-based Temperature Scaling
(CTS) (Frenkel et al., 2021), and Group Calibration (GC) (Yang et al., 2024), as well as uncalibrated
models (Vanilla). Our evaluation covers CIFAR-10, CIFAR-100, ImageNet-1K, and ImageNet-LT,
using various CNNs and transformers.

Calibration on Standard Datasets CC consistently outperforms these methods across CIFAR-
10, CIFAR-100, and ImageNet-1K, significantly reducing calibration error. The most notable im-
provement is seen in CIFAR-100, where CC excels while GC, despite its strong performance on
other datasets, struggles. This highlights CC’s robustness across datasets with varying complexities.
CNNs, which often suffer from overconfidence, are generally well-calibrated with TS-based meth-
ods. However, transformers see limited calibration improvements from TS-based methods, with CC
outperforming them by a large margin. On larger datasets like ImageNet-1K, CC maintains its ad-
vantage. Although GC slightly outperforms CC on ViT-B/32, it is computationally expensive due to
the additional grouping process, whereas CC balances both efficiency and effectiveness.
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Calibration on Long-Tail Datasets On long-tail datasets like ImageNet-LT, TS-based models
struggle to provide effective calibration, especially for transformers. For example, on ViT-B/32,
TS-based methods fail to calibrate effectively, as they apply uniform adjustments across the dataset,
smoothing or sharpening probabilities globally. In contrast, CC and GC perform well on long-
tail datasets, particularly with transformers. GC excels due to its multicalibration (Hébert-Johnson
et al., 2018), offering sample-wise adjustments, though it comes at a high computational cost. By
leveraging local uncertainty estimation through input perturbations, CC better captures uncertainties
in underrepresented tail classes, making it especially useful for handling imbalanced data scenarios.

3.3 CALIBRATION PERFORMANCE ON OTHER METRICS

Figure 5: Calibration performance of ResNet-50 on ImageNet-1K using AdaECE↔, CECE↔,
NLL↔, and Accuracy↗. ECE, AdaECE, and CECE are reported with 15 bins. Colors in the legend
represent different methods. Results are averaged over 5 runs.
We also evaluate CC using additional metrics: AdaECE, CECE, NLL, and accuracy to provide a
comprehensive view of its performance. Results for ResNet-50 on ImageNet are shown here, with
results for other models and datasets available in Appendix C.

AdaECE and CECE CC demonstrates superior performance on both AdaECE and CECE com-
pared to traditional methods. AdaECE accounts for uneven confidence distributions, improving the
reliability of ECE, while CECE gives detailed insights into classwise calibration. CC’s strong results
on both metrics show its effectiveness from different perspectives.

Accuracy Maintained CC preserves the accuracy of the base models, showing no significant
reduction in classification performance. As a post-hoc method, it does not require retraining, main-
taining predictive capabilities, making it practical for real-world applications.

Increase in NLL Interestingly, CC results in higher NLL values compared to other methods, re-
flecting a trade-off between calibration and the sharpness of probability estimates. This suggests
that while CC reduces overconfidence in incorrect predictions, it also moderates overconfidence in
correct predictions, leading to improved calibration without affecting accuracy.

Dataset Model Cross-Entropy Brier Loss MMCE LS-0.05 FLSD-53 FL-3
base ours base ours base ours base ours base ours base ours

CIFAR-10

ResNet-50 4.34 0.78 1.80 1.07 4.56 0.83 2.97 1.24 1.55 0.49 1.48 0.66
ResNet-110 4.41 0.98 2.57 0.48 5.08 1.17 2.09 2.30 1.88 0.67 1.54 0.48

DenseNet-121 4.51 1.07 1.52 0.78 5.10 1.18 1.87 1.39 1.23 0.68 1.31 0.98
Wide-ResNet 3.24 0.36 1.24 0.58 3.29 0.39 4.25 1.15 1.58 0.49 1.68 0.53

CIFAR-100

ResNet-50 17.52 1.25 6.57 1.57 15.32 1.98 7.82 5.08 4.49 1.43 5.16 1.52
ResNet-110 19.05 4.57 7.88 3.24 19.14 4.41 11.04 4.58 8.55 3.47 8.64 3.67

DenseNet-121 20.99 5.40 5.22 1.82 19.10 3.76 12.87 4.99 3.70 1.41 4.14 1.94
Wide-ResNet 15.34 1.61 4.34 1.87 13.17 2.17 4.89 4.21 3.02 1.64 2.14 1.78

Table 2: Comparison of Train-time Calibration Methods Using ECE↔ Across Various Datasets
and Models. ECE values are reported with 15 bins. The best-performing method for each dataset-
model combination is in bold, and our method (CC) is highlighted. Results are averaged over 5 runs.

3.4 COMPARISON WITH TRAINING-TIME CALIBRATION METHODS

We evaluate CC alongside training-time calibration techniques, including Brier Loss (Brier,
1950), Maximum Mean Calibration Error (MMCE) (Kumar et al., 2018), Label Smoothing (LS-
0.05) (Szegedy et al., 2016), and Focal Loss variants (FLSD-53 and FL-3) (Mukhoti et al., 2020), as
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shown in Table 2. Our analysis shows that combining CC with these methods consistently enhances
calibration performance across various models and datasets, further validating CC’s effectiveness
alongside training-time approaches.

Moreover, as seen in Table 1, CC alone, as a post-hoc calibration method, already outperforms
these train-time techniques with minimal computational overhead, while train-time methods require
significantly more resources. Additional results for other settings are available in Appendix D.

3.5 ABLATION STUDY

Aggregation Methods In our ablation study, we compare two aggregation methods for refining
confidence estimates: the mean of softmax probabilities (Mean), defined as:

p̂k =
1

T

T∑

t=1

softmax

(
q

(
h̃(x)

t
))

, for k = 1, . . . ,K, (10)

and consistency-based aggregation (Consis.) as shown in Eq. 9. Both methods leverage predictions
over perturbed logits. The mean of softmax probabilities treats the perturbation process like an en-
semble method, interpreting uncertainty as a distribution. We show the evaluation results on CIFAR-
10 and CIFAR-100 in Table 3. On smaller datasets like CIFAR-10, both methods perform similarly.
However, on larger datasets with more classes, such as CIFAR-100 and ImageNet, consistency-
based aggregation slightly outperforms softmax averaging. This suggests that consistency-based
aggregation captures uncertainty better than the view of ensemble.

Choice of Noise We investigate the impact of different noise types for input perturbations, compar-
ing uniform noise (U) and Gaussian noise (G), as shown in Table 3. Uniform noise performs better
on datasets with fewer classes, such as CIFAR-10 and CIFAR-100. However, on larger datasets
like ImageNet, Gaussian noise yields better results, likely due to variations in the gap between the
maximum and second maximum logits across datasets as shown in Figure 4. The choice of noise is
treated as a hyperparameter, offering flexibility to adapt to different datasets and models.

Number of Perturbations We also assess the impact of the number of perturbations. As shown in
Figure 4, our experiments indicate that CC achieves strong calibration performance with as few as
24 = 16 perturbations. Although increasing the number of perturbations slightly improves results,
the diminishing returns suggest that CC provides robust calibration with a moderate number of
perturbations, ensuring both efficiency and accuracy.

Dataset Model Mean U Mean G Consis. U Consis. G

CIFAR-10 ResNet-50 0.72 1.34 0.78 1.33
Wide-ResNet 0.37 0.80 0.36 0.83

CIFAR-100 ResNet-50 1.52 2.70 1.25 2.49
Wide-ResNet 1.86 2.08 1.61 1.88

ImageNet ResNet-50 2.37 1.41 2.29 1.27
Wide-ResNet-50 2.17 1.7 2.23 1.57

Table 3: Comparison of Aggregation Methods and Noise
Types Using ECE↔ Across Various Datasets and Models. ECE
values are reported using 15 bins. The best-performing method
for each dataset-model combination is highlighted in bold.

Table 4: Effect of Number of
Perturbations on Calibra-
tion Performance (ECE↔)

4 CONCLUSION

Consistency offers an alternative perspective on calibration by focusing on prediction stability under
perturbations as an indicator of confidence. CC has proven highly effective in reducing calibration
errors across various datasets. However, CC has limitations, such as the need for tuning perturbation
strength and noise type, and its current focus on classification tasks, with its application to regres-
sion remaining unexplored. Future work can aim to develop a new, more universal consistency-
based metric to complement existing metrics like ECE. This would provide a more comprehensive
evaluation to calibration, ultimately leading to more reliable deep learning models.
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