
Hierarchical Self-Attention: Generalizing Neural
Attention Mechanics to Multi-Scale Problems

Saeed Amizadeh, Sara Abdali, Yinheng Li, and Kazuhito Koishida
Microsoft

Redmond, WA 98052
{saamizad, saraabdali, yinhengli, kazukoi}@microsoft.com

Abstract

Transformers and their attention mechanism have been revolutionary in the field of
Machine Learning. While originally proposed for the language data, they quickly
found their way to the image, video, graph, etc. data modalities with various
signal geometries. Despite this versatility, generalizing the attention mechanism
to scenarios where data is presented at different scales from potentially different
modalities is not straightforward. The attempts to incorporate hierarchy and multi-
modality within transformers are largely based on ad hoc heuristics, which are not
seamlessly generalizable to similar problems with potentially different structures.
To address this problem, in this paper, we take a fundamentally different approach:
we first propose a mathematical construct to represent multi-modal, multi-scale
data. We then mathematically derive the neural attention mechanics for the pro-
posed construct from the first principle of entropy minimization. We show that
the derived formulation is optimal in the sense of being the closest to the standard
Softmax attention while incorporating the inductive biases originating from the
hierarchical/geometric information of the problem. We further propose an effi-
cient algorithm based on dynamic programming to compute our derived attention
mechanism. By incorporating it within transformers, we show that the proposed
hierarchical attention mechanism not only can be employed to train transformer
models in hierarchical/multi-modal settings from scratch, but it can also be used to
inject hierarchical information into classical, pre-trained transformer models post
training, resulting in more efficient models in zero-shot manner.

1 Introduction

The field of Deep Learning has recently experienced a spectacular breakthrough with the rise of
Large Language Models (LLMs). It is no secret that this success is largely owed to the Transformer
architecture [90] and its self-attention mechanism. Although they were originally proposed to work
with language [24, 52, 13, 18], transformers have found their way to deal with images [25, 100, 85],
video [9, 65, 14, 46], audio [32, 91, 45, 16], graphs [101, 61, 72, 76], groups [42, 83], manifolds
[38] and point clouds [33, 107] without significantly altering their basic neural attention mechanism.
This is mainly due to the fact that, unlike many other architectures, transformers incorporate data
geometry not by architectural priors but by explicit, black-box, position embedding functions, which
can be easily replaced from one domain to another.

Despite this versatility, information quite often comes in different modalities and at different scales.
In terms of geometry, this means that we deal with problems where each datapoint may occupy
multiple, mutually-inconsistent geometries at potentially different scales. This is indeed challenging,
even for transformers! To this end, various novel (often heuristic) neural architectures have been
proposed to deal with multi-modal [55, 44, 109, 87, 23, 103, 40, 69] and hierarchical data [54, 105,
67, 94, 19, 106, 110].

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

Aside from the heuristic-based nature of many of these empirical architectures, they quite often
suffer from a more practical dilemma. On one hand, many such frameworks tend to partially discard
geometrical or hierarchical information depriving the learning task from valuable domain knowledge
which can significantly reduce the model’s statistical complexity. On the other hand, by incorporating
the full geometrical knowledge of different modalities and their hierarchical structure within these
heuristic frameworks, we often end up with highly problem-specific architectures that are hardly
generalizable to other similar problems. To address this challenge in a unified and principled way, in
this work, we take a radically different approach:

• Instead of coming up with yet another heuristic neural architecture right off the bat, we first propose
a mathematical construct called nested signal to formally represent multi-geometry, hierarchical
information. As we show, the proposed formalism enables us to coherently represent different
geometrical domains at different scales while maintaining its generality across different problems.

• In order to define mathematically-sound neural operations on nested signals, we turn to the attention
mechanism. First, we show that the standard Softmax self-attention [90] can be mathematically
derived from the principle of entropy minimization. Then by generalizing this principle to nested
signals, we derive the hierarchical self-attention (HSA) neural mechanics which is the generalization
of the Softmax attention for nested signals.

• We further show that the attention weights derived from the HSA are optimal in the sense of being
the closest to flat Softmax attention weights in terms the total KL-divergence, while at the same
time adhering to the hierarchical structure of the data.

• Next, we propose an efficient algorithm based on dynamic programming to calculate the HSA,
that is provably faster than its direct evaluation. By implementing HSA within the transformer
architecture, we empirically show that we are able to train models that can seamlessly incorporate
the hierarchical/multi-modal domain knowledge to arrive at better and more efficient transformers.

• Last but not least, we show that HSA can further replace the standard Softmax self-attention
operation in pre-trained transformers and significantly reduce the number of self-attention FLOPs
while incurring minimal Accuracy drop, in an entirely zero-shot manner.

2 Representing Hierarchical Data

In Geometric Deep Learning, a signal x is defined as the mapping x : Ω→ C, where the set Ω is the
domain of the signal and C is a vector space, typically Rd with d being the channel dimension. For
example, an RGB image is a signal where Ω is the 2D grid and C = R3, i.e. the RGB color space.
Similarly, text can be seen as a signal with Ω being the 1D grid and C a word embedding space. More
niche applications in Geometric Deep Learning [17] extend the notion of signals to the domain of
graphs, gauges, manifolds, etc. by defining the appropriate structure for Ω. We refer to the set of all
such possible domains as D. The elements Ω ∈ D are not necessarily vector spaces (e.g. 2D grid). In
order to numerically handle these spaces, we define a special signal εΩ : Ω→ Rc for each Ω ∈ D
which maps the elements of each domain in D to Rc; we refer to this special signal as the position
embedding. Given εΩ, each signal x defined on Ω is seen as x : εΩ(Ω) → C. In Appendix C, we
generalize the notion of signal to encompass traditional tabular features.

In this section, we introduce the notion of nested signals which is the key modeling tool to represent
multi-modal, hierarchical data. To this end, we first define the set of all simple signals S as the set
of all possible signals defined on all possible domains; that is, S = {x : Ω → C | Ω ∈ D}. The
signals defined on different domains may have different channel dimensions; to make the channel
dimension uniform across different domains, we zero-pad the lower dimensional signals to the
maximum channel dimensionality d across different domains, such that each element of S has the
same channel dimension d regardless of its domain.

Definition 2.1 (Nested Signal). The set of d-dimensional nested signals up to depth ℓ, Nℓ, is
recursively defined as Nℓ =

{
x : Ω → U | Ω ∈ D,U ∈ {Nℓ−1,Rd}

}
, where N0 = Rd. Also,

define N = Nℓ as ℓ→∞; each element x ∈ N is then referred to as a nested signal. The top-level
domain Ω ∈ D of a nested signal x, denoted by r(x).
For example, a website is a nested signal where at the top level, we have webpages de-
fined on the nodes of a graph domain representing the link structure between the web-
pages. Each webpage is in turn another nested signal where at its top level we have

2

an unordered set of textboxes and images constituting the page. Going one level further,
each textbox or image is a (simple) signal assigning word embeddings or pixel values to
the nodes of 1D or 2D grid domains, respectively. Fig. 1(Top) depicts this example.

Figure 1: (Top) A nested signal repre-
senting a website. (Bottom) Its signal
hierarchy representation. Different col-
ors encode different types of position
embeddings assigned to each node.

While in theory, the domains Ω ∈ D can be infinite, in
practice, we mostly deal with nested and simple signals
defined on finite Ω’s. In particular, a nested signal x is said
to be finite if the domains Ω’s at all of its nesting levels
are finite. Given the set of position embeddings ε = {εΩ |
Ω ∈ D}, a finite nested signal can be represented by a
signal hierarchy as follows:
Definition 2.2 (Signal Hierarchy). For a finite nested sig-
nal x, its signal hierarchy hx is a tree with the root node
Rx associated with r(x), the top level domain of x. The
children of Rx are defined as chd(Rx) = {hx(u) | u ∈
r(x)} where x(u) is the value of signal (possibly another
nested signal) at u. If x(u) is a vector instead of a sig-
nal, then hx(u) is simply x(u). Furthermore, each child
hx(u) ∈ chd(Rx) is annotated by εr(x)(u), the position
embedding vector dictated by its parent node.
We denote the nodes (and equivalently their correspond-
ing sub-trees) in the signal hierarchy hx by upper-case
letters. Any set of sibling nodes in hx is referred as a fam-
ily. The members of a family are nested signals (or real
vectors for the leaf nodes) that reside on the same domain
Ω and therefore share the same position embedding func-
tion εΩ. Furthermore, for A ∈ hx, chd(A), sib(A) and
ℓ(A) represent the set of A’s children, its siblings and the
index set of the leaf node descendants of A, respectively.
Two nodes in hx are called unrelated if neither of them
is descendant of the other. For two unrelated nodes A
and B, their immediate common ancestor is denoted by
ica(A,B), while their highest distinct ancestors are denoted by A′ and B′, respectively, where we
have A′, B′ ∈ chd(ica(A,B)); i.e., A′ and B′ are always siblings even if A and B are not. See
Appendix A for the notational details as well as a visual demonstration of the tree-related concepts.

Since sibling nodes share the same position embedding function, the relative positional distance (or
similarity) between them is well-defined. More generally, for any two unrelated nodes A,B ∈ hx,
we can form a well-defined positional distance between them by comparing the position embeddings
of A′ and B′ which is well-defined since A′ and B′ are always siblings. The implication of this
construction is indeed powerful as it would enable the signal hierarchy formalism to define meaningful
positional distance between any two unrelated nodes in the hierarchy regardless of their modalities
or signal types. Fig. 1(Bottom) shows the signal hierarchy representation for our earlier website
example.

3 Hierarchical Self-Attention

The nested signal formalism and its signal hierarchy representation introduced in the previous section
provide a systematic way to represent hierarchical data that can potentially span across different
modalities and domains. However, the question remains what kind of neural architectures can handle
such versatile data structure? To answer this question, we note that for non-hierarchical, simple signals,
the transformer architecture first introduced by [90] allows for a unified representation learning
methodology that can accommodate various signal domains (as long as the position embedding
is available), not to mention its remarkable success in revolutionizing deep learning. However,
extending the attention mechanism to nested signals is not straightforward as the information in such
signals can come with different signal domains at different scales.

To address this problem, in this section, we first propose a statistical mechanical framework that ele-
gantly derives the classical Softmax attention mechanism from the principle of entropy minimization
when a finite (simple) signal is viewed as a physical system with N particles. By generalizing our
proposed construction to nested systems, we then derive a novel, theoretically-rigorous mechanism

3

for calculating self-attention within nested signals, which we refer as Hierarchical Self-Attention
(HSA). By its direct construction, the proposed HSA mechanism aims at reducing the total entropy of
the nested system, or equivalently put, increasing information within the learned representation of
the nested signal. We further show that our proposed construction to derive HSA is optimal in the
sense of Kullback-Leibler (KL) divergence from the Softmax attention weights if the hierarchical
structure were to be ignored. This result will subsequently open the door for the application of our
proposed formulation to approximate the inefficient Softmax attention in pre-trained transformers
using the more efficient hierarchical calculations if a hierarchy exists and can be imposed in a given
problem. Finally, we propose an efficient algorithm based on dynamic programming that calculates
HSA for a given signal hierarchy hx in O(M · b2), where M is the number of families in hx and b is
its maximum branching factor (i.e. family size).

3.1 Softmax Attention Revisited

Let x = {xi ∈ Rd′ | 1 ≤ i ≤ N} be a finite signal with N elements in Rd′
with the corresponding

position embeddings {ei ∈ Rc | 1 ≤ i ≤ N}. To calculate self-attention over x, one needs to define
the set of query variables Q = {qi ∈ Rd | 1 ≤ i ≤ N} and key variables K = {ki ∈ Rd | 1 ≤ i ≤
N}, where qi’s and ki’s are (linear) functions of xi. Then the conditional entropy of Q given K is:

H(Q | K) = −
∫
℘(Q,K) log℘(Q | K)dQdK = −EQ,K

[
log℘(Q | K)

]
(1)

where ℘(Q,K) and ℘(Q | K) are the unknown joint and posterior distributions over Q and K.
While the joint distribution can be approximated using the Monte Carlo method, the posterior can be
approximated by a variational distribution ξ(Q | K), which gives rise to the variational upper-bound
on the conditional entropy:

HUB(Q | K) = −EQ,K

[
log ξ(Q | K)

]
≥ H(Q | K) (2)

We further represent the variational distribution by the Boltzmann distribution, i.e. ξ(Q | K) =
1

Z(K) exp[−ϕ(Q,K)/τ], where ϕ(Q,K), Z(K), and τ are the energy function1, the partition function
and the temperature parameter, respectively. The variational upper-bound then can be written as:

HUB(Q | K) = EQ,K

[
ϕ(Q,K)/τ

]
+ EK

[
log Z(K)

]
(3)

The end goal of representation learning is to transform the input signal (i.e. the query variables Q)
into a "better" representation. A principled way to arrive at a better representation is to modify Q
such that its information content is maximized, or equivalently its entropy is minimized. Since we
cannot directly calculate the entropy, we can work with its variational upper-bound HUB as a proxy.
Then, the entropy minimization approach amounts to gradient descent on HUB w.r.t. each qi:

qi ← qi − λ · ∇qiHUB(Q | K) = qi − λ · EQ,K

[
1

τ
∇qiϕ(Q,K)

]
, 1 ≤ i ≤ N (4)

where λ > 0 is the step size.

Proposition 3.1 (Softmax Attention). For the energy function ϕ(Q,K), defined as:

ϕ(Q,K) = − 1

N

N∑
i=1

log

(
1

N − 1

N∑
j=1,j ̸=i

exp
[−1
2
√
d
∥qi − kj∥2 + eTi ej

])
(5)

if bothQ andK variables are normalized using the LayerNorm function [10], then for τ = (N
√
d)−1,

λ = 1 and sample size of 1, the Eq. (4) reduces to:

1 ≤ i ≤ N , qi ← qi +

N∑
j=1,j ̸=i

exp(qTi kj/
√
d+ eTi ej)∑N

t=1,t̸=i exp(q
T
i kt/

√
d+ eTi ej)

· kj (6)

essentially, this is Softmax attention via residual connection.

Proof. See Appendix H.1.
1Note that the energy function needs to satisfy

∫
exp[−ϕ(Q,K)/τ]dQ < ∞.

4

Note that (6) is similar to the original attention formulation proposed by [90], except for a few
differences: (1) there is no separate value linear projection; the value projection emerges later as we
incorporate learnable step-size (see Appendix D), (2) the LayerNorm is applied post-linear projection
as opposed to pre-normalization in the original formulation, and (3) the residual addition is applied
post-linear projection. In other words, with few minor modifications, the original Softmax attention
operation can be interpreted as maximizing the information content in the representation. But the real
importance of the formulation in (4) is that depending on how we define the energy function, we can
arrive at various types of attention mechanisms tailored to different applications. We use this feature
in the next section to derive a hierarchical self-attention (HSA) mechanism for nested signals.

3.2 Generalizing Attention to Nested Signals

We derive a self-attention mechanism for finite nested signals represented via a signal hierarchy tree.
We follow the same recipe as the previous section by defining an appropriate energy function. But
first, for any two unrelated nodes A and B in hx, we define the interaction energy ψA→B :

ψA→B = −εΩ(A′)T εΩ(B
′) +

1

2
√
d · |ℓ(A)| · |ℓ(B)|

∑
i∈ℓ(A)

∑
j∈ℓ(B)

∥qi − kj∥2 (7)

where | · | denotes set cardinality, εΩ(·) is the position embedding dictated by ica(A,B) (i.e. Ω =
r(ica(A,B))), and A′ and B′ are the highest distinct ancestors of A and B, as defined in Section
2. Intuitively speaking, the interaction energy ψA→B captures the dissimilarity between the nested
signals rooted at A and B as a weighted sum of their highest non-common ancestors’ position
dissimilarity (the first term) and the average Euclidean distance between their leaf nodes (the second
term). By calculating energy (dissimilarity) at the subtree level instead of individual leaves, we
inherently encode the inductive bias that the leaf nodes of a subtree (i.e. a nested signal) can be
pooled into a single representative (i.e. the subtree’s root) while roughly maintaining the underlying
semantics. This is referred to as scale separation in Geometric Deep Learning [17], a fundamental
prior in dealing with multi-scale physical systems, benefiting us both statistically (by taming the curse
of dimensionality) and computationally (by providing efficient algorithms). Using the interaction
energy definition, the energy of the signal hierarchy rooted at non-leaf node A is recursively defined:

ϕ(A) = −
∑

B∈chd(A)

|ℓ(B)|
|ℓ(A)|

log

[
exp

(
− ϕ(B)

)
+

∑
C∈sib(B)

|ℓ(C)| exp
(
− ψB→C

)]
(8)

For leaf nodes, ϕ(A) is set to∞. ϕ(Rx) is the energy of the whole signal hierarchy hx. Intuitively,
(8) states that the energy of a system (a signal hierarchy tree) is the weighted sum of the energy
contribution of its subsystems (immediate subtrees) where the weights are proportional to the size of
each subsystem. The contribution of each subsystem, in turn, is a non-linear combination (via the
weighted log-sum-exp function, which is the addition operation in the log-space) of the energy of the
subsystem itself (the recursion term) and its interactions with its sibling subsystems (the second term).
It is easy to see that for single-level hx (i.e. simple signals), ϕ(Rx) reduces to (5). Having defined the
energy function, we can follow the recipe in (4) to calculate the HSA for hx by recursively computing
the gradients∇qiϕ(Rx) ∈ Rd for each leaf node qi, i ∈ ℓ(Rx) as:

∇qiϕ(Rx) =

[
α(Bi) · ∇qiϕ(B

i) +
∑

C∈sib(Bi) |ℓ(C)|β(Bi, C) · ∇qiψBi→C

α(Bi) +
∑

C∈sib(Bi) |ℓ(C)|β(Bi, C)

]
· |ℓ(B

i)|
|ℓ(Rx)|

(9)

where α(Bi) = exp
(
− ϕ(Bi)

)
, β(Bi, C) = exp

(
− ψBi→C

)
(10)

and Bi denotes the child of Rx which contains qi as a leaf. It is not difficult to show that for the
quadratic interaction energy function in (7), if both Q and K variables are normalized beforehand
using a LayerNorm layer, then the recurrence in (9) can be unrolled and written in the matrix form
(see (36) in Appendix H.3) ∇Φ = ΘK, where :

∇Φ = [∇q1ϕ(Rx), ...,∇q|ℓ(Rx)|ϕ(Rx)]
T ,K = [k1, ..., k|ℓ(Rx)|]

T (11)

and Θ = [θi,j]|ℓ(Rx)|×|ℓ(Rx)| is the attention matrix; that is, θi,j is the coefficient of the key variable
kj for computing the attention update ∇qiϕ(Rx) for the query variable qi in (9). However, Θ is
different from classical attention matrix in the sense that many of its entries share the same values. In

5

particular, for any two sibling nodes A and B in hx, the corresponding entries between the leaves
of A and B form a block in Θ with one value; that is, θi,j = θA,B , ∀i ∈ ℓ(A), j ∈ ℓ(B). In other
words, the attention weight between any leaf node in A and any leaf node in B is approximated by
one value θAB ; we refer to this approximation between the leaves of sibling nodes in hx as the block
constraint which makes the attention matrix a hierarchical matrix [35, 36]. Fig. 2(Left) illustrates
the self-attention matrix for a toy example signal hierarchy with the block constraint. The block
constraint is directly administered by the form of the interaction energy function in (7) as well as the
signal hierarchy energy recurrence in (8).

The block constraint effectively reduces the degrees of freedom for an attention matrix from
O(|ℓ(Rx)|2) = O(M2 · b2) to O(M · b2), where |ℓ(Rx)|, M and b are the total number of leaf nodes,
the number families (i.e. non-leaf nodes) and the maximum branching factor in hx, respectively. With-
out it, we essentially go back to the standard Softmax attention mechanism where the unormalized
attention weights before Softmax are calculated by evaluating the interaction energy function for every
pair of leaf nodes. We refer to this process as flattening a nested signal. Fig 2(Right) shows the self-
attention matrix for the flattened version of our earlier toy example without the block constraint. Flat-
tening is not only computationally costly (by being quadratic in M instead of linear), it may also hurt
the model statistically. Note that by enforcing coarse-grained attention weights through the block con-
straint, we effectively administer a form of regularization guided by the scale separation prior which is
in turn induced from the prior knowledge of the hierarchical structure in the problem. By flattening a
nested signal, we simply discard this prior knowledge which can make the model prone to over-fitting.

Figure 2: (Left) The self-attention matrix for a toy sig-
nal hierarchy with the block constraint. Each contiguous
tile here represents one tied value for the corresponding
cells. (Right) The self-attention matrix for the flattened
(or simple) signal without the block constraint.

Note that the block constraint by itself
merely enforces tied values for the atten-
tion weights over the leaves of sibling
nodes; it does not, however, specify what
those values should be. That is, there are
infinitely many attention matrices that ad-
here to the block constraint; our proposed
formulation in (9) is just one of them. How-
ever, as we show next, our proposed formu-
lation is optimal in the sense of being the
closest approximation to the standard Soft-
max attention if the nested signal were to
be treated as a flat, simple signal.
Theorem 3.2 (The optimality of HSA).
Let both Q and K variables be normal-
ized using the LayerNorm function. For
the given interaction energy function ψ in
(7), if Θ = [θi,j]|ℓ(Rx)|×|ℓ(Rx)| is the self-attention matrix for the nested signal x derived from
the proposed gradient recurrence in (9) (as depicted by (11)), then for the temperature parameter
τ =

(
|ℓ(Rx)|

√
d
)−1

, Θ̂ = − 1
τΘ is a stochastic matrix; that is, it is non-negative and we have

Θ̂1 = 1. Moreover, Θ̂ is the closest attention matrix with the block constraint to the classical Softmax
attention matrix for the flattened signal in terms of total KL-divergence; that is,

Θ̂ = arg min
Θ∈B

∑
i∈ℓ(Rx)

DKL(θi,·∥θfi,·) (12)

where B ⊂ R|ℓ(Rx)|×|ℓ(Rx)| is the space of all stochastic attention matrices that admit the block
constraint induced by hx, and θfi,· (∀i ∈ ℓ(Rx)) are the rows of the attention matrix for the flattened
version of the signal:

θfi,j =
exp(−ψi→j)∑

k∈ℓ(Rx),k ̸=i exp(−ψi→k)
, ∀i, j ∈ ℓ(Rx) (13)

Proof. See Appendix H.2.
This result is crucial in the sense that it shows our proposed HSA mechanism for nested signals
formalized by (8) and (9) is the closest approximation to the classical attention mechanism while at
the same time adhering to the block constraint (induced by the hierarchical structure of the nested
signal), which benefits the model computationally and statistically.

From the practical perspective, this result has another important implication: if we replace the
interaction energy function ψi→j with the original cosine similarity in transformers (where the

6

position information is simply added to the signal), our proposed methodology provides the closest
hierarchical approximation of the original Softmax attention. Practically speaking, this means that
if we have access to some form of hierarchical information hx in a problem at inference time, we
can simply replace the self-attention operation in pre-trained transformer-based models by HSA and
arrive at much more efficient calculations without the need for major re-training. Note that the direct
evaluation of the recurrence in (9) for all query variables qi still takes O(b2 ·M logbM). In Appendix
E, we prove that the HSA can be computed in O(M · b2) using a dynamic programming algorithm.
Furthermore, we propose a transformer encoder architecture based on the HSA in Appendix F.

4 Efficient Calculation of HSA

Algorithm 1: Hierarchical Self-Attention
1 Input: hx
2 Output:
{∇qiϕ(Rx) ∈ Rd,∀i ∈ ℓ(Rx)}

3 u← − log(|ℓ(Rx)|)
4 ComputeSufficientStats(Rx)
5 ComputeAttention(Rx, u,0)
6 foreach i ∈ ℓ(Rx) do
7 ∇qiϕ(Rx)← ϑ(Li)
8 end
9 return {∇qiϕ(Rx) | i ∈ ℓ(Rx)}

Algorithm 2: The Top-down Pass

1 Input: A ∈ hx, u ∈ R, v ∈ Rd

2 Output: ϑ(A) ∈ Rd

3 Function ComputeAttention(A, u, v):
4 foreach C ∈ chd(A) do
5 ϑ(C)← v− 1√

d
exp

(
u+

LogSigmoid
[
ϕ(C)− η(C)

])
· ϑ(C)

6 u′ ← u+LogSigmoid
[
η(C)−ϕ(C)

]
7 ComputeAttention(C, u′, ϑ(C))
8 end
9 End Function

Algorithm 3: The Bottom-up Pass
1 Input: A ∈ hx // A node in the signal hierarchy
2 Output: ϕ(A) ∈ R, η(A) ∈ R, ϑ(A) ∈ Rd

3 Function ComputeSufficientStats(A):
4 if A is a leaf then
5 ϕ(A)←∞
6 ρq(A)← q(A) // q(A) is the query at leaf A
7 ρk(A)← k(A) // k(A) is the key at leaf A
8 ρv(A)← v(A) // v(A) is the value at leaf A
9 else

10 foreach C ∈ chd(A) do
11 ComputeSufficientStats(C)
12 end
13 ϕ(A)← −

∑
C∈chd(A)

|ℓ(C)|
|ℓ(A)| · log

[
exp

(
− ϕ(C)

)
+ exp

(
− η(C)

)]
14 ρq(A)← 1

|ℓ(A)|
∑

C∈chd(A) |ℓ(C)|ρq(C)
15 ρk(A)← 1

|ℓ(A)|
∑

C∈chd(A) |ℓ(C)|ρk(C)
16 ρv(A)← 1

|ℓ(A)|
∑

C∈chd(A) |ℓ(C)|ρv(C)
17 end
18 ∀B ∈ sib(A) : ψ′

A→B ← ε(A)T ε(B) + 1√
d
ρq(A)

T ρk(B)−
√
d+ log |ℓ(B)|

19 η(A)← − log
[∑

B∈sib(A) exp(ψ
′
A→B)

]
20 ϑ(A)← exp

(
− η(A)

)∑
B∈sib(A) exp(ψ

′
A→B) · ρv(B)

21 End Function

Even though our proposed HSA formulation in Eq. (9) brings down the degrees of freedom for the
attention matrix to O(M · b2), the naïve implementation of the recurrence in Eq. (9) for all query
variables qi still takes O(b2 ·M logbM) time. However, we note that the calculation of∇qiϕ(Rx)
and ∇qjϕ(Rx) for any two leaf nodes i, j ∈ ℓ(Rx) shares some common intermediate calculations
corresponding to the shared segment of the two paths that connect the root node to i and j. This
indeed gives rise to the notion of common optimal substructure which is the hallmark of problems that
can be efficiently solved by dynamic programming. To this end, we propose a dynamic programming

7

algorithm that computes ∇Φ in Eq. (11) in O(M · b2) time by traversing the signal hierarchy tree
in two passes: a bottom-up pass followed by a top-down pass. Essentially, the former computes
the energy function ϕ(·) while the latter calculates the attention vectors ∇qiϕ(·) for all i ∈ ℓ(Rx).
Algorithms 1–3 illustrate these steps. For the formal correctness results as well as further practical
details for our proposed algorithm, see Appendix E.

5 Experimental Results

In this section, we present an empirical study aiming at two main goals: (1) showing the capability
of the HSA mechanism in incorporating useful domain hierarchy knowledge into training better
transformer models from scratch, and (2) demonstrating the unique capacity of HSA as post-training
approximation of the Softmax attention in pre-trained transformer models in order to reduce the
self-attention computation FLOPS in a zero-shot manner.

5.1 Hierarchical Language

Despite its unimodality, natural language data often comes in a semantically meaningful hierarchy
(e.g. sections, paragraphs, sentences, etc.) which can be seen as granular abstraction of the underlying
semantics in the data. Nonetheless, most transformer-based frameworks ignore this hierarchical
structure which not only discards valuable prior knowledge about the semantics of the text, but
in the long context scenario, it can also result in loss of information due to truncation (which is a
common practice for long sequences in order to manage the computational complexity of the Softmax
attention). HSA avoids truncation for long sequences by effectively reducing the computational
complexity via incorporating the hierarchical abstraction.

For our empirical assessment, we have chosen the text classification problem for the sentiment
analysis task on two datasets: IMDB [57, 1], and Elec [59, 2]—for sentiment classification in movie
reviews and Amazon electronics product reviews, respectively [3]. The rationale for choosing these
datasets lies in their inclusion of lengthy texts, which means they can benefit from hierarchical
representation. For details, see Appendix I.1.

Signal Hierarchy: We represent each text datapoint in our datasets as a 3-level signal hierarchy:
paragraphs, sentences and tokens. The position embedding at each level is the 1D grid embedding
materialized by random Fourier features [48]. The tokens form the leaves of each signal hierarchy
and are represented via vector embeddings. We have experimented with two token-embeddings in
our experiments: the simple Word2Vec [60, 4], and the richer, transformer-based T5 [70, 5].

Experimental Settings: We have used similar architectures for both the baseline and the HSA, each
amounting to 1.2M trainable parameters. For a fair comparison, we have used the same training
hyper-parameters for both models. See Appendix I for the details of experimental settings.

Dataset Model Word2Vec embedding T5-small embedding
Acc F1 Score Acc F1 Score

IMDB FSA 0.6739± 0.0004 0.6739±0.0004 0.7577±0.0024 0.7577±0.0024
HSA 0.7469±0.0029 0.7468±0.0027 0.8129±0.0010 0.8129±0.0010

Elec FSA 0.7182±0.0001 0.7182±0.0001 0.8212±0.0014 0.8212±0.0014
HSA 0.7549±0.0005 0.7549±0.0005 0.8521±0.0022 0.8521±0.0022

Table 1: The sentiment classification Accuracy/F1 score comparison for the Flat Self-Attention
(FSA), i.e. the Softmax attention, and the Hierarchical Self-Attention (HSA).

HSA vs. Flat Self-Attention: Table 1 depicts the test Accuracy and F1 Score of sentiment classifica-
tion for the two models on the IMDB and Elec datasets. As these results show, HSA consistently
and significantly outperforms the standard Softmax self-attention across the datasets as well as the
token-embeddings. The superiority of HSA over the standard self-attention can be attributed to two
main factors: (1) by incorporating the semantic hierarchical knowledge of the problem within the
attention computation process, HSA effectively employs a form of regularization based on the scale
separation prior that protects it against potential overfitting, and (2) for long input sequences, unlike
the standard self-attention mechanism, HSA can evade truncation of the input sequence by effectively
reducing the memory and the compute footprints of the attention mechanism.

Word2Vec vs. T5 embedding: From Table 1, we also observe that the classification results signifi-
cantly improve for both models by replacing the basic Word2Vec token embedding with the richer T5

8

embedding. This is not surprising, but it also shows that our proposed HSA framework can be incor-
porated as a (shallow) adaptor on the top of pre-trained foundational models and adapt them for a new
domain. Furthermore, we can see the gap between the HSA and the standard self-attention intensifies
for simpler token embeddings. In other words, where we do not have access to pre-trained embedding
models, the superiority of HSA and its hierarchical inductive bias is even more significant. This
points to the potential significant boost we can gain by training HSA-based, multi-modal foundational
models instead of the classical transformers. Due to its demanding computational requirements, we
leave this empirical investigation for future work. Nonetheless, in Appendix J, we have experimented
with training the HSA-based transformer from scratch (as opposed to on the top of a pre-trained
embedding) and showed superior generalization capability compared to the classical transformer.

Model Acc F1 Score
FSA 0.7921± 0.0036 0.7902± 0.0003

DeepSet 0.7578± 0.0096 0.7590± 0.0065
HSA 0.7952±0.0155 0.8091±0.0102

Table 2: Accuracy/F1-score comparison for the Flat
Self-Attention (FSA), i.e., the Softmax attention,
DeepSet[102], and the Hierarchical Self-Attention
(HSA) on N24News dataset.

5.2 Multi-modal News Classification

In order to showcase the capabilities of our
proposed framework in multi-modal settings,
we have performed experiments for the news
classification task on N24News dataset [93],
where for each news article not only we have
language and image modalities present, but the
text itself consists of multiple sub-modalities,
i.e. headline, abstract, image caption and body.

Dataset Original RoBERTa HSA-RoBERTa
Acc↑ Pre↑ Rec↑ FL(M)↓ Acc↑ Pre↑ Rec↑ FL(M)↓

IMDB(264) 0.9558 0.9558 0.9558 214.94 0.9494 0.9501 0.9494 4.32
AGNEWS(54) 0.9469 0.9469 0.9469 8.99 0.9422 0.9423 0.9422 0.8357

CoLA(12) 0.8150 0.8348 0.8017 0.4441 0.7687 0.7608 0.7821 0.1912
SST-2(26) 0.9403 0.9404 0.9402 2.08 0.9025 0.9083 0.9014 0.4132
MRPC(55) 0.9117 0.9006 0.8938 9.33 0.8553 0.8613 0.7963 0.8481
RTE(70) 0.7833 0.7870 0.7796 15.11 0.7400 0.7400 0.7377 1.29

QNLI(38) 0.9267 0.9267 0.9268 4.45 0.5072 0.3398 0.7531 0.5643

Table 3: The FLOPs comparisons for zero-shot HSA approximation of RoBERTa-base layers 7,9,11
and RoBERTa-large layers 16,18,20,22,24 (for IMDB). We have reported MFLOPs per impacted
layers as well as Accuracy (Acc), Precision (Pre) and Recall (Rec). The FLOPs are computed based
on the average seq. length (shown in parentheses) for each dataset.

Baselines: For N24News dataset, most approaches in the literature concatenate a subset of the text
sub-modalities and use that as the representation of the whole article. There are also a few multi-modal
methods that incorporate the image modality as well, the best of which achieves 91% Accuracy and
90% F1 Score using 211M trainable parameters [93], not to mention incorporating other tricks such
as using multiple loss functions to achieve the SOTA performance. For our experimental evaluation
of HSA, however, we would need to keep these other contributing factors out, and instead compare
moderate size models within our computational budget that are only different in their attention
mechanisms. To this end, for our baseline method, we concatenate headline, abstract and body into
one text sequence and use that to train a classical transformer (realized via one-level signal hierarchy).
As the second baseline, we incorporate a multi-modal model based on the DeepSet architecture [102]
to incorporate the image modality as well as the text; see Appendix I.2 for details. For all baselines
as well as our HSA-based model, we ensure the number of trainable parameters is around 12M.

Signal Hierarchy: For the HSA-based model, each news article is represented as a signal hierarchy
where at the top level the image modality as well as the text sub-modalities are represented by the
key-value signal type (see Appendix C). The headline, abstract and caption sub-trees are further
divided into tokens in the next level using the 1D Grid signal type; whereas, the body is divided
into paragraphs (again using 1D Grid signal) where each paragraph is treated as a leaf by pooling
the text embedding of the whole paragraph. To embed the text components at the leaves, we use
e5-base [93, 6]; whereas, for image leaves, we use VIT [26, 7]. Both of these models have shown
superior performance in various benchmarks [62, 77].

Results: Table 2 shows the test accuracy and F1 Score for the three competing methods for the
N24News multi-class classification problem. From these results, we can see that our HSA methodol-
ogy outperforms the baselines and the difference is significant. Interestingly, despite incorporating
the additional modality of image, the performance of DeepSet significantly declines compared to the

9

vanilla uni-modal, flat attention. This signifies the fact that it is not enough to only incorporate other
information modalities within the model, but also how they are incorporated is equally important
to boost the model’s generalization. In that sense, our proposed nested signal formalism along
with its hierarchical attention mechanism provide a principled methodology to incorporate different
information modalities within a transformer model.

5.3 Zero-Shot Hierarchical Approximation

An important feature of our proposed framework is that Theorem 3.2 gives us the theoretical basis for
approximating Softmax attention via HSA given an appropriate hierarchical structure. This means
that HSA can seamlessly replace regular Softmax attention after training, and depending on the task
and the original model, the accuracy may not experience significant drop. The main objective for such
replacement post-training is to reduce the number of FLOPs needed for the self-attention operation.
To further examine this idea, we have adopted the classical pre-trained RoBERTa model [52] and have
replaced the Softmax self-attention operation in it with HSA, and then run it against some benchmark
classification datasets. During this experimentation, we made a few insightful observations. First, in
general, the performance drops significantly if we replace Softmax attention with HSA for all hidden
layers of RoBERTa, and some amount of fine-tuning is needed to regain the original performance.
However, zero-shot replacement is still feasible if only a subset of layers go through HSA replacement.
In particular, earlier layers seem to be more sensitive to HSA approximation while the final layers are
more amenable to it. Furthermore, we observed that by interleaving HSA layers and regular Softmax
layers, we can significantly reduce the accuracy gap.

Based on these observations, we applied HSA approximation to layers 7, 9 and 11 in RoBERTa-
base and 16, 18, 20, 22 and 24 in RoBERTa-large. As for the hierarchy, instead of using the
sentence/paragraph/etc. structures in text, we opted to fixed hierarchies generated by non-overlapping
hopping windows on the input text. In particular, we used a four level hierarchy where the layers’
branching factors from top to bottom are 16, 8, 4 and 2. For more experimental results on different
hierarchy structures and different HSA layer combinations, see Appendix L. Table 3 compares
HSA-equipped RoBERTa (henceforth HSA-RoBERTa) and the original RoBERTa in terms of FLOPs
as well as Accuracy on 5 GLUE benchmarks [92], IMDB benchmark [58] and AGNEWS benchmark
[104]. As these results show HSA layers significantly reduce the number of FLOPs for attention
computation, and depending on the task the accuracy drop can be minimal. Keep in mind these results
are obtained completely zero-shot without any fine-tuning. Indeed fine-tuning can further close the
accuracy gap while maintaining the performance gain by HSA. This points to another HSA’s strong
potential: to be used as a self-attention approximation technique for long-context problems. We leave
the further exploration of this direction to future work.

6 Conclusions

In this paper, we propose HSA, a novel mathematical framework for generalizing classical Softmax
self-attention mechanism to hierarchical problems that not only occupy multiple scales but may be
also defined on multiple geometries. Unlike many existing work that approach these problems via
heuristic neural architectures, we mathematically derive our formulation from the principle of entropy
minimization given the (nested) data signal is seen as a statistical mechanical system. Given its
strong theoretical and algorithmic properties, we empirically showed that HSA can be used to inject
hierarchical domain knowledge into training of transformer models and hence produce models with
better generalization. We further showed that HSA can be used as a self-attention approximation
technique for pre-trained models to significantly reduce the FLOPs needed for self-attention at the
test time. This opens the door for HSA to be used in long context scenarios, even after training.

One high-impact future application of HSA is training large-scale foundational models that can
naturally handle multi-modal and hierarchical inputs using the HSA formalism. On the theoretical
side, HSA can be also extended to include non-Softmax attention mechanisms (See Appendix K).
The other important future direction is application of HSA to transformer decoder for hierarchical
auto-regressive generation. This is important specially because it has the potential to boost LLMs in
terms of both generalization (by incorporating hierarchical, multi-modal domain knowledge) and
speed (due to the low-rank nature of HSA computation). Due to its significance, we have laid the
foundations of hierarchical decoding via HSA in Appendix G.

10

References
[1] https://ai.stanford.edu/~amaas/data/sentiment/.

[2] https://riejohnson.com/software/elec2.tar.gz.

[3] https://snap.stanford.edu/data/web-Amazon.html.

[4] https://code.google.com/archive/p/word2vec/.

[5] https://huggingface.co/google-t5/t5-small.

[6] https://huggingface.co/intfloat/e5-base-v2.

[7] https://huggingface.co/google/vit-base-patch16-224.

[8] Saeed Amizadeh, Bo Thiesson, and Milos Hauskrecht. Variational dual-tree framework for
large-scale transition matrix approximation. arXiv preprint arXiv:1210.4846, 2012.

[9] Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Lučić, and Cordelia
Schmid. Vivit: A video vision transformer. In Proceedings of the IEEE/CVF international
conference on computer vision, pages 6836–6846, 2021.

[10] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

[11] Tadas Baltrušaitis, Chaitanya Ahuja, and Louis-Philippe Morency. Multimodal machine
learning: A survey and taxonomy. IEEE transactions on pattern analysis and machine
intelligence, 41(2):423–443, 2018.

[12] Khaled Bayoudh, Raja Knani, Fayçal Hamdaoui, and Abdellatif Mtibaa. A survey on deep
multimodal learning for computer vision: advances, trends, applications, and datasets. The
Visual Computer, 38(8):2939–2970, 2022.

[13] Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document transformer.
arXiv preprint arXiv:2004.05150, 2020.

[14] Gedas Bertasius, Heng Wang, and Lorenzo Torresani. Is space-time attention all you need for
video understanding?

[15] Mathieu Blondel, Andre Martins, and Vlad Niculae. Learning classifiers with fenchel-young
losses: Generalized entropies, margins, and algorithms. In The 22nd International Conference
on Artificial Intelligence and Statistics, pages 606–615. PMLR, 2019.

[16] Zalán Borsos, Raphaël Marinier, Damien Vincent, Eugene Kharitonov, Olivier Pietquin, Matt
Sharifi, Dominik Roblek, Olivier Teboul, David Grangier, Marco Tagliasacchi, et al. Audiolm:
a language modeling approach to audio generation. IEEE/ACM Transactions on Audio, Speech,
and Language Processing, 2023.

[17] Michael M Bronstein, Joan Bruna, Taco Cohen, and Petar Veličković. Geometric deep learning:
Grids, groups, graphs, geodesics, and gauges. arXiv preprint arXiv:2104.13478, 2021.

[18] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language
models are few-shot learners. Advances in neural information processing systems, 33:1877–
1901, 2020.

[19] Ziang Cao, Changhong Fu, Junjie Ye, Bowen Li, and Yiming Li. Hift: Hierarchical feature
transformer for aerial tracking. In Proceedings of the IEEE/CVF international conference on
computer vision, pages 15457–15466, 2021.

[20] Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with
sparse transformers. arXiv preprint arXiv:1904.10509, 2019.

11

https://ai.stanford.edu/~amaas/data/sentiment/
https://riejohnson.com/software/elec2.tar.gz
https://snap.stanford.edu/data/web-Amazon.html
https://code.google.com/archive/p/word2vec/
https://huggingface.co/google-t5/t5-small
https://huggingface.co/intfloat/e5-base-v2
https://huggingface.co/google/vit-base-patch16-224

[21] Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane,
Tamas Sarlos, Peter Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz Kaiser, et al. Rethinking
attention with performers. arXiv preprint arXiv:2009.14794, 2020.

[22] Gonçalo M Correia, Vlad Niculae, and André FT Martins. Adaptively sparse transformers.
arXiv preprint arXiv:1909.00015, 2019.

[23] Soham Deshmukh, Benjamin Elizalde, Rita Singh, and Huaming Wang. Pengi: An au-
dio language model for audio tasks. Advances in Neural Information Processing Systems,
36:18090–18108, 2023.

[24] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805,
2018.

[25] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,
et al. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv
preprint arXiv:2010.11929, 2020.

[26] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,
Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image
recognition at scale, 2021.

[27] Subhabrata Dutta, Tanya Gautam, Soumen Chakrabarti, and Tanmoy Chakraborty. Redesigning
the transformer architecture with insights from multi-particle dynamical systems. Advances in
Neural Information Processing Systems, 34:5531–5544, 2021.

[28] Xinjie Fan, Shujian Zhang, Bo Chen, and Mingyuan Zhou. Bayesian attention modules.
Advances in Neural Information Processing Systems, 33:16362–16376, 2020.

[29] Marc Finzi, Samuel Stanton, Pavel Izmailov, and Andrew Gordon Wilson. Generalizing
convolutional neural networks for equivariance to lie groups on arbitrary continuous data. In
International Conference on Machine Learning, pages 3165–3176. PMLR, 2020.

[30] Jing Gao, Peng Li, Zhikui Chen, and Jianing Zhang. A survey on deep learning for multimodal
data fusion. Neural Computation, 32(5):829–864, 2020.

[31] Borjan Geshkovski, Cyril Letrouit, Yury Polyanskiy, and Philippe Rigollet. The emergence of
clusters in self-attention dynamics. Advances in Neural Information Processing Systems, 36,
2024.

[32] Yuan Gong, Yu-An Chung, and James Glass. Ast: Audio spectrogram transformer. arXiv
preprint arXiv:2104.01778, 2021.

[33] Meng-Hao Guo, Jun-Xiong Cai, Zheng-Ning Liu, Tai-Jiang Mu, Ralph R Martin, and Shi-Min
Hu. Pct: Point cloud transformer. Computational Visual Media, 7:187–199, 2021.

[34] Wenzhong Guo, Jianwen Wang, and Shiping Wang. Deep multimodal representation learning:
A survey. Ieee Access, 7:63373–63394, 2019.

[35] Wolfgang Hackbusch. A sparse matrix arithmetic based on h-matrices. part i: Introduction to
h-matrices. Computing, 62(2):89–108, 1999.

[36] Wolfgang Hackbusch and Boris N Khoromskij. A sparse h-matrix arithmetic. part ii: Applica-
tion to multi-dimensional problems. Computing, 64:21–47, 2000.

[37] Dongchen Han, Tianzhu Ye, Yizeng Han, Zhuofan Xia, Siyuan Pan, Pengfei Wan, Shiji Song,
and Gao Huang. Agent attention: On the integration of softmax and linear attention. In
European Conference on Computer Vision, pages 124–140. Springer, 2025.

[38] Lingshen He, Yiming Dong, Yisen Wang, Dacheng Tao, and Zhouchen Lin. Gauge equivariant
transformer. Advances in Neural Information Processing Systems, 34:27331–27343, 2021.

12

[39] Yunpeng Huang, Jingwei Xu, Zixu Jiang, Junyu Lai, Zenan Li, Yuan Yao, Taolue Chen, Lijuan
Yang, Zhou Xin, and Xiaoxing Ma. Advancing transformer architecture in long-context large
language models: A comprehensive survey. arXiv preprint arXiv:2311.12351, 2023.

[40] Zhicheng Huang, Zhaoyang Zeng, Bei Liu, Dongmei Fu, and Jianlong Fu. Pixel-bert: Aligning
image pixels with text by deep multi-modal transformers. arXiv preprint arXiv:2004.00849,
2020.

[41] Zhongzhan Huang, Mingfu Liang, Jinghui Qin, Shanshan Zhong, and Liang Lin. Under-
standing self-attention mechanism via dynamical system perspective. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pages 1412–1422, 2023.

[42] Michael J Hutchinson, Charline Le Lan, Sheheryar Zaidi, Emilien Dupont, Yee Whye Teh,
and Hyunjik Kim. Lietransformer: Equivariant self-attention for lie groups. In International
Conference on Machine Learning, pages 4533–4543. PMLR, 2021.

[43] Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers
are rnns: Fast autoregressive transformers with linear attention. In International conference on
machine learning, pages 5156–5165. PMLR, 2020.

[44] Wonjae Kim, Bokyung Son, and Ildoo Kim. Vilt: Vision-and-language transformer without
convolution or region supervision. In International conference on machine learning, pages
5583–5594. PMLR, 2021.

[45] Khaled Koutini, Jan Schlüter, Hamid Eghbal-Zadeh, and Gerhard Widmer. Efficient training
of audio transformers with patchout. arXiv preprint arXiv:2110.05069, 2021.

[46] Kunchang Li, Yali Wang, Peng Gao, Guanglu Song, Yu Liu, Hongsheng Li, and Yu Qiao.
Uniformer: Unified transformer for efficient spatiotemporal representation learning. arXiv
preprint arXiv:2201.04676, 2022.

[47] Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, and Kai-Wei Chang. Visualbert: A
simple and performant baseline for vision and language. arXiv preprint arXiv:1908.03557,
2019.

[48] Yang Li, Si Si, Gang Li, Cho-Jui Hsieh, and Samy Bengio. Learnable fourier features for
multi-dimensional spatial positional encoding. Advances in Neural Information Processing
Systems, 34:15816–15829, 2021.

[49] Zewen Li, Fan Liu, Wenjie Yang, Shouheng Peng, and Jun Zhou. A survey of convolutional
neural networks: analysis, applications, and prospects. IEEE transactions on neural networks
and learning systems, 33(12):6999–7019, 2021.

[50] Junyang Lin, An Yang, Yichang Zhang, Jie Liu, Jingren Zhou, and Hongxia Yang. Interbert:
Vision-and-language interaction for multi-modal pretraining. arXiv preprint arXiv:2003.13198,
2020.

[51] Yang Liu and Mirella Lapata. Hierarchical transformers for multi-document summarization.
arXiv preprint arXiv:1905.13164, 2019.

[52] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy,
Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert
pretraining approach. arXiv preprint arXiv:1907.11692, 2019.

[53] Yun Liu, Yu-Huan Wu, Guolei Sun, Le Zhang, Ajad Chhatkuli, and Luc Van Gool. Vision
transformers with hierarchical attention. Machine Intelligence Research, 21(4):670–683, 2024.

[54] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining
Guo. Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings
of the IEEE/CVF international conference on computer vision, pages 10012–10022, 2021.

[55] Jiasen Lu, Dhruv Batra, Devi Parikh, and Stefan Lee. Vilbert: Pretraining task-agnostic
visiolinguistic representations for vision-and-language tasks. Advances in neural information
processing systems, 32, 2019.

13

[56] Yiping Lu, Zhuohan Li, Di He, Zhiqing Sun, Bin Dong, Tao Qin, Liwei Wang, and Tie-Yan
Liu. Understanding and improving transformer from a multi-particle dynamic system point of
view. arXiv preprint arXiv:1906.02762, 2019.

[57] Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christo-
pher Potts. Learning word vectors for sentiment analysis. In Dekang Lin, Yuji Matsumoto,
and Rada Mihalcea, editors, Proceedings of the 49th Annual Meeting of the Association for
Computational Linguistics: Human Language Technologies, pages 142–150, Portland, Oregon,
USA, June 2011. Association for Computational Linguistics.

[58] Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christo-
pher Potts. Learning word vectors for sentiment analysis. In Proceedings of the 49th Annual
Meeting of the Association for Computational Linguistics: Human Language Technologies,
pages 142–150, Portland, Oregon, USA, June 2011. Association for Computational Linguistics.

[59] Julian McAuley and Jure Leskovec. Hidden factors and hidden topics: understanding rating
dimensions with review text. Proceedings of the 7th ACM conference on Recommender
systems, 2013.

[60] Tomas Mikolov, Kai Chen, Gregory S. Corrado, and Jeffrey Dean. Efficient estimation of word
representations in vector space. In International Conference on Learning Representations,
2013.

[61] Erxue Min, Runfa Chen, Yatao Bian, Tingyang Xu, Kangfei Zhao, Wenbing Huang, Peilin
Zhao, Junzhou Huang, Sophia Ananiadou, and Yu Rong. Transformer for graphs: An overview
from architecture perspective. arXiv preprint arXiv:2202.08455, 2022.

[62] Niklas Muennighoff, Nouamane Tazi, Loïc Magne, and Nils Reimers. Mteb: Massive text
embedding benchmark, 2023.

[63] Fionn Murtagh and Pedro Contreras. Algorithms for hierarchical clustering: an overview.
Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2(1):86–97, 2012.

[64] Piotr Nawrot, Szymon Tworkowski, Michał Tyrolski, Łukasz Kaiser, Yuhuai Wu, Christian
Szegedy, and Henryk Michalewski. Hierarchical transformers are more efficient language
models. arXiv preprint arXiv:2110.13711, 2021.

[65] Daniel Neimark, Omri Bar, Maya Zohar, and Dotan Asselmann. Video transformer network. In
Proceedings of the IEEE/CVF international conference on computer vision, pages 3163–3172,
2021.

[66] Tam Nguyen, Tan Nguyen, and Richard Baraniuk. Mitigating over-smoothing in transformers
via regularized nonlocal functionals. Advances in Neural Information Processing Systems, 36,
2024.

[67] Raghavendra Pappagari, Piotr Zelasko, Jesús Villalba, Yishay Carmiel, and Najim Dehak.
Hierarchical transformers for long document classification. In 2019 IEEE automatic speech
recognition and understanding workshop (ASRU), pages 838–844. IEEE, 2019.

[68] Hao Peng, Nikolaos Pappas, Dani Yogatama, Roy Schwartz, Noah A. Smith, and Lingpeng
Kong. Random feature attention, 2021.

[69] Aditya Prakash, Kashyap Chitta, and Andreas Geiger. Multi-modal fusion transformer for
end-to-end autonomous driving. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 7077–7087, 2021.

[70] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified
text-to-text transformer. Journal of Machine Learning Research, 21(140):1–67, 2020.

[71] Tanzila Rahman, Mengyu Yang, and Leonid Sigal. Tribert: Human-centric audio-visual
representation learning. Advances in Neural Information Processing Systems, 34:9774–9787,
2021.

14

[72] Ladislav Rampášek, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and
Dominique Beaini. Recipe for a general, powerful, scalable graph transformer. Advances in
Neural Information Processing Systems, 35:14501–14515, 2022.

[73] Hubert Ramsauer, Bernhard Schäfl, Johannes Lehner, Philipp Seidl, Michael Widrich, Thomas
Adler, Lukas Gruber, Markus Holzleitner, Milena Pavlović, Geir Kjetil Sandve, et al. Hopfield
networks is all you need. arXiv preprint arXiv:2008.02217, 2020.

[74] Riccardo Rende, Federica Gerace, Alessandro Laio, and Sebastian Goldt. Mapping of attention
mechanisms to a generalized potts model. arXiv preprint arXiv:2304.07235, 2023.

[75] Raanan Y Rohekar, Yaniv Gurwicz, and Shami Nisimov. Causal interpretation of self-attention
in pre-trained transformers. Advances in Neural Information Processing Systems, 36, 2024.

[76] Yu Rong, Yatao Bian, Tingyang Xu, Weiyang Xie, Ying Wei, Wenbing Huang, and Junzhou
Huang. Self-supervised graph transformer on large-scale molecular data. Advances in neural
information processing systems, 33:12559–12571, 2020.

[77] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei.
Imagenet large scale visual recognition challenge, 2015.

[78] Zhuoran Shen, Mingyuan Zhang, Haiyu Zhao, Shuai Yi, and Hongsheng Li. Efficient attention:
Attention with linear complexities. In Proceedings of the IEEE/CVF winter conference on
applications of computer vision, pages 3531–3539, 2021.

[79] Pranav Shetty and Suraj Singh. Hierarchical clustering: a survey. International Journal of
Applied Research, 7(4):178–181, 2021.

[80] Alexander Shim. A probabilistic interpretation of transformers. arXiv preprint
arXiv:2205.01080, 2022.

[81] Ryan Singh and Christopher L Buckley. Attention as implicit structural inference. Advances
in Neural Information Processing Systems, 36:24929–24946, 2023.

[82] Masahiro Suzuki and Yutaka Matsuo. A survey of multimodal deep generative models.
Advanced Robotics, 36(5-6):261–278, 2022.

[83] Kai Sheng Tai, Peter Bailis, and Gregory Valiant. Equivariant transformer networks. In
International Conference on Machine Learning, pages 6086–6095. PMLR, 2019.

[84] Bo Thiesson and Jingu Kim. Fast variational mode-seeking. In Artificial Intelligence and
Statistics, pages 1230–1242. PMLR, 2012.

[85] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and
Hervé Jégou. Training data-efficient image transformers & distillation through attention. In
International conference on machine learning, pages 10347–10357. PMLR, 2021.

[86] Thuan Nguyen Anh Trang, Khang Nhat Ngo, Hugo Sonnery, Thieu Vo, Siamak Ravanbakhsh,
and Truong Son Hy. Scalable hierarchical self-attention with learnable hierarchy for long-range
interactions. Transactions on Machine Learning Research, 2024.

[87] Thanh-Dat Truong, Chi Nhan Duong, Hoang Anh Pham, Bhiksha Raj, Ngan Le, Khoa Luu,
et al. The right to talk: An audio-visual transformer approach. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 1105–1114, 2021.

[88] Yao-Hung Hubert Tsai, Shaojie Bai, Paul Pu Liang, J Zico Kolter, Louis-Philippe Morency, and
Ruslan Salakhutdinov. Multimodal transformer for unaligned multimodal language sequences.
In Proceedings of the conference. Association for computational linguistics. Meeting, volume
2019, page 6558. NIH Public Access, 2019.

[89] Constantino Tsallis. Possible generalization of boltzmann-gibbs statistics. Journal of statistical
physics, 52:479–487, 1988.

15

[90] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

[91] Prateek Verma and Jonathan Berger. Audio transformers: Transformer architectures for large
scale audio understanding. adieu convolutions. arXiv preprint arXiv:2105.00335, 2021.

[92] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel Bowman.
GLUE: A multi-task benchmark and analysis platform for natural language understanding. In
Tal Linzen, Grzegorz Chrupała, and Afra Alishahi, editors, Proceedings of the 2018 EMNLP
Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP, pages 353–355,
Brussels, Belgium, November 2018. Association for Computational Linguistics.

[93] Zhen Wang, Xu Shan, Xiangxie Zhang, and Jie Yang. N24news: A new dataset for multimodal
news classification, 2022.

[94] Chuhan Wu, Fangzhao Wu, Tao Qi, and Yongfeng Huang. Hi-transformer: Hierarchical
interactive transformer for efficient and effective long document modeling. arXiv preprint
arXiv:2106.01040, 2021.

[95] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu Philip. A
comprehensive survey on graph neural networks. IEEE transactions on neural networks and
learning systems, 32(1):4–24, 2020.

[96] Peng Xu, Xiatian Zhu, and David A Clifton. Multimodal learning with transformers: A survey.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023.

[97] Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He, Alex Smola, and Eduard Hovy. Hierarchi-
cal attention networks for document classification. In Proceedings of the 2016 conference of
the North American chapter of the association for computational linguistics: human language
technologies, pages 1480–1489, 2016.

[98] Zihao Ye, Qipeng Guo, Quan Gan, Xipeng Qiu, and Zheng Zhang. Bp-transformer: Modelling
long-range context via binary partitioning. arXiv preprint arXiv:1911.04070, 2019.

[99] Botao Yu, Peiling Lu, Rui Wang, Wei Hu, Xu Tan, Wei Ye, Shikun Zhang, Tao Qin, and
Tie-Yan Liu. Museformer: Transformer with fine-and coarse-grained attention for music
generation. Advances in Neural Information Processing Systems, 35:1376–1388, 2022.

[100] Jiahui Yu, Xin Li, Jing Yu Koh, Han Zhang, Ruoming Pang, James Qin, Alexander Ku,
Yuanzhong Xu, Jason Baldridge, and Yonghui Wu. Vector-quantized image modeling with
improved vqgan. arXiv preprint arXiv:2110.04627, 2021.

[101] Seongjun Yun, Minbyul Jeong, Raehyun Kim, Jaewoo Kang, and Hyunwoo J Kim. Graph
transformer networks. Advances in neural information processing systems, 32, 2019.

[102] Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov,
and Alexander J Smola. Deep sets. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fer-
gus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Processing
Systems, volume 30. Curran Associates, Inc., 2017.

[103] Haopeng Zhang and Jiawei Zhang. Text graph transformer for document classification. In
Conference on empirical methods in natural language processing (EMNLP), 2020.

[104] Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for text
classification. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett, editors,
Advances in Neural Information Processing Systems, volume 28. Curran Associates, Inc.,
2015.

[105] Zizhao Zhang, Han Zhang, Long Zhao, Ting Chen, Sercan Ö Arik, and Tomas Pfister. Nested
hierarchical transformer: Towards accurate, data-efficient and interpretable visual understand-
ing. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36, pages
3417–3425, 2022.

16

[106] Bin Zhao, Maoguo Gong, and Xuelong Li. Hierarchical multimodal transformer to summarize
videos. Neurocomputing, 468:360–369, 2022.

[107] Hengshuang Zhao, Li Jiang, Jiaya Jia, Philip HS Torr, and Vladlen Koltun. Point transformer.
In Proceedings of the IEEE/CVF international conference on computer vision, pages 16259–
16268, 2021.

[108] Shihao Zhou, Duosheng Chen, Jinshan Pan, Jinglei Shi, and Jufeng Yang. Adapt or perish:
Adaptive sparse transformer with attentive feature refinement for image restoration. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
2952–2963, 2024.

[109] Chen Zhu, Wei Ping, Chaowei Xiao, Mohammad Shoeybi, Tom Goldstein, Anima Anandku-
mar, and Bryan Catanzaro. Long-short transformer: Efficient transformers for language and
vision. Advances in neural information processing systems, 34:17723–17736, 2021.

[110] Zhenhai Zhu and Radu Soricut. H-transformer-1d: Fast one-dimensional hierarchical attention
for sequences. arXiv preprint arXiv:2107.11906, 2021.

17

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We have presented our claimed theoretical contributions in Sections 2, 3, C, D,
E, F, G, H, and K. The claimed empirical contributions can be found in Sections 5, I, J, and
L,
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Please see Appendix M.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

18

Answer: [Yes]

Justification: Please see Appendix H.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Please see Section 5 and Appendix I.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

19

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: While the datasets used in our empirical studies are publicly available, our
code is not being released at the moment until after submission.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Please see Section 5 and Appendix I.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We have provided 95% CI for all the results in the main paper that involved
variability, which is the training process in our case. However, we have not provided CI for
the results presented in Appendix J. The rest of the results across the main paper and the
appendix do not involve variability as there’s no training involved.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

20

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Please see Appendix I. We have also reported the GFLOPs required for half of
our experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: To the best of our knowledge and judgment, we do not have any deviation
from the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our contribution in this work is primarily toward theoretical research without
any tie to any particular application.

Guidelines:

21

https://neurips.cc/public/EthicsGuidelines

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This work doesn’t release any data or model.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: We have not used any asset in development of our proposed framework.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

22

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We do not introduce any new asset.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

23

paperswithcode.com/datasets

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: Our core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

24

https://neurips.cc/Conferences/2025/LLM

Contents

1 Introduction 1

2 Representing Hierarchical Data 2

3 Hierarchical Self-Attention 3

3.1 Softmax Attention Revisited . 4

3.2 Generalizing Attention to Nested Signals . 5

4 Efficient Calculation of HSA 7

5 Experimental Results 8

5.1 Hierarchical Language . 8

5.2 Multi-modal News Classification . 9

5.3 Zero-Shot Hierarchical Approximation . 10

6 Conclusions 10

A Notations 26

B Related Work 26

C Generalizing The Notion of Signal 28

D The Emergence of The Value Projection Matrix 28

E Algorithmic Details 29

E.1 Correctness and Complexity . 29

E.2 Black-box Attention Computation . 29

E.3 GPU Implementation . 30

F Hierarchical Transformer Encoder 30

G Hierarchical Auto-regressive Generation 31

G.1 Hierarchical Causal Masking . 32

G.2 Hierarchical Caching . 32

H Proofs 33

H.1 Proposition 1: Softmax Attention . 33

H.2 Theorem 1: The Optimality of HSA . 34

H.3 Theorem 2: The Correctness and The Complexity of Algorithms 1–3 38

I Experimental Settings 40

I.1 Datasets . 40

25

I.2 Model Architectures . 40

I.3 Training Hyper-parameters . 41

J Comparison to The Classical Transformer Architecture 41

K Going Beyond Softmax Attention 42

K.1 Sparse Attention as Energy Minimization . 42

K.2 The Hierarchical Generalization . 43

L Zero-shot Approximation of Self-attention: Ablation Study 43

L.1 Experimental Setup . 43

L.2 Results . 44

M Limitations 45

A Notations

Table 4 summarizes our notations in the main paper. Moreover, Fig 3 visually demonstrates some of
our tree-related notations.

Figure 3: The visual demonstration of some of our tree-related notations in the paper.

B Related Work

Hierarchical models: The notion of hierarchy has played a key role in data representation and
clustering in Machine Learning [63, 79]. In the context of transformers, the idea of multi-scale
attention has been mainly used to combat the long-context challenge in language [39, 67, 98, 64, 97,
51], but it has also made its way into vision [54, 105, 53], audio [99] and graphs [86]. Nevertheless,

26

Notation Description
Bold face A vector or a matrix when it is not obvious from the context

0 A column vector of zeros
1 A column vector of ones
x A simple or nested signal

x(u) The value of signal x at position u
Ω The signal domain
C The vector space containing the signal range
d The dimensionality of C, i.e. the channel dimension
D The set of all signal domains present in the problem
εΩ The position embedding function for domain Ω
c The dimensionality of each position embedding
ε The set of all position embedding functions for all domains in D
S The set of all possible simple signals in the problem
Nℓ The set of all possible nested signals up to depth ℓ
N The set of all possible nested signals in the problem
N0 An equivalent notation for C
hx The signal hierarchy representing the finite nested signal x

A,B,C, ... The nodes in the signal hierarchy hx
Li The leaf node in the signal hierarchy hx corresponding to the query variable qi
Rx The root node of the signal hierarchy hx
ℓ(A) The set of indices of the leaf node descendants of node A
chd(A) The children of node A
pa(A) The parent of node A
sib(A) The siblings of node A

ica(A,B) The immediate common ancestors of the unrelated nodes A and B
A′, B′ The highest distinct ancestors of the unrelated nodes A and B
M The number of non-leaf nodes of the signal hierarchy hx
b The maximum branching factor of the signal hierarchy hx
| · | Set cardinality

H(Q | K) The conditional entropy of the query variable Q given the key variable K
ψA→B The (directional) interaction energy between the unrelated nodes A and B
ϕ(A) The energy of node A
∇qiϕ(A) The gradient of the energy of node A wrt the query vector qi
θi,j The (directional) attention weight between query qi and key kj
Θ The attention matrix
B The set of (hierarchical) stochastic matrices respecting the block constraint wrt hx

Table 4: The notations used in the main paper.

most of these frameworks deal with a single modality that occupies the same geometry, just at
different scales. Our proposed framework, in contrast, can incorporate an arbitrary number of
mutually-inconsistent geometries within its representation of the multi-scale data. Another related
line of work is based on hierarchical matrices [35, 36] that have been used traditionally for clustering
[84] as well as transition matrix approximation [8], but more recently for attention matrix [110].

Multi-modal models: Multi-modality has been vastly explored in Machine Learning [11] and more
recently within various neural architectures, using various fusion techniques [30, 12, 34, 82]. As
for multi-modal transformers [96], most frameworks are tailored toward a fixed set of modalities,
e.g. vision-language [44, 40, 55, 109], audio-visual [87], audio-language [23], graph-language
[103], vision-pose-audio [71], audio-vision-language [88], etc. The fusion of different modalities in
these frameworks typically takes place via a heuristic operation at the embedding or the attention
stages resulting in distinct architectural variants, which are typically categorized as (1) single-stream
(e.g. [47]), (2) multi-stream (e.g. [55]), and (3) hybrid-stream (e.g. [50]). However, most of these
frameworks either ignore the geometrical (positional) information for some of the input modalities,
or impose artificial restrictions on input geometries such as alignment.

Geometric Deep Learning: Geometric Deep Learning [17] studies the invariance and equivariance
properties of deep learning models by introducing the notion of signal and its geometry which is

27

explicitly modeled via the signal’s domain. We build our framework also based on the same notion
of signal and generalize it further to nested signals which can represent hierarchical, multi-modal
data which potentially encompass multiple domains. Also, most frameworks within Geometric Deep
Learning achieve the desired equivariance properties through the model’s architecture (e.g. CNNs [49],
GNNs [95], and Group-equivaraint CNNs [29]). A prominent exception is the LieTransformer [42]
where the desired group-equivariance is achieved by explicit modeling of the position information and
its separate similarity computation (as opposed to adding it to the feature vectors). The formulation
of the position information in our framework is in part inspired by the LieTransfomer.

The theoretical foundations of self-attention: Despite its revolutionary success in Deep Learning,
there has been quite little effort to understand the theoretical foundations of self-attention. These
efforts provide various interpretations of self-attention, including the probabilistic view [80, 28], the
causal view [75], the structural inference view [81], the dynamical system view [41, 56, 27], the
statistical mechanical view [74], the variational denoising view [66], the clustering view [31], and the
Hopfield network view [73]. In this paper, we provide a statistical mechanical perspective to derive
self-attention from the first principle of entropy minimization; in that sense, our interpretation is
closely related to the statistical mechanical, denoising and Hopfiled network views. More importantly,
our interpretation lends itself to straightforward generalization to the hierarchical self-attention
mechanism which, as we show, is both theoretically optimal and efficiently computable.

C Generalizing The Notion of Signal

In standard Geometric Deep Learning, signals typically represent data structures in Computer Vision,
Audio Processing, Natural Language Processing and Graph and Manifold Processing. But the
notion off signal is quite versatile and can be generalized to include feature representations in
classical Machine Learning. In particular, we note the special case where the signal domain Ω is a
countable, discrete set with no additional structure. In this case, if the elements of Ω are conceptually
indistinguishable, then any signal x on Ω is said to be defined on an unordered set and subsequently,
the position embedding εΩ maps all the elements of Ω to the constant vector 0. The latter conveys
that there is no positional information associated with the signal. As an example, a vector set can be
seen as a signal defined on an unordered set.

On the other hand, if the elements of Ω are distinguishable, we can define a bijective position
embedding εΩ to carry that information into the position vector space. We refer to signals defined
on such Ω domains as key-value signals. For instance, a tabular feature vector in classical Machine
Learning can be seen as a set of key-value pairs where the keys are the feature names and the values
are the feature values, and hence modeled as a key-value signal. In this case, a text embedding
model can be used to map the feature names into a vector space and regard the results as the position
embeddings of those features. In other words, the notion of signal in our work is quite generic and
encompasses not only the signal types in Geometric Deep Learning but also the classical tabular
feature vectors.

D The Emergence of The Value Projection Matrix

The derived formulation for Softmax attention in (6) deviates from the classical Softmax attention in
that it lacks separate value projections, which can be quite restrictive as it significantly reduces the
model’s degrees of freedom. Nevertheless, the value projections can be theoretically injected into our
derived formulation by considering learnable step-size for the gradient update in (6). In particular,
instead of setting step size to λ = 1, we can let λ =Wv where Wv ∈ Rd×d is a trainable parameter.
By doing so, (6) changes to:

qi ← qi +

N∑
j=1,j ̸=i

exp(qTi kj/
√
d+ eTi ej)∑N

t=1,t̸=i exp(q
T
i kt/

√
d+ eTi ej)

·Wvkj , 1 ≤ i ≤ N (14)

By defining vi = Wvkj = WvWkxj , we effectively arrive at separate value projections, where
WvWk can be seen as the value projection matrix used in the standard Softmax attention formulation.

Note that by introducing learning step-size in the form of projection matrix, we effectively project
the direction of the gradient vector into a new direction. So in that sense, (14) is no longer a strict

28

gradient ascent update. In other words, depending on the learned projection matrix Wv and the value
of gradient vector for point qi, we may decrease or even increase the upper-bound on the conditional
entropy. This extra degree of flexibility indeed enables the transformer model to best adapt to the
end task. And therefore, we have adopted separate value projections in our code as well as all of our
reported experiments, similar to the standard transformer architecture.

E Algorithmic Details

In Section 4, we proposed an efficient algorithm based on dynamic programming for the calculation of
HSA. In this section, we provide formal correctness results and complexity analysis for this algorithm.
We, furthermore, introduce an extension of the proposed algorithm to a more generic algorithmic
template with a replaceable black-box base attention computation module. Finally, we discuss some
practical details on how to implement our proposed algorithm on modern GPUs.

E.1 Correctness and Complexity

First off, it is not hard to show that for the case of flat hierarchy, Algorithms 1–3 reduce to the
standard Softmax attention calculations. In other words, the standard Softmax attention calculation is
a special case of our proposed algorithm here. However, showing the correctness and the complexity
of Algorithms 1–3 for the general case, is more involved, which we achieve through the following
theorem.
Theorem E.1. For a given signal hierarchy hx, if both query and key variables are normalized via the
LayerNorm function, then Algorithms 1–2 compute {∇qiϕ(Rx) | i ∈ ℓ(Rx)} in Eq. (9) in O(M · b2)
based on the interaction energy function defined in Eq. (7), where b and M are the branching factor
and the number of families in hx, respectively.

Proof. See Appendix H.3.

Once the attention values are computed using Algorithm 1, the query vector representations at the
leaf nodes can be updated via the residual connection:

qi ← qi − |ℓ(Rx)|
√
d · ∇qiϕ(Rx),∀i ∈ ℓ(Rx) (15)

And that would conclude the HSA operation.

E.2 Black-box Attention Computation

It is important to note that Lines 16-18 in Algorithm 3 perform the standard Softmax attention
mechanism on the members of a family that contains node A. In other words, our proposed HSA
algorithm can be seen as a divide-and-conquer algorithm where the attention computation on the
whole sequence (i.e. the hierarchy’s leaves) is broken down into attention computation on the much
smaller families in the hierarchy (aka the sub-problems) via the bottom-up part of the algorithm,
and then these intermediate results (aka the sufficient statistics) are combined through the top-down
part of the algorithm to produce the final self-attention output. From this perspective, if the average
branching factor (i.e. the family size) in the hierarchy is b, then on average, the sub-problem attention
calculation takes O(b) time and memory for each node A, which makes the O(b2) complexity for the
entire family. Then intuitively for the total of M families in the hierarchy, the final computational
complexity comes to O(M · b2). As a special case, for flat hierarchies where there is only M = 1
family of size b = N (i.e. the sequence length), the complexity becomes O(N2).

More importantly, from the practical perspective, the divide-and-conquer view of the proposed
algorithm encapsulates the sub-problem self-attention computation (in Lines 16-18 in Algorithm
3) as a black-box module that can be easily replaced by any exact or approximate function that
computes the standard Softmax attention. This has a significant practical implication, as it allows
the HSA algorithm to invoke any efficient attention computation frameworks in the literature as its
base attention calculation sub-module. For instance, the quadratic factor b2 in O(M · b2) can be
further reduced to linear if one employs one of the many approximation techniques proposed for
efficient computation of Softmax attention [21, 13, 68, 43] as the black-box sub-problem attention
computation module in Lines 16-18 in Algorithm 3.

29

E.3 GPU Implementation

The Algorithms 1–2 are technically classical tree-traversal algorithms which are typically not fit for
parallel processing on GPU. Indeed, this would introduce a practical challenge for incorporation
of HSA within modern Deep Learning frameworks. To address this challenge, in this section, we
present two major techniques for introducing parallelization both at the node level for one signal
hierarchy as well as at the batch level across multiple signal hierarchies.

First, we note that all the summations in Algorithms 3 and 2 can be done in parallel for different sets
of nodes in hx. In particular, if a summation statement can be parallelized for K nodes of hx, it can
be implemented as a (sparse) matrix by dense vector multiplication W v, where W = [wi,j]K×S is
the sparse coefficient matrix and v = [vi]S×1 contains the values of the input terms. In particular,
wi,j is the weight of the jth term for computing the summed quantity at the ith node (typically 1
or 0). As for the quantities in Algorithms 3 and 2, µk(·), µq(·) and η(·) can be parallelized over
all the nodes in hx; that is, in order to compute each one of these quantities for all nodes of hx,
only one sparse matrix-vector multiplication is needed given the appropriate coefficient matrix. The
computation of ϕ(·) and ϑ(·) is also parallelizable over the nodes belonging to the same depth in hx;
in other words, given the appropriate coefficient matrices, we would need D sparse matrix-vector
multiplications to calculate each one of these quantities for all nodes in hx, where D is the depth of
hx. Since the coefficient matrices in this scheme are highly sparse, we have represented the coefficient
matrices using sparse tensors and used the efficient implementation of sparse matrix by dense vector
multiplication in Pytorch to carry out the tree-based summations in Algorithms 3 and 2.

The other fundamental aspect of parallelization in Deep Learning is batch computation, which
typically boils down to matrix operations for the standard batches of fixed-size tensors. However,
in our scenario, the signal hierarchies in each batch are trees with different structures as well as
potentially different signal types/modalities appearing in arbitrary arrangements for each signal
hierarchy in the batch. This effectively makes the classical batch computation impossible for signal
hierarchies. To address this challenge, we propose a completely different technique for batch
parallelization. As explained above, we already have a method to parallelize the computations within
each signal hierarchy; we can further parallelize the computations across different signal hierarchies
in a batch by making them part of one hierarchy. In particular, we introduce a dummy root node and
make each signal hierarchy in the batch a direct child of it. The position embedding for this dummy
root is set to unordered-set embedding; that is, no position embedding. This way, we end up with only
one, wide signal hierarchy in our batch that is just one level deeper than the deepest signal hierarchy
in the original batch. By performing the parallel version of Algorithms 1–2 (as described above)
on this one "concatenated" signal hierarchy, we effectively compute all the targeted quantities for
all signal hierarchies in the batch at the same time. We refer to this batch processing technique as
breadth-wise tree concatenation.

F Hierarchical Transformer Encoder

The proposed HSA mechanism does not introduce any trainable parameters on its own; it is simply an
attention operation. However, similar to classical transformers, we can add trainable linear projections
before performing HSA. This gives rise to the hierarchical transformer encoder (HTE) architecture
which is capable of operating on signal hierarchies representing finite nested signals. Similar to
classical transformers, we also add multiple heads as well as point-wise linear projection of the
output of HSA followed by some non-linearity. The same way the classical transformer layers do
not change the query sequence length or the position embeddings of its tokens, HTE layers do not
alter the structure of the hierarchy tree or its nodes’ positional embeddings2. Figure 4 depicts our
proposed architecture for each HTE layer.

Aside from HSA, HTE is different from classical transformer encoder in two ways. First, the
LayerNorm operation is performed after linear projection as opposed to before it. As mentioned
before, by doing so, the attention operation will minimize a proper energy function which is in turn a
proxy for minimizing the entropy of the representation. Second, unlike simple signals in standard
transformers, signal hierarchies can contain different modalities and signal domains within their

2Even though, the same position embeddings are fed to each layer, in our implementation, we have designed
a separate linear projection per position embedding type per layer to project the position embeddings before the
HSA operation.

30

Figure 4: The proposed Hierarchical Transformer Encoder (HTE) layer architecture.

different families across the hierarchy. Therefore, using the same linear projection layer for all this
various types of information may be an over-simplification. To this end, our proposed framework
allows different linear projection per the type of input information. For example, the leaf vectors
coming from the language and vision modalities can be transformed using their own separate linear
projection layers. Note that this distinction is only allowed at the linear projection layer; the HSA
operation itself is universal and does not treat different types of information differently. Also, it
is assumed the different types of information in a given problem (including modalities and signal
domains) are a priori known and fixed, even though each signal hierarchy in the input dataset can be
an arbitrary, variable-depth composition of these known types. By making this assumption, we can
know ahead of time how many linear projection layers are needed within each HTE layer.

The HTE layers can be cascaded to form a hierarchical transformer based on the HSA. Furthermore,
different types of pooling operations can be introduced to (gradually) coarsen the hierarchical structure
of the input nested signal. In particular, using a local pooling operation, the leaf nodes of the input
signal hierarchy are either merged together or completely pooled into their parents resulting in a
coarser representation of the underlying nested signal. Furthermore, since the channel dimensionality
d is constant across the hierarchy, global pooling is also well-defined which reduces the whole signal
hierarchy into a single, fixed-size vector of d dimensions (e.g. by taking the average). Depending on
the application, global pooling can also be realized by taking a specific leaf node’s query vector of
the output signal hierarchy (e.g. in per-token classification tasks on uni-modal, hierarchical data).

G Hierarchical Auto-regressive Generation

The HSA-based, encoder-only architecture introduced in Appendix F is primarily suitable for classifi-
cation and regression applications. However, for auto-regressive generation such as causal language
modeling, we would need to have a decoder. One straightforward approach is to use an encoder-
decoder architecture where the encoder is HSA-based while the decoder is the standard sequential
decoder. In particular, in this scheme, the hierarchical self-attention is only incorporated for the initial
prompt while for the generated text, we simply compute the standard flat attention. While simple, this
solution does not take the full advantage HSA, especially if the generated text allows for the similar
hierarchical structure as the prompt text. For instance, if the hierarchy is built upon the sentence
and paragraph structure of the prompt text, then it is fairly reasonable for the generated text to have
the same hierarchical construct as well. The same can be said when the hierarchy is based on fixed
hopping windows over the text. In such cases, a HSA-based, decoder-only architecture is needed to
incorporate the hierarchical structure of the generated text during auto-regressive generation.

Theoretically speaking, for a HSA-based decoder during auto-regressive generation, we would need
to maintain a dynamic signal hierarchy where every generated token augments the signal hierarchy
with at least one new leaf node and possibly multiple non-leaf nodes. Once the signal hierarchy is
updated, the HSA calculations are, in principle, the same as before. Nevertheless, there are two major
issues here specific to auto-regressive generation. First, unlike the HSA mechanism introduced so far,
due to causal generation of tokens, leaf nodes are only allowed to attend to the other leaf nodes that
have appeared before them; that is, we would need a hierarchical causal masking mechanism. Second,
running the full HSA algorithm for every generated token is inefficient as it would re-compute some
of the sufficient statistics in Algorithm 3, which is clearly redundant. In the following sections, we
address these two problems.

31

G.1 Hierarchical Causal Masking

In the standard auto-regressive generation using the self-attention mechanism, in order to prohibit
tokens from attending to the future tokens, one incorporates a causal mask in calculation of the
attention weights via an appropriate lower-triangular mask matrix. However, this straightforward
approach will not work with hierarchical self-attention mechanism because attention weights between
all tokens are not computed simultaneously but rather in hierarchical fashion.

Nevertheless, one can easily show that if the standard causal masking is applied at each level of the
hierarchical attention calculation, at the end, no leaf token will attend to its future tokens (i.e. the
tokens to its right) in the hierarchy. In particular, as explained in Appendix E.2, Lines 16–18 of
Algorithm 3 encapsulate a black-box Softmax self-attention function that is applied for each family
in the hierarchy. For applying hierarchical causal masking, we can simply apply the standard causal
masking within this black-box self-attention calculation. This is equivalent to replacing the sibling
function sib(A) in lines 16–18 of Algorithm 3 with sibL(A) which restricts A’s siblings to the ones
to its left (i.e. previous tokens). This simple black-box causal masking will further propagate through
the hierarchy such that at the end, the leaf nodes will only attend to other leaf nodes that are located
to their left. Figure 5 illustrates this process through a toy example.

Figure 5: An illustration of the proposed Hierarchical Causal Masking scheme for hierarchical
auto-regressive generation.

G.2 Hierarchical Caching

In standard auto-regressive generation, every generated token merely attends to the tokens seen so far
whose projections are cached via a key-value cache. This makes the attention computation for each
token linear in the (generated + prompt) sequence length. This simple idea, however, is not directly
applicable to the hierarchical case. One important distinction that we need to keep in mind is that
in the hierarchical case, we are not only generating a sequence but also a hierarchy that comes with
it; in other words, the generated sequence is the set of the leaf nodes of a hierarchy that needs to be
maintained and updated as well. As such, any caching mechanism would need to maintain and update
the signal hierarchy and not just its leaf nodes. Note that caching the hierarchy means maintaining its
structure as well as its nodes’ sufficient statistics pre-computed by Algorithm 3.

Nevertheless, during generation, we do not need to keep the entire signal hierarchy. In particular, in
our HSA framework not every leaf node directly attend to every other leaf node; instead, leaf nodes

32

that are not in the same family only attend to each other at the coarse scale through their highest
distinct ancestors. This means that during generation, a newly generated token (leaf node) only needs
to directly attend to its previously generated leaf siblings and not other leaf nodes. Instead it will
indirectly attend to other leaf nodes en masse by attending to their highest ancestor that is not an
ancestor of the new token. Following this scheme, we would only need to cache a sub-tree of the
original hierarchy that consists of the ancestor line of the latest generated token as well as their
immediate children nodes. We refer to this sub-tree as right-skewed because only the right-most
sibling in each family across the signal hierarchy is allowed to have children. Figure 6(A) illustrates
the maximal right-skewed sub-tree for the toy hierarchy in Figure 6(B).

Once the the right-skewed sub-tree of the signal hierarchy is extracted, we can simply update as
new tokens are generated. However, we have to be careful as not all of the newly generated tokens
are added to the latest family: some new tokens may start a new family via a higher level of the
hierarchy. For example, if the hierarchy for language data is built based upon the sentence and
paragraph structure in the text, a new token is not always going to be part of the latest sentence or
paragraph; it may start a new sentence or even a new paragraph. In such cases, more nodes need
to be added to or deleted from the cache other than the new token’s leaf node. These two cases are
illustrated in Figure 6(C)-(D).

Finally we note that during the entire generation process the hierarchical cache remains a right-skewed
tree which means that the CPU and memory complexity for calculating attention and maintaining
the cache would be O(b logbN) where N is the length of the generated sequence so far and b is
the average branching factor of the hierarchy. This is in stark contrast to the classical key-value
caching where the memory and computation are of O(N) complexity, and hence shows the potential
computational advantage of our hierarchical scheme.

Figure 6: An illustration of the proposed hierarchical caching mechanism for hierarchical auto-
regressive generation: (A) The original signal hierarchy built on the prompt text. (B) The right-skewed
sub-tree of the original hierarchy. (C) The updated hierarchy after generation of a new token that
does not end the latest family. (D) The updated hierarchy after generation of another token that does
end the latest family. The green leaf nodes depict the latest generated tokens in each step.

H Proofs

H.1 Proposition 1: Softmax Attention

Proof. Since each Q and K variables is normalized via a LayerNorm layer, we have ∥qi∥2 = d and
∥ki∥2 = d, ∀1 ≤ i ≤ N , which would reduce the energy function in (5) to:

ϕ(Q,K) =
√
d− 1

N

N∑
i=1

log

(
1

N − 1

N∑
j=1,j ̸=i

exp
[
qTi kj/

√
d
])

By taking the gradient of w.r.t. qi, we get:

∇qiϕ(Q,K) =

N∑
j=1,j ̸=i

exp(qTi kj/
√
d)∑N

t=1,t̸=i exp(q
T
i kt/

√
d)
· kj , 1 ≤ i ≤ N

By plugging ∇qiϕ(Q,K) into (4) and setting τ = (N
√
d)−1, λ = 1 and the sample size to 1, we

will get the Softmax attention formulation in (6).

33

H.2 Theorem 1: The Optimality of HSA

First off, since each Q and K variables is normalized via a LayerNorm layer, we have ∥qi∥2 = d and
∥ki∥2 = d, ∀1 ≤ i ≤ N , which would reduce the interaction energy function ψA→B in (7) to:

ψA→B = −εΩ(A′)T εΩ(B
′) +
√
d− 1√

d · |ℓ(A)| · |ℓ(B)|

∑
i∈ℓ(A)

∑
j∈ℓ(B)

qTi kj (16)

Then ∇qiψA→B becomes:

∇qiψA→B = − 1√
d · |ℓ(A)| · |ℓ(B)|

∑
j∈ℓ(B)

kj (17)

Proof of stochasticity. Next, we show that Θ̂ = − 1
τΘ is a stochastic matrix where τ =(

|ℓ(Rx)|
√
d
)−1

and Θ = [θi,j]|ℓ(Rx)|×|ℓ(Rx)| is the HSA matrix for the nested signal x in (11).

This is equivalent to showing that Θ is a negative matrix whose rows sum to −
(
|ℓ(Rx)|

√
d
)−1

. We
prove the latter by induction on the depth of the signal hierarchy hx.

The base case: Using the (17), for a signal hierarchy hx of depth 1 (i.e. a simple signal), (9) reduces
to:

∇qiϕ(Rx) = −
1√

d|ℓ(Rx)|

[∑
Lj∈sib(Li)

exp
(
− ψLi→Lj

)∑
Lk∈sib(Li)

exp
(
− ψLk→Lj

) · kj] = Θi.K (18)

where

K = [k1, ..., k|ℓ(Rx)|]
T ,

Θi. =

[− exp
(
− ψLi→Lj

)
√
d|ℓ(Rx)|

∑
Lk∈sib(Li)

exp
(
− ψLk→Lj

)]|ℓ(Rx)|

j=1

is the ith row of Θ, and Li, Lj and Lk are the leaf nodes corresponding to qi, qj and qk, respectively.
From (18), it is clear that the elements of Θ are all negative and each row sums to −

(
|ℓ(Rx)|

√
d
)−1

.

The induction step: Now assume that the above statement holds for any Θ matrix derived from a
signal hierarchy up to depth T − 1, we show that it also holds for the signal hierarchy hx of depth T .
To this end, (9) can be written as:

∇qiϕ(Rx) =
|ℓ(Bi)|
|ℓ(Rx)|

[
α(Bi) · ∇qiϕ(B

i) +
∑

C∈sib(Bi) |ℓ(C)|β(Bi, C) · ∇qiψBi→C

α(Bi) +
∑

C∈sib(Bi) |ℓ(C)|β(Bi, C)

]
=
|ℓ(Bi)|
|ℓ(Rx)|

[
µ(Bi)∇qiϕ(B

i) +
∑

C∈sib(Bi)

|ℓ(C)|δ(Bi, C)∇qiψBi→C

]
where,

µ(Bi) =
α(Bi)

α(Bi) +
∑

D∈sib(Bi) |ℓ(D)|β(Bi, D)
(19)

δ(Bi, C) =
β(Bi, C)

α(Bi) +
∑

D∈sib(Bi) |ℓ(D)|β(Bi, D)
(20)

and we have µ(Bi) +
∑

C∈sib(Bi) |ℓ(C)|δ(Bi, C) = 1, for all i ∈ ℓ(Rx). On the other hand, since
Bi is a child of the root node Rx, the depth of its corresponding sub-signal hierarchy is inevitably
less than T , and therefore its corresponding energy gradient ∇ϕ(Bi) induces an attention matrix
ΘBi

that is negative with rows that sum to −
(
|ℓ(Bi)|

√
d
)−1

according to the induction hypothesis.
With that in mind, we can write

∇qiϕ(Rx) =
|ℓ(Bi)|
|ℓ(Rx)|

[
µ(Bi)ΘBi

i. KBi

−
∑

C∈sib(Bi)

δ(Bi, C)√
d · |ℓ(Bi)|

∑
j∈ℓ(C)

kj

]
= Θi.K

34

where ΘBi

i. is the ith row of ΘBi

, KBi

= [kj]j∈ℓ(Bi), and we have:

Θi. = concat
[
|ℓ(Bi)|
|ℓ(Rx)|

µ(Bi)ΘBi

i. , concat
[
− δ(Bi, C)√

d · |ℓ(Rx)|
1|ℓ(C)|

]
C∈sib(Bi)

]
Then the sum of the elements of the row vector Θi. is given by:∑

j∈ℓ(Rx)

θi,j =
1

|ℓ(Rx)|

[
|ℓ(Bi)|µ(Bi)

∑
j∈ℓ(Bi)

θB
i

i,j −
∑

C∈sib(Bi)

|ℓ(C)|√
d
δ(Bi, C)

]

=
1

|ℓ(Rx)|

[
− 1√

d
µ(Bi)−

∑
C∈sib(Bi)

|ℓ(C)|√
d
δ(Bi, C)

]

= − 1√
d|ℓ(Rx)|

[
µ(Bi) +

∑
C∈sib(Bi)

|ℓ(C)|δ(Bi, C)

]
= − 1√

d|ℓ(Rx)|

where the second equality comes from the induction hypothesis that
∑

j∈ℓ(Bi) θi,j =

−
(
|ℓ(Bi)|

√
d
)−1

. In other words, ΘRx is negative with rows that sum to −
(
|ℓ(Rx)|

√
d
)−1

, which
in turn, implies that Θ̂ = −

(
|ℓ(Rx)|

√
d
)
Θ is a stochastic matrix.

Before proving the optimality of HSA, we need to show that the KL-divergence admits optimal
sub-structure in our setting. To this end, let ℘ = [pi]

N
i=1 be a categorical distribution over N items

such that
∑N

i=1 pi = 1. Furthermore, let R = {R1, ..., RK} be a K-partition on the index set
I = {1, ..., N} such that

⋃K
j=1Rj = I and Ri ∩Rj = ∅,∀i, j ∈ 1..K, i ̸= j. We say a categorical

distribution ω = [wi]
N
i=1 admits the tie constraint w.r.t. R iff we have wi = wj if ∃Rk ∈ R s.t.

i, j ∈ Rk. We refer to set of all such distributions as WR.

Given a distribution ω ∈ WR and the sub-partition R′ ⊂ R, the projection of ω on R′ is defined
as ω⊥R′ = [wi/h]i∈I(R′) where I(R′) =

⋃
R∈R′ R, and h =

∑
i∈I(R′) wi is the re-normalization

constant. From this definition, it is clear ω⊥R′ is a categorical distribution restricted to the items in
the partitionR′.
Lemma H.1 (The optimal sub-structure of the KL-divergence). Let ℘, R and WR be defined as
above; furthermore, let ω∗ ∈WR be the closest categorical distribution in WR to ℘ in terms of the
KL-divergence; that is,

ω∗ = arg min
ω∈WR

DKL(ω∥℘)

Then, for anyR′ ⊂ R, we have:

ω∗
⊥R′ = arg min

ω∈WR′
DKL(ω∥℘⊥R′)

Proof. Let us assume the closest distribution in WR′ to ℘⊥R′ is ω′ that is not equal to ω∗
⊥R′ . Then

we have,

DKL(ω
∗∥℘) =

∑
i∈I(R′)

w∗
i log(w

∗
i /pi) +

∑
i∈I(R\R′)

w∗
i log(w

∗
i /pi)

= h1 log(h1/h2) + h1
∑

i∈I(R′)

w∗
⊥R′i log(w

∗
⊥R′i/p⊥R′i) +

∑
i∈I(R\R′)

w∗
i log(w

∗
i /pi)

> h1 log(h1/h2) + h1
∑

i∈I(R′)

w′
i log(w

′
i/p⊥R′i) +

∑
i∈I(R\R′)

w∗
i log(w

∗
i /pi)

=
∑

i∈I(R′)

h1w
′
i log(h1w

′
i/pi) +

∑
i∈I(R\R′)

w∗
i log(w

∗
i /pi)

= DKL(ω
′′∥℘)

where

ω′′ = [w′′
i]

N
i=1, such that w′′

i =

{
h1w

′
i, for i ∈ I(R′)

w∗
i , for i ∈ I(R \R′)

35

and h1 =
∑

i∈I(R′) w
∗
i and h2 =

∑
i∈I(R′) pi are the re-normalization coefficients. The inequality

in the above derivation is the direct result of the fact that ω′ is the closest distribution to ℘⊥R′ in
WR′ . This further implies that we just found another distribution ω′′ ∈WR that is closer to ℘ than
ω∗ is. And this contradicts our assumption regarding the optimality of ω∗. Therefore, ω∗

⊥R′ must be
the closest distribution to ℘⊥R′ in WR′ .

Intuitively speaking, Lemma H.1 states that any sub-structure of an optimal solution for the KL-
divergence to a target distribution is also optimal. With that, we are now ready to show the optimality
of HSA.

Proof of optimality. We would like to show that the HSA formulation in (9) results in a self attention
matrix Θ̂ that minimizes the total KL-divergence in (12). In order to do so, we derive the optimal
solution for the total KL-divergence and show that it obeys the recurrence in (9).

For a signal hierarchy hx rooted at Rx, let Θ̂
R

denote the closest HSA matrix in B (the space of
all matrices that admit the block constraint according to the signal hierarchy hx) to the flattened
self-attention matrix Θf described by (13). That is,

Θ̂
R
= arg min

Θ∈B

∑
i∈ℓ(Rx)

DKL(θi,·∥θfi,·) ≡ arg min
Θ∈B

D̄KL(Θ∥Θf) (21)

Since each row of Θ̂
R

is a categorical distribution, by applying Lemma H.1 to the rows of Θ̂
R

, it is
straightforward to see that the diagonal blocks of Θ̂

R
corresponding to the children ofRx are also (up

to a re-normalization factor) the closest HSA matrices to the restriction of the flattened self-attention
matrix Θf to the corresponding sub-hierarchies. For the child node A ∈ chd(Rx), the renormalized
restriction of Θf to A is denoted by Θf,A. The elements of Θf are then can be written as:

∀i, j ∈ ℓ(Rx), θ
f
i,j =

{
zi

zi+z̄i
θf,A

i

i,j , if Ai = Aj

bi,j
zi+z̄i

, if Ai ̸= Aj
(22)

where Ai denotes that child of Rx that contains the ith leaf node, bi,j = exp(−ψi→j), zi =∑
j∈ℓ(Ai) bi,j , and z̄i =

∑
j∈ℓ(Rx)\ℓ(Ai) bi,j . Similarly, if we denote the renormalized restriction of

Θ̂
R

to A by Θ̂
R,A

, the elements of of Θ̂
R

are then can be written as:

∀i, j ∈ ℓ(Rx), θ̂
R
i,j =

{
µ(Ai)θ̂R,Ai

i,j , if Ai = Aj

δ(Ai, Aj), if Ai ̸= Aj
(23)

where µ(Ai) and δ(Ai, Aj) are unknown coefficients. Note that unlike (22), for the case of Ai ̸= Aj ,
we only have one number representing the attention weight between sub-trees Ai and Aj - i.e.

δ(Ai, Aj). This is due to the block constraint being enforced on Θ̂
R

. Similarly, the block constraint
requires the renormalization coefficient for every child Ai, i.e. µ(Ai), to be the same for all the rows

k ∈ ℓ(Ai). If we assume we already know the optimal restricted HSA matrices Θ̂
R,A

,∀A ∈ chd(Rx),
our goal reduces to computing the values of µ(A) and δ(A,B) for all A,B ∈ chd(Rx) such that the

36

total KL-divergence in (21) is minimized. By plugging Eqs.(22) and(23) into (21), we get:

D̄KL(Θ̂
R
∥Θf) =

∑
A∈chd(Rx)

∑
i∈ℓ(A)

[∑
j∈ℓ(A)

µ(A)θ̂R,Ai

i,j log

(
µ(A)θ̂R,Ai

i,j (zi + z̄i)

ziθ
f,Ai

i,j

)

+
∑

B∈sib(A)

∑
j∈ℓ(B)

δ(A,B) log

(
(zi + z̄i)δ(A,B)

bi,j

)]

=
∑

A∈chd(Rx)

[
µ(A)

(
D̄KL(Θ̂

R,A
∥Θf,A) + |ℓ(A)| logµ(A) +

∑
i∈ℓ(A)

log
(zi + z̄i

zi

))

+
∑

Binsib(A)

(
|ℓ(A)||ℓ(B)|δ(A,B) log δ(A,B)

+ δ(A,B)

[
|ℓ(B)|

∑
i∈ℓ(A)

log(zi + z̄i)−
∑

i∈ℓ(A)

∑
j∈ℓ(B)

log bi,j

])]
(24)

Where D̄KL(Θ̂
R,A
∥Θf,A) is the optimal value of the total KL-divergence for the sub-problem

induced by the child node A of Rx. Since Θ̂
R

is the minimizer of (24), the values of µ(A) and
δ(A,B), ∀A,B ∈ chd(Rx) must be chosen such that they minimize (24). Furthermore, each row of

the matrix Θ̂
R

must sum to 1, which results in the following set of constraints on the values of µ(A)
and δ(A,B):

∀i ∈ ℓ(Rx),
∑

j∈ℓ(Rx)

θ̂Ri,j = 1⇒
∑

j∈ℓ(Ai)

θ̂Ri,j +
∑

j∈ℓ(Rx)\ℓ(Ai)

θ̂Ri,j = 1

⇒ µ(Ai)
∑

j∈ℓ(Rx)

θ̂R,Ai

i,j +
∑

B∈sib(Ai)

|ℓ(B)|δ(Ai, B) = 1

⇒ µ(A) +
∑

B∈sib(A)

|ℓ(B)|δ(A,B) = 1, ∀A ∈ chd(Rx) (25)

where the second line is obtained by incorporating (23) and the last line uses the fact that the rows

of the restricted matrix Θ̂
R,Ai

are already normalized. To optimize (24) w.r.t. µ(A) and δ(A,B),
∀A,B ∈ chd(Rx) while enforcing the constraints in (25), we form the Lagrangian as follows:

L
(
µ(A), δ(A,B), λA;∀A,B ∈ chd(Rx)

)
= D̄KL(Θ̂

R
∥Θf)−

∑
A∈chd(Rx)

λA

[
µ(A) +

∑
B∈sib(A)

|ℓ(B)|δ(A,B)− 1

]
(26)

where λA,∀A ∈ chd(Rx) are the Lagrange multipliers. By taking the partial derivatives of the
Lagrangian w.r.t. µ(A) and δ(A,B) and solving for them, we get:

µ(A) = exp

[
1

|ℓ(A)|

(
λA − D̄KL(Θ̂

R,A
∥Θf,A) +

∑
i∈ℓ(A)

log
(zi
zi + z̄i

))
− 1

]
,

δ(A,B) = exp

[
1

|ℓ(A)|

(
λA −

1

|ℓ(B)|
∑

i∈ℓ(A)

∑
j∈ℓ(B)

log bi,j −
∑

i∈ℓ(A)

log(zi + z̄i)

)
− 1

]
(27)

Now if we plug (27) into the constraints in (25), we can solve for λA’s, which can be further put back
into (27) to derive the values of µ(A) and δ(A,B) as:

µ(A) =
γ(A)

γ(A) +
∑

C∈sib(A) |ℓ(B)|ζ(A,C)
, δ(A,B) =

ζ(A,B)

γ(A) +
∑

C∈sib(A) |ℓ(B)|ζ(A,C)
(28)

where

γ(A) = exp

[
1

|ℓ(A)|

(∑
i∈ℓ(A)

log zi − D̄KL(Θ̂
R,A
∥Θf,A)

)]
(29)

ζ(A,B) = exp

[
1

|ℓ(A)||ℓ(B)|
∑

i∈ℓ(A)

∑
j∈ℓ(B)

log bi,j

]
= exp(−ψA→B) (30)

37

where the last equality directly results from the definition of bi,j and the definition of the interaction
energy between A and B in (7). In case Rx is of depth 1 (that is, A is a leaf node), γ(A) is simply
defined to be 0. By plugging these values into (24) and doing some algebra, we derive the optimal
value of the total KL-divergence as follows:

D̄KL(Θ̂
R
∥Θf) =

∑
A∈chd(Rx)

[∑
i∈ℓ(A)

log(zi+ z̄i)−|ℓ(A)| log
(
γ(A)+

∑
B∈sib(A)

|ℓ(B)|ζ(A,B)

)]
(31)

On the other hand, using (29), we can derive γ(Rx) as:

γ(Rx) = exp

[
1

|ℓ(Rx)|

(∑
i∈ℓ(Rx)

log zi − D̄KL(Θ̂
R
∥Θf)

)]
(32)

Now by plugging (31) into (32), applying (30), and taking the logarithm of both sides, we arrive at:

log γ(Rx) =
∑

A∈chd(Rx)

|ℓ(A)|
|ℓ(Rx)|

log

[
exp

(
log γ(A)

)
+

∑
B∈sib(A)

|ℓ(B)| exp(−ψA→B)

]
(33)

By comparing (33) to the definition of the energy of the signal hierarchy in (8), it is clear that our
proposed energy function ϕ(·) and− log γ(·) follow the exact same recurrence dynamic. Furthermore,
since the initial values of these two functions at the leaf nodes are both equal to∞, we can conclude
that γ(A) = exp(−ϕ(A)) for all nodes A in the signal hierarchy hx. In other words, γ(·) and ζ(·, ·)
are respectively the exact same functions as α(·) and β(·, ·) in (10). This further means that the
optimal coefficients µ(·) and δ(·, ·) in (28) to update the optimal self-attention matrix recurrence
in (23) are the exact same coefficients in our proposed recurrence in (9) to compute hierarchical
self-attention. Since both methods result in the same attention matrix for the base case of one-level
hierarchy (i.e. the standard Softmax attention), and also follow the exact same recurrence dynamic,
we can conclude that they are equivalent. This means that our proposed HSA formulation is also
optimal in the sense of the total KL-divergence, which concludes the proof.

H.3 Theorem 2: The Correctness and The Complexity of Algorithms 1–3

Proof. Before proving the correctness and the complexity of our proposed algorithm, we show
the complexity of directly calculating (9). In order to compute ∇qiϕ(Rx), we would need to first
calculate the node energy function ϕ(·) at every node in the signal hierarchy using the recursive
formula in (8). For a signal hierarchy with M internal nodes and the maximum b branching factor,
we would have O(M · b) nodes in the hierarchy, at each one of them, we would need to compute
the sum in in (8) over their O(b) siblings. This would make the total complexity of calculating ϕ(·)
O(M.b2). This is essentially the complexity of the recursive function in Algorithm 3.

Next, to compute ∇qiϕ(·) from (9), we need to traverse the path from the root node to the leaf node
corresponding to qi which has O(logbM) nodes. In each node, we also need to calculate a sum over
the O(b) siblings of that node, which makes the cost of calculating ∇qiϕ(·) O(b logbM). However,
since we would need to repeat this calculation for all O(M · b) leaf nodes qi’s, the total cost of
computing HSA would become O(b2.M logbM).

Moving on with the proof, we note that the recurrence relation in (9) can be written as:

∇qiϕ(Rx) = exp
(
f(Bi)

)
∇qiϕ(B

i) + g(Bi) (34)

where
f(Bi) = logµ(Bi) , g(Bi) =

∑
C∈sib(Bi)

|ℓ(C)|δ(Bi, C) · ∇qiψBi→C (35)

and µ(·) and δ(·, ·) are given in (19) and (20). Furthermore, (34) is a first-order, non-homogeneous
recurrence relations with variable coefficients for which we can derive the following closed-form
solution:

∇qiϕ(Rx) =
∑

B∈Rx⇝Li

[
g(B) exp

(∑
C∈Rx⇝Pa(B)

f(C)

)]
=

∑
B∈Rx⇝Li

[
g(B) exp

(
u
(
Pa(B)

))]
(36)

38

where
u
(
A
)
=

∑
C∈Rx⇝A

f(C) = f(A) + u
(
Pa(A)

)
, (37)

Rx ⇝ A denotes the set of all nodes on the path from the root to node A excluding the root itself, Li

is the leaf node corresponding to qi and Pa(B) denotes the parent of node B. Furthermore, define:

ϑ(A) ≡
∑

B∈Rx⇝A

[
g(B) exp

(
u
(
Pa(B)

))]
= g(A) exp

(
u
(
Pa(A)

))
+ ϑ

(
Pa(A)

)
(38)

Then it is straightforward to see:

∇qiϕ(Rx) = ϑ(Li) , ∀i ∈ ℓ(Rx) (39)

On the other hand, given that each Q and K variables are normalized via a LayerNorm layer, we can
plug (17) into (35), to get:

g(A) = −
∑

C∈sib(A)

δ(A,C)

|ℓ(A)|
√
d

∑
j∈ℓ(C)

kj

= − 1

|ℓ(A)|
√
d
[
α(A) +

∑
D∈sib(A) |ℓ(D)|β(A,D)

] ∑
C∈sib(A)

[
β(A,C)

∑
j∈ℓ(C)

kj

]

= − 1

|ℓ(A)|
√
d
[
exp

(
− ϕ(A)

)
+ exp

(
− η(A)

)] ∑
C∈sib(A)

[
|ℓ(C)|β(A,C)ρk(C)

]

= − 1

|ℓ(A)|
√
d
[
exp

(
− ϕ(A)

)
+ exp

(
− η(A)

)] ∑
C∈sib(A)

[
|ℓ(C)| exp(−ψA→C)ρk(C)

]

= −

∑
C∈sib(A) |ℓ(C)| exp

(
εΩ(A)

T εΩ(C)−
√
d+ 1√

d
ρq(A)

T ρk(C)

)
ρk(C)

|ℓ(A)|
√
d
[
exp

(
− ϕ(A)

)
+ exp

(
− η(A)

)] (40)

where the last equality is derived from (16), and we have:

η(A) ≡ − log
[∑
D∈sib(A)

|ℓ(D)|β(A,D)
]

= − log
(∑
B∈sib(A)

|ℓ(B)| exp
[
ε(A)T ε(B) +

1√
d
ρq(A)

T ρk(B)−
√
d
])

(41)

and
ρq(A) ≡

1

|ℓ(A)|
∑

j∈ℓ(A)

qj , ρk(A) ≡
1

|ℓ(A)|
∑

j∈ℓ(A)

kj (42)

Furthermore, we can rewrite f(A) as:

f(A) = logµ(A) = log

[
α(A)

α(A) +
∑

D∈sib(A) |ℓ(D)|β(A,D)

]
= log

[
exp

(
− ϕ(A)

)
exp

(
− ϕ(A)

)
+ exp

(
− η(A)

)]
= log

[
1

1 + exp
(
ϕ(A)− η(A)

)]
= log Sigmoid

[
η(A)− ϕ(A)

]
(43)

Finally, by plugging (43) and (40) into the recurrence relations in (37) and (38), we arrive at Lines 3–4
of Algorithm 2. This means that after completion of Algorithm 2, we can read off∇qiϕ(Rx) = ϑ(Li)
at the leaf nodes of the hierarchy. This proves the correctness of our proposed algorithm.

As for the complexity, since Algorithm 3 visits each O(M · b) nodes of the hierarchy once and
performs the summation in Lines 16–18 over the O(b) siblings of each node, the complexity of
Algorithm 3 is O(M · b2), which means the total complexity of computing HSA using our dynamic
programming approach is O(M · b2). And this concludes the proof.

39

I Experimental Settings

In this appendix, we detail the experimental settings used for the reported experiments in the main
paper, which are all completed on 2 Nvidia Titan V GPUs with 24GB GPU memory on a local
Lambda box.

I.1 Datasets

Hierarchical Language: For this experiment, we have chosen the text classification problem for the
sentiment analysis task on two datasets: IMDB [57, 1], and Elec [59, 2]—for sentiment classification
in movie reviews and Amazon electronics product reviews, respectively. The reason behind choosing
these datasets lies in their inclusion of lengthy texts, which means they can benefit from hierarchical
representation. Both datasets have 2 classes. Table 5 summarizes some basic statistics for these
datasets. For the validation set, we have used 10% of the training set.

Classes Train Size Test Size Avg. Word/Doc.
IMDB 2 25K 25k 235
Elec 2 25K 25k 108

Table 5: The statistics for the IMDB and Elec datasets used for the sentiment classification task.

Multi-modal News Classification: For this task, we have performed experiments for the news
classification task on N24News dataset [93], where for each news article not only we have language
and image modalities present, but the text itself consists of multiple sub-modalities, i.e. headline,
abstract, image caption and main body. N24News dataset consists of total of 61, 218 news stories
and 24 total number of classes. The source of the news articles is the New York Times from 2010
to 2020. For training/validation/testing splitting, we use random splitting of ratio 8:1:1 used by the
original paper.

I.2 Model Architectures

All the competitor models in our experiments follow the same general architectural pattern: an
attention layer, followed by a global pooling layer, followed by a multi-layer Perceptron (MLP).

The attention layer: For our main model, the attention layer is a single-layer, HSA-based transformer
as depicted in Fig. 4. For brevity, we refer to this architecture simply as HSA. For the flattened
self-attention (FSA) baseline, the same attention layer as Fig. 4 is applied, except that the input signal
hierarchy to the layer is flattened into a one level (simple) signal (For experiments using the standard
transformer layers, see Appendix J). As shown by Proposition 1, a single level signal hierarchy is
mathematically equivalent to the standard Softmax attention mechanism, which means that we can
view FSA representing the standard Softmax attention. For the DeepSet baseline in the multi-modal
experiment, we apply the same architecture as Fig. 4 for the attention layer, except the attention
operation itself is disabled. That is, all the other neural operations in the HTE layer is applied
except for the attention. This effectively means that we individually transform each token in the
signal hierarchy without letting them interact with each other through the attention mechanism. This
operation followed by pooling and MLP layers effectively implements a DeepSet architecture [102]
for combining the token representations in the input signal into a single, fixed sized vector. Note that
in all of our experiments across different models, the attention layer is simply the HTE layer in Fig.
4 or a variant of it, and as such we can specify the architectural details for each experiment/model
using the same hyper-parameters, as detailed in Table 6. To ensure a fair comparison, we maintain an
equal number of parameters across all models within each experiment.

The global pooling layer: The purpose of global pooling layer is to aggregate the leaf representation
across the hierarchy into a single, fixed-size vector. We have multiple options for this layer; in our
experiments, we have chosen the global mean pooling.

The MLP: After pooling the representation into a single vector, we apply a 1-hidden layer MLP on
the resulted vector, the dimensions of which are summarized in Table 6.

40

Experiment Hierarchical Language Multi-modal News Classification
Model FSA HSA Deep Set FSA HSA

of Parameters 1.2M 1.2M 13.4M 11.8M 11.8M
of Heads 3 3 3 3 3
HTE Layer Output dim 128 128 512 512 512
Position Embedding dim 768 768 768 768 768
Attention dim 128 128 768 256 256
MLP dim 128 128 512 512 512

Table 6: Configuration of model architectures employed in all experiments/models

I.3 Training Hyper-parameters

Table 7 summarizes the training hyper-parameters used for each experiment. We use the same
hyper-parameters across different baselines for each experiment.

Experiment Hierarchical Language Multi-modal News Classification

Loss Function Standard Cross-Entropy Loss Standard Cross-Entropy Loss
Train Batch Size 64 512
Test Batch Size 64 512
Optimizer AdamW AdamW
Max Tokens for Training 512 512
Learning Rate 2× 10−5 1× 10−4

Learning Rate Scheduler LinearLR LinearLR
Train Epochs 30 5

Table 7: The training hyperparameters used for each experiment.

J Comparison to The Classical Transformer Architecture

The experimental results reported in Sections 5.1 and 5.2 aimed at comparing the performance of our
HSA framework vs. that of the flat attention, where the rest of the architecture aside from the attention
mechanism were the same one proposed in Appendix F. However, a more practical comparison
would be the one between the performance of these two mechanisms within the classical transformer
architecture proposed by [90]. To this end, we have conducted experiments where we train from
scratch and compare a standard RoBERTa model and a HSA-RoBERTa model (as proposed in Section
5.3 on two GLUE benchmarks. For HSA-RoBERTa, we simply replace the standard flat self-attention
operation with HSA, while the hierarchy is imposed a fixed four-level hierarchy where the branching
factors from bottom to to are 16, 8, 4, and 2.

Dataset Model Accuracy Precision Recall F1 Score

MRPC RoBERTa 0.8608 0.8872 0.9058 0.8964
HSA-RoBERTa 0.8846 0.9165 0.9093 0.9129

RTE RoBERTa 0.8158 0.7985 0.8167 0.8075
HSA-RoBERTa 0.8158 0.8076 0.8015 0.8045

QQP (after 4 epochs) RoBERTa 0.3681 0.3681 0.5381 0.4371
HSA-RoBERTa 0.9185 0.8764 0.9065 0.8911

Table 8: The comparison of training RoBERTa vs. HSA-RoBERTa from scratch on three GLUE
datasets.

Table 8 shows the results on the evaluation set of each dataset after training. As these results
show, the incorporation of HSA within a standard transformer architecture not only can improve
the computational complexity of self-attention computation, but it can also improve the evaluation
metrics due to the regularization effects of our hierarchical framework. This result is consistent with
the ones in Sections 5.1 and 5.2. Furthermore, for the QQP dataset, we have shown the results just
after 4 epochs; interestingly, these results show that HSA-RoBERTa converges much faster than the
standard RoBERTa model.

41

K Going Beyond Softmax Attention

One of the primary contributions of our work is generalizing Softmax attention from flat signals to
the hierarchical structure of nested signals. This generalization is further confirmed by the theoretical
result of Theorem 3.2. However, there has been a significant effort in the literature to explore
other forms of attention mechanisms than Softmax attention [20, 22, 108, 78, 37]. One of the main
motivations of departing from the Softmax attention lies in the fact that Softmax attention induces
dense probability distribution over all tokens. Sparse attention [20, 22], on the other hand, organically
induces sparse probability distributions over tokens which can greatly improve the interpretability and
computational efficiency of transformer models. A natural question is then whether our hierarchical
derivation can be applied to other forms of attention, in particular the sparse attention. In other words,
can our formalism also generalize sparse attention from flat signals to the hierarchical structure of
nested signals?

K.1 Sparse Attention as Energy Minimization

The first step toward generalizing Sparse attention to the hierarchical setting is to formulate the flat
case as an energy minimization problem, much like what we did in Proposition 3.1 for the Softmax
attention. To this end, we would need to define an appropriate energy function for the sparse attention.
But before that let us define a generic form of energy function that can encompass various forms
probability-based attentions.

Let Q and K be sets of query and key vectors with bounded norms (e.g. induced by LayerNorm)
respectively; we define the generic energy function as:

ϕg(Q,K) = − 1

N

N∑
i=1

ϕgi (zi1, zi2, . . . , ziN), where zij = qTi kj (44)

Then the gradient of ϕg(Q,K) w.r.t the query token qi is:

∇qiϕ
g = −

N∑
j=1

∂ϕgi
∂zij

· kj = −(∇zϕ
g
i)

TK (45)

where K is the key matrix (as defined in (11)) and∇zϕ
g
i =

[∂ϕg
i

∂zi1
, . . . ,

∂ϕg
i

∂ziN

]T
is the attention weight

vector. In (5), we defined ϕgi ’s to be the log-sum-exp function and that led the attention weight vector
∇zϕ

g
i to be the Softmax function. Now in the general case, if ϕgi ’s are continuous and strictly convex,

we can write (See [15] Proposition 1.3):
∇zϕ

g
i (z) = arg max

p∈dom(ϕg∗
i)⊂RN

[
pT z − ϕg∗i (p)

]
(46)

where dom(f) is the domain of function f(·), and ϕg∗i (p) = supz∈dom(ϕg
i)

[
pT z − ϕgi (z)

]
is the

convex conjugate of ϕgi (z). For the log-sum-exp function ϕgi (z) = log
[∑N

j=1 exp(zij)
]
, the convex

conjugate is the negative Shannon Entropy ϕg∗i (p) =
∑N

j=1 pij log pij .

On the other hand, in sparse attention [22], the attention weight vector ∇zϕ
g
i (z) is set to be the

α-entmax function which has the exact same form as (46) with ϕg∗i (p) = −HT
α (p), where

HT
α (p) =

{
1

α(α−1)

∑N
j=1

(
pij − pαij

)
, α ̸= 1

−
∑N

j=1 pij log pij , α = 1
(47)

is the Tsallis continuous family of entropies [89]. It is straightforward to show that for α = 1 (i.e.
the Shannon Entropy), the α-entmax function reduces to the Softmax function. However, as we saw
before, we can alternatively derive the Softmax function by first deriving the energy component ϕg∗i (p)
as the log-sum-exp function and then computing its gradient. Now by following the same process for
the general Tsallis entropy, we can derive the equivalent energy component whose gradient would
be the α-entmax function. In particular, by setting ϕg∗i (p) = −HT

α (p) (as done in the formulation
of Sparse attention [22]), we will have the energy component ϕgi (z) = [−HT

α (p)]
∗, which can be

further derived in closed form as:

ϕgi (z) =
1

α(α− 1)
+

N∑
j=1

y
1/(α−1)
ij

(
zij −

1

α(α− 1)
yij

)
(48)

42

where
yij = ReLU[(α− 1)zij − τi] (49)

and τi is the Lagrange multiplier corresponding to the
∑N

j=1 pij = 1 constraint. Note that, in general,
τi is a function of all zij’s; that is, τi = τ(zi0, . . . , ziN). By plugging (48) into (44), we arrive at the
equivalent energy function for the general α-entmax attention (i.e. the sparse attention):

ϕg(Q,K) = − 1

N

N∑
i=1

N∑
j=1

y
1/(α−1)
ij

(
zij −

1

α(α− 1)
yij

)
+ C, where zij = qTi kj (50)

K.2 The Hierarchical Generalization

Now that we have the energy function for sparse attention in the flat case ((50)), we can generalize it
to the hierarchical structure of nested signal by following similar recipe as (8). In particular, for node
A in the signal hierarchy hx, the hierarchical sparse energy is recursively defined as:

ϕα(A) = −
∑

B∈chd(A)

|ℓ(B)|
|ℓ(A)|

ϕgB

(
−ϕα(B), log |ℓ(C1)|−ψB→C1 , . . . , log |ℓ(Ck)|−ψB→Ck

)
(51)

where C1, . . . , Ck are the sibling nodes of B, ψB→Ck
is the interaction energy function defined in

(7), and the multi-variate function ϕgB has the same functional form as (48). Then (8) can be seen as
a special case of where α = 1 and ϕgB reduces to the log-sum-exp function. Given the hierarchical
sparse energy, we can derive the hierarchical sparse attention by taking the gradient of ϕα(Rx) w.r.t to
each query vector qi, similar to the derivation in (9) for the Softmax case. We leave further derivation
of an efficient algorithm and theoretical optimality for sparse attention to future work.

Lastly, it should be noted that similar to flat sparse attention, one can also learn the sparsity factor
α via back-propagation in the hierarchical case. This can be further extended to learning different
sparsity patterns for different levels of hierarchy, which can be useful depending on the application.

L Zero-shot Approximation of Self-attention: Ablation Study

In this appendix, we further expand on the experimental results for the zero-shot HSA approximation
of RoBERTa presented in the main paper. In particular, we study the effects of approximating different
combination of layers as well as different hierarchical structures for the datasets reported in the main
paper.

L.1 Experimental Setup

Datasets: We have run experiments on 5 GLUE datasets (SST-2, CoLA, MRPC, RTE and QNLI) as
well as the AGNEWS and IMDB datasets.

Models: For each dataset, we have used the appropriate pre-trained RoBERTa checkpoint and
configuration that has been fine-tuned on the corresponding task. Table 9 lists the checkpoints and
configuration used for each dataset. All of our experiments involve only evaluation of pre-trained
RobERTa without any training of fine-tuning it.

Metrics: We have computed Accuracy, Precision, Recall and F1 Score to measure the accuracy drop
of pre-trained RoBERTa as its various layers are approximated by HSA.

Impacted Layers: As mentioned in the main paper, approximating all self-attention layers of
RoBERTa typically leads to significant zero-shot accuracy drop across all tasks. However, approxi-
mating a subset of layers can introduce more reasonable gap while still benefiting from HSA speed up
in terms of the number of FLOPs. Nevertheless, finding the best layer combination is a combinatorial
problem. To alleviate this issue, instead of examining all different combinations, we only look at
certain combinations based on two empirical observations. In particular, we observed that earlier
layers in the network are typically more sensitive to approximation, whereas the latter ones are more
amenable to it. This observation intuitively makes sense because the sooner approximation takes
place in the network, the higher approximation error accumulates along the network. Moreover,
having consecutive layers approximated typically increases the accuracy gap whereas interleaving
them with regular self-attention layers decreases the gap.

43

Dataset RoBERTa Configuration Checkpoint
IMDB Large siebert/sentiment-roberta-large-english a

AGNEWS Base cardiffnlp/twitter-roberta-base-sentiment b

SST-2 Base textattack/roberta-base-SST-2 c

CoLA Base textattack/roberta-base-CoLA d

MRPC Base textattack/roberta-base-MRPC e

QNLI Base textattack/roberta-base-QNLI g

RTE Base textattack/roberta-base-RTE h

Table 9: Checkpoints and RoBERTa configurations used for evaluating each task.

ahttps://huggingface.co/siebert/sentiment-roberta-large-english
bhttps://huggingface.co/cardiffnlp/twitter-roberta-base-sentiment
chttps://huggingface.co/textattack/roberta-base-SST-2
dhttps://huggingface.co/textattack/roberta-base-CoLA
ehttps://huggingface.co/textattack/roberta-base-MRPC f

ghttps://huggingface.co/textattack/roberta-base-QNLI
hhttps://huggingface.co/textattack/roberta-base-RTE

Based on these two observations, in our experiments, we only examine combinations where a start
layer (denoted by SL) and every other layer after that are approximated by HSA. The X-axis for the
bar plots in this section is associated with SL. Also, the right bar in each plot represents the metrics
for the original model without HSA approximation.

Hierarchy: For these experiments we chose to use fixed hierarchies based on non-overlapping
hopping windows rather than semantic hierarchies based on the text structure. The reason behind this
choice is that semantic hierarchies (such as sentences, paragraphs, etc.) are example dependant which
means they would incur different number of FLOPs for different examples. But since our ultimate
goal from this experiment is to reduce the number of flops consistently across the data, we opted to
use fixed hierarchies.

The fixed hierarchies here are characterized by having a fixed branching factor for all the nodes
belonging to the same level of the hierarchy. We then denote such hierarchy by the tuple (A,B,C, ...)
where A is the branching factor at the lowest level of the hierarchy, B is the branching factor for
the next level and so on. Having this notation in place, we have experimented with the following
hierarchies:

1. (2, 2, 2, 2): A hierarchy with low branching factor at all levels.
2. (2, 4, 8, 16): A hierarchy with low branching factor on the bottom and high branching factor

on the top.
3. (7, 7, 7, 7): A hierarchy with high branching factors at all levels.
4. (8, 4, 2) A hierarchy with high branching factor on the bottom and low branching factor on

the top.

L.2 Results

SST-2 Task: As Figure 7 shows, the SST-2 task is relatively robust to the choice of SL (start layer for
HSA approximation), where the accuracy gap widens if SL falls below Layer 5. Also, the choice
of hierarchy is relatively inconsequential except for the narrow hierarchy with low-branching factor
across all its levels, which demonstrates slightly poorer results compared to the rest.

RTE Task: As Figure 8 shows, the RTE task exhibits the same behavior as the SST-2 task with a
major accuracy drop takes place when SL falls below Layer 7. Different hierarchy structures seem to
have similar behavior though.

MRPC Task: As Figure 9 shows, for the MRPC task, the layers with even index seem to be way more
sensitive to HSA approximation than the odd-index layers. Among odd index layers, the accuracy gap
starts to widen for SL below Layer 7. As for hierarchy structures, the structures with low branching
factor on the bottom levels seem to do better than the other two candidates.

44

1 2 3 4 5 6 7 8 9 10 11 12 OR
SL

0.0

0.2

0.4

0.6

0.8

1.0

M
et

ric
s

2,2,2,2/sst2
Accuracy F1 Score Precision Recall

1 2 3 4 5 6 7 8 9 10 11 12 OR
SL

0.0

0.2

0.4

0.6

0.8

1.0

M
et

ric
s

2,4,8,16/sst2
Accuracy F1 Score Precision Recall

1 2 3 4 5 6 7 8 9 10 11 12 OR
SL

0.0

0.2

0.4

0.6

0.8

1.0

M
et

ric
s

7,7,7,7/sst2
Accuracy F1 Score Precision Recall

1 2 3 4 5 6 7 8 9 10 11 12 OR
SL

0.0

0.2

0.4

0.6

0.8

1.0

M
et

ric
s

8,4,2/sst2
Accuracy F1 Score Precision Recall

Figure 7: The accuracy metrics of HSA approximation of self-attention layers in RoBERTa for the
STT-2 task.

QNLI Task: As Figure 10 shows, for the QNLI task, there is a sharp drop of accuracy when SL falls
below Layer 8, whereas for the last four layers the accuracy drop is practically insignificant. This
shows that in this case, the last 5 layers are quite amenable to approximation. As for the hierarchy
structures, they do not exhibit any significant difference for this task.

CoLA Task: As Figure 11 shows, similar to the MRPC task, in CoLA task, the layers with even
index seem to be way more sensitive to HSA approximation than the odd-index layers. However,
unlike the MRPC task, the hierarchy structures with high branching factor on the bottom seem to
significantly perform better than the ones with low branching factor on the bottom.

AGNEWS Task: As Figure 12 shows, for AGNEWS task, we can pretty much start SL at Layer 2
and as long as we approximate every other layer, the accuracy drop in insignificant. As for hierarchy
structures, we have tested only 2 of our structures with this datasets, but did not observe any significant
difference.

IMDB Task: Unlike the previous tasks, for IMDB task, we use RoBERTa-large with 24 layers.
As Figure 13 shows, as long as SL stays above Layer 15, the accuracy drop is insignificant. Also
some layers like Layers 10 and 15 seem to be moresensitive if we start the HSA approximation from
them. As for hierarchical structure, among the two candidate we used for this task, the one with high
branching factor on the bottom seems to do much better.

M Limitations

In this section, we state some of the main limitations of the current work both in terms of the proposed
framework itself as well as our process of evaluating it in this paper.

As for the HSA framework itself, we would like to emphasize that it only operates on tree-based,
compositional information hierarchies that are already given or extractable using a preprocessing
procedure. In other words, HSA does not automatically learn the hierarchical structure embedded in

45

1 2 3 4 5 6 7 8 9 10 11 12 OR
SL

0.0

0.2

0.4

0.6

0.8

1.0

M
et

ric
s

2,2,2,2/rte
Accuracy F1 Score Precision Recall

1 2 3 4 5 6 7 8 9 10 11 12 OR
SL

0.0

0.2

0.4

0.6

0.8

1.0

M
et

ric
s

2,4,8,16/rte
Accuracy F1 Score Precision Recall

1 2 3 4 5 6 7 8 9 10 11 12 OR
SL

0.0

0.2

0.4

0.6

0.8

1.0

M
et

ric
s

7,7,7,7/rte
Accuracy F1 Score Precision Recall

1 2 3 4 5 6 7 8 9 10 11 12 OR
SL

0.0

0.2

0.4

0.6

0.8

1.0

M
et

ric
s

8,4,2/rte
Accuracy F1 Score Precision Recall

Figure 8: The accuracy metrics of HSA approximation of self-attention layers in RoBERTa for the
RTE task.

the data. Furthermore, our proposed framework does not introduce any additional learnable parameter
across the hierarchy on top of the standard self-attention parameters. While this is a useful feature in
certain usecases such as zero-shot HSA replacement post-training as described in Section 5.3, in some
other scenarios, this would introduce a limitation in terms of the learning capacity of our framework.
This also makes it quite challenging to perform a fair comparison of our framework against other
hierarchical attention mechanisms as in pretty much all of those frameworks, extra hierarchy-realted,
learnable parameters have been incorporated as a fundamental component of the framework.

As for our evaluation process in this paper, we understand that the scope of our empirical study
does not include all mainstream applications, especially in the auto-regressive generation domain.
However, we would like to note that this work primarily focuses on the theoretical foundations of
the proposed nested signal data structure and its hierarchical attention mechanism. We hope that our
work can be used as the foundation for many follow-up efforts focusing on various applications with
potential technical extensions. Nevertheless, we have still provided the initial theoretical extensions
for some of the major potential follow-ups to the present work, such as hierarchical auto-regressive
generation (Appendix G) and hierarchical sparse attention (Appendix K).

Finally, we would like to note that the goal of training foundational models using HSA to incorporate
the inherent hierarchical inductive biases of our human knowledge base is indeed inspirational, as
we do not have the computational resources required for that scale of training. However, from a
theoretical point of view, our HSA method provides a plausible framework to achieve this goal in
practice.

46

1 2 3 4 5 6 7 8 9 10 11 12 OR
SL

0.0

0.2

0.4

0.6

0.8

1.0

M
et

ric
s

2,2,2,2/mrpc
Accuracy F1 Score Precision Recall

1 2 3 4 5 6 7 8 9 10 11 12 OR
SL

0.0

0.2

0.4

0.6

0.8

1.0

M
et

ric
s

2,4,8,16/mrpc
Accuracy F1 Score Precision Recall

1 2 3 4 5 6 7 8 9 10 11 12 OR
SL

0.0

0.2

0.4

0.6

0.8

1.0

M
et

ric
s

7,7,7,7/mrpc
Accuracy F1 Score Precision Recall

1 2 3 4 5 6 7 8 9 10 11 12 OR
SL

0.0

0.2

0.4

0.6

0.8

1.0

M
et

ric
s

8,4,2/mrpc
Accuracy F1 Score Precision Recall

Figure 9: The accuracy metrics of HSA approximation of self-attention layers in RoBERTa for the
MRPC task.

1 2 3 4 5 6 7 8 9 10 11 12 OR
SL

0.0

0.2

0.4

0.6

0.8

1.0

M
et

ric
s

2,2,2,2/qnli
Accuracy F1 Score Precision Recall

1 2 3 4 5 6 7 8 9 10 11 12 OR
SL

0.0

0.2

0.4

0.6

0.8

1.0

M
et

ric
s

2,4,8,16/qnli
Accuracy F1 Score Precision Recall

1 2 3 4 5 6 7 8 9 10 11 12 OR
SL

0.0

0.2

0.4

0.6

0.8

1.0

M
et

ric
s

7,7,7,7/qnli
Accuracy F1 Score Precision Recall

1 2 3 4 5 6 7 8 9 10 11 12 OR
SL

0.0

0.2

0.4

0.6

0.8

1.0

M
et

ric
s

8,4,2/qnli
Accuracy F1 Score Precision Recall

Figure 10: The accuracy metrics of HSA approximation of self-attention layers in RoBERTa for the
QNLI task.

47

1 2 3 4 5 6 7 8 9 10 11 12 OR
SL

0.0

0.2

0.4

0.6

0.8

1.0
M

et
ric

s

2,2,2,2/cola
Accuracy F1 Score Precision Recall

1 2 3 4 5 6 7 8 9 10 11 12 OR
SL

0.0

0.2

0.4

0.6

0.8

1.0

M
et

ric
s

2,4,8,16/cola
Accuracy F1 Score Precision Recall

1 2 3 4 5 6 7 8 9 10 11 12 OR
SL

0.0

0.2

0.4

0.6

0.8

1.0

M
et

ric
s

7,7,7,7/cola
Accuracy F1 Score Precision Recall

1 2 3 4 5 6 7 8 9 10 11 12 OR
SL

0.0

0.2

0.4

0.6

0.8

1.0

M
et

ric
s

8,4,2/cola
Accuracy F1 Score Precision Recall

Figure 11: The accuracy metrics of HSA approximation of self-attention layers in RoBERTa for the
CoLA task.

1 2 3 4 5 6 7 8 9 10 11 12 OR
SL

0.0

0.2

0.4

0.6

0.8

1.0

M
et

ric
s

2,4,8,16/agnews
Accuracy F1 Score Precision Recall

1 2 3 4 5 6 7 8 9 10 11 12 OR
SL

0.0

0.2

0.4

0.6

0.8

1.0

M
et

ric
s

7,7,7,7/agnews
Accuracy F1 Score Precision Recall

Figure 12: The accuracy metrics of HSA approximation of self-attention layers in RoBERTa for the
AGNEWS task.

48

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 OR
SL

0.0

0.2

0.4

0.6

0.8

1.0

M
et

ric
s

2,4,8,16/imdb
Accuracy F1 Score Precision Recall

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 OR
SL

0.0

0.2

0.4

0.6

0.8

1.0

M
et

ric
s

7,7,7,7/imdb
Accuracy F1 Score Precision Recall

Figure 13: The accuracy metrics of HSA approximation of self-attention layers in RoBERTa for the
IMDB task.

49

	Introduction
	Representing Hierarchical Data
	Hierarchical Self-Attention
	Softmax Attention Revisited
	Generalizing Attention to Nested Signals

	Efficient Calculation of HSA
	Experimental Results
	Hierarchical Language
	Multi-modal News Classification
	Zero-Shot Hierarchical Approximation

	Conclusions
	Notations
	Related Work
	Generalizing The Notion of Signal
	The Emergence of The Value Projection Matrix
	Algorithmic Details
	Correctness and Complexity
	Black-box Attention Computation
	GPU Implementation

	Hierarchical Transformer Encoder
	Hierarchical Auto-regressive Generation
	Hierarchical Causal Masking
	Hierarchical Caching

	Proofs
	Proposition 1: Softmax Attention
	Theorem 1: The Optimality of HSA
	Theorem 2: The Correctness and The Complexity of Algorithms 1–3

	Experimental Settings
	Datasets
	Model Architectures
	Training Hyper-parameters

	Comparison to The Classical Transformer Architecture
	Going Beyond Softmax Attention
	Sparse Attention as Energy Minimization
	The Hierarchical Generalization

	Zero-shot Approximation of Self-attention: Ablation Study
	Experimental Setup
	Results

	Limitations

