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ABSTRACT

Algorithmic fairness is of utmost societal importance, yet state-of-the-art large-
scale machine learning models require training with massive datasets that are fre-
quently biased. In this context, pre-processing methods that focus on modeling
and correcting bias in the data emerge as valuable approaches. In this paper, we
propose FairShap, a novel instance-level data re-weighting method for fair al-
gorithmic decision-making through data valuation by means of Shapley Values.
FairShap is model-agnostic and easily interpretable. It measures the contribution
of each training data point to a predefined fairness metric. We empirically validate
FairShap on several state-of-the-art datasets of different nature, with a variety of
training scenarios and machine learning models and show how it yields fairer mod-
els with similar levels of accuracy than the baselines. We illustrate FairShap’s
interpretability by means of histograms and latent space visualizations and perform
a utility-fairness study. We believe that FairShap represents a promising direc-
tion in interpretable and model-agnostic approaches to algorithmic fairness that
yield competitive accuracy even when only biased datasets are available.

1 INTRODUCTION

Machine learning (ML) models are increasingly used to support human decision-making in a broad
set of use cases, including in high-stakes domains, such as healthcare, education, finance, policing,
or immigration. In these scenarios, algorithmic design, implementation, deployment, evaluation
and auditing should be performed cautiously to minimize the potential negative consequences of
their use, and to develop fair, transparent, accountable, privacy-preserving, reproducible and reli-
able systems (Barocas et al., 2019; Smuha, 2019; Oliver, 2022). To achieve algorithmic fairness,
a variety of fairness metrics have been proposed in the literature (Carey & Wu, 2022). Group fairness
focuses on ensuring that different demographic groups are treated fairly by an algorithm (Hardt
et al., 2016; Zafar et al., 2017), and individual fairness aims to give a similar treatment to similar
individuals (Dwork et al., 2012). In the past decade, numerous machine learning methods have been
proposed to achieve algorithmic fairness (Mehrabi et al., 2021).

Algorithmic fairness may be addressed in the three stages of the ML pipeline: first, by modifying the
input data (pre-processing) via e.g. re-sampling, re-weighting or learning fair representations (Kami-
ran & Calders, 2012; Zemel et al., 2013); second, by including a fairness metric in the optimization
function of the learning process (in-processing) (Zhang et al., 2018; Kamishima et al., 2012); and
third, by adjusting the model’s decision threshold (post-processing) (Hardt et al., 2016).

From a practical perspective, pre-processing fairness methods tend to be easier to understand for
a diverse set of stakeholders, including legislators (Feldman et al., 2015; Hacker & Passoth, 2022).
Furthermore, to mitigate potential biases in the data, there is increased societal interest in using
demographically-representative data to train ML models (Madaio et al., 2022; Gebru et al., 2021; Ha-
gendorff, 2020). However, the vast majority of the available datasets used in real world scenarios are
not demographically representative and hence could be biased. Moreover, datasets that are carefully
created to be fair lack the required size and variety to train large-scale deep learning models.
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Figure 1: Left: FairShap’s workflow. The weights are computed using a reference dataset T , which
can be an external dataset or the validation set of D. Right: Illustrative example of FairShap’s
impact on individual instances and on the decision boundary. Note how FairShap re-weighting is
able to shift the data distribution yielding a fairer model with similar levels of accuracy.

In this context, pre-processing fairness methods that focus on modeling and correcting bias on the
data emerge as valuable approaches (Chouldechova & Roth, 2020). Methods of special relevance
are those that identify the value of each data point not only from the perspective of the algorithm’s
performance, but also from a fairness perspective (Feldman et al., 2015), and methods that are able to
leverage small but fair datasets to improve fairness when learning from large-scale yet biased datasets.

Data valuation approaches are particularly well suited for this purpose. The proposed data valuation
methods to date (Ghorbani & Zou, 2019) measure the contribution of each data point to the accuracy
of the model and use this information as a pre-processing step to improve the performance of the
model. However, they have not been used for algorithmic fairness. In this paper, we fill this gap by
proposing FairShap, an instance-level, data re-weighting method for fair algorithmic decision-
making which is model-agnostic and interpretable through data valuation. FairShap leverages
the concept of SVs (Shapley, 1953) to measure the contribution of each data point to a pre-defined
group fairness metric. As the weights are computed on a reference dataset (T ), FairShap makes it
possible to use fair but small datasets to debias large yet biased datasets.

Fig. 1 illustrates the workflow of data re-weighting by means of FairShap: First, the weights for
each data point xi in the training set, ϕi, are computed based on its contribution to the conditional
probabilities of the predicted label given the real label for each group. FairShap leverages a
reference dataset T which is either a fair dataset –when available– or the validation set of the dataset
D. Second, once the weights are obtained, the training data is re-weighted. Third, an ML model is
trained using the re-weighted data and then applied to the test set.

FairShap has several advantages: (1) it is easily interpretable, as it assigns a numeric value (weight)
to each data point in the training set; (2) it enables detecting which data points are the most important
to improve fairness while preserving accuracy; (3) it makes it possible to leverage small but fair
datasets to learn fair models from large-scale yet biased datasets; and (4) it is model agnostic.

2 RELATED WORK

Group Algorithmic Fairness. Group bias in algorithmic decision-making is based on the conditional
independence between the joint probability distributions of the sensitive attribute (A), the label
(Y ), and the predicted outcome (Ŷ ). Barocas et al. (2019) define three concepts used to evaluate
algorithmic fairness: independence (Ŷ⊥A), separation (Ŷ⊥A|Y ), and sufficiency (Y⊥A|Ŷ ). The
underlying idea is that a fair classifier should have the same error classification rates for different
protected groups. Three popular metrics to assess group algorithmic fairness are –from weaker to
stronger notions of fairness– demographic parity (DP), i.e. equal acceptance rate (Dwork et al.,
2012; Zafar et al., 2017); equal opportunity (EOp), i.e. equal true positive rate, TPR, for all
groups (Chouldechova, 2017; Hardt et al., 2016); and equalized odds (EOdds), i.e. equal TPR and
false positive rate, FPR, for all groups (Zafar et al., 2017; Hardt et al., 2016). Several algorithms
have been proposed to maximize these metrics while maintaining accuracy (Mehrabi et al., 2021).
FairShap focuses on improving the two strongest of these fairness metrics: EOp and EOdds.

Data Re-weighting for Algorithmic Fairness. Data re-weighting is a pre-processing technique that
assigns weights to the training data to optimize a certain fairness measure. Compared to other pre-
processing approaches, data re-weighting is easily interpretable (Barocas & Selbst, 2016). There are
two broad approaches to perform data re-weighting: group and instance-level re-weighting.
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In group re-weighting, the same weight is given to all data points that belong to the same group
defined by their sensitive attributes and label. Methods in this approach employ various model ag-
nostic strategies by giving weights such that A and Y distributions are independent (Kamiran &
Calders, 2012), using label error perturbation (Krasanakis et al., 2018), iterative loss function adjust-
ment (Jiang & Nachum, 2020), optimization problems (Chai & Wang, 2022), and distributionally ro-
bust optimization (Jung et al., 2023). However, note that several of these works propose re-weighting
methods that adjust the weights repeatedly through an ongoing learning process, thus resembling
in-processing rather than pre-processing approaches (Caton & Haas, 2023) as the computed weights
depend on the model. Conversely, data-valuation methods are based on the concept that the value
of the data should be orthogonal to the choice of the learning algorithm and hence data-valuation
approaches should be purely data-driven and hence model-agnostic (Sim et al., 2022).

In contrast to group re-weighting, instance-level re-weighting seeks to assign individual weights to
each data point by considering the protected attributes and the sample misclassification probability.
Influence Functions (IFs) (Koh & Liang, 2017) have been proposed to estimate the impact of
data points on fairness metrics. Fairness applications of IFs include the leave-one-out (LOO)
method (Black & Fredrikson, 2021), neural tangent kernel estimation (Wang et al., 2022), and a
Hessian-based approach (Li & Liu, 2022) to compute the weights. However, IFs exhibit limitations
such as fragility, model dependency (Basu et al., 2021), and interpretability challenges (Feldman
et al., 2015; Hacker & Passoth, 2022). Also, they only approximate LOO for strongly convex
objectives (Bae et al., 2022) and do not fulfill data valuation desiderata (Wu et al., 2022).

Data Valuation. Data valuation (DV) methods, such as the Shapley Value (SV) (Shapley, 1953) or
Core (Gillies, 1959), measure how much a player contributes to the total utility of a team in a given
coalition-based game. They have shown promise in several domains and tasks, including federated
learning (Wang et al., 2019), data minimization (Brophy, 2020), data acquisition policies, data
selection for transfer learning, active learning, data sharing, exploratory data analysis and mislabeled
example detection (Schoch et al., 2022).

In the ML literature, SVs have been proposed to tackle a variety of tasks, such as transfer learning
and counterfactual generation (Fern & Pope, 2021; Albini et al., 2022). In the eXplainable AI
(XAI) field (Molnar, 2020), SVs have been used to achieve feature explainability by measuring
the contribution of each feature to the individual prediction (Lundberg & Lee, 2017). Ghorbani &
Zou (2019) recently proposed an instance-level data re-weighting approach by means of the SVs to
determine the contribution of each data point to the model’s accuracy. In this case, the SVs are used
to modify the training process or to design data acquisition/removal policies. The goal is to maximize
the model’s accuracy in the test set.

However, we are not aware of any publication where SVs are used for data re-weighting in algorithmic
fairness. In this paper, we fill this gap by proposing FairShap, an interpretable, instance-level data
re-weighting method for algorithmic fairness based on SVs for data valuation. We direct the reader
to App. A.2 for a comparison between FairShap and related methods regarding their desirable
qualities. In addition, FairShap may be used to inform data acquisition policies.

3 FAIRSHAP : FAIR SHAPLEY VALUE

Preliminaries: The Shapley Value of a Dataset. Let D = {(xi, yi)}ni=1 be the dataset used to train
a machine learning model M . The Shapley Value (SV) of a data point (xi, yi) –or i for short– that
belongs to the dataset D is a data valuation function, ϕi(D, v) ∈ R –or ϕi(v) for short, that estimates
the contribution of each data point i to the performance or valuation function v(M,D, T ) –or v(D)
for short– of M trained with D and tested on reference dataset T , which is either an external dataset
or a subset of D (Ghorbani & Zou, 2019). It is given by Eq. 1.

ϕi(D, v) :=
1

| D |
∑

S∈P(D \{i})

v(S ∪ {i})− v(S)(| D |−1
|S|

) (1)

Note how its computation considers all subsets S in the powerset of D, P(D). The valuation function
v(D) is typically defined as the accuracy of M trained with dataset D and tested with T . In this case,
the SV, ϕi(Acc), measures how much each data point i ∈ D contributes to the accuracy of M . The
values, ϕi(Acc), might be used for several purposes, including domain adaptation data re-weighting.
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Axiomatic properties of the SVs. The SVs satisfy the following axiomatic properties: Efficiency:
v(D) =

∑
i∈D ϕi(v), i.e. the value of the entire training dataset D is equal to the sum of the SVs

of each of the data points in D. Symmetry: ∀S ⊆ D : v(S ∪ i) = v(S ∪ j) → ϕi = ϕj , i.e. if two
data points add the same value to the dataset, their SVs must be equal. Additivity: ϕi(D, v1 + v2) =
ϕi(D, v1) + ϕi(D, v2), ϕi(D, v1 + v2) = ϕi(D, v1) + ϕi(D, v2), i.e. if the valuation function is
split into additive 2 parts, we can also compute the SV in 2 additive parts. Null Element: ∀S ⊆ D :
v(S ∪ i) = v(S) → ϕi = 0, i.e. if a data point does not add any value to the dataset then its SV is 0.

Pairwise contributions Φi,j . Statistical algorithmic fairness depends on the disparity in a model’s
error rates on different groups of data points in the test set when the groups are defined according
to their values of a protected attribute, A. To measure the data valuation for a training data point to
the fairness of the model, it is essential to identify the contribution of that training data point to the
model’s accuracy on the different groups of the test set defined by their protected attribute.

Let Φi,j be the contribution of the training point (xi, yi) ∈ D to the probability of correct classification
of the test point (xj , yj) ∈ T . Φi,j measures the expected change in the model’s correct prediction
of j due to the inclusion of i in the dataset, namely:

Φi,j = ES∼P(D \{i}) [p(y = yj |xj , S ∪ {i})− p(y = yj |xj , S)] , (2)

and let matrix Φ ∈ R| D |×| T | be the matrix where each element corresponds to each pairwise
train-test point contribution. Leveraging the efficiency axiom, ϕi(Acc) := Ej∼p(T )[Φi,j ] = Φi,: ∈ R.
While a direct implementation of Φi,j is very expensive to compute (O(2N )), an efficient implemen-
tation (O(N logN)) by Jia et al. (2019) (see App. D.1) is available. It consists of a closed-form
solution of ϕ(Acc) by means of a deterministic distance-based approach and thus model independent.
This method is able to efficiently compute the SVs both in the case of tabular and non-structured (em-
beddings) data (Jiang et al., 2023), and it yields very efficient runtime performance when compared
to other estimators of the SVs for data valuation. It also avoid the error of Monte Carlo approxima-
tions to SVs. Note that even though Φi,j is computed during the process, Jia et al. (2019) do not
delve into its formulation, meaning and possible uses.

FairShap. In this paper, we propose FairShap, a data valuation method for algorithmic fairness
based on the Shapley Values which hence shares the same axioms as the original SVs. FairShap
considers the family of fairness metrics that are defined by the True Positive Rate (TPR), True Negative
Rate (TNR), False Positive Rate (FPR), False Negative Rate (FNR) and their A-Y conditioned
versions, namely Equalized Odds (EOdds) and Equal Opportunity (EOp). To obtain fair data
valuations, FairShap computes ϕ(D, v) based on Φi,j and on a reference dataset, T , which can be
a small and fair external dataset or a partition of D. Furthermore, no model is required to compute
the fair data valuations and thus FairShap is model agnostic. In the following, we derive the
expressions to compute the weights of a dataset according to FairShap in a binary classification
case (i.e., Y is a binary variable) and with binary protected attributes. The extension to non-binary
protected attributes and multi-class scenarios is provided in App. D.5.

Equalized Odds (EOdds) and Equal Opportunity (EOp) are the two group fairness metrics that
FairShap uses as valuation functions. Given that TPR and TNR are their building blocks, let
ϕi(TPR) and ϕi(TNR) be two valuation functions that measure the contribution of training point i to the
TPR and TNR, respectively. Note that TPR = Acc|Y=1 and TNR = Acc|Y=0. Therefore, ϕi(TPR)
corresponds to the expected change in the model’s probability of correctly predicting the positive
class when point i is included in the training dataset D, considering all possible training dataset
subsets and the distribution of the reference dataset.

ϕi(TPR) :=Ej∼p(T |Y=1)

[
ES∼P(D \{i}) [p(y = yj |xj , S ∪ {i})− p(y = yj |xj , S)]

]
(3)

=Ej∼p(T |Y=1)[Φi,j ] = Φi,:|Y=1 ∈ R

The value for the entire dataset is ϕ(TPR) = [ϕ0(TPR), · · · , ϕn(TPR)] ∈ R| D |. ϕ(TNR) is obtained
similarly but for Y = y = 0. In addition, ϕi(FNR) = 1/| D |− ϕi(TPR) and ϕi(FPR) = 1/| D |− ϕi(TNR).
These four functions fulfill the SV axioms. More details about these metrics are shown in App. B.
Intuitively, ϕ(TPR) and ϕ(TNR) quantify how much the examples in the training set contribute to
the correct classification when y = 1 and y = 0, respectively. To illustrate ϕ(TPR) and ϕ(TNR),
Fig. 7 in App. E.2 depicts the ϕ(TPR) and ϕ(TNR) of a simple synthetic example with two normally
distributed classes. Once ϕi(TPR), ϕi(TNR), ϕi(FPR) and ϕi(FNR) have been obtained, we can compute
the FairShap weights for a given dataset. However, there are two scenarios to consider, depending
on whether the sensitive attribute (A) and the target variable or label (Y ) are the same or not.
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FairShap weights when A = Y In this case, the group fairness metrics (EOp and EOdds) collapse
to measure the disparity between TPR and TNR or FPR and FNR for the different values of the
actual label (Berk et al., 2021), Y , which, in a binary classification case, may be expressed as
the Equal Opportunity measure computed as EOp := TPR − FPR ∈ [−1, 1] or its scaled version
EOp = (TPR + TNR)/2 ∈ [0, 1]. Thus, the ϕi(EOp) of data point i may be expressed as

ϕi(EOp) :=
ϕi(TPR) + ϕi(TNR)

2
(4)

For more details on the equality of the group fairness metrics when A = Y and how to obtain ϕi(EOp),
we refer the reader to App. D.3.

FairShap weights when A ̸= Y This is the most common scenario. In this case, EOp and EOdds
use true/false positive/negative rates conditioned not only on Y , but also on A. Therefore, we define
TPR|A=a = Acc|Y=y,A=a, or TPRa for short, and thus

ϕi(TPRa) := Ej∼p(T |Y=1,A=a)[Φi,j ] = Φi,:|Y=1,A=a (5)

where the value for the entire dataset is ϕ(TPRa) = [ϕ0(TPRa), · · · , ϕn(TPRa)]. Intuitively, ϕi(TPRa)
measures the contribution of the training point i to the TPR of the testing points belonging to a
given protected group (A = a). ϕi(TNRa) is obtained similarly but for y = 0. Given EOp :=

TPR|A=a − TPR|A=b and EOdds := (FPRA=a − FPRA=b)+(TPRA=a − TPRA=b)
2 , then ϕi(EOp) is given by

ϕi(EOp) := ϕi(TPRa)− ϕi(TPRb) (6)

and ϕi(EOdds) is expressed as

ϕi(EOdds) :=
(ϕi(FPRa)− ϕi(FPRb)) + (ϕi(TPRa)− ϕi(TPRb))

2
(7)

where their corresponding ϕ(EOp) and ϕ(EOdds) vectors. A detailed view on the complete formula
and a step-by-step derivation of the equations above can be found in App. B and D.4. Additionally,
App. E.2 present a synthetic example showing the impact of ϕ(·) on the decision boundaries and
metrics. Algorithm 1 provides the pseudo-code to compute the data weights according to FairShap.

Re-weighting with FairShap. The definition of a data valuation function states that the larger the
value assigned to a data point, the larger the point’s contribution to the measure. Yet, it does not
necessarily mean that a larger value is desirable: it depends on the value function of choice. In the
case of accuracy, a larger value denotes a larger contribution to accuracy (Ghorbani & Zou, 2019).
In the case of fairness, we prioritize points with high −ϕ(EOp) = ϕi(TPRB) − ϕi(TPRA), where B
is the discriminated group (i.e. TPRA > TPRB). Therefore, assigning larger a weight to data points
with a positive −ϕi(EOp) contributes to increasing the TPR of the discriminated group, balancing
the difference in TPR between groups and thus yielding a smaller EOp and a fairer model. In the
experimental section, we refer the re-weighting −ϕ(EOp) as ϕ(EOp) for simplicity and the same for
ϕi(EOdds).

4 EXPERIMENTS

In this section, we present the experiments performed to evaluate FairShap. We report results on a
variety of benchmark datasets for A = Y and A ̸= Y , and with fair and biased reference datasets T .
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Figure 2: Pipelines for the two scenarios described in the experiments.
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SCENARIO 1: A=Y AND A FAIR T

In this scenario, the task is to predict the sensitive attribute, i.e., A = Y , and the reference dataset
T is fair. We perform a sex classification task from facial images by means of a deep convolutional
network (Inception Resnet V1) (Szegedy et al., 2017) using FairShap for data re-weighting. Sex
(male/female) is both the protected attribute (A) and the target variable (Y ).

Datasets. We leverage three publicly available face datasets: CelebA, LFWA (Liu et al., 2015) and
FairFace (Karkkainen & Joo, 2021), where LFWA is the training set D (large-scale and biased) and
FairFace is the reference dataset T (small but fair). The test split in the FairFace dataset is used for
testing. CelebA is used to pre-train the Inception Resnet V1 model to obtain the LFWA and FairFace
embeddings that are needed to compute the SVs efficiently in the embedding space. In the three
datasets, sex is a binary variable with two values: male, female.

Pipeline. The pipeline to obtain the FairShap’s weights in this scenario is depicted in Fig. 2a and
proceeds as follows: (1) Pre-train an Inception Resnet V1 model with the CelebA dataset; (2) Use
this model to obtain the embeddings of the LFWA and FairFace datasets; (3) Compute the weights
on the LFWA training set (D) using as reference dataset (T ) the FairFace validation partition. (4)
Fine-tune the pretrained model using the re-weighted data in the LFWA training set according to
ϕ; and (5) Test the resulting model on the test partition of the FairFace dataset. The experiment’s
training details and hyper-parameter setting are described in App. E.3.

FairShap Re-weighting. In this case, the group fairness metrics are equivalent and thus we report
results using ϕi(EOp): ϕi(EOp) quantifies the contribution of the ith data point (image) in LFWA to
the fairness metric (Equal Opportunity) of the model tested on the FairFace dataset.

Baselines. We compare FairShap with three baselines: the pre-trained model using CelebA; the
fine-tuned model using LFWA without re-weighting; and a data re-weighting approach using ϕ(Acc)
from Ghorbani & Zou (2019). We report the accuracy of the models in correctly classifying the sex
in the images and EOP. A summary of the experimental setup for this scenario is depicted in Fig. 2a.

Results. The results of this experiment are summarized in Tab. 1. Note how both re-
weighting approaches (ϕ(Acc) and FairShap) significantly improve the fairness metrics while
increasing the accuracy of the model. FairShap yields the best results both in fair-
ness and accuracy. Regarding EOP, the model trained with data re-weighted according to
FairShap yields improvements of 88% and 66% when compared to the model trained with-
out re-weighting (LFWA) and the model trained with weights according to ϕ(Acc), respectively.

Table 1: Performance of the Inception Resnet V1
model tested on the FairFace dataset without and
with re-weighting and with A=Y =sex.

Training Set Acc↑ TPRW | TPRM EOp ↓

FairFace 0.909 0.906 | 0.913 0.007

CelebA 0.759 0.580 | 0.918 0.34
LFWA 0.772 0.635 | 0.896 0.26
ϕ(Acc) 0.793 0.742 | 0.839 0.09
ϕ(EOp) 0.799 0.782 | 0.813 0.03

In sum, data re-weighting with FairShap is able
to leverage complex models trained on biased
datasets and improve both their fairness and accu-
racy. To gain a better understanding of the behavior
of FairShap in this scenario, Fig. 3b (bottom) de-
picts a histogram of the ϕ(EOp) values on the LFWA
training dataset. As seen in the Figure, ϕi(EOp)
are mostly positive for the examples labeled as fe-
male and mostly zero or negative for the examples
labeled as male. This result makes intuitive sense
given that the original model is biased against fe-
males, Fig. 3b (top) depicts the five images with the
largest ϕi(EOp): they all belong to the female cate-
gory and depict faces with a variety of poses, different facial expressions and from diverse races.

Note that in this case FairShap behaves like a distribution shift method. Fig. 3a shows how ϕi(EOp)
shifts the distribution of D (LFWA) to be as similar as possible to the distribution of the reference
dataset T (FairFace). Therefore, biased datasets (such as D) may be debiased by re-weighting their
data according to ϕi(EOp), yielding models with competitive performance both in terms of accuracy
and fairness. Fig. 3a illustrates how the group fairness metrics impact individual data points: critical
data points are those near the decision boundary. This finding is consistent with recent work that
has proposed using SVs to identify counterfactual samples (Albini et al., 2022).
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(a) LFWA, FairFace and ϕi(EOp)+LFWA embeddings.
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Figure 3: (a) Image embeddings for LFWA (Left), FairFace (Middle) and LFWA with data point
sizes ∝ |ϕi(EOp)| (Right). Points with the largest ϕi(EOp) are highlighted in green. (b) 5 Images with
the largest ϕi(EOp) and histogram of ϕi(EOp) on the LFWA dataset.

SCENARIO 2: A ̸= Y AND BIASED T

In this section, we consider a common real-life scenario where the target variable Y is not a protected
attribute and a single biased dataset D is used for training, validation, and testing. Thus, the validation
set T is obtained from D according to the pipeline illustrated in Fig. 2b. Given that A ̸= Y ,
FairShap considers two different valuation functions: ϕ(EOp) and ϕ(EOdds) as per Eq. (6) and
Eq. (7), respectively. Note that in this case the weights assigned to each data point, wi, are obtained
by normalizing ϕ(EOp) and ϕ(EOdds) following a methodology similar to that described in Chai &
Wang (2022): wi = ϕi/(

∑
i ϕ

′
i)|D| where ϕ′

i = (ϕi−min(ϕ))/(max(ϕ)−min(ϕ)).

Datasets. We test FairShap on three commonly used datasets in the algorithmic fairness literature:
(1) the German Credit (Kamiran & Calders, 2009) dataset, (2) the Adult Income dataset (Kohavi
et al., 1996),and (3) the COMPAS (Angwin et al., 2016) dataset (see App. E.8 for details).

Pipeline. The model in all experiments is a Gradient Boosting Classifier (GBC) (Friedman, 2001).
The pipeline in this set of experiments is depicted in Fig. 2b. Here, the reference dataset T is the
validation set of D. The reported results correspond to the average values of running the experiment
50 times with random splits stratified by sensitive group and label: 70% of the original dataset used
for training (D), 15% for the reference set (T ) and 15% for the test set. Train, reference and test set
are stratified by A and Y such that they have the same percentage of A - Y samples as in D.

Baselines. To the best of our knowledge, FairShap is the only interpretable, instance-level model-
agnostic data re-weighting approach for group algorithmic fairness (see Tab. 4). We compare its per-
formance with 6 state-of-the-art algorithmic fairness methods that only partially satisfy FairShap’s
properties: 1. Group RW: A group-based re-weighting method (Kamiran & Calders, 2012); 2. Post-
processing: A post-processing approach proposed by (Hardt et al., 2016); 3. LabelBias: An in-
processing re-weighting technique by (Jiang & Nachum, 2020); 4. Opt-Pre: A feature and label
transformation-based approach by (Calmon et al., 2017); 5. IFs: An Influence Function (IF)-based
approach described in (Li & Liu, 2022); and 6. ϕ(Acc): A data re-weighting method by means of
accuracy-based Shapley Values (Ghorbani & Zou, 2019). An extended explanation of the methods
and the hyperparameters used in the experiments can be found in App. E.4.

Results. The metrics used for evaluation are accuracy (Acc); Macro-F1 (M-F1), EOp and EOdds.
Tab. 2 summarizes the results for the Adult dataset. The arrows indicate if the optimal result is 0 (↓)
or 1 (↑). Fig. 4 summarizes the results on the German and Compas datasets. The complete table for
all results on the three datasets is shown in Tab. 6 in App. E.5.
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Figure 4: Utility vs fairness analysis. The models trained with FairShap re-weighting (⋆ in the
plots) improve fairness while maintaining a competitive level of accuracy compared to the baselines.
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Table 2: Results on the Adult dataset. Bold denote the best model and italic the second-best.
Statistically significant differences with the best model are denoted by ‡ for p <0.01 and † for p <0.05.

Adult (Sex|Race) Acc ↑ M-F1 ↑ EOp ↓ EOdds ↓ Acc ↑ M-F1 ↑ EOp ↓ EOdds ↓

GBC .803±.001
‡.680±.002

‡.451±.004
‡.278±.003 .803±.001

‡.682±.002
‡.164±.010

‡.106±.006

Group RW ‡.790±.001 .684±.002 .002±.009 .001±.005 .803±.001
‡.683±.002 .010±.009 .010±.005

Postpro ‡.791±.001
†.679±.004

‡.056±.013
‡.034±.007 .802±.001 .688±.002

‡.061±.011
‡.042±.006

LabelBias ‡.781±.001
‡.681±.002

‡.065±.011
‡.049±.006

‡.800±.001 .686±.002
‡.118±.013

‡.074±.007

OptPrep ‡.789±.001
‡.676±.004

‡.064±.029
‡.037±.017

‡.800±.001
†.685±.002

‡.044±.015
‡.029±.009

IF ‡.787±.002
†.681±.003

‡.159±.037
‡.092±.022

‡.797±.002
†.685±.002

‡.042±.020
‡.031±.012

ϕ(Acc) .804±.001
‡.681±.002

‡.452±.005
‡.279±.003 .803±.001

‡.681±.002
‡.161±.011

‡.104±.007

ϕ(EOp) ‡.790±.001 .684±.002 .002±.009 3e-4±.005 .802±.001
‡.683±.002 .009±.010 .009±.005

ϕ(EOdds) ‡.790±.001 .683±.002 8e-4±.009 .001±.005 .802±.001
‡.683±.002 .007±.009 .007±.005

Data re-weighting by means of FairShap (ϕ(EOdds) and ϕ(EOp)) generally yields significantly
better results in the fairness metrics than the baselines while keeping competitive levels of accuracy.
This improvement is notable when compared to the performance of the model built without data re-
weighing (GBC). For example, in the German (Sex) dataset, the model’s EOdds metric is 93x smaller
when re-weighting via FairShap (ϕ(EOdds)) than the baseline model (GBC) and 18x better than
the most competitive baseline (PostPro). Interestingly, the variance in the accuracy of the PostPro
is significantly larger than that of other methods. Note that a simple method (Group RW) delivers
very competitive results, even better than more sophisticated, recent approaches. Finally, accuracy is
not an appropriate metric due to the imbalance of the datasets, being M-F1 a more suitable metric.

Figure 5: ϕi(EOp) (left) and
ϕi(Acc) (right) for the German
Credit dataset with A = sex.

To shed further light on the behavior of data re-weighting with
FairShap, Fig. 5 depicts the histograms of ϕ(EOp) and ϕ(Acc) for
the German Credit dataset with sex as protected attribute. Note how
the distribution of ϕ(Acc) is similar for males and females, even
though the dataset is highly imbalanced: examples with good credit,
irrespective of their sex, receive larger weights than those with bad
credit. Conversely, the ϕ(EOp) values are larger for female applicants
with good credit their male counterparts; and ϕ(EOp) are larger
for male applicants with bad credit than their female counterparts.
These distributions of ϕ(EOp) compensate for the imbalances in the
raw dataset (both in terms of sex and credit risk), yielding fairer
classifiers, as reflected in the results reported in Tab. 2.

Accuracy vs Fairness To further illustrate the impact of
FairShap’s re-weighting, Fig. 6 depicts the utility-fairness trade-
off curves on the three benchmark datasets. We define a parameter
α that controls the contribution to the weights of each data point ac-
cording to FairShap, ranging from α = 0 (no data re-weighting) to α = 1 (weights as given by
FairShap). Thus, the weights of each data point i are computed as w′

i = (1−α)1| D |+αwi where
1n = (1, 1, . . . , 1) ∈ Rn is the constant vector and wi are the weights according to FairShap. As
shown in the Fig. 6, the larger the importance of FairShap’s weights, the better the model’s fair-
ness. In some scenarios, such as on the German (age) dataset, we observe a utility-fairness Pareto
front where the fairest models correspond to α = 1 and the best performing models correspond to α =
0. Conversely, on the COMPAS (sex) dataset, larger values of α significantly increase the fairness of
the model while keeping similar levels of utility (M-F1 and Accuracy).
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Figure 6: Utility vs fairness trade-off using Φ(EOp) re-weighting. Left graphs show the MF1-EOdds
and the right graphs illustrate the Accuracy, M-F1, EOp and EOdds for increasing values of α.
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5 CONCLUSION

In this paper, we have proposed FairShap, an instance-level, model-agnostic data re-weighting
approach to achieve group fairness via data valuation using Shapley Values. We have empirically
validated FairShap with several state-of-the-art datasets in different scenarios and using two
different types of models (deep neural networks and GBCs). In our experimental results, the models
trained with data re-weighted according to FairShap delivered competitive accuracy and fairness
results. Our experiments also highlight the value of using fair reference datasets (T ) for data valuation.
We have illustrated the interpretability of FairShap by means of histograms and a latent space
visualization. We have also studied the utility vs fairness trade-off. From our experiments, we
conclude that data re-weighting by means of FairShap could be a valuable approach to achieve
algorithmic fairness. Furthermore, from a practical perspective, FairShap satisfies interpretability
desiderata proposed by legal stakeholders and upcoming regulations.
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A PRELIMINARIES

A.1 NOTATION

Table 3: Notation.

Symbol Description

D = {(xi, yi)}ni=0 Training dataset
T = {(xj , yj)}mi=0 Reference dataset
S ⊆ D Subset of a dataset D
A Set of variables that are protected attributes.
TPRA=a True positive rate for test points with values in the protected attribute equal to

a. Also TPRa if the protected attribute is known. The same logic applies to FPR,
TNR, and FNR.

p(y|x,D) Predictive distribution of data point x when trained with D.
p(y = yj |xj ,D) Likelihood of correct classification of data point x when trained with D.
ϕi(D, v) SV for data point i in the training dataset D according to the performance function

v

ϕ(D, v) Vector with all the SVs of the entire dataset ∈ R| D |.
v(S, T ) Value of dataset S w.r.t a reference dataset T . E.g., the accuracy of a model

trained with S tested on T (v = Acc) or the value of Equal Opportunity of of a
model trained with S tested on T (v = EOp)

Φ ∈ R| D |×| T | Matrix where Φi,j is the contribution of the training point i ∈ D to the correct
classification of j ∈ T according to D.1

Φi,: Mean of row i
Φi,:|A=a Mean of row i conditioned to columns where A = a
1 Vector of ones := [1, 1, ..., 1]

A.2 DESIDERATA

Table 4: Comparative properties of related algorithmic fairness methods

Method D1 D2 D3 D4 D5 D6
Data Val. Interpretable Pre-processing Model agnostic Data RW Instance-level

FairShap ✓ ✓ ✓ ✓ ✓ ✓
Group-RW ✗ ✓ ✓ ✓ ✓ ✗
Influence Functions ✓ ✗ ✗ ✗ ✓ ✗
Inpro-RW (LabelBias) ✗ ✓ ✗ ✗ ✓ ✗
Massaging (OptPre) ✗ ✓ ✓ ✓ ✗ ✗
Post-pro ✗ ✓ ✗ ✓ ✗ ✗

As previously noted in Section 2, the closest methods to FairShap in the literature are Influ-
ence Functions (Wang et al., 2022; Li & Liu, 2022), In-processing reweighting (e.g. LabelBias)
(Krasanakis et al., 2018; Jiang & Nachum, 2020; Chai & Wang, 2022), Group reweighting (Kamiran
& Calders, 2012) and Massaging (e.g. OptPre) (Feldman et al., 2015; Calmon et al., 2017).

D1 - Data valuation method. Our aim is to propose a novel fairness-aware data valuation approach.
Thus, the first desired property concerns whether the method performs data valuation or not (Ham-
moudeh & Lowd, 2022). Data valuation methods compute the contribution or influence of a given
data point to a target function, typically by analyzing the interactions between points (LOO, pair-wise
or all the subsets in the data powerset).

D2 - Interpretable. The method should be easy to understand by a broad set of technical and
non-technical stakeholders when applied to a variety of scenarios and purposes, including for data
minimization, data acquisition policies, data selection for transfer learning, active learning, data
sharing, mislabeled example detection and federated learning.

D3 - Pre-processing. The method should provide data insights that can be applicable to train a wide
variety of ML learning methods.
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D4 - Model agnostic. The computation of model-weights, data valuation values, data insights or data
transformations should not rely on learning a model iteratively, to enhance flexibility, computational
efficiency, interpretability and mitigate uncertainty. Therefore, this follows the guidelines to make
data valuation models data-driven (Sim et al., 2022).

D5 - Data Re-weighting. The data insights drawn from applying the method should be in the form
of weights to be applied to the data, which can be used to rebalance the dataset.

D6 - Instance-Level. Different insights or weights are given to each of the data points.

A.3 CLARIFICATION OF THE CONCEPT OF FAIRNESS

Note that the concept of fairness in the definition of the Shapley Values (SVs) is different from
algorithmic fairness. The former relates to the desired quality of the SVs to be proportional to how
much each data point contributes to the model’s performance. Formally, this translates to the SVs
fulfilling certain properties (e.g. efficiency, symmetry, additivity...) to ensure a fair payout. The
latter refers to the concept of fairness used in the machine learning literature, as described in the
introduction. FairShap uses SVs for data valuation in a pre-processing approach with the objective
of mitigating bias in machine learning models. As FairShap is based on the theory of SVs, it also
fulfills their four axiomatic properties.

A.4 ALGORITHMIC FAIRNESS DEFINITIONS

As aforementioned, the fairness metrics used as valuation functions in FairShap depend on the
conditioned true/false negative/positive rates, depending on the protected attribute A:

TPRA=a := P[Ŷ = 1|Y = 1, A = a], TNRA=a := P[Ŷ = 0|Y = 0, A = a]

FPRA=a := P[Ŷ = 1|Y = 0, A = a], FNRA=a := P[Ŷ = 0|Y = 1, A = a]

Note that different fairness metrics are defined by forcing the equality in true/false negative/positive
rates between different protected groups. For instance, in a binary classification scenario with a binary
sensitive attribute, Equal Opportunity (EOp) and Equalized Odds (EOdds) are defined as follows:

EOp := P[ŷ = 1|Y = 1, A = a] = P[Ŷ = 1|Y = 1]

EOdds := P[ŷ = 1|Y = i, A = a] = P[Ŷ = 1|Y = i],∀i ∈ {0, 1}

In practical terms, the metrics above are relaxed and computed as the difference for the different
groups:

EOp := TPRA=a − TPRA=b, EOdds :=
1

2
((TPRA=a − TPRA=b) + (FPRA=a − FPRA=b))

The proposed Fair SVs include as their valuation function these group fairness metrics.

B SHAPLEY VALUES PROPOSED IN FAIRSHAP

FairShap proposes ϕ(EOp) and ϕ(EOdds) as the data valuation functions to compute the SVs of indi-
vidual data points in the training set. These functions are computed from the ϕ(TPR),ϕ(FPR),ϕ(TNR)
and ϕ(FNR) functions, leveraging the Efficiency axiom of the SVs, and the decomposability proper-
ties of fairness metrics.

Accuracy (Jia et al. (2019)):

ϕi(Acc) := 1
| T |

∑
j∈T Φi,j = Φi,: = Ej∼p(T )[Φi,j ]
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True/False Positive/Negative rates (Our contribution):

ϕi(TPR) := E
j∼p(T |Y=1)

[
E

S∼P(D \{i})
[p(y = 1|xj , S ∪ {i})− p(y = 1|xj , S)]

]
= E

j∼p(T |Y=1)
[Φi,j ] =

∑
j∈T Φi,jI[yj = 1]

|{x : x ∈ T |y = 1}|

ϕi(TNR) := E
j∼p(T |Y=0)

[
E

S∼P(D \{i})
[p(y = 0|xj , S ∪ {i})− p(y = 0|xj , S)]

]
= E

j∼p(T |Y=0)
[Φi,j ] =

∑
j∈T Φi,jI[yj = 0]

|{x : x ∈ T |y = 0}|

ϕi(FNR) := E
j∼p(T |Y=1)

[
E

S∼P(D \{i})
[p(y = 0|xj , S ∪ {i})− p(y = 0|xj , S)]

]
=

1

| D |
− ϕi(TPR)

ϕi(FPR) := E
j∼p(T |Y=0)

[
E

S∼P(D \{i})
[p(y = 1|xj , S ∪ {i})− p(y = 1|xj , S)]

]
=

1

| D |
− ϕi(TNR)

Conditioned True/False Positive/Negative rates (Our contribution):

ϕi(TPRa) := Ej∼p(T |Y=1,A=a)[Φi,j ] =
∑

j∈T Φi,jI[yj=1,Aj=a]

|{x:x∈T |y=1,A=a}| = Φi,:|Y=1,A=a

ϕi(TPRb) := Ej∼p(T |Y=1,A=b)[Φi,j ] =
∑

j∈T Φi,jI[yj=1,Aj=b]

|{x:x∈T |y=1,A=b}| = Φi,:|Y=1,A=b

ϕi(TNRa) := Ej∼p(T |Y=0,A=a)[Φi,j ] =
∑

j∈T Φi,jI[yj=0,Aj=a]

|{x:x∈T |y=0,A=a}| = Φi,:|Y=0,A=a

ϕi(TNRb) := Ej∼p(T |Y=0,A=b)[Φi,j ] =
∑

j∈T Φi,jI[yj=0,Aj=b]

|{x:x∈T |y=0,A=b}| = Φi,:|Y=0,A=b

ϕi(FPRa) :=
1

| D | − ϕi(TNRa)

ϕi(FPRb) :=
1

| D | − ϕi(TNRb)

ϕi(FNRa) :=
1

| D | − ϕi(TPRa)

ϕi(FNRb) :=
1

| D | − ϕi(TPRb)

When A=Y (Our contribution):

ϕi(EOp) := ϕi(EOp) = ϕi(TPR) + ϕi(TNR)− 1
| D |

or its scaled version ϕi(EOp) = ϕi(TPR)+ϕi(TNR)
2 .

See App. D.3 for more details on how to derive these formulas.

When A̸=Y (Our contribution):

ϕi(EOp) :=ϕi(TPRa)− ϕi(TPRb)

= E
j∼p(T |Y=1,A=a)

[Φi,j ]− E
j∼p(T |Y=1,A=b)

[Φi,j ] (8)

= E
j∼p(T |Y=1,A=a)

[
E

S∼P(D \{i})
[p(y = 1|xj ,D∪{i})− p(y = 1|xj ,D)]

]
− E

j∼p(T |Y=1,A=b)

[
E

S∼P(D \{i})
[p(y = 1|xj ,D∪{i})− p(y = 1|xj ,D)]

]
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ϕi(EOdds) :=
1

2
((ϕi(FPRa)− ϕi(FPRb)) + (ϕi(TPRa)− ϕi(TPRb))) (9)

=
1

2

(((
1

| D |
− ϕi(TNRa)

)
−
(

1

| D |
− ϕi(TNRb)

))
(10)

+

(
E

j∼p(T |Y=1,A=a)
[Φi,j ]− E

j∼p(T |Y=1,A=b)
[Φi,j ]

))
=
1

2

(((
1

| D |
− E

j∼p(T |Y=0,A=a)
[Φi,j ]

)
−

(
1

| D |
− E

j∼p(T |Y=0,A=b)
[Φi,j ]

))
+

(
E

j∼p(T |Y=1,A=a)
[Φi,j ]− E

j∼p(T |Y=1,A=b)
[Φi,j ]

))
We refer to the reader to App. D.4 for more details on how to obtain these formulas from the
algorithmic fairness definitions.

C FAIRSHAP ALGORITHM

Algorithm 1 Data re-weighting for algorithmic fairness via SVs, A ̸= Y

1: Input Training set D, reference set T , protected groups A, parameter k
2: procedure CALCULATEFAIRSHAPLEYVALUES(D, T , k)
3: Initialize Φ as a matrix of zeros with dimensions | D | × | T |
4: for j in T do
5: Order i ∈ D according to the L2 distance to j ∈ T → (x1, x2, . . . , xN )

6: Compute ΦN,j =
I[yxN

=yj ]

N
7: for i from N − 1 to 1 do
8: ▷ How much does i contribute to j’s likelihood of correct classification? (i.e., Φi,j) ◁

9: Φi,j = Φi+1,j +
I[yi=yj ]−I[yi+1=yj ]

max(k,i)

10: ϕ(TPRa) = [ϕi(TPRa) = Ej∼p(T |Y =1,A=a)[Φi,j ] : ∀i ∈ D] ∀a ∈ A ▷ Eq. (5)
11: ϕ(FPRa) = [ϕi(FPRa) =

1
| D | − ϕi(TNRa) : ∀i ∈ D] ∀a ∈ A

12: ϕ(EOp) = [ϕi(EOp) = ϕi(TPRa)− ϕi(TPRb) : ∀i ∈ D] ▷ Eq. (6)
13: ϕ(EOdds) = [ϕi(EOdds) = (ϕi(FPRa)−ϕi(FPRb))+(ϕi(TPRa)−ϕi(TPRb))

2
: ∀i ∈ D] ▷ Eq. (7)

14: Output:
15: SV matrix Φ ∈ R| D |×| T |

16: FairShap arrays ϕ(EOp) ∈ R| D | and ϕ(EOdds) ∈ R| D |

D METHODOLOGY

D.1 EFFICIENT k-NN SHAPLEY VALUE

Jia et al. (2019) propose an efficient, exact calculation of the SVs by means of a recursive k-NN
algorithm with complexity O(N logN). The proposed method yields a matrix Φ ∈ R| D |×| T | with
the contribution of each training point to the accuracy of each point in the reference data set T .
Therefore, Φi,j defines how much data point i in the training set contributes to the probability of
correct classification of data point j in T . The intuition behind is that Φi,j quantifies to which degree
a training point i helps in the correct classification of j. The k-NN-based recursive calculation is at
follows.

For each j in T :

• Order i ∈ D according to the distance to j ∈ T → (x1, x2, ..., xN )

• Calculate Φi,j recursively, starting from the furthest point:

ΦN,j =
I[yxN

= yj ]

N

Φi,j = Φi+1,j +
I[yi = yj ]− I[yi+1 = yj ]

maxK, i
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• Φ is a | D | × | T | matrix given by:

Φ =

 Φ00 · · · Φ0| T |
...

. . .
...

Φ| D |0 . . . Φ| D || T |

 ∈ R| D |×| T |

where Φi,j is the contribution of training point i to the accuracy of the model on point j in T . Thus,
the overall SV of a training point i with respect to T is the average of all the values of row i in the
SV matrix:

ϕi(Acc) =
1

m

m∑
j=0

Φi,j = Φi,: ∈ R

Note that the mean of a column j in Φ is the accuracy of the model on that test point. The vector
with the SV of every training data point is computed as:

ϕ(Acc) = [ϕ0, · · · , ϕn] ∈ R| D |

In addition, given the efficiency axiom of the SV, the sum of ϕ is the accuracy of the model on the
training set.

V (D) =

n∑
i=0

ϕi =

n∑
i=0

1

m

m∑
j=0

Φi,j = Acc

Technically speaking, the process may be parallelized over all points in T (columns of the matrix)
since the computation is independent, reducing the practical complexity from O(N logN) to O(N).

D.2 THRESHOLD INDEPENDENCE

Computing ϕ(·) according to the original SV implementation entails evaluating the performance
function v(S) on each data point, which requires testing the model trained with S. As the group
fairness metrics are based on different classification errors, they depend on the classification threshold
t, such that TP = |{Ŷ > t|Y = 1}|, TN = |{Ŷ < t|Y = 0}|, FP = |{Ŷ > t|Y = 0}| and
FN = |{Ŷ < t|Y = 1}|.
However, the previously described efficient method (App. D.1) is threshold independent since it
calculates the accuracy as the average of the probability of correct classification for all test points.

D.3 ϕi(EOP) DERIVATION WHEN A = Y

When A = Y in a binary classification task, TPR and TNR are the accuracies for each protected
group, respectively. In this case, DP collapses to P(Ŷ = 1|A = a) → P(Ŷ = 1|Y = a) . In this
case, EOp measures the similarity of TPRs between groups.

As a result, when A = Y in a binary classification scenario, the group fairness metrics measure the
relationship between TPR, TNR, FPR and FNR not conditioned on the protected attribute A, since
these metrics already depend on Y and A = Y . As an example, Equal opportunity is defined in this
case as (TPR+ TNR)/2 ∈ [0, 1] (Hardt et al., 2016):

EOp =
TPR − FPR + 1

2
=

TPR − (1− FNR) + 1

2
=

TPR + TNR
2

∈ [0, 1]

Consequently, ϕi(EOp) ∈ [0, 1] when A = Y can be obtained as follows:

EOp =

∑
i∈D ϕi(TPR) +

∑
i∈D ϕi(TNR)

2
=

∑
i∈D

ϕi(TPR)

2
+

∑
i∈D

ϕi(TNR)

2

ϕi(EOp) =
ϕi(TPR) + ϕi(TNR)

2
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D.4 ϕi(EOP) AND ϕi(EODDS) DERIVATION WHEN A ̸= Y

We derive ϕ(EOp) and ϕ(EOdds) when A ̸= Y using the definitions for EOdds and EOp given by:

EOp = TPRA=a − TPRA=b

EOdds =
1

2
((TPRA=a − TPRA=b) + (FPRA=a − FPRA=b))

Leveraging the Efficiency property of SVs, ϕ(EOp) is computed as:

EOp =
∑
i∈D

ϕi(TPRA=a)−
∑
i∈D

ϕi(TPRA=b)

EOp =
∑
i∈D

(ϕi(TPRA=a)− ϕi(TPRA=b)) → ϕi(EOp) = ϕi(TPRA=a)− ϕi(TPRA=b)

Similarly, ϕ(EOdds) can be obtained as follows:

EOdds =
1

2
((TPRA=a − TPRA=b) + (FPRA=a − FPRA=b))

=
(
∑

i∈D ϕi(TPRA=a)−
∑

i∈D ϕi(TPRA=b)) + (
∑

i∈D ϕi(FPRA=a)−
∑

i∈D ϕi(FPRA=b))

2

=

∑
i∈D (ϕi(TPRA=a)− ϕi(TPRA=b)) +

∑
i∈D

(
ϕi(FPRA=a)−

∑
i∈D ϕi(FPRA=b)

)
2

=

∑
i∈D ((ϕi(TPRA=a)− ϕi(TPRA=b)) + (ϕi(FPRA=a)− ϕi(FPRA=b)))

2
→

→ ϕi(EOdds) =
(ϕi(TPRA=a)− ϕi(TPRA=b)) + (ϕi(FPRA=a)− ϕi(FPRA=b))

2

D.5 EXTENSION TO MULTI-LABEL AND CATEGORICAL SENSITIVE ATTRIBUTE SCENARIOS

As in the binary setting, the group fairness metrics are computed from TPR, TNR, FPR and FNR.
Taking as an example TPR, the main change consists of replacing y = 1 or y = 0 for yj=y:

ϕi(TPR|Y=y) = Ej∼p(T |Y=y)[Φi,j ] =

∑
j∈T Φi,jI[yj = y]

|{x : x ∈ T |y = y}|
= Φi,:|Y=y

The conditioned version ϕi(TPRa) may be obtained as:

ϕi(TPR|Y=y,A=a) = Ej∼p(T |Y=y,A=a)[Φi,j ] =

∑
j∈T Φi,jI[yj = y,Aj = a]

|{x : x ∈ T |y = y,A = a}|
= Φi,:|Y=y,A=a

where y and a can be categorical variables. In the scenario where a is not a binary protected attribute,
EOp is calculated as EOpa = |TPR−TPRA=a|∀a ∈ A , and then the maximum difference is selected
as the unique EOp for the model EOp = max∀a∈A EOpa, i.e. the EOp for the group that most differs
from the TPR of the entire dataset. Therefore, ϕi(EOp) for each data point is computed as ϕi(EOp) =
ϕi(TPRa) − ϕi(TPR) being a the value of the protected attribute with maximum EOp. The same
procedure applies to EOdds. In other words, ϕi(EOp) = Ej∼p(T |Y=1,A=a)[Φi,j ]−Ej∼p(T |Y=1)[Φi,j ].

E EXPERIMENTS

The code is publicly available at https://github.com/AdrianArnaiz/fair-shap/.

E.1 IMPACT OF BIASED DATASETS ON THE MODELS’ EVALUATION

It is crucial to be aware that models trained on biased datasets may perform well in terms of accuracy
and fairness when tested against themselves. However, when evaluated against fair datasets, their

18

https://github.com/AdrianArnaiz/fair-shap/


Workshop on Data-centric Machine Learning Research (DMLR), ICLR 2024

performance can deteriorate significantly. It is widely recognized that biased datasets can lead to
biased machine learning models, which can perpetuate and exacerbate societal inequities. These
models can reinforce existing biases and stereotypes, leading to unfair and discriminatory outcomes
for certain groups, especially underrepresented or marginalized communities. Therefore, it is essential
to develop fair reference datasets to ensure that machine learning models are tested in a way that
accounts for the potential impact of bias and promotes fairness. In light of this, we present here the
results of our experiments that illustrate the performance and fairness of a model trained and tested
on three different dataset combinations: large yet biased datasets (LFWA and CelebA) and a smaller
and unbiased dataset (FairFace). As illustrated in Tab. 5, the performance of the models trained on
biased datasets (LFWA and CelebA) and tested on fair datasets (FairFace) is significantly worse than
when tested on the biased datasets.

Table 5: Sex classification results reported as Accuracy ↑ | Accuracy Disparity ↓ for an Inception
Resnet V1 model trained and tested on different datasets. The protected attribute A is sex. Note
the degradation in performance when training on a biased dataset and evaluating on a fair dataset
(marked in red font in the Table).

Train \ Test FairFace LFWA CelebA

FairFace 90.9 | 0.01 95.7 | 0.03 96.7 | 0.09
LFWA 77.2 | 0.49 96.6 | 0.08 98.3 | 0.02
CelebA 76.1 | 0.61 96.9 | 0.09 98.2 | 0.01

E.2 EXPERIMENTS ON SYNTHETIC DATASETS

ϕ(TPR) and ϕ(TNR) In this section, we present a visual analysis of ϕ(TPR) and ϕ(TPR) using a synthetic
binary classification dataset featuring two Gaussian distributions.

Fig. 7 illustrates the extent to which each data point contributes positively or negatively to the True
Positive Rate (TPR) and True Negative Rate (TNR). Points with larger ϕ(TPR) correspond to instances
from the positive class located on the correct side near the decision boundary whereas points with
smaller ϕ(TPR) represent positive class points placed on the wrong side of the decision boundary. The
same logic applies to ϕ(TNR) with respect to the negative class points, providing intuitive insights
related to the contributions to TPR or TNR of different data points.

Data φ(TPR)> 0 φ(TNR)> 0 φ(TPR)< 0 φ(TNR)< 0

Figure 7: Synthetic example with positive (Y=1, blue) and negative (Y=0,green) classes. Data points
with the 50 largest (Y=0, green) and smallest (Y=1, red) ϕi are highlighted. Size ∝ |ϕi|.

A ̸=Y In this scenario, we generate synthetic data where the protected attribute A and the label Y are
slightly correlated. Specifically, we employ Case I from Zafar et al. (2017) as a reference, where the
disparity between the False Negative Rate (FNR) and the False Positive Rate (FPR) exhibits a distinct
sign: larger FPR for the privileged group and larger FNR for the disadvantaged group. Consequently,
the mean overlap occurs between the unfavorable-privileged and the favorable-disadvantaged classes.

Fig. 8 visualizes data instances of this scenario as points, where the size of each point is proportional
to its |ϕ(·)|. Additionally, we highlight in green the top-50 points based on their ϕ(·). The label Y = 1
corresponds to the favorable outcome (colored in green), and the privileged group is defined by A = 1
(represented as triangles). The label Y = 0 corresponds to the unfavorable outcome (colored in red),
and the disadvantaged group is defined by A = 0 (represented as crosses). We train unconstrained
Logistic Regression models on various versions of the data and assess their performance using the
same test split.
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Acc: 0.81
DI: 0.50

EOp: -0.33
EOdds: -0.28

Y=0, A=1
Y=0, A=0
Y=1, A=1
Y=1, A=0

(a) Original Data

Acc: 0.81
DI: 0.50

EOp: -0.33
EOdds: -0.28

(b) ϕ(Acc)

Acc: 0.83
DI: 0.78

EOp: 0.00
EOdds: -0.11

(c) ϕ(EOp)

Acc: 0.81
DI: 0.88

EOp: 0.11
EOdds: -0.06

(d) ϕ(EOdds)

Figure 8: Synthetic example where the group FPR and the group FNR differences have different
signs (Case I in Zafar et al. (2017)). The size of each data point is proportional to its |ϕ(·)|. The
top-50 points, according to each ϕ(·), are highlighted in green. The label Y = 1 corresponds to the
favorable outcome (colored in green), and the privileged group is defined by A = 1 (represented
as triangles ▲). The label Y = 0 corresponds to the unfavorable outcome (colored in red), and the
disadvantaged group is defined by A = 0 (represented as crosses ✛). Logistic Regression models are
trained on different re-weighted versions of the data and evaluated using the same test split. Decision
regions are shaded.

The experimental results shown in Fig. 8 illustrate significant changes in the decision boundaries
of the models when trained using weights given by ϕ(EOp) or ϕ(EOdds), yielding fairer models while
maintaining comparable or improved levels of accuracy. Moreover, the analysis reveals that both
ϕ(EOp) and ϕ(EOdds) predominantly prioritize instances in the unfavorable-privileged (red triangles)
and favorable-disadvantaged groups (green crosses).

E.3 COMPUTER VISION TRAINING SET-UP

In the experiment described in Section 4, the Inception Resnet V1 model was initially pre-trained on
the CelebA dataset and subsequently fine-tuned on LFWA. Binary cross-entropy loss and the Adam
optimizer were used in both training phases. The learning rate was set to 0.001 for pre-training and
reduced to 0.0005 for fine-tuning, each lasting 100 epochs. Training batches consisted of 128 images
with an input shape of (160x160), and a patience parameter of 30 was employed for early stopping,
saving the model with the highest accuracy on the validation set. The classification threshold for this
model was set at 0.5.

E.4 DESCRIPTION OF THE BASELINES USED IN THE EXPERIMENTS (SECTION 4)

Group RW (Kamiran & Calders, 2012)]: A group-based re-weighting method that assigns the
same weights to all samples from the same category or group according to the protected attribute.
Weights are assigned to compensate that the expected probability if A and Y where independent on
D is higher than the observed probability value.

wi(ai, yi) =
|{X ∈ D |X(A) = ai}| × |{X ∈ D |X(Y ) = yi}|

|{D}| × |{X ∈ D |X(A) = ai, X(Y ) = yi}|
Group RW does not require any additional parameters for its application. We use the implementation
from AIF360 (Bellamy et al., 2019).

Post-pro (Hardt et al., 2016): A post-processing algorithmic fairness method that assigns different
classification thresholds for different groups to equalize error rates. The method applies a threshold
to the predicted scores to achieve this balance.

In our experiments, we adopt an enhanced implementation of this method, provided by the authors
and based on the error-parity library (Cruz & Hardt, 2024). This implementation makes its
predictions using an ensemble of randomized classifiers instead of relying on a deterministic binary
classifier. A randomized classifier is one that lies within the convex hull of the classifier’s ROC curve
at a specific target ROC point. This approach enhances the method’s ability to satisfy the equality of
error rates.

LabelBias (Jiang & Nachum, 2020): This model learns the weights in an iterative, in-processing
manner based on the model’s error. Consequently, this method is neither a pre-processing nor a
model-agnostic approach.
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We use an implementation based on the google-research/label_bias repository, which is
the official implementation of the original work. We apply the settings described in Jiang & Nachum
(2020) and use a learning rate of µ = 1 with a fixed number of 100 iterations.

Opt-Pre (Calmon et al., 2017): A model-agnostic pre-processing approach for algorithmic fairness
based on feature and label transformations solving a a convex optimization.

We use the pre-defined hyperparameters provided by both the authors (see Calmon et al., 2017,
Supplementary 4.1-4.3) and the AIF360 library: the discrimination parameter ϵ = 0.05; distortion
constraints of [0.99, 1.99, 2.99], which are distance thresholds for individual distortions; and finally
we use probability bounds of [.1, 0.05, 0] for each threshold in the distortion constraints (Calmon
et al., 2017, Eq. 5). We use the implementation from AIF360 (Bellamy et al., 2019).

IFs (Li & Liu, 2022): An Influence Function (IF)-based approach, where the influence of each
training sample is modeled with regard to a fairness-related quantity and predictive utility. This is an
in-processing, and re-training approach, as follows. First, a model is trained. Second, the Hessian
vector product is computed for every sample H−1

θ̂(1)
∇2

θℓ(xi; θ̂(1), where the Hessian is defined as

Hθ̂(1) =
∑

i=1 ∇2
θℓ(xi; θ̂(1)) and θ̂(1) is the empirical risk minimization with equal sample weights.

Third, the influence functions for every sample are obtained based on the vector products. Fourth,
a linear problem based on these influence functions is solved to compute the weights. Finally, the
model is re-trained with the new weights. Notably, this method exhibits behavior resembling hard
removal re-weighing –as observed in our experiments– where the weights are either 0 or 1 for all
samples, with no in-between values. This pattern aligns with the observations made by the authors
themselves. While the method is theoretically categorized as individual re-weighting, in practice, it
works as a sampling method.

We set the hyperparameters to the values reported by the authors for each dataset. Namely, for the
German dataset: α = 1, β = 0, γ = 0 and l2reg = 5.85. For the Adult dataset: α = 1, β = 0.5,
γ = 0.2 and l2reg = 2.25. Finally, for the COMPAS dataset: α = 1, β = 0.2, γ = 0.1 and
l2reg = 37. We use an implementation from the influence-fairness repository by Brandeis
ML, which needs the request and installation of a Gurobi license.

ϕ(Acc) (Ghorbani & Zou, 2019): A method based on data re-weighting by means of an accuracy-
based data valuation function without any fairness considerations. This method is explained in detail
on App. D.1. We use our own efficient implementation using the Numba python library.

E.5 RESULTS ON ADDITIONAL DATASETS

Tab. 6 shows the results of the experiments with the 3 different datasets: German, Adult and COMPAS.
Utility is measured with accuracy and Macro F1 and fairness is measured with Equal Opportunity
(EOp) and Equalized Odds (EOdds).

In addition, Fig. 9 depicts the effect of FairShap on the accuracy-fairness tradeoff in 2 more
datasets than in Section 4: German (Sex) and Adult (Race). Results on these datasets are consistent
with the previous results. Larger values of α significantly increase the fairness of the model while
keeping similar levels of utility.
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Figure 9: Utility vs fairness trade-off. Φ(EOp) is used to re-weight the German dataset, and Φ(EOdds)
to re-weight in the Adult dataset. Left graphs show the MF1-EOdds and the right graphs illustrate the
Accuracy, M-F1, EOp and EOdds for increasing values of α.
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Table 6: Performance of GBC without and with data re-weighting on all datasets. Best results marked
in bold and second-best in italic. Statistically significant differences with the best performing model
are denoted by ‡ for p < 0.01 and † for p < 0.05.

Sex Age

German Accuracy ↑ M-F1 ↑ EOp ↓ EOdds ↓ Accuracy ↑ M-F1 ↑ EOp ↓ EOdds ↓

GBC .697±.006 .519±.010
‡.107±.020

‡.185±.020
†.704±.005 .524±.010

‡.224±.032
‡.345±.030

Group RW .695±.006 .514±.010
‡.062±.019

‡.123±.025
‡.684±.004

‡.396±.041
‡.040±.025

‡.029±.026

Postpro ‡.691±.005
‡.366±.055 .013±.014

†.036±.015
‡.686±.005

‡.255±.063
‡.044±.022

‡.047±.019

LabelBias .695±.006
‡.465±.035

‡.051±.019
‡.092±.026

‡.690±.004
‡.354±.053

‡.052±.029
‡.052±.035

OptPrep .694±.006 .521±.010
‡.104±.022

‡.174±.021
‡.693±.007

‡.487±.030
‡.130±.031

‡.204±.039

IF .697±.006 .519±.010
‡.107±.020

‡.185±.020
†.704±.005 .524±.010

‡.224±.032
‡.345±.030

ϕ(Acc) .700±.005
†.507±.009

‡.097±.018
‡.184±.018 .706±.005

‡.517±.010
‡.193±.025

‡.313±.025

ϕ(EOp) ‡.683±.006
‡.460±.034 .029±.026

†.049±.033
‡.685±.004

‡.373±.046 .024±.023 .007±.021

ϕ(EOdds) ‡.686±.006
‡.477±.009 .002±.025 .002±.031

‡.681±.005
‡.353±.049 .019±.020 .003±.013

Sex Race

Adult Accuracy ↑ M-F1 ↑ EOp ↓ EOdds ↓ Accuracy ↑ M-F1 ↑ EOp ↓ EOdds ↓

GBC .803±.001
‡.680±.002

‡.451±.004
‡.278±.003 .803±.001

‡.682±.002
‡.164±.010

‡.106±.006

Group RW ‡.790±.001 .684±.002 .002±.009 .001±.005 .803±.001
‡.683±.002 .010±.009 .010±.005

Postpro ‡.791±.001
†.679±.004

‡.056±.013
‡.034±.007 .802±.001 .688±.002

‡.061±.011
‡.042±.006

LabelBias ‡.781±.001
‡.681±.002

‡.065±.011
‡.049±.006

‡.800±.001 .686±.002
‡.118±.013

‡.074±.007

OptPrep ‡.789±.001
‡.676±.004

‡.064±.029
‡.037±.017

‡.800±.001
†.685±.002

‡.044±.015
‡.029±.009

IF ‡.787±.002
†.681±.003

‡.159±.037
‡.092±.022

‡.797±.002
†.685±.002

‡.042±.020
‡.031±.012

ϕ(Acc) .804±.001
‡.681±.002

‡.452±.005
‡.279±.003 .803±.001

‡.681±.002
‡.161±.011

‡.104±.007

ϕ(EOp) ‡.790±.001 .684±.002 .002±.009 3e-4±.005 .802±.001
‡.683±.002 .009±.010 .009±.005

ϕ(EOdds) ‡.790±.001 .683±.002 8e-4±.009 .001±.005 .802±.001
‡.683±.002 .007±.009 .007±.005

Sex Race

COMPAS Accuracy ↑ M-F1 ↑ EOp ↓ EOdds ↓ Accuracy ↑ M-F1 ↑ EOp ↓ EOdds ↓

GBC .666±.004 .662±.004
‡.158±.014

‡.199±.014 .663±.004 .658±.004
‡.184±.013

‡.218±.013

Group RW .664±.004 .660±.004 .020±.016
‡.038±.014

‡.649±.004
‡.646±.004

‡.028±.015 .007±.016

Postpro ‡.660±.003
‡.655±.003 .017±.017

†.030±.015
‡.647±.005

‡.642±.005 1e-4±.015
‡.026±.016

LabelBias ‡.639±.005
‡.612±.007 .006±.013 .010±.014

‡.645±.004
‡.627±.005

‡.030±.011
‡.045±.014

OptPrep .664±.003 .660±.003
‡.045±.020

‡.065±.019
‡.655±.004

†.651±.004
‡.044±.020

‡.078±.020

IF .663±.003 .658±.003
‡.129±.016

‡.161±.015 .660±.004 .655±.004
‡.165±.017

‡.198±.015

ϕ(Acc) .667±.004 .662±.004
‡.156±.014

‡.198±.013 .663±.004 .657±.004
‡.184±.013

‡.218±.013

ϕ(EOp) †.661±.003
†.658±.004 .013±.024 .007±.021

‡.650±.004
‡.647±.004

‡.027±.016 .004±.017

ϕ(EOdds) .663±.004 .659±.004 .019±.021
†.036±.020

‡.648±.004
‡.646±.004

‡.036±.017 .004±.018

E.6 ABLATION STUDY OF THE IMPACT OF THE REFERENCE DATASET’S SIZE

In this section, we examine the influence of the size of the reference dataset, T , and the impact of
the alignment between T and the test set on the effectiveness of FairShap’s re-weighting. To do
so, we perform an ablation study. We partition the three benchmark datasets (German, Adult and
COMPAS) into training (60%, D), validation (20%), and testing (20%). We select subsets from the
validation dataset –ranging from 5% to 100% of its size– and use them as T . For each subset, we
compute FairShap’s weights on D with respect to T , train a Gradient Boosting Classifier (GBC)
model and evaluate its performance on the test set. This process is repeated 10 times with reported
results comprising both mean values and standard deviations shown in Fig. 10.

As shown in the Figures, the size of the validation dataset has a discernible impact on the variance of
the evaluation metrics, both in terms of accuracy and fairness. Increasing the size of the reference
dataset T leads to a notable reduction in the variability of the outcomes. However, averages for all
the metrics remain stable across different sizes.
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Figure 10: Accuracy and fairness metrics when applying data re-weighting via FairShap (ϕ(EOp)
and ϕ(EOdds)) as the size of the validation sets T increases, evaluated on both validation (- -) and test
sets (—). The performance of the baseline GBC without re-weighting is shown as a red line. From
top to bottom, the rows correspond to the German, Adult and COMPAS datasets, respectively. From
left to right, the columns depict the Accuracy, Equalized Odds and Equal Opportunity, respectively.

E.7 UTILITY METRICS

The reported experiments with the tabular datasets (i.e. German, Adult and COMPAS) include
different utility metrics to evaluate the performance of the models.

In imbalanced datasets, where one class significantly outweighs the other in terms of the number of
examples, accuracy does not provide a good assessment of a model’s performance, given that high
accuracies might be obtained by a simple model that predicts the majority class. In these cases, the
F1 metric is more appropriate, defined as 2× precision×recall

precision+recall , where precision is given by TP
TP+FP and

recall by TPR = TP
TP+FN .

However, the F1 metric is only meaningful when the positive class is the minority class. Otherwise, i.e.
if the positive class is the majority class, a constant classifier that always predicts the positive class can
achieve a high F1 values. For example, in a scenario where the positive class has 100 examples and
the negative class only 20, a simple model that always predicts the positive class will get an accuracy
of 0.83 and a F1 score of 0.91. However, the F1 score for the negative class would be 0 in this case.

The Macro-F1 metric arises as a solution to this scenario. Unlike the standard F1 score, the Macro-F1
computes the average of the F1 scores for each class. Thus, the Macro-F1 score can provide insight
into the model’s performance on every class for imbalanced datasets.

Thus, in our experiments with tabular data, we report the Macro-F1 scores.

E.8 DATASET STATISTICS

Image Datasets Total number of images and male/female distribution from the CelebA, LFWA and
FairFace datasets are shown on Tab. 7.

Fairness Benchmark Datasets The tables below summarize the statistics of the German, Adult
and COMPAS datasets in terms of the distribution of labels and protected groups. Note that all
the nomenclature regarding the protected attribute names and values is borrowed from the official
documentation of the datasets.
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Table 7: Face Datasets Statistics. Rows stand for #male|#female.

Dataset Train Validation Test

CelebA 94,509|68,261 11,409|8,458 12,247|7,715
LFWA 7,439|2,086 2,832|876 –
FairFace 45,986|40,758 9,197|8,152 5,792|5,162

Tab. 8a shows the distributions of sex and label for the German dataset (Kamiran & Calders, 2009). It
contains 1,000 examples with target binary variable the individual’s credit risk and protected groups
age and sex. We use ‘Good Credit’ as the favorable label (1) and ‘Bad Credit‘ as the unfavorable
one (0). Regarding age as a protected attribute, ‘Age>25’ and ’Age<25’ are considered the favorable
and unfavorable groups, respectively. When using sex as protected attribute, male and female are
considered the privileged and unprivileged groups, respectively. Features used are the one-hot
encoded credit history (delay, paid, other), one-hot encoded savings (>500, <500, unknown) and
one-hot encoded years of employment (1-4y, >4y, unemployed).

Table 8: Tabular datasets statistics.

(a) German Credit

A\Y Bad Good Total

Male 191 499 690 (69%)
Female 109 201 310 (31%)

Age>25 220 590 810 (81%)
Age<25 80 110 190 (19%)

Total 300 (30%) 700 (70%) 1,000

(b) Adult Income

A\Y <50k >50k Total

White 31,155 10,607 41,762 (86%)
non-White 6,000 1,080 7,080 (14%)

Male 22,732 9,918 32,650 (67%)
Female 14,423 1,769 16,192 (33%)

Total 37,155 (76%) 11,687 (24%) 48,842

(c) COMPAS

A\Y Recid No Recid Total

Male 2,110 2,137 4,247 (80%)
Female 373 658 1,031 (20%)

Caucasian 822 1,281 2,103 (40%)
non-Cauc. 1,661 1,514 3,175 (60%)

Total 2,483 (47%) 2,795 (53%) 5,278

Tab. 8b depicts the data statistics for the Adult Income dataset (Kohavi et al., 1996). This dataset
contains 48,842 examples where the task is to predict if the income of a person is more than 50k
per year, being >50k considered as the favorable label (1) and <50k as the unfavorable label (0).
The protected attributes are race and sex. When race is the protected attribute, white refers to the
privileged group and non-white to the unprivileged group. With sex as protected attribute, male is
considered the privileged group and female the disadvantaged group. The features are the one-hot
encoded age decade (10, 20, 30, 40, 50, 60, >70) and education years (<6, 6, 7, 8, 9, 10, 11, 12, >12).

Tab. 8c contains the statistics about the COMPAS (Angwin et al., 2016) dataset. This dataset has
5,278 examples with target binary variable recidivism. We use Did recid as the unfavorable label (0)
and No recid as the favorable label (1). When sex is the protected attribute, male is the disadvantaged
group and female as the privileged one. When using race as protected attribute, caucasian is the
privileged group and non-caucasian the disadvantaged one. Regarding the features, we use one-hot
encoded age (<25, 25-45, >45), one-hot prior criminal records of defendants (0, 1-3, >3) and one-hot
encoded charge degree of defendants (Felony or Misdemeanor).

All datasets are pre-processed using AIF360 by Bellamy et al. (2019), which use the same pre-
processing as in Calmon et al. (2017).
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E.9 COMPUTATIONAL COST

We describe experiments to illustrate FairShap’s computational performance relative to other
approaches by applying data re-weighting on synthetic datasets of varying sizes, ranging from 1k to
100k data points, each comprising 200 features. We compare the run time (in seconds) of computing
the weights using FairShap, Group Re-weighting (Kamiran & Calders, 2012), OptPrep (Calmon
et al., 2017), LabelBias (Jiang & Nachum, 2020) and IFs (Li & Liu, 2022). We leave the post-
processing (Hardt et al., 2016) approach out of the comparison since its based on tweaking thresholds
after a model is trained, such that the running time heavily depends on the training time of the model
of choice. In these experiments, we allocate 80% of the data for training and 20% for validation.
With 10 iterations for each configuration, we compute the mean and standard deviation of the run
time on an Intel i7-1185G7 3.00GHz CPU. Results are reported in Fig. 11.

As seen in the Figure, instance level re-weighting via FairShap is computationally competitive for
datasets with up to 30k data points. Group Re-weighting and LabelBias are computationally more
efficient than FairShap on datasets with >30k data points.

Note that OptPrep (Calmon et al., 2017) and IFs (Li & Liu, 2022) require a hyperparameter search
for each model and each dataset, yielding a significant increase on the computation time. In our
experiments, we used the hyperparameters provided by the authors and hence did not have to tune
them. Consequently, the actual running time for these methods would significantly increase depending
on the number of hyperparameter configurations to be tested. For example, OptPrep consistently
requires ≈ 10 seconds regardless of the dataset’s size. However, a hyperparameter grid-search
scenario with 20 different hyperparameter settings and 10-fold cross-validation, would increase the
run time to 2,000 seconds (i.e., 10s/it x 20 x 10) or 20,000s for IFs on a dataset size of 60,000 samples
(i.e., 100s/it x 20 x 10). These run times are significantly larger than those required to compute
FairShap’s weights.

The Figure also depicts FairShap’s execution times (in seconds) with different numbers of features
in datasets of increasing sizes. As seen in the Figure, three datasets with 60k, 80k, and 100k instances
and feature dimension of 18, have runtimes of 14.7s, 29.1s, and 47.8s.

Finally, we provide an overview of FairShap’s run times for the experiments described in Section 4.
On the German dataset, FairShap has an average execution time of 0.001s±0.002, where | D | =
700, | T | = 150, and there are 11 features. In the case of the Adult dataset, the execution time
remains consistent at 12.7s±3, for a dataset with | D | = 34, 189, | T | = 7, 326, and 18 features.
Finally, for the COMPAS dataset, the run time is 0.063s±0.004 on a dataset with | D | = 3, 694,
| T | = 792, and 10 features. These numbers are consistent with the run times reported in Fig. 11.
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Figure 11: Left: Run time comparison of re-weighting via FairShap and baselines with respect to
data set size and number of features. Datasets are split in 80% as D and 20% as T . We report mean
and std run times for 10 iterations. Right: FairShap’s execution times (in seconds) on datasets with
increasing numbers of features and sizes. In all experiments, the CPU is an Intel i7-1185G7 3.00GHz.
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