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Abstract

Thompson Sampling with Linear Payoffs (LinTS) is a popular learning policy in contextual
bandit algorithms for solving sequential decision making problems. While LinTS has been
studied extensively in the academic literature, surprisingly, its behavior in terms of repro-
ducibility did not receive the same attention. In this paper, we show that a standard and
seemingly correct LinTS implementation leads to non-deterministic behavior. This might
go unnoticed easily, yet impact results adversely. This calls the reproducibility of papers
that use LinTS into question. Further, it forbids using this particular implementation in
any industrial application where reproducibility is critical not only for debugging purposes
but also for the trustworthiness of machine learning models. We first study the root cause of
the non-deterministic behavior. We then conduct experiments on recommendation system
benchmarks to demonstrate the impact of non-deterministic behavior in terms of repro-
ducibility and downstream metrics. Finally, as a remedy, we show how to avoid the issue to
ensure reproducible results and share general advice for practitioners.

1 Introduction

Contextual multi-armed bandit (MAB) algorithms are powerful solutions for online decision making problems
in many areas of Information Retrieval (IR) including online advertisement (Schwartz et al., 2017) and
personalized recommendation systems (Li et al., 2010). In this setting, an agent makes sequential decisions
under uncertainty. In contextual bandits, the agent also observes a feature vector (context) associated with
each decision. Given the contextual information, the agent selects an arm and receives a reward. The
mechanism that determines the reward is unknown to the agent, and the reward of the chosen arm can
only be observed at runtime. The agent should carefully balance exploration and exploitation to maximize
cumulative reward (Auer et al., 2002).

The main methods that target the exploration-exploitation trade-off fall into two families with several vari-
ants: upper confidence bound (UCB) (Li et al., 2010) and Thompson Sampling (TS) (Thompson, 1933).
While the former selects the arm with the highest UCB, the latter is a Bayesian approach that maintains a
posterior distribution.

Among the bandit policies, Thompson Sampling with linear payoffs (LinTS), has attracted significant at-
tention in the bandit literature. The original LinTS paper (Agrawal & Goyal, 2013) from 2013 has more
than 600 citations1 including many from the IR and recommender systems literature (Abeille & Lazaric,
2017; Garcelon et al., 2020; Dimakopoulou et al., 2019; Gutowski et al., 2019; 2021). Moreover, LinTS is
implemented in several machine learning libraries including the Striatum Python library from National
Taiwan University (Lin et al., 2016), StreamingBandit REST service from Nth Iteration Labs (Kruijswijk
et al., 2016), the Contextual R package from Tilburg University, Deep Bayesian Bandits Tensorflow-
based Python library from Google Brain with a variation that uses Bayesian Linear Regression (Riquelme
et al., 2018), and finally, as part of <LIBRARY> (CITATION), our own Python library for contextual
multi-armed bandits from <ORGANIZATION>2.

1https://scholar.google.com/scholar?cites=16506820398491305928
2https://github.com/<organization>/<library>
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The LinTS algorithm is popular for its Bayesian approach to exploration and empirical gains in performance
over other contextual bandit algorithms (Li et al., 2010). The original LinTS paper from Microsoft Research
by Agrawal & Goyal (2013) provides an elegant proof for the non-trivial regret bound of the algorithm
using martingale-based analysis. Unfortunately, the paper does not provide an implementation or any
computational results to demonstrate algorithm performance. As such, the reproducibility of this work
remained unknown to date. In this paper, we put LinTS to a test.

Python is one of the most popular programming languages in machine learning research and data science
practice. When implementing the LinTS algorithm in Python as part of our personalization efforts at
<ORGANIZATION>, we discovered that a standard and seemingly correct implementation leads to subtle
non-determinism. Such behavior might easily go unnoticed, yet it affects the predictions adversely and alters
conclusions drawn. Non-deterministic behavior has several undesirable consequences. First, it casts a shadow
on the reproducibility of papers and applications where this implementation is used. Second, it cannot be part
of any industrial application where reproducibility is critical not only for reproducing recommendation results
and debugging, but also for potential external audits required by law and trustworthiness of algorithms.

In this paper, we first show that the main issue behind the non-deterministic behavior stems from the
multivariate normal distribution functionality in NumPy (Harris et al., 2020). The NumPy package is fun-
damental in numeric computation, hence, it is reasonable to assume that LinTS implementations will depend
on NumPy. In fact, this non-deterministic multivariate normal distribution functionality is used in existing
LinTS implementations found in Striatum3, StreamingBandit4, and Deep Bayesian Bandits5, as
can seen in their Github repositories. We find the underlying cause to be prevalent across the open source
community6. This casts a shadow on the reproducibility of any work relying on these libraries, and on any
research that relies on NumPy’s multivariate normal sampling.

Unfortunately, such non-deterministic behavior is not documented. The issue is neither discussed online
nor in previous literature. Despite the popularity of LinTS and its applications, the susceptibility of its
Python implementation to undesired non-deterministic behavior is not widely known. A general algorithm
designer/user can set up their environment to use specific psuedo-random generator seed, and since there
isn’t an inherent parallelism or asynchonicity to the algorithm, expect deterministic input. This user would
remain oblivious to the fact that their work cannot be replicated across different environments. This is
exactly what we would like to raise awareness for and address in this paper.

1.1 Our Contributions

First, we would like to bring attention to the non-deterministic behavior of LinTS which is not discussed
in the original paper. This issue is concerned with LinTS implementation in Python. Therefore, it is not
within the immediate scope of the original work. Our main contribution is to track down the root cause of
non-determinism to Singular Value Decomposition (SVD) (Golub & Reinsch, 1970) of the covariance matrix
when generating samples from the multivariate normal distribution.

As a remedy, we show that the issue can be avoided using Cholesky Decomposition (Gentle, 1998) instead
of SVD, given that Cholesky’s assumptions hold. We prove that using the Cholesky method is sound in the
LinTS setting and then verify this numerically with extensive experiments across multiple environments6.
We also demonstrate that the Deep Bayesian Bandits paper (Riquelme et al., 2018), which proposes a
new benchmark for bandits, suffer from the same reproducibility issue7. Based on our proposed approach,
for reference, we contribute an open-source deterministic LinTS implementation in Python as part of our
<LIBRARY> library (CITATION). Finally, we stress that using Cholesky decomposition is not the default
setting in any NumPy version when sampling from the multivariate normal distribution, and for best prac-
tice, we point out where special attention is required. This extends our contribution to other works beyond
LinTS into broader recommender systems and IR community.

3https://github.com/ntucllab/striatum
4https://github.com/Nth-iteration-labs/streamingbandit
5https://github.com/tensorflow/models/tree/archive/research/deep_contextual_bandits
6https://github.com/<organization>/<library>/tree/master/examples/lints_reproducibility
7We plan to open issues in relevant repositories to share and rectify the problem.
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1.2 Organization of the Paper

We start with a brief background on bandits and LinTS in Section 2. Readers familiar with it can skip to
Section 3, where we explain the non-deterministic behavior and its root cause. We then demonstrate the issue
with a minimum example in Section 3.2. While non-determinism is a serious concern, thankfully, it is easy
to address as we prove in Section 4. Finally, computational results in Section 5 quantify the impact of this
issue on well-known recommendation benchmarks in terms of both raw scores and downstream evaluation
metrics.

2 Background

In multi-armed bandits, an agent makes a sequence of decisions at time points t = {1, 2, . . . , T}, whereby,
at each time t, the agent chooses an arm at from a set of K arms. A single-arm is selected in the default
case, while k arms can be selected in top-k/slate recommendation setting (Swaminathan et al., 2017). After
choosing one or more arms, a reward rt ∼ Rat is observed for each selected arm from an unknown model of
stochastic or deterministic outcomes. The rewards for other arms remain unknown. In contextual bandits,
the agent also observes side information corresponding to the state of the environment at time t. This side
information is referred to as context and is defined as xt ∈ Rd. The arm with the highest expected reward
E[rt|at] differs depending on this context. The uncertainty of the expected reward may differ based on
context, which can impact decisions if the exploration strategy leverages that information.

In the Regret Minimization approach to optimizing bandit algorithms, the performance of a bandit algorithm
is evaluated on the cumulative reward given by r =

∑T
t=1 rt and the total regret, defined as the difference

between the observed the reward r and the reward r∗ that would have been observed had the optimal arm
been chosen at each time point. The total regret, or total opportunity loss, can thus be represented as:
L = E[

∑
r∗ − r]. Overall, the objective of both context-free and contextual bandits is to maximize the

cumulative reward, and equivalently, minimize the total regret, which is the primary objective of the Regret
Minimization task.

There exist a variety of learning policies that address the exploration-exploitation trade-off. The different
strategies include frequentist (ϵ-Greedy, SoftMax, UCB) and Bayesian (TS) approaches (Kuleshov & Precup,
2014; Auer et al., 2002; Russo et al., 2018). In context-free bandits, the TS learning policy observes the
number of successes and failures, generates a beta distribution for each arm, and samples from the beta to
select the next arm. In contextual bandits, LinUCB (Li et al., 2010) and LinTS (Agrawal & Goyal, 2013)
are the popular choices.

2.1 LinTS

The LinTS algorithm (Agrawal & Goyal, 2013) is the Bayesian competitor of LinUCB. The main principle
behind the LinTS approach is that the parameters used in ridge regression are sampled from multivariate
normal distribution. This follows the Bayesian assumption that model parameters are not fixed and have
prior distributions that can be revised upon observations. Algorithm 1 presents the details of Thompson
Sampling with linear payoffs.

The LinTS algorithm starts by initializing a ridge regression for each arm. Notice that this uses the same
A−1

a = (XT
a Xa + λId)−1 from LinUCB, with λ, again, as the regularization strength. In the initialization

step, there exist no Xa observation, making the starting value of Aa equal to λId. The other components of
the ridge regression, XT r and β are initialized with zeroes.

At each time point t, a multivariate normal distribution is generated for each arm with the mean set as the
current β parameter of the arm, denoted by βµa. For the covariance matrix, M = α2A−1

a is used, where
α is the exploration factor. A sampled βta vector is drawn from this distribution. The non-deterministic
behavior addressed in this paper occurs in this step (Step 1).

Next, the sampled values are used in the standard ridge regression calculation of xtβta to generate the
expectation of the arm. The arm with the maximum expectation is selected (Step 2), and a reward rt is
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Algorithm 1: Thompson Sampling with Linear Payoffs (LinTS)
Initialization for each arm a: Aa = λId, XT

a ra = 0d, βµa = 0d

for t = 1, 2, ..., T do
1. For each arm a, sample βta from distribution N (βµa, α2A−1

a )
2. Select armt = argmaxa(xtβta)
3. Observe reward rt

4. Update the selected arm:
Aa ← Aa + xT

t xt

XT
a ra ← XT

a ra + xT
t rt

βµa ← A−1
a XT

a ra

# Option 1) Random number generator - Legacy , Deprecated
rng = np. random . RandomState (seed=42)

# Option 2) Random number generator - New Generator class
rng = np. random . default_rng (42)

# Scoring function
def get_score_of_arm (x, beta_mu , A_inv , alpha =1):

# Scaling with the exploration parameter
M = np. square ( alpha ) * A_inv

# Multivariate sampling
beta_sampled = rng. multivariate_normal (beta_mu , M)

# Score of the arm
return np.dot(x, beta_sampled )

Figure 1: Python implementation of the LinTS scoring function for each arm in the multi-armed bandit.

observed (Step 3). Based on the reward of the select arm, A−1
a and βµa are updated accordingly (Step 4).

At time t + 1, and so on, the β samples can be generated from revised multivariate normal distributions,
and the algorithm proceeds.

3 Non-Deterministic Behavior of LinTS in Python

At inference time t with a new context vector xt, based on the trained parameters βµ and A, the LinTS
scoring procedure for each arm is as follows:

1. Find the inverse A−1 of the trained model parameter A.

2. Scale A−1 with the exploration parameter α2 to find the covariance matrix M = α2A−1.

3. Sample a d-dimensional vector βt from the multivariate normal distribution defined by the mean βµ

from the training and the covariance matrix M .

4. Find the dot product of the context vector xt with the sampled parameters βt to generate the
likelihood.

In Python, a standard and straightforward implementation of this procedure uses the multivariate normal
distribution functionality from the NumPy package. Figure 1 outlines the corresponding implementation,
which can be used to retrieve the score of a specific arm given the context vector xt (x) and the parameters βµa

(beta_mu) and A−1
a (A_inv). The figure shows both the RandomState class usage (Option 1), which has been

deprecated in July 2019 with version 1.18, and the new Generator class usage (Option 2). The multivariate
normal distribution function provided in the RandomState generator uses SVD (Golub & Reinsch, 1970)
to decompose the covariance matrix, which leads to non-determinism. Similarly, the new Generator class
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exclusively used SVD until the version 1.19 release in December 2019, which means that any implementation
to that date has inherited the issue. To date, SVD remains the default option as the underlying decomposition
technique in the multivariate normal distribution for both Option 1 and Option 2. In other words, any
implementation similar to Figure 1 is problematic.

3.1 The Root Cause Behind Non-Determinism

We narrow down the root cause of the issue to multivariate sampling. While it is not acknowledged in the
NumPy documentation, there exist few thread discussions in GitHub issues (#24358, #135979, #1338610,
and #1335811) that point to this underlying cause: the NumPy multivariate sampling implementation
guarantees the distribution of the samples but not the values of the samples.

Specifically, given the mean vector m of dimension d and the covariance vector M of dimension d × d, the
multivariate_normal function generates new samples as follows:

1. Decompose the covariance matrix M into a matrix L.

2. Randomly sample d values from the standard normal distribution as b.

3. Add the mean vector m to the dot product of the randomly sampled vector b and the decomposed
covariance matrix L to give the final vector s.

How the matrix L generated in the first step of the algorithm depends on the underlying decomposition
method. As mentioned in Section 3, both the deprecated RandomState and the newer Generator classes use
SVD.

The root cause of the non-determinism is, unfortunately, in the NumPy’s implementation of SVD. When two
singular values are equal, they are returned in non-deterministic order. This subtle side effect is reported at
least as early as 2012 in issue #2435. To make it worse, the issue is marked as “wont-fix” as the scope of this
SVD implementation does not provide any guarantee on the values but only on the resulting distribution.
As stated in issue #13358, the ordering of singular values is left to be determined by the underlying linear
algebra library. Consequently, even when the seed value is fixed, sampling from a multivariate distribution
with repeated singular values in the covariance matrix can lead to different results depending on the linear
algebra library in the backend.

To confirm this behavior, we show that 12 with the exact same seed and NumPy versions, the sampled values
are in fact different depending on whether NumPy is installed with Linear Algebra Package (LAPACK) (An-
derson et al., 1999), Basic Linear Algebra Subprograms (BLAS) (Blackford et al., 2002), Open Source Basic
Linear Algebra Subprograms (OpenBLAS) (Xianyi, 2011) or Intel Math Kernel Library (MKL) (Intel, 2003).
Not only that, but due to numeric instability, there is no guarantee that results will remain reproducible
even on the same machine with the same linear algebra backend.

In the context of LinTS, the issue manifests itself with the mean vector m ← βµ, the covariance matrix
M ← α2A−1, and the output s← βt. When the random sampling from the multivariate normal distribution
is not guaranteed to be deterministic, then the inference made by LinTS is not reproducible. Notice that
repeated singular values in the covariance matrix can naturally occur depending on the data.

In Section 5, our experimental analysis demonstrate that when the matrix of context vectors used in the
training data is not linearly independent different scores are generated depending on the compute environ-
ment.

8https://github.com/numpy/numpy/issues/2435
9https://github.com/numpy/numpy/issues/13597

10https://github.com/numpy/numpy/issues/13386
11https://github.com/numpy/numpy/issues/13358
12https://github.com/<organization>/<library>/tree/master/examples/lints_reproducibility
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3.2 Minimal Example to Reproduce the Error

Let us finish this section with a minimal example to make the issue more concrete. Figure 2 presents toy
training and test data sets with three arms.

# Three arms
arms = [1, 2, 3]

# Training data
decisions = np. array ([1, 1, 1, 2, 2, 3, 3, 3, 3, 3])
rewards = np. array ([0, 0, 1, 0, 0, 0, 0, 1, 1, 1])
contexts = np. array ([[0, 1, 2, 3, 5], [1, 1, 1, 1, 1],

[0, 0, 1, 0, 0], [0, 2, 2, 3, 5],
[1, 3, 1, 1, 1], [0, 0, 0, 0, 0],
[0, 1, 4, 3, 5], [0, 1, 2, 4, 5],
[1, 2, 1, 1, 3], [0, 2, 1, 0, 0]])

# Test data
test_context = np. array ([0, 1, 2, 3, 5])

# Output
# >> [1, **2**, 3, 3, 3] ( with MKL NumPy v1.18)
# >> [1, **1**, 3, 3, 3] ( with OpenBLAS NumPy v1.18)

Figure 2: Example to reproduce non-deterministic LinTS.

We run this example using the LinTS implementation given in Figure 1 on the same operating system (Mac
OS) with the same Python and NumPy versions, and the same seed value for the random number generator.
As can be seen in the results13, the LinTS algorithm generates different results for the same context vector in
the test data depending on the linear algebra packages MKL and OpenBLAS. Anecdotally, we encountered
different results even with the same linear algebra package between two runs on the same machine. With
larger number of arms, higher dimensional context vectors, and larger training and test data sets, we expect
to see a greater frequency of such discrepancies. We demonstrate this effect further in our Computational
Results section.

4 How to Guarantee Deterministic Thompson Sampling

The SVD implementation in NumPy package returns singular values in sorted order. This suffers from insta-
bility when there are equal values. As a remedy, we need a technique that bypasses instability from pivoting
or sorting operations and returns unique results. The Cholesky decomposition is one such method (Gentle,
1998). In the sections below, we show why Cholesky decomposition is an appropriate alternative to SVD
within the context of the LinTS algorithm.

4.1 Cholesky Decomposition

The Cholesky decomposition operates over a Hermitian positive definite matrix and decomposes it into a
lower triangular matrix and its conjugate transpose. It does not involve singular values or eigenvalues,
follows a predictable set of steps with no pivoting or branching operation, and avoids the sorting problem.
This yields deterministic behavior, up to numerical rounding errors, across different linear algebra packages.
When reproducibility is of concern, Cholesky decomposition is one of the most recommended alternatives to
SVD for multivariate normal sampling, see e.g. NumPy GitHub issues #13358 and #13597.

The main requirement of Cholesky decomposition is its reliance on Hermitian positive definite matrices. In
LinTS, the decomposition is applied to the covariance matrix M = α2A−1, for which we need to guarantee
positive definiteness.

13https://github.com/<organization>/<library>/tree/master/examples/lints_reproducibility/
additional_experiments/lints_minimal
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LEMMA 4.1. In LinTS, the covariance matrix M = α2A−1 is positive definite.

PROOF. We observe that before any training, the matrix A is initialized as A = λId, which is a real
symmetric diagonal matrix, and therefore positive definite. During the training process, as shown in Al-
gorithm 1, the matrix A is updated using xtx

T
t , where xt is a real-valued columnar vector, which leads to

xtx
T
t being a real symmetric positive semidefinite matrix. This addition of A and xtx

T
t has been shown to

generate a positive definite matrix (Hoerl & Kennard, 1970), that is, the matrix A remains positive definite
during training. Since the inverse of a positive definite matrix is also positive definite (Horn & Johnson,
2012), the matrix A−1 is also positive definite. The covariance matrix M thus remains positive definite,
making Cholesky decomposition appropriate for use during LinTS implementation.

Fortunately, in its recent versions, NumPy introduced the option to select the decomposition method used
for the multivariate normal sampling. The new Generator class provides this option in release 1.19 with
Cholesky being one of the alternatives. We note that SVD remains to be the default option.

To ensure a deterministic implementation of LinTS in Python, we recommend the following:

1. The multivariate normal function in the legacy RandomState number generator (Option 1) should
not be used in LinTS implementations since it uses SVD exclusively. If RandomState must be used,
e.g., for backwards compatibility, we recommend a custom implementation of the sampling function.

2. The new Generator (Option 2) is suitable for LinTS. The important distinction is that instead
the default SVD option, Cholesky should be selected when sampling from the multivariate normal
distribution.

# Make sure to select Cholesky decomposition
beta_sampled = rng. multivariate_normal (beta_mu , M, method ='cholesky ')

Figure 3: Cholesky decomposition for deterministic multivariate normal sampling.

Our running implementation illustrated in Figure 1 can be modified to adhere to these guidelines as in
Figure 3. With this minor update, the minimal example in Figure 3.2 now returns identical results. The
adverse impact of not following these suggestions is demonstrated next.

5 Computational Results

In the previous sections, we explored non-determinism in LinTS, revealed the root cause behind the problem,
and proposed a simple solution with easy-to-follow best practices. What remains to be seen is a computa-
tional study to quantify the impact of the non-deterministic behavior and understand the extent it impacts
downstream tasks and evaluation metrics. In particular, the goal of our experiments is to answer two main
questions:

[Q1] What is the similarity between the results produced by a non-deterministic implementation of the
LinTS algorithm under different environment setups? Does a deterministic implementation resolve
this dissimilarity?

[Q2] Does the issue manifest itself in standard benchmarks and existing Python libraries, and what is its
impact on relevant evaluation metrics?

To answer these questions, we consider Recommendation System as our application domain, where LinTS
is commonly used, and conduct experiments on the well-known MovieLens data set (Harper & Konstan,
2016). As a negative result, we observe that when using SVD, the recommendations exhibit considerable
discrepancies in both generated item scores and recommendation metrics. Practitioners might attribute such
performance differences incorrectly to algorithmic improvements while it is solely due to non-determinism.
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Operating System (OS) OS Version NumPy LA Backend
Windows 10.10 OpenBLAS

Red Hat Linux 3.10 OpenBLAS
MacOS Darwin 10.15 (19.6) OpenBLAS
MacOS Darwin 10.15 (19.5) MKL

Amazon AWS Linux 4.14 LAPACK

Table 1: Environments considered in our experiments with varying operating systems and linear algebra
backend.

Env Comparison
Red Hat

Linux
Score

Prediction
0%

32.64%

MacOS MKL Score
Prediction

0.00021%
43.87%

4.2e-4%
67.36%

MacOS
OpenBLAS

Score
Prediction

0%
32.64%

100%
100%

0.00042%
67.36%

AWS
Linux

Score
Prediction

0%
32.64%

100%
100%

0.00042%
67.36%

100%
100%

Windows Red Hat
Linux Mac MKL MacOS

OpenBLAS

Table 2: Numerical Results on MovieLens: Comparison of the percentage of matching raw user-item scores
and matching predictions on whether to recommend the item across environment pairs when using SVD-
based LinTS implementation. A reproducible result should match 476,006 (100%) times as shown in bold.
Any other result is a discrepancy due to non-deterministic behavior.

As a positive result, we find that using Cholesky yields identical results across all environments, independent
of the OS and the linear algebra backend. This confirms our proof experimentally and verifies the effectiveness
of our proposed solution. Finally, we focus on Google Brain’s Deep Bayesian Bandits library (Riquelme
et al., 2018) to test a 3rd party implementation, confirming it also suffers in terms of reproducibility.

5.1 Environment Setup

Table 1 provides the list of environments considered in our experiments. We target mainstream operating
systems Windows, Linux, and Mac OS. We also include Amazon AWS Linux as an example of a cloud service
provider. In parallel, we consider three different linear algebra backends: Open Source Basic Linear Algebra
Subprograms (OpenBLAS) (Xianyi, 2011), Linear Algebra Package (LAPACK) (Anderson et al., 1999) and
Intel Math Kernel Library (MKL) (Intel, 2003). Note that even with the same underlying linear algebra
package, there can be differences between operating systems.

5.2 Numerical Results on MovieLens Data

We use the well-known 100K MovieLens data set (Harper & Konstan, 2016) with 100K ratings from 943
users for 1682 movies. For TS, we binarize the data set for each user-movie pair with a positive reward if
the user rated the movie and zero otherwise. This gives us 1.58M observations with 100K positive responses.
We divide it into 70%-30% train and test splits. The user context includes age, gender (boolean), occupation
(one-hot), and the ZIP code (ordinal). We augment this context with a column representing an unknown
occupation (none or other). This minor feature engineering creates linear dependence in the data and
duplicate singular values in A−1 matrix.

Table 2 presents our results that compare all pairs of environments on the MovieLens data using the SVD-
based LinTS implementation. The table contains the matching percentages for the raw user-item scores
generated by LinTS, and whether both environments made the same prediction on recommending the item

8



Under review as submission to TMLR

Environment Reward
NDCG Precision Recall

@5 @10 @25 @5 @10 @25 @5 @10 @25

Windows 37 0.0166 0.0244 0.0399 0.1251 0.1208 0.1102 0.0064 0.0118 0.0265
Red Hat 54 0.0201 0.0286 0.0457 0.1399 0.1300 0.1175 0.0070 0.0132 0.0297

MacOS MKL 40 0.0181 0.0270 0.0418 0.1336 0.1265 0.1124 0.0071 0.0132 0.0271
MacOS OpenBLAS 54 0.0201 0.0286 0.0457 0.1399 0.1300 0.1175 0.0070 0.0132 0.0297
Amazon AWS Linux 54 0.0201 0.0286 0.0457 0.1399 0.1300 0.1175 0.0070 0.0132 0.0297

Cholesky (for all) 31 0.0131 0.0190 0.0312 0.0926 0.0905 0.0858 0.0048 0.0090 0.0203

Table 3: Numerical Results on MovieLens Data: Comparison of evaluation metrics at different top-k set-
tings across different environments when using SVD-based LinTS implementation. The last row shows the
Cholesky implementation that is identical for all environments.

to the user. Ideally, we expect 476,006 matches, as shown in bold. We find that this is the case for three
pairs of environments, which match 100%, while the others have an low percentage of predictions match and
very few matches in scores. Let us note, compared to our variant of the MovieLens dataset studied here,
real-world datasets might capture richer structure that could lead to even worse discrepancies.

Table 3 presents the results for recommendation metrics for different top-k recommendations from 5 to 25,
and the cumulative reward when only a single arm is selected. The cumulative reward is calculated as the
sum of rewards across the recommendations of the model, and recommendation metrics follow their standard
definitions (Sun et al., 2020). As can be seen, the failure of matching scores propagates downstream and
causes significant differences in the evaluation metrics. The NDCG@5 difference between Windows and
MacOS OpenBLAS environments is enough to change the outcome of an experiment, leading to incorrect
conclusions. When using Cholesky decomposition instead, as we expect from the theory, all environments
return the same scores 100% of the time, leading to identical metrics.

5.2.1 Additional Experiments:

We conducted further experiments14 on other recommendation benchmarks such as the GoodReads data
set (Wan & McAuley, 2018) with review-based user features generated by TextWiser (Kilitcioglu & Ka-
dioglu, 2021), on MovieLens with parameter tuning, and on a synthetic dataset. All of these additional
experiments lead to the same conclusion and are omitted here.

5.3 Numerical Results with the Deep Bayesian Bandits Library

As our final experiment, we turn our attention to an existing library and test an implementation aside from
our own, focusing on the Deep Bayesian Bandits library from Google Brain (Riquelme et al., 2018).

This library contains the LinTS algorithm to account for its baseline approach. The LinTS implementation15

of the paper (Riquelme et al., 2018) makes a sampling call to the multivariate_normal function as we
warned against in Section 3. Crucially, the LinTS algorithm shows the best cumulative regret for the UCI
mushroom data set(Dua & Graff, 2017) in this paper (Riquelme et al., 2018), which calls for verification.

Many thanks to our authors who provided example code to reproduce their table, we were able to run their
code to test whether this LinTS algorithm is prone to reproducibility issues16. We use the UCI mushroom
data set(Dua & Graff, 2017) in a bandit task (Blundell et al., 2015), taking a sample of 2000 to fully mimic
the example. We then compare the reproducibility across three different approaches:

14https://github.com/<organization>/<library>/tree/master/examples/lints_reproducibility/
additional_experiments

15https://github.com/tensorflow/models/blob/archive/research/deep_contextual_bandits/
bandits/algorithms/linear_full_posterior_sampling.py#L98

16https://github.com/<organization>/<library>/tree/master/examples/lints_reproducibility/table_4

9



Under review as submission to TMLR

OS Backend RS SVD Cholesky
MacOS Big Sur MKL 4135 3575 4140
MacOS Big Sur OpenBLAS 3720 3830 4140
Ubuntu 18.04 MKL 3475 3540 4140
Ubuntu 18.04 OpenBLAS 4075 3875 4140

Table 4: Numerical Results with the Deep Bayesian Bandit Library: Comparison of the cumulative reward
across different environments when using the SVD-based and Cholesky-based LinTS implementation. The
identical reward are shown in bold. Any other result is a discrepancy due to non-deterministic behavior.

• RandomState (RS): The legacy option from Figure 1 which uses SVD. The Deep Bayesian Bandits
library implements this option. We plan to reach out to the contributors of this library to share our
findings.

• SVD: The newer Generator class for random number generator that uses the default SVD decompo-
sition, as shown in Section 3.

• Cholesky: The newer Generator class that explicitly specifies the Cholesky decomposition (Fig-
ure 3). This is the suggested method of our paper.

To measure the difference, we use the cumulative reward generated by the LinTS policy, which is used to
select the best performing policy when comparing bandit algorithms. It is therefore critical that the rewards
are reproducible.

Table 4 presents the results which show that the cumulative reward differs considerably across different
environments for SVD-based implementations. Once again, we show that using the Cholesky decomposition
alleviates the problem completely, producing the same reward across all environments. Note that in contrast
to the recommendation metrics in the previous example, Cholesky leads to better performance in this task.
This also calls the existing results into question. Our findings indicate that the previous results will not be
reproducible even if we were to use their exact implementation. We reiterate our recommendation for using
the Cholesky decomposition to ensure deterministic LinTS behavior, which also applies to Google’s Deep
Bayesian Bandits (Riquelme et al., 2018) library as well as any academic or industrial work that depends
on it.

6 Conclusion

Almost ten years after the impactful LinTS paper (Agrawal & Goyal, 2013), we presented a detailed treat-
ment of the subtle non-deterministic behavior that jeopardizes its implementations in Python. LinTS offers
great versatility in quantifying uncertainty and provides a principled mechanism for exploration. However,
attention is required to guarantee deterministic behavior as we advocated in this paper.

We identified the root cause of the issue, discussed potential sources of instability that can lead to unwanted
behavior, provided a minimal example and multiple experiments to reproduce the error, and studied it in
details. Our experiments demonstrated that the issue manifests itself in well-known recommendation bench-
marks, impacts existing libraries and any work that utilizes NumPy’s multivariate sampling implementation,
and can be detrimental to computational results and conclusions drawn. Finally, and most importantly, we
described a simple fix based on Cholesky decomposition to rectify the issue within the context of the LinTS
algorithm. We proved the soundness of the technique and shared general advice with practitioners and
researchers.

Our open-source contextual multi-armed bandit library, <LIBRARY> (CITATION) is released with this
deterministic LinTS implementation as a reference. Overall, our findings take a step toward reproducible AI
research and hopefully motivate others not to overlook such important issues as forgotten implementation
details that might influence scientific conclusions.
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