
From Black Box to Algorithmic Insight: Explainable AI in Graph Neural
Networks for Graph Coloring

Elad Shoham 1, Havana Rika 2, Dan Vilenchik 1

1 Ben-Gurion University of the Negev
2The Academic College of Tel Aviv-Yaffo

shellad@post.bgu.ac.il, havanari@mta.ac.il, vilenchi@bgu.ac.il

Abstract

Despite advances in neural networks for solving combina-
torial optimization problems using Graph Neural Networks
(GNNs), understanding their learning processes and utilizing
acquired knowledge remains elusive, particularly in imper-
fect models addressing NP-complete problems. This gap un-
derscores the need for Explainable AI (XAI) methodologies.
In this study, we undertake the task of elucidating the mecha-
nisms of a specific model named GNN-GCP trained to solve
the Graph Coloring Problem (GCP). Our findings reveal that
the concepts that underpin the operation of GNN-GCP resem-
ble those of hand-crafted combinatorial optimization heuris-
tics. One prominent example is the concept of “support of
vertex 𝑣 with respect to a given coloring of the graph”, which
is the number of neighbors that 𝑣 has in each color class other
than its own. By providing insights into the inner workings
of GNN-GCP, we contribute to the larger goal of making AI
models more interpretable and trustworthy, even in complex
settings such as combinatorial optimization problems.

1 Introduction
AI systems regularly match or exceed human performance in
complex computational tasks, yet their decision-making pro-
cesses often remain opaque. Understanding these processes
is crucial for building trust, making explainable AI (XAI) an
essential field of research.

While traditional XAI methods like SHAP (Lundberg and
Lee 2017), LIME (Ribeiro, Singh, and Guestrin 2016), and
GradCAM (Selvaraju et al. 2017) focus on feature attribu-
tion, they struggle to capture higher-level patterns in com-
plex domains such as combinatorial optimization. Take, for
example, the graph coloring problems where one is asked
to color the vertices of a graph 𝐺 with the minimal number
of colors so that no two vertices of the same color share an
edge (we shorten the problem as GCP or 𝑘-coloring, where
𝑘 is the maximum number of allowed colors). Instead of
merely highlighting important vertices or edges, we would
like to identify algorithmic concepts that explain how the
ML pipeline finds, if it does, a legal 𝑘-coloring of the graph.

Our research embraces concept-based cognition, where
complex decision-making is understood through inter-
pretable concepts represented in the neural network’s latent

Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

space (Guo et al. 2024). These concepts must be knowledge-
bearing, transferable to both humans and machines and min-
imal in their representation.

Graph coloring presents unique challenges beyond tradi-
tional concept learning. A Graph Neural Network (GNN)
solves the coloring problems through iterative message-
passing that maintains and updates a partial coloring solu-
tion (Lemos et al. 2019; Wang, Yan, and Jin 2024; Ijaz et al.
2022a; Schuetz et al. 2022; Li et al. 2022; Colantonio et al.
2024). This creates a dynamic interplay between the input
graph structure and the evolving solution state—a scenario
fundamentally different from standard classification tasks,
such as image processing or sentiment detection in text.

Our analysis focuses on one specific pre-trained model,
GNN-GCP (Lemos et al. 2019), due to its unique architec-
tural simplicity and unconstrained learning approach. The
model consists of basic message-passing layers followed by
an MLP, with its only training objective being to predict
whether a graph is 3-colorable through binary cross-entropy
loss (See section 4). Unlike other approaches that incorpo-
rate domain-specific heuristics, architectural constraints, or
guidance through the loss function, GNN-GCP’s minimal
structure and open-ended learning objective provide an ideal
setting to study what strategies naturally emerge. This un-
constrained learning environment makes it particularly inter-
esting from an explainable AI perspective—understanding
how a model arrives at effective solutions without explicit
guidance.

We extend concept learning to address these challenges
in graph coloring, examining how concepts depend on both
static graph structure and dynamic solution states. We find
that the GNN tracks combinatorial properties like vertex de-
gree (static) and potential color conflicts with respect to the
current coloring solution (dynamic), all encoded in a unique
spatial geometry that the embedding induces.

By analyzing how GNNs naturally develop problem-
solving strategies, we gain insights into both neural network
behavior and the fundamental structure of graph coloring
problems.

In this work, we discover the concepts that the GNN
learned during training and applied during test time to solve
colorability. These concepts fully manifest in successful ex-
ecutions, where a legal coloring is achieved using the GNN,
while in failed executions, some of them remain muted.

Figure 1: GNN-GCP model architecture (Lemos et al. 2019) and its 2D embedding visualization. The model updates vertex
embeddings through three inputs: the vertex’s previous state, neighbor embeddings (via adjacency matrix), and global graph
context (C). The vertex-LSTM outputs are projected using PCA to a 2D space, revealing a triangular configuration where each
color class is arranged in a different third of the triangle. Some vertices are closer to the triangle vertices, and some are to the
center of mass. This arrangement is driven and explained by algorithmic concepts that we reveal which underpin the working
of the GNN.

While we explored a wide range of potential concepts, we
focus here on the learned and successful ones that emerged
as most relevant to the canonical 𝑘 = 3 case. Figure 1 illus-
trates our findings.

We urge the reader to note that as they are reading the
concepts, they are actually reading a description of the GNN
as a white-box textbook algorithm.

• GNN-GCP encodes graph coloring concepts in the vertex
embedding, which are updated over the GNN iterations
via a message passing exchange along the graph edges.
The concepts are expressed in a geometric manner. The
hallmark of this geometry is that the 2D PCA projection
of the embedding forms a triangular shape. A 3-color as-
signment can be derived from the embedding by mapping
graph vertices to their nearest triangle vertex.

• We introduce 𝑑
(𝑡)
𝑣 , the average distance between vertex

𝑣’s embedding and its graph neighbors’ embeddings in
iteration 𝑡. The average value of 𝑑 (𝑡)

𝑣 , averaged over the
vertex set𝑉 , increases over the iterations, driving the ver-
tices’ embeddings towards the triangle’s vertices.

• We discovered that the distance 𝑑
(𝑡)
𝑣 serves as a confi-

dence level in 𝑣’s current coloring, where larger values of
𝑑
(𝑡)
𝑣 indicate higher confidence. We further found that the

concept underpinning the confidence is that of “support”

(see Section 2.1), which reflects how many neighbors a
vertex has in each color class. A key insight emerges: a
vertex’s confidence increases proportionally with an in-
crease in its support – driving high-confidence and high-
support vertices to the triangle’s vertices. As a result,
high-confidence vertices are less likely to be grouped
with their neighbors in the same color class, reducing
the probability of monochromatic edges and serving as
anchors for the emerging coloring. This geometric posi-
tioning induces the different color classes, with the trian-
gle’s vertices acting as color class representatives.

Thus, through the concept of confidence and support, en-
coded geometrically in the GNN’s embedding, we could
explain how the model learns and applies key algorithmic.
These concepts were actually used in the past in the design
of hand-crafted algorithms for graph coloring, such as (Alon
and Kahale 1994).

2 Graph coloring
Graph coloring, one of the fundamental problems in graph
theory, asks to assign colors to vertices such that no adjacent
vertices share the same color (Karp 2010a; Lewis 2016).
More formally, given an undirected graph 𝐺 = (𝑉, 𝐸) we
seek a mapping 𝑐 : 𝑉 → {1, . . . , 𝑘} such that (𝑢, 𝑣) ∈
𝐸 =⇒ 𝑐(𝑢) ≠ 𝑐(𝑣). While this definition is straight-

forward, the problem exhibits rich structural properties that
have inspired various solution approaches and is one of the
first problems shown to be NP-complete (Karp 2010b).

The interplay between local and global properties of
graphs helps illustrate why the graph coloring problem is
NP-complete. Dense subgraphs often demand more col-
ors to ensure no adjacent vertices share the same color,
whereas sparse regions allow greater flexibility in color as-
signments. This complex relationship between local struc-
ture and global colorability makes it difficult to devise ef-
ficient algorithms that work universally. Understanding this
tension is key to developing effective heuristics and high-
lights the inherent computational challenges of the problem.

Nevertheless, the study of graph coloring has led to the
development of several fundamental heuristics that under-
pin modern algorithmic approaches. At the heart of any col-
oring solution lies the notion of color classes — independent
sets of vertices that can share the same color. The chromatic
number 𝜒(𝐺) is the minimum number of colors needed for
a valid coloring. Heuristic algorithms often employ sequen-
tial coloring strategies, progressively assigning colors to ver-
tices while maintaining validity constraints. Some examples
are greedy coloring (color vertices in order of smallest avail-
able colors) or saturation degree (number of differently col-
ored adjacent vertices). When conflicts arise, color exchange
operations — where colors are swapped between vertices
—provide a mechanism for resolving these conflicts while
preserving the validity of the overall coloring. The greedy
algorithm was rigorously analyzed by (Krivelevich 2002) for
random graphs, establishing the set of parameters for which
this algorithm succeeds.

Through this paper, we only consider the 3-coloring prob-
lem, as this is the domain of the GNN that we study.

2.1 Support in graph coloring
In graph coloring, a conflict occurs when two adjacent ver-
tices share the same color.

The notion of support, first introduced in (Alon and Ka-
hale 1994), provides an intuitive measure of the confidence
in the current color assignment 𝐶 (𝑣) of a vertex 𝑣, with re-
spect to a (not necessarily legal) 3-coloring 𝐶. To define it,
consider 𝑣 and its neighbors: count how many of its neigh-
bors belong to each of the other two color classes under 𝐶,
and take the minimum of these two counts. This value, called
the support of 𝑣, reflects how ”entangled” 𝑣 is with the two
alternate color classes.

The support captures how many new conflicts would arise
if 𝑣 were reassigned from its current color 𝐶 (𝑣) to any other
color. Specifically, if the support is 𝑠, then flipping the color
of 𝑣 introduces 𝑠 new conflicts, which would require flipping
the colors of at least 𝑠 other vertices to resolve. Thus, a high
support value 𝑠 suggests two possibilities:

1. 𝑣 is likely correctly assigned under𝐶, as changing𝐶 (𝑣)
would disrupt the coloring significantly. 2. If 𝑣 is incorrectly
assigned, then 𝐶 is incorrect on at least 𝑠 additional vertices.

When 𝐶 is close to a legal coloring, large support values
imply a higher likelihood that 𝑣 is correctly colored, rein-
forcing the stability of the coloring near 𝐶. This makes sup-
port a valuable metric for assessing the reliability of 𝐶 (𝑣)

in iterative or heuristic graph coloring algorithms such as
(Alon and Kahale 1994; Bui et al. 2008; Dupin 2024; Wu,
Luo, and Su 2013; Douiri and Elbernoussi 2015).

3 Related work
3.1 Concept Learning
Concept-based methods have emerged as a powerful ap-
proach to model interpretability, offering a higher level of
abstraction compared to traditional feature and data-centric
interpretability methods (Sundararajan, Taly, and Yan 2017;
Lundberg and Lee 2017; Ribeiro, Singh, and Guestrin 2016;
Schut et al. 2023). These methods aim to provide model ex-
planations that are more intuitive and informative for hu-
man practitioners. Research in this field has branched into
several distinct approaches. Supervised concept excavation
(Achtibat et al. 2022; Melis and Jaakkola 2018; Schut et al.
2023; Kim et al. 2018; Bau et al. 2017) relies on labeled data
to identify and validate concepts. In contrast, unsupervised
concept mining (Yeh et al. 2020; Ghandeharioun et al. 2021;
Ghorbani et al. 2019) seeks to discover inherent concepts
without labeled data, learning directly from the structure of
problem instances.

A closely related paradigm, known as ”Mechanistic In-
terpretability” or ”Mechanistic Design,” takes inspiration
from reverse engineering compiled binary code. This ap-
proach aims to deconstruct neural networks to identify spe-
cific functionalities by examining individual components of
the model (Olah et al. 2022; Michaud et al. 2023; Wang et al.
2023; Olah et al. 2020; Nanda et al. 2023). Recent work
has extended concept learning to Graph Neural Networks
(GNNs) (Rakaraddi et al. 2022; Sun, Li, and Zhang 2022;
Gonzalez, Holder, and Cook 2002), focusing on identifying
patterns in input data for structural learning and prerequisite
information.

Our work crucially departs from previous concept learn-
ing methods in our considered domain. While previous
works assume that the concepts are imbued in the data, we
consider our dataset as a set of Turing machines (in our case,
a Turing machine for solving graph coloring). In this case,
the concept depends on the machine’s transition function as
well as the working memory. This raises the level of com-
plexity compared to finding concepts in textual data, images,
or even in games, as the network must learn to recognize
and utilize patterns in both the graph structure and its own
solution process. (Shoham et al. 2024) is the work closest to
ours, where they use similar analysis and techniques for the
SAT problem..

3.2 Neural networks for graph coloring
Graph coloring has a rich history of algorithmic develop-
ments of classical heuristics like (Wu, Luo, and Su 2013;
Dupin 2024; Ijaz et al. 2022b; Karger, Motwani, and Sudan
1998), which are fundamental bases for solving the GCP.

Neural network-based approaches have recently emerged
as powerful tools for tackling graph coloring challenges.
End-to-end neural architectures (Lemos et al. 2019; Wang,
Yan, and Jin 2024; Ijaz et al. 2022a; Schuetz et al. 2022;

Li et al. 2022; Colantonio et al. 2024) have shown promis-
ing results in learning to solve the problem using a message
passing GNN, some use supervised data and some unsuper-
vised which use a specific loss function fitting the problem.

Another emerging approach seeks to develop general-
ized models capable of solving diverse combinatorial opti-
mization problems (Boisvert, Verhaeghe, and Cappart 2024;
Marty et al. 2023; Cappart et al. 2023), including max-cut
and graph coloring. Researchers aim to create universal neu-
ral network architectures that can effectively address mul-
tiple optimization challenges through a unified approach.
(Yau et al. 2023) even suggested that GNNs could poten-
tially serve as optimal approximation algorithms across dif-
ferent combinatorial problems.

4 Model
GNN-GCP was introduced by (Lemos et al. 2019) and is an
end-to-end message-passing GNN model designed to solve
the graph coloring problem. The architecture of the model,
drawn in Figure 1, is relatively simple; it has a global state
component 𝐶, which is an LSTM with a hidden state of di-
mension 𝑑 = 64, taking the previous global state and the
sum of all vertices’ hidden states. The second component
of the GNN is an LSTM with one hidden state and a 1 × 𝑑

input matrix, applied in parallel (broadcasting) to all 𝑛 ver-
tices. The application for each vertex is performed over the
global state and the sum of the neighboring vertices’ embed-
ding from the previous iteration (that’s where the adjacency
matrix plays a role). The third component is a 1× 𝑑 ⇒ 1× 1
MLP that is applied to the 𝑛×𝑑 vertices’ embeddings matrix
(in parallel) and outputs a 𝑛×1 vector. The entries of the vec-
tor are averaged and used to predict, using a sigmoid gate,
whether the given graph is 3-colorable or not. The model is
trained with the cross-entropy loss, meaning the only input
data was the adjacency matrix and the single-bit whether the
instance is 3 colorable or not.

The training data used in (Lemos et al. 2019) are ran-
dom graph instances near the theoretical threshold of 3-
colorability. These are considered hard combinatorial in-
stances (Zdeborová and Krzakala 2007; Bapst et al. 2014).
The instances were generated by staring from an empty
graph, and each time adding a random edge, until (using an
exact solver to verify) the graph becomes not 3-colorable.
The pair of graphs, the 3-colorable and the not-3-colorable,
differing on a single edge, was added to the train set. A total
of 4096 instances were used for training. We received the
trained model from the authors of the paper.

(Lemos et al. 2019) report that the model achieved an ac-
curacy between 75% - 82% with 40 to 60 vertices and 32
iterations of message passing. We verified this claim by run-
ning the model several times (usually three) for 32 iterations
and considering a success if one of the runs returns a truth
value for colorable instances and if all runs return a false
value for non-colorable instances. This method was inspired
by the original authors in (Lemos et al. 2019). However, we
also noticed that increasing the number of vertices to 1000,
changing the density of instances, or running another num-
ber of iterations, decreases the accuracy drastically. This can
be attributed to the very small training set; for comparison,

a similar GNN for solving SAT was trained on over 1M in-
stances (Selsam et al. 2019).

To extract a 3-coloring from the embedding, we ran the
𝑘-means algorithm (with 𝑘 = 3) on the embedding of the
last iteration and assigned each cluster with a different color.
We found that in only about 5% of 3-colorable instances, a
legal coloring was found. The way we ran the model was to
inspect at each iteration whether the coloring was valid and
stop when the answer was yes, or if a cap of 150 iterations
was reached.

Let us note that even though the model is not robust to out-
of-distribution data, and the ability to find the actual coloring
is quite low, we still were able to uncover the algorithmic
concepts underpinning the model’s operation when it was
right, showcasing the potential of such XAI methods even
on non-perfect models.

5 Data
Our experimental evaluation employs a diverse set of graphs
that span different sizes and density regimes, allowing us
to analyze our algorithm’s behavior across varying problem
difficulty levels, both colorable instances and non-colorable
instances. The dataset comprises both random graphs and
planted solution instances. Let us stress that the data that
we describe was only used to test the trained GNN that was
shared with us by the authors of (Lemos et al. 2019).

5.1 Random graph instances
We generate random graph instances across multiple scales,
with vertex counts 𝑛 ∈ {45, 100, 500, 1000}. For each graph
size, we consider different constraint densities parameter-
ized by 𝑐 ∈ {1, 2, 3, 3.5, 4, 4.5}, where 𝑐 represents the ratio
of constraints (edges) to variables (vertices). Specifically, for
a graph with 𝑛 vertices, we include 𝑐𝑛 edges randomly dis-
tributed among possible vertex pairs.

The chosen range of 𝑐 values is particularly significant as
it is below the phase transition phenomenon in graph col-
oring. The phase transition marks a critical threshold where
problems typically transition from being colorable to uncol-
orable (Bapst et al. 2016; Zdeborova and Krzkakala 2007).
For 3-coloring random graphs, theoretical and empirical
studies have shown this transition occurs around 𝑐 ≈ 4.69.
Our range of 𝑐 values deliberately stays below but reaches
close to this critical threshold to make sure the instances
are colorable, as the concepts that we are interested in are
algorithmic concepts of colorability. A tangent algorithmic
problem is certifying non-colorability (or refutation). This is
a much harder problem as it lies in CO-NP and is beyond the
scope of this work.

5.2 Planted Solutions
Random 3-colorable instances have an inherent degree limit.
The planted distribution allows the generation of graphs
with an arbitrary average degree by the following procedure:
First, partitioning the 𝑛 vertices into 𝑘 = 3 color classes of
size 𝑛/𝑘 . Then, include each edge (𝑢, 𝑣) that connects ver-
tices 𝑢, 𝑣 in different color classes with probability 𝑝, inde-
pendently for every pair. The average degree in a planted
graph is 2𝑝𝑛/3.

We tested the following parameters set: 𝑝 ∈
{0.3, 0.5, 0.8} and 𝑛 = 45, 100, 500, 1000.

6 Experiments and results
In this section, we explain in detail how GNN-GCP attempts
to solve the graph coloring problem and which algorithmic
concepts it uses. At the end of the section, the reader should
be able to write a simple white-box description of the GNN.

To run the experiments, we used a personal computer
with an Nvidia RTX 3080, 370 GPU, 64GB RAM, and
an AMD Ryzen 9 5650x CPU. The code can be found at
https://github.com/HavanaLab/graph coloring. We obtained
the weights of GNN-GCP from the original authors of
(Lemos et al. 2019) and translated them from TensorFlow
to Torch.

The original paper of (Lemos et al. 2019) ran the model
for 32 message-passing iterations before classifying the 3-
colorability of the graph. Then, to extract the color as-
signment, the last message-passing layer’s embedding was
taken, and the 𝑘-mean clustering algorithm was used to as-
sign a color to each vertex. We ran it for 150 iterations,
checking at each iteration if the 3-coloring is legal, stop-
ping at the first iteration where a legal coloring was found,
or when the 150 cap was reached.

Our test set included two datasets 𝐷𝑆 and 𝐷𝐹 (’S’ for
success and ’F’ for failure), constructed as follows: pick a
random value of 𝑛, 𝑐 (from the set of values described in
Section 5), generate a random graph 𝐺 and run GNN-GCP
on it. If a legal 3-coloring was found, add 𝐺 to 𝐷𝑆; other-
wise, add 𝐺 to 𝐷𝐹 . Stop when each is of size 50. Repeat
this procedure with planted instances, choosing 𝑛 and 𝑝 at
random, and stop when the size of 𝐷𝑆 and 𝐷𝐹 reached 100.

6.1 Geometric shape of embedding
We perform a two-dimensional Principal Component Anal-
ysis (PCA) on the model’s message-passing embedding to
gain a geometric understanding of the embedding space. We
denote the first principal component as PC1 and the second
as PC2. PCA was computed over the 𝑑 × 𝑑 (recall 𝑑 = 64)
covariance matrix of the embedding per instance per itera-
tion.

We identified a recurring 2D geometric configuration in
successful executions (those leading to a legal 3-coloring)
characterized by ”three legs” or ”branches” emerging from
a single center of mass. These legs are most compactly
bounded by a triangular shape. This triangular structure ap-
pears to be a hallmark of valid solutions, suggesting a fun-
damental low-dimensional pattern in the solution space of
the graph coloring problem. This can be seen in Figure 2a,
providing a visual representation of the model’s embedding
in 2D. Figure 2b shows the 2D geometry of some message-
passing iteration in a failed execution. We will see in the next
section that the embedding of both successful and failed ex-
ecution encode the concepts in a rather similar way, except
for the geometry which remains high-dimensional in failed
executions.

The analysis demonstrated that the 2D triangular configu-
ration emerged as an invariant pattern across all 100 success-
ful cases, while being notably absent in failed colorings. We

observed that this triangular arrangement manifests during
intermediate iterations of the optimization process. Subse-
quently, the model performs incremental refinements to ver-
tex positions while preserving the triangular topology, ulti-
mately converging to an optimal coloring solution.

(a) A 2D PCA scatter plot illustrates a valid graph col-
oring, delineated by a triangular boundary. The plot
features three vertices from the graph marked as ×,
each with a degree of eight, but different support val-
ues: support 4,1,0. The vertex with support 4 is the
closest to the blue triangle vertex.

PC1

PC
2

1
2
3

(b) Invalid coloring – triangular shape disappears.

Figure 2: PC1 and PC2 plot of the embedding for successful
executions of model 2a, and unsuccessful executions 2b. The
successful instance has a triangular shape, unlike the invalid
solution.

6.2 Distance of neighbors as a confidence
mechanism

As the message-passing iterations proceed, we observe that
the average Euclidean distance between a vertex’s embed-
ding and those of its graph neighbors consistently increases.
This phenomenon suggests that the model has discovered
the following principle: vertices that should receive different
colors are placed far apart in the embedding space. Specif-
ically, for a vertex 𝑣 with neighborhood N(𝑣), and embed-
ding 𝑥𝑣 we define the confidence as the average neighbor

Metric 𝐷𝐹 𝐷𝑆

Low-percentile confidence conflicts 93% ± 10% 82% ± 23%
High-percentile confidence conflicts 38% ± 15% 26% ± 15%
Spearman between 𝑠(𝑣) and 𝑐𝑜𝑛 𝑓 (𝑣) 93% ± 12% 84% ± 13%
Spearman between 𝑡 and 𝑑

(𝑡)
𝑣 76% ± 23% 86% ± 20%

Table 1: Summary of quantitative concept evaluation on 𝐷𝐹 (failed executions) and 𝐷𝑆 (successful ones). The values are
averages over all executions and iterations (expect for the last metric). “High percentile” is the above the 70𝑡ℎ percentile, and
“Low percentile” is below the 20𝑡ℎ. Successful instances have notable lower values of conflicts between vertices in a given
confidence percentile cohort.

Metric Sparse (𝑐 < 2.5) Dense (2.5 ≤ 𝑐 < 5)
𝐷𝐹 𝐷𝑆 𝐷𝐹 𝐷𝑆

Low percentile confidence conflicts 99% ± 3% 66% ± 27% 94% ± 6% 93% ± 5%
High percentile confidence conflicts 44% ± 10% 32% ± 10% 31% ± 10% 24% ± 8%
Spearman between 𝑠(𝑣) and 𝑐𝑜𝑛 𝑓 (𝑣) 97% ± 2% 88% ± 3% 93% ± 5% 88% ± 8%
Spearman between 𝑡 and 𝑑

(𝑡)
𝑣 89% ± 21% 99% ± 0.001% 67% ± 24% 76% ± 22%

Table 2: Breaking down the results in Table 1 by density groups: Sparse (𝑐 < 2.5) and Dense (2.5 ≤ 𝑐 < 5) graphs. Compared to
sparse graphs, dense graph show fewer high-percentile conflicts in successful runs and more low-percentile conflicts, aligning
with the idea that higher degree increases conflicts for incorrect colorings, but also drives support higher to allow for lower
conflict rate at high-confidence quartiles.

distance

𝑐𝑜𝑛 𝑓 (𝑣) = 1
|N (𝑣) |

∑︁
𝑢∈N(𝑣)

∥𝑥𝑣 − 𝑥𝑢∥2

and find a consistent increase across successive iterations.
Quantitative analysis using the average over all executions
of the Spearman rank correlation between iteration number
and mean neighbor distance yields a strong positive corre-
lation coefficient, with a better score for 𝐷𝑆 (86%) than
𝐷𝐹 (76%), providing statistical evidence for this progressive
spatial separation - See Table 1. Statistical analysis (here and
onward) leverages the full set of instances presented in Sec-
tion 5. This approach, characterized by its unified (on dif-
ferent data distributions) analytical framework, ensures ro-
bust statistical validity and mitigates potential distribution-
specific biases.

Next, we are going to connect 𝑐𝑜𝑛 𝑓 (𝑣) and the notion
of support 𝑠(𝑣). We found that the GNN operates in a way
that increases 𝑐𝑜𝑛 𝑓 (𝑣) more for vertices that also have high
values of 𝑠(𝑣) (recall that support is the minimum degree
among the other two color classes with respect to the cur-
rent 3-coloring of the graph). To quantify this relation, we
measured the Spearman rank correlation between 𝑐𝑜𝑛 𝑓 (𝑣)
and 𝑠(𝑣) average over instances, iterations, and vertices and
report in Table 1. Both 𝐷𝐹 and 𝐷𝑆 achieve high spearman
ranking, 84% for 𝐷𝑆 and 93% for 𝐷𝐹 . It might seem at
first counter-intuitive that failed executions exhibit a better
correlation between support and confidence. However, this
gap may be explained by the high-dimensional nature of the
failed embedding, which allows more freedom, at the ex-
pense of the ability to round the high-dimensional solution
to a legal discrete solution (the 3-coloring).

Figure 2a further illustrates the pivotal role of the support
on top of the degree. Consider three vertices of equal degree

8 but different support: the first vertex has an equal split of
neighbors between two color groups (𝑠(𝑣) = 4), the second
has all but one neighbor in one color group (𝑠(𝑣) = 1), and
the third has all neighbors in a single color group (𝑠(𝑣) = 0).
Despite their identical degrees, the vertex with 𝑠(𝑣) = 4 ex-
hibits higher confidence and is positioned closer to the trian-
gle’s vertex. In contrast, the vertices with low support are po-
sitioned closer together near the triangle’s center, reflecting
their lower confidence values. This geometric arrangement
demonstrates how the GNN’s embedding strategy prioritizes
support over degree in determining spatial positioning.

Finally, to find a legal coloring, high confidence, and high
support vertices must produce no conflicts along the edges
that connect them. Among the set of edges 𝑒 = (𝑢, 𝑣) where
both 𝑢 and 𝑣 have low confidence and support (below the
20𝑡ℎ percentile), there are on average 82% contradictions
in 𝐷𝑆 (averaged on all instances and iterations) where 𝐷𝐹

surfers more contradictions, with an average of 93%. In
comparison, the set of edges induced by high confidence
and support (both pair vertices have confidence and support
above 70𝑡ℎ percentile) have 26% contradiction on average
for 𝐷𝑆 , and again a higher value for 𝐷𝐹 , at 38%. The full
results are in Table 1.

Thus, we can view the operation of the GNN in
two phases: (1) committing to the coloring of the high-
confidence-support vertices at an early stage serving as an-
chors for step (2) where the remaining vertices are placed
in the space. Both these operations are guided by iteratively
distancing each node from its neighbors.

Finally, let us note that we re-examined the results by
density, studying three density groups—Sparse (𝑐 < 2.5),
Dense (2.5 ≤ 𝑐 < 5). As evident from Table 2, the trend is
preserved - where in successful executions, there are sig-
nificancy less conflicts in high-percentile confidence than

lower. Notably. in the dense group we found more conflicts
in the lower-percentile, both in successful and failed itera-
tions. This makes sense as higher degree leads to more con-
flicts in case of a wrong coloring assignment. In the high-
confidence quartile the trend was reversed, and denser graph
had fewer conflicts - again this aligns with the support as
proxy for confidence, since higher degree allows for higher
support.

6.3 The geometry revisited
A surprising fact, at first glance at least, is that the statistics
reported in Section 6.2 are quite similar for the failed execu-
tion instances in 𝐷𝐹 and the successful ones in 𝐷𝑆 . There-
fore, the key to understanding successful vs failed execu-
tions lies in the ability to pack the combinatorial properties
into a low-dimensional triangular shape. If the embedding
is not packed in a 2D triangular shape, then the correlations
that we found between distance and support do not translate
to reading a legal coloring. In other words, the constrained
triangular shape allows the GNN to use the combinatorial
information in order to find a low-dimensional representa-
tion of the coloring, from which a discrete solution (the 3-
coloring) can be usefully read using the 𝑘-means algorithm.
In failed executions, the high-dimensional solution can not
be translated well to a discrete one.

The constraint imposed by the triangular geometric shape
systematically restricts the latent space movement of ver-
tex embeddings, which elucidates the observed reduction in
Spearman rank correlation between support 𝑠(𝑣) and con-
flicts conf(𝑣) in Table 1 for 𝐷𝑆 . Despite this constraint, the
correlation remains substantively high, indicating a nuanced
trade-off that fundamentally preserves the method’s effec-
tiveness. The reduced dimensional flexibility results in fewer
conflicts within the embedding space, ultimately facilitating
the discovery of a legal graph coloring.

In optimization theory, the operation of translating high-
dimensional vector solutions to discrete solutions is called
“rounding”. Viewing the operation of GNN-GCP through
the lens of its ability to round high-dimensional solution to
a legal discrete 3-coloring evokes a striking similarity with
the the semi-definite program (SDP) for 𝑘-coloring. See Ap-
pendix A for full details on the SDP.

The objective function of this SDP inherently captures
this quest for triangular geometry in its objective function
(Goemans and Williamson 1995; Karger, Motwani, and Su-
dan 1998). For 𝑘 = 3, one optimal solution to the SDP,
when the graph is 3-colorable, is derived from the regular
2-simplex (an equilateral triangle). In this case, all vertices
in the same color class are assigned vectors pointing from
the center of mass of the triangle to one of its vertices. In-
terpreting the SDP vector solution as an embedding yields a
geometry remarkably similar to the one produced by GNN-
GCP.

Although the SDP allows for high-dimensional solu-
tions beyond the 𝑘-simplex geometry (otherwise, the 𝑘-
colorability problem would not have been NP-hard), prior
work (Coja-Oghlan, Krivelevich, and Vilenchik 2007) has
shown that for some distribution of random 3-colorable
graphs, the simplex geometry is the only admissible solu-

tion. Hence, such graphs are easy to color using the SDP
algorithm, similar to the GNN-GCP case.

7 Conclusion
In this study, we elucidate the principles guiding the GNN-
GCP’s approach to the 3-coloring problem by combining the
geometry of the embedding with the combinatorial concept
of support. This integration produces a triangular structure in
the embedding space, with high-support vertices serving as
anchors for the emerging coloring. Of the various attributes
we examined, support and confidence proved to be the most
promising and insightful guiding concepts.

Recent research suggests that GNNs can emulate SDP
solvers when explicitly designed for that purpose, with their
loss functions encoding the SDP objective (Yau et al. 2023).
While the GNN-GCP model discussed here was not explic-
itly trained to act as an SDP solver—it was trained only to
decide whether a graph is colorable—it demonstrates behav-
iors strikingly similar to those of SDP solvers. Despite its
open-ended training process and the model not fully learning
to utilize these concepts effectively, the GNN-GCP model
naturally aligns with heuristic problem-solving strategies
grounded in established SDP concepts, which remain the
most effective heuristic methods for such problems.

This observation raises several intriguing questions for
future research. Does this behavior generalize across other
GNN architectures and loss functions for the graph color-
ing problem? Could similar geometric phenomena emerge
in GNN models applied to other combinatorial problems,
such as the maximum clique problem? Moreover, can these
insights be leveraged to design enhanced versions of GNN-
GCP with improved performance, or even inspire the de-
velopment of more efficient classical algorithms? Penulti-
mately, are there other strategies learned and used in dif-
ferent segments of the iteration? Lastly, Belief Propagation
(BP) is a message-passing algorithm that ”notifies” each
vertex of the probability distribution over the three color
classes. Research inspired by statistical mechanics models
in physics (Braunstein and Mézard 2005) has also pointed
to the notion of support, which anchors the relevant vertices
(also called ”frozen variables”). Future research can check
how BP compares to GNN-GCP and perhaps identify a uni-
fying computational framework tying BP, SDP, and GNNs
in the context of combinatorial optimization problems.

8 Acknowledgments
We thank the authors of GNN-GCP (Lemos et al. 2019)
for sending us their pre-trained weights of the GNN-GCP
model- for that, we are grateful.

References
Achtibat, R.; Dreyer, M.; Eisenbraun, I.; Bosse, S.; Wie-
gand, T.; Samek, W.; and Lapuschkin, S. 2022. From
“where” to “what”: Towards human-understandable expla-
nations through concept relevance propagation. arXiv
preprint arXiv:2206.03208.
Alon, N.; and Kahale, N. 1994. A spectral technique for
coloring random 3-colorable graphs (preliminary version).

In Proceedings of the twenty-sixth annual ACM symposium
on Theory of Computing, 346–355.
Bapst, V.; Coja-Oghlan, A.; Hetterich, S.; Raßmann, F.; and
Vilenchik, D. 2014. The Condensation Phase Transition in
Random Graph Coloring. In Jansen, K.; Rolim, J. D. P.;
Devanur, N. R.; and Moore, C., eds., Approximation, Ran-
domization, and Combinatorial Optimization. Algorithms
and Techniques, APPROX/RANDOM 2014, September 4-
6, 2014, Barcelona, Spain, volume 28 of LIPIcs, 449–464.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik.
Bapst, V.; Coja-Oghlan, A.; Hetterich, S.; Raßmann, F.; and
Vilenchik, D. 2016. The condensation phase transition in
random graph coloring. Communications in Mathematical
Physics, 341: 543–606.
Bau, D.; Zhou, B.; Khosla, A.; Oliva, A.; and Torralba, A.
2017. Network dissection: Quantifying interpretability of
deep visual representations. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, 6541–
6549.
Boisvert, L.; Verhaeghe, H.; and Cappart, Q. 2024. To-
wards a Generic Representation of Combinatorial Problems
for Learning-Based Approaches. In Dilkina, B., ed., Inte-
gration of Constraint Programming, Artificial Intelligence,
and Operations Research - 21st International Conference,
CPAIOR 2024, Uppsala, Sweden, May 28-31, 2024, Pro-
ceedings, Part I, volume 14742 of Lecture Notes in Com-
puter Science, 99–108. Springer.
Braunstein, A.; and Mézard, M. 2005. 107Constraint Satis-
faction by Survey Propagation. In Computational Complex-
ity and Statistical Physics. Oxford University Press. ISBN
9780195177374.
Bui, T. N.; Nguyen, T. H.; Patel, C. M.; and Phan, K.-A. T.
2008. An ant-based algorithm for coloring graphs. Dis-
crete Applied Mathematics, 156(2): 190–200. Computa-
tional Methods for Graph Coloring and it’s Generalizations.
Cappart, Q.; Chételat, D.; Khalil, E. B.; Lodi, A.; Morris, C.;
and Velickovic, P. 2023. Combinatorial Optimization and
Reasoning with Graph Neural Networks. J. Mach. Learn.
Res., 24: 130:1–130:61.
Coja-Oghlan, A.; Krivelevich, M.; and Vilenchik, D. 2007.
Why almost all satisfiable 𝑘-cnf formulas are easy. In Dis-
crete Mathematics and Theoretical Computer Science, 95–
108. Discrete Mathematics and Theoretical Computer Sci-
ence.
Colantonio, L.; Cacioppo, A.; Scarpati, F.; and Giagu, S.
2024. Efficient Graph Coloring with Neural Networks:
A Physics-Inspired Approach for Large Graphs. CoRR,
abs/2408.01503.
Douiri, S. M.; and Elbernoussi, S. 2015. Solving the graph
coloring problem via hybrid genetic algorithms. Journal of
King Saud University - Engineering Sciences, 27(1): 114–
118.
Dupin, N. 2024. Matheuristic Variants of DSATUR
for the Vertex Coloring Problem. In Sevaux, M.; Olteanu,
A.-L.; Pardo, E. G.; Sifaleras, A.; and Makboul, S., eds.,
Metaheuristics, 96–111. Cham: Springer Nature Switzer-
land. ISBN 978-3-031-62922-8.

Ghandeharioun, A.; Kim, B.; Li, C.-L.; Jou, B.; Eoff, B.;
and Picard, R. W. 2021. Dissect: Disentangled simulta-
neous explanations via concept traversals. arXiv preprint
arXiv:2105.15164.
Ghorbani, A.; Wexler, J.; Zou, J. Y.; and Kim, B. 2019. To-
wards automatic concept-based explanations. 32.
Goemans, M. X.; and Williamson, D. P. 1995. Improved ap-
proximation algorithms for maximum cut and satisfiability
problems using semidefinite programming. Journal of the
ACM (JACM), 42(6): 1115–1145.
Gonzalez, J. A.; Holder, L. B.; and Cook, D. J. 2002. Graph-
Based Relational Concept Learning. In Sammut, C.; and
Hoffmann, A. G., eds., Machine Learning, Proceedings of
the Nineteenth International Conference (ICML 2002), Uni-
versity of New South Wales, Sydney, Australia, July 8-12,
2002, 219–226. Morgan Kaufmann.
Guo, D.; Xu, W.; Ding, W.; Yao, Y.; Wang, X.; Pedrycz, W.;
and Qian, Y. 2024. Concept-cognitive learning survey: Min-
ing and fusing knowledge from data. Information Fusion,
109: 102426.
Ijaz, A. Z.; Ali, R. H.; Ali, N.; Laique, T.; and Ali Khan, T.
2022a. Solving Graph Coloring Problem via Graph Neural
Network (GNN). In 2022 17th International Conference on
Emerging Technologies (ICET), 178–183.
Ijaz, A. Z.; Ali, R. H.; Ali, N.; Laique, T.; and Khan, T. A.
2022b. Solving Graph Coloring Problem via Graph Neu-
ral Network (GNN). In 2022 17th International Conference
on Emerging Technologies (ICET), 2022 17th International
Conference on Emerging Technologies (ICET), 178–183.
Karger, D.; Motwani, R.; and Sudan, M. 1998. Approximate
graph coloring by semidefinite programming. Journal of the
ACM (JACM), 45(2): 246–265.
Karp, R. M. 2010a. Reducibility Among Combinatorial
Problems. In Jünger, M.; Liebling, T. M.; Naddef, D.;
Nemhauser, G. L.; Pulleyblank, W. R.; Reinelt, G.; Rinaldi,
G.; and Wolsey, L. A., eds., 50 Years of Integer Program-
ming 1958-2008 - From the Early Years to the State-of-the-
Art, 219–241. Springer.
Karp, R. M. 2010b. Reducibility among combinatorial prob-
lems. Springer.
Kim, B.; Wattenberg, M.; Gilmer, J.; Cai, C.; Wexler, J.;
and Viegas, F. 2018. Interpretability beyond feature attri-
bution: Quantitative testing with concept activation vectors
(tcav). In International conference on machine learning,
2668–2677. PMLR.
Krivelevich, M. 2002. Coloring random graphs—an algo-
rithmic perspective. In Mathematics and Computer Sci-
ence II: Algorithms, Trees, Combinatorics and Probabilities,
175–195. Springer.
Lemos, H.; Prates, M. O. R.; Avelar, P. H. C.; and Lamb,
L. C. 2019. Graph Colouring Meets Deep Learning: Ef-
fective Graph Neural Network Models for Combinatorial
Problems. In 31st IEEE International Conference on Tools
with Artificial Intelligence, ICTAI 2019, Portland, OR, USA,
November 4-6, 2019, 879–885. IEEE.

Lewis, R. M. R. 2016. A Guide to Graph Colouring - Algo-
rithms and Applications. Springer. ISBN 978-3-319-25728-
0.
Li, W.; Li, R.; Ma, Y.; Chan, S. O.; Pan, D. Z.; and Yu, B.
2022. Rethinking Graph Neural Networks for the Graph
Coloring Problem. CoRR, abs/2208.06975.
Lundberg, S. M.; and Lee, S.-I. 2017. A unified approach
to interpreting model predictions. Advances in neural infor-
mation processing systems, 30.
Marty, T.; François, T.; Tessier, P.; Gautier, L.; Rousseau, L.;
and Cappart, Q. 2023. Learning a Generic Value-Selection
Heuristic Inside a Constraint Programming Solver. In Yap,
R. H. C., ed., 29th International Conference on Principles
and Practice of Constraint Programming, CP 2023, August
27-31, 2023, Toronto, Canada, volume 280 of LIPIcs, 25:1–
25:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik.
Melis, D. A.; and Jaakkola, T. 2018. Towards robust inter-
pretability with self-explaining neural networks. 31.
Michaud, E. J.; Liu, Z.; Girit, U.; and Tegmark, M.
2023. The quantization model of neural scaling. CoRR,
abs/2303.13506.
Nanda, N.; Chan, L.; Liberum, T.; Smith, J.; and Steinhardt,
J. 2023. Progress measures for grokking via mechanistic
interpretability. arXiv preprint arXiv:2301.05217.
Olah, C.; Cammarata, N.; Schubert, L.; Goh, G.; Petrov, M.;
and Carter, S. 2020. Zoom in: An introduction to circuits.
Distill, 5(3): e00024–001.
Olah, C.; Elhage, N.; Nanda, N.; Joseph, N.; DasSarma, N.;
Henighan, T.; Mann, B.; Askell, A.; Bai, Y.; Chen, A.; Con-
erly, T.; Drain, D.; Ganguli, D.; Hatfield-Dodds, Z.; Her-
nandez, D.; Johnston, S.; Jones, A.; Kernion, J.; Lovitt, L.;
Ndousse, K.; Amodei, D.; Brown, T.; Clark, J.; Kaplan, J.;
McCandlish, S.; and Olah, C. 2022. In-context learning and
induction heads. CoRR, abs/2209.11895.
Rakaraddi, A.; Lam, S.; Pratama, M.; and de Carvalho, M.
2022. Reinforced Continual Learning for Graphs. In Hasan,
M. A.; and Xiong, L., eds., Proceedings of the 31st ACM In-
ternational Conference on Information & Knowledge Man-
agement, Atlanta, GA, USA, October 17-21, 2022, 1666–
1674. ACM.
Ribeiro, M. T.; Singh, S.; and Guestrin, C. 2016. ”Why
should I trust you?” Explaining the predictions of any classi-
fier. In Krishnapuram, B.; Shah, M.; Smola, A. J.; Aggarwal,
C. C.; Shen, D.; and Rastogi, R., eds., Proceedings of the
22nd ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, 1135–1144. San Fran-
cisco, CA, USA: ACM.
Schuetz, M. J. A.; Brubaker, J. K.; Zhu, Z.; and Katzgraber,
H. G. 2022. Graph Coloring with Physics-Inspired Graph
Neural Networks. CoRR, abs/2202.01606.
Schut, L.; Tomasev, N.; McGrath, T.; Hassabis, D.; Paquet,
U.; and Kim, B. 2023. Bridging the Human-AI Knowledge
Gap: Concept Discovery and Transfer in AlphaZero. arXiv
preprint arXiv:2310.16410.
Selsam, D.; Lamm, M.; Bünz, B.; Liang, P.; de Moura, L.;
and Dill, D. L. 2019. Learning a SAT Solver from Single-Bit

Supervision. In 7th International Conference on Learning
Representations, ICLR. OpenReview.net.
Selvaraju, R. R.; Cogswell, M.; Das, A.; Vedantam, R.;
Parikh, D.; and Batra, D. 2017. Grad-cam: Visual explana-
tions from deep networks via gradient-based localization. In
Proceedings of the IEEE international conference on com-
puter vision, 618–626.
Shoham, E.; Cohen, H.; Wattad, K.; Rika, H.; and Vilenchik,
D. 2024. Concept Learning in the Wild: Towards Algorith-
mic Understanding of Neural Networks. arXiv:2412.11205.
Sun, H.; Li, Y.; and Zhang, Y. 2022. ConLearn: Contextual-
knowledge-aware Concept Prerequisite Relation Learning
with Graph Neural Network. In Banerjee, A.; Zhou, Z.;
Papalexakis, E. E.; and Riondato, M., eds., Proceedings of
the 2022 SIAM International Conference on Data Mining,
SDM 2022, Alexandria, VA, USA, April 28-30, 2022, 118–
126. SIAM.
Sundararajan, M.; Taly, A.; and Yan, Q. 2017. Axiomatic
attribution for deep networks. In International conference
on machine learning, 3319–3328. PMLR.
Wang, K. R.; Variengien, A.; Conmy, A.; Shlegeris, B.; and
Steinhardt, J. 2023. Interpretability in the wild: a circuit
for indirect object identification in GPT-2 small. OpenRe-
view.net.
Wang, X.; Yan, X.; and Jin, Y. 2024. A graph neural network
with negative message passing and uniformity maximization
for graph coloring. Complex & Intelligent Systems, 10(3):
4445–4455.
Wu, W.; Luo, C.; and Su, K. 2013. FWLS: A Local Search
for Graph Coloring. In Fellows, M.; Tan, X.; and Zhu, B.,
eds., Frontiers in Algorithmics and Algorithmic Aspects in
Information and Management, 84–93. Berlin, Heidelberg:
Springer Berlin Heidelberg. ISBN 978-3-642-38756-2.
Yau, M.; Lu, E.; Karalias, N.; Xu, J.; and Jegelka, S. 2023.
Are Graph Neural Networks Optimal Approximation Algo-
rithms? CoRR, abs/2310.00526.
Yeh, C.-K.; Kim, B.; Arik, S.; Li, C.-L.; Pfister, T.; and
Ravikumar, P. 2020. On completeness-aware concept-based
explanations in deep neural networks. 33: 20554–20565.
Zdeborová, L.; and Krzakala, F. 2007. Phase Transitions in
the Coloring of Random Graphs. CoRR, abs/0704.1269.
Zdeborova, L.; and Krzkakala, F. 2007. Phase transi-
tions in the coloring of random graphs. Physical Review
E—Statistical, Nonlinear, and Soft Matter Physics, 76(3):
031131.

A Semi-Definite Program for 𝑘-Colorability
The 𝑘-colorability problem for a graph 𝐺 = (𝑉, 𝐸) seeks to
assign one of 𝑘 colors to each vertex such that adjacent ver-
tices receive different colors. This problem can be formu-
lated as a semi-definite program (SDP) by considering its
equivalence to the max-𝑘-cut problem. Below, we provide
the exact SDP formulation and discuss a specific feasible
solution based on the 𝑘-simplex.

A.1 The Max-𝑘-Cut SDP Formulation
The following SDP was introduced by (Goemans and
Williamson 1995) as an approximation algorithm for max-
𝑘-cut, and was then used by (Karger, Motwani, and Sudan
1998) as an approximation algorithm for 𝑘-coloring. Given
a graph 𝐺 = (𝑉, 𝐸), the max-𝑘-cut problem is formulated
as:

maximize
𝑘

𝑘 − 1

∑︁
(𝑖, 𝑗) ∈𝐸

(
1 − v𝑖 · v 𝑗

)
subject to v𝑖 · v 𝑗 = − 1

𝑘 − 1
, ∀𝑖 ≠ 𝑗 ,

∥v𝑖 ∥2 = 1, ∀𝑖 ∈ 𝑉.

Here, v𝑖 ∈ R𝑛 represents the vector assigned to vertex
𝑖, and the constraints ensure that the vectors lie on a 𝑛-
dimensional sphere, 𝑛 is the number of vertices, with a co-
sine similarity of −1/(𝑘 − 1) between two adjacent vertices.

A.2 The 𝑘-Simplex Solution
If the graph 𝐺 is 𝑘-colorable, then a feasible solution to the
SDP is given by embedding the vertices into the vertices of
the 𝑘-dimensional regular simplex. The 𝑘-simplex is defined
as a set of 𝑘 vectors in R𝑘−1 that are equidistant from each
other, satisfying the orthogonality constraint.

Explicitly, the vectors u1, u2, . . . , u𝑘 of the 𝑘-simplex sat-
isfy:

u𝑖 · u 𝑗 =

{
1 if 𝑖 = 𝑗 ,

− 1
𝑘−1 if 𝑖 ≠ 𝑗 .

We can assign each vertex 𝑖 ∈ 𝑉 in color class 𝑗 to the
simplex vector u 𝑗 , ensuring that adjacent vertices receive
distinct simplex vectors, thus satisfying the SDP constraints.

In fact, the SDP solution is also optimal in that case. The
objective function is proportional to (1 − v𝑖 · v 𝑗), which is
maximized, under the constraints, when v𝑖 · v 𝑗 = − 1

𝑘−1 , as
achieved by the 𝑘-simplex for all 𝑖 ≠ 𝑗 . The factor 𝑘

𝑘−1 en-
sures the proper scaling of the objective, making the value of
the objective function to be |𝐸 |, the total number of edges.

While the 𝑘-simplex is a natural and optimal solution for
the SDP, it is not the only possible solution. Other configu-
rations of vectors may also satisfy the constraints of the SDP
and yield the same optimal value. For a general graph 𝐺 this
must be the case because the 𝑘-colorability problem is NP-
hard. The SDP is a relaxation of the original problem, and its
solution space inherently allows multiple feasible solutions
due to its continuous nature.

