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Abstract

The rise of ChatGPT 1 has led to the develop-
ment of artificial intelligence (AI) applications,
particularly those that rely on large language
models (LLMs). However, recalling LLM APIs
can be expensive, and the response speed may
slow down during LLMs’ peak times, caus-
ing frustration among developers. Potential
solutions to this problem include using better
LLM models or investing in more computing re-
sources. However, these options may increase
product development costs and decrease devel-
opment speed. GPTCache 2 is an open-source
semantic cache that stores LLM responses to
address this issue. When integrating an AI ap-
plication with GPTCache, user queries are first
sent to GPTCache for a response before be-
ing sent to LLMs like ChatGPT. If GPTCache
has the answer to a question, it quickly returns
the answer to the user without having to query
the LLM. This approach saves costs on API
recalls and makes response times much faster.
For instance, integrating GPTCache with the
GPT service offered by OpenAI can increase
response speed 2-10 times when the cache is
hit. Moreover, network fluctuations will not
affect GPTCache’s response time, making it
highly stable. This paper presents GPTCache
and its architecture, how it functions and per-
forms, and the use cases for which it is most
advantageous.

1 Introduction

Since OpenAI released ChatGPT, large language
models have impressed many people and have been
frequently integrated into our daily work and lives.
At the same time, more open-source enthusiasts
and tech companies have invested time and effort
into developing open-source LLMs, such as Meta’s
LLama (Touvron et al., 2023a,b), Google’s PaLM
(Chowdhery et al., 2022), Stanford’s Alpaca (Wang

1https://openai.com/chatgpt
2https://github.com/zilliztech/GPTCache

et al., 2023; Taori et al., 2023), and Databrick’s
Dolly (Conover et al., 2023).

There are two ways to use large language mod-
els: online services provided by companies like
OpenAI, Claude, and Cohere or downloading open-
source models and deploying them on your servers.
Both methods require payment. Online services
charge you based on tokens, while deploying mod-
els on your own server requires purchasing specific
computing resources. The choice depends on indi-
vidual needs.

While online services are more expensive, they
are more convenient and effective and provide a bet-
ter user experience than deploying models yourself.
Costs and user experience are two critical consid-
erations for building LLM applications. As your
LLM application gains popularity and experiences
a surge in traffic, the cost of LLM API calls will
increase significantly. High response latency will
also be frustrating, particularly during peak times
for LLMs, directly affecting the user experience.

GPTCache is an open-source semantic cache
designed to improve the efficiency and speed of
GPT-based applications by storing and retrieving
the responses generated by language models. Un-
like traditional cache systems such as Redis, GPT-
Cache employs semantic caching, which stores and
retrieves data through embeddings. It utilizes em-
bedding algorithms to transform the queries and
LLMs’ responses into embeddings and conducts
similarity searches on these embeddings using a
vector store such as Milvus. GPTCache allows
users to customize the cache to their specific re-
quirements, offering a range of choices for embed-
ding, similarity assessment, storage location, and
eviction policies. Furthermore, GPTCache sup-
ports both the OpenAI ChatGPT interface and the
Langchain interface, with plans to support more
interfaces in the coming months.

Through experiments using the
paraphrase-albert-small-v2 model (Reimers

https://openai.com/chatgpt
https://github.com/zilliztech/GPTCache


and Gurevych, 2019) to embed input in the onnx
runtime environment and running it on a local
Mac with i7, 4CPU, and 32G memory, the time
consumed when hitting the cache is approximately
0.3 seconds. Compared to accessing OpenAI
ChatGPT with an average response latency of
3 seconds, the time consumed is only 1/10.
Furthermore, no tokens are consumed when
hitting the cache. Different embedding models
and similarity evaluation algorithms must be
selected in real development scenarios based on
the tolerance for cache errors. Even so, the entire
consumption time is about 3-4 times faster.

2 Related Works

2.1 Accelerating LLM Inference

Accelerating LLM Inference. Large language mod-
els (LLMs) typically take seconds to infer an-
swers, prompting researchers to explore ways to
reduce inference time and resource consumption.
One approach is quantization (Dettmers and Zettle-
moyer, 2023), which decreases the number of bits
needed to represent each parameter and, therefore
reduces the model size. However, this can result
in a trade-off between accuracy and memory foot-
print. Another method is pruning, which can spar-
sify large-scale generative pre-trained transformer
(GPT) models without retraining, as demonstrated
by SparseGPT (Frantar and Alistarh, 2023). Ad-
ditional methods include Compressing (Xu et al.,
2020) and Inference with Reference (Yang et al.,
2023).

2.2 Widespread application of Caching

Widespread application of Caching. Caching is a
commonly used technique to reduce frequent and
computationally expensive data accesses, which
can improve system query performance. Many dif-
ferent caching schemes have been proposed for
various scenarios. For example, semantic knowl-
edge extracted from data can convert cache misses
to cache hits, avoiding unnecessary access to web
sources (Lee and Chu, 1999). Another example is
in querying multiple databases with sensitive in-
formation, where a differentially private cache of
past responses can answer the current workload at a
lower privacy budget while meeting strict accuracy
guarantees (Mazmudar et al., 2022). In addition,
a cached memory architecture for new changes to
embedding tables has been proposed during embed-
ding. In this architecture, most rows in embeddings

are trained at low precision, while the most fre-
quent or recently accessed rows are cached and
trained at full precision (Yang et al., 2020). As
demonstrated, caching is applied in a variety of
real-world development processes.

2.3 Embedding Models

Embedding models (Almeida and Xexéo, 2023) are
a type of machine learning model that map discrete
symbols or objects (such as text, images, audio,
etc.) to continuous vector spaces. These vectors
are called embedding vectors and are indispensable
in many natural language processing (NLP) and
computer vision (CV) tasks.

In NLP tasks, embedding models aim to map text
into a low-dimensional continuous vector space.
This makes it easier for machine learning models
to process the text. The vectors can capture seman-
tic information about the text, such as its meaning
in context. In CV tasks, embedding models can
map images, videos, or objects into a vector space.
This approach allows them to be processed by com-
puter vision algorithms, such as image search and
identification. Common text embedding models
include BERT (Devlin et al., 2019), GloVe (Pen-
nington et al., 2014), and Word2Vec (Goldberg and
Levy, 2014; Mikolov et al., 2013). These models
generate embedding vectors by processing large
amounts of text data. They can also perform well
in many NLP tasks, such as semantic similarity
calculation, part-of-speech tagging, named entity
recognition, and sentiment analysis.

2.4 Vector Store

A vector database is designed for storing and man-
aging vector data. Vector data consists of sequences
of numbers commonly used to represent objects or
features in high-dimensional spaces. For exam-
ple, data types such as images, audio, and natural
language text can be represented as vector data.

Vector databases improve the efficiency and ac-
curacy of vector data retrieval by using vector simi-
larity measures to index and query the data. This
indexing technique allows the database to quickly
find vectors most similar to a query vector, making
it useful for various applications such as sentiment
analysis, image search, speech recognition, and
recommendation systems.



Figure 1: GPTCache: The architecture comprises six
core components: adapter, pre-processor, embedding
generator, cache manager, similarity evaluator, and post-
processor.

3 GPTCache: Semantic Cache for LLMs

The overall workflow of GPTCache follows the
general cache pattern - attempting to obtain results
from the cache before fetching data or processing
requests. If successful, the process terminates im-
mediately. Otherwise, the processing path is the
same as if the cache did not exist. However, before
returning, the corresponding results are stored in
the cache so that repeated actions will retrieve re-
sults directly from the cache next time. Using the
cache significantly reduces workflow time, which
explains why cache designs are ubiquitous in our
lives, such as multi-level caches in computers, DNS
caches in networks, and Redis/Memcache in man-
agement systems.

3.1 Adapter

The adapter serves as the interface for GPTCache
to interact with the outside world. It is responsible
for converting LLM requests into cache protocols,
controlling the entire cache workflow, and trans-
forming cache results into LLM responses. For
easy integration of GPTCache into our systems
or other ChatGPT-based systems without extra de-
velopment effort, the adapter should be easy to
integrate with all LLMs and flexible enough to in-
tegrate more multimodal models in the future.

3.2 Pre-Processor
The pre-processor handles the input of LLM re-
quests primarily by formatting the information as
the primary key for the cache data. This includes
removing prompt information from inputs, com-
pressing input information, and only retaining the
last certain words for long texts or the last round
in a multi-round conversation. These operations
make the request data more distinguishable from
each other and remove redundant and irrelevant
information from the requests.

Pre-processing is a critical factor affecting the
performance of the cache. For example, suppose
both inputs contain a large portion of prompt in-
formation, where the key part of the information
is only a small portion of the entire input. In that
case, the cache cannot obtain the key information
without eliminating the prompt. This can result in a
high probability that all requests hit the cache. The
preprocessed results are passed to the Embedding
component for vector conversion.

3.3 Embedding Generator
The embedding generator can convert user queries
into embedding vectors for later vector similar-
ity retrieval. There are two methods to achieve
this functionality. The first method generates em-
bedding vectors through cloud services (such as
OpenAI, Hugging Face, Cohere, etc.). The sec-
ond method involves generating embedding vectors
using local models that can be downloaded from
sources such as HuggingFace or GitHub.

3.4 Cache Manager
The cache manager is the core component of GPT-
Cache and has three functions:

• Cache storage: stores user requests and corre-
sponding LLM responses.

• Vector storage: stores embedding vectors and
retrieves similar results.

• Eviction management: controls cache capac-
ity and clears expired data according to LRU
or FIFO policy when the cache is full.

Before a piece of data is stored, an id will be
generated. The id and scalar data will be stored in
cache storage, and the id and vector data will be
stored in vertor storage. In this way, cache storage
and vertor storage are associated. Eviction man-
agement also records these IDs. When cache data



needs to be cleared, the data corresponding to cache
storage and vertor storage will be deleted based on
the id.

The eviction manager releases the cache space
by deleting data that has been unused for a long
time or is furthest away from using in the GPT-
Cache. If necessary, it removes data from both the
cache and vector store. However, frequent deletion
operations in the vector store can lead to perfor-
mance degradation. Therefore, GPTCache only
triggers asynchronous operations (e.g., index build-
ing, compression, etc.) upon reaching deletion
thresholds.

3.5 Similarity Evaluator

GPTCache retrieves the Top-K most similar an-
swers from its cache and uses a similarity evalu-
ation function to determine if the cached answer
matches the input query. The similarity evalua-
tion module is also crucial for GPTCache. After
research, we eventually adopted the fine-tuned AL-
BERT model. Of course, there is still room for
improvement here, and other language models or
LLMs (such as LLaMa-7b) can also be used.

3.6 Post-Processor

The post-processor is responsible for preparing the
final response to be returned to the user. It can
either return the most similar response or adjust
the response’s randomness based on the request’s
temperature parameter. If a similar response is not
found in the cache, the LLM will handle the request
to generate a response. The generated response will
be stored in the cache before being returned to the
user.

3.7 Key GPTCache Use Cases

Not all LLM applications are suitable for GPT-
Cache, as the cache hit rate is a crucial factor for
the cache’s effectiveness. If the cache hit rate is
too low, the return on investment cannot balance
the input, and there is no need to spend effort on
this feature. This is similar to traditional caching
scenarios, where caching is usually done only on
frequently accessed public nodes to maximize re-
source utilization and system performance and im-
prove user experience.

This paper introduces three critical practical sit-
uations where GPTCache is most beneficial:

1. LLM applications designed for specific do-
mains of expertise, such as law, biology,

medicine, finance, and other specialized
fields.

2. LLM applications applied to specific use
cases, such as internal company ChatBots
or personal assistants like chat-pdf and chat-
paper. These applications can be enhanced
with a cutting-edge AI technology stack called
CVP3 (ChatGPT+Vector DB]+prompt engi-
neering). This combination overcomes the
limitations of knowledge bases and enables
further expansion and innovation.

3. LLM applications with large user groups can
benefit from using the same cache for user
groups with the same profile if user profiling
and classification can be done. This approach
yields good returns.

4 Experiments

To evaluate GPTCache, we randomly scrape some
information from the webpage, and then let chatgpt
produce a corresponding data (similar or exactly
opposite). And then we created a dataset consisting
of three types of sentence pairs:

• Similar sample pairs: two sentences with iden-
tical semantics

• Opposite sample pairs: two sentences with
related but not identical semantics

• Unrelated sample pairs: two sentences with
completely different semantics

Then we evaluate the effectiveness of cache
through five indicators, which are:

1. Cache Hit, which successfully finds similar
values based on the input, which consists of
Positive Hits and Negative Hits.

2. Cache Miss, no similar value was found based
on the input

3. Positive Hits, the obtained cache value is con-
firmed to be similar to the input value

4. Negative Hits, the obtained cache value is
found to be not similar through inspection.

3https://zilliz.com/blog/ChatGPT-VectorDB-Prompt-as-
code



Cache Cache Positive Negative Hit
Hit Miss Hits Hits Latency
876 124 837 39 0.20 s

Table 1: Results for Caching Hit and Miss Samples,
Caching Mixed Positive and Negative Queries, and Hit
Latency

5. Hit Latency, it includes pre-processing time,
cache data search time, similarity calcula-
tion time and post-processing time. The pre-
processing and post-processing do not use the
model during the test process, and are just
simple character or number comparisons.

In addition, we tried different similarity algo-
rithms and found that they had no impact on the
results, so we used the common cosine similarity.

First, we cached the keys of all 30,000 positive
sample pairs. Next, we randomly selected 1,000
samples and used their peer values as queries. Table
1 presents the results.

We found setting the similarity threshold of GPT-
Cache to 0.7 achieves a good balance between hit
and positive ratios. So we used this for subsequent
tests.

To determine if a cached result is positive or
negative to the query, we used the similarity score
from ChatGPT with a positive threshold of 0.7. We
generated this by prompting:

Please rate the similarity of the follow-
ing two questions on a scale from 0 to 1,
where 0 means not related and 1 means
exactly the same meaning. And ques-
tions, "Which app lets you watch live
football for free?" and "How can I watch
a football live match on my phone?" The
similarity score is.

We issued 1,160 queries with 50% positive and
50% unrelated negative samples. Table 2 presents
the results. The hit ratio was about 50%, and the
negative hit ratio was similar to Experiment 1, in-
dicating GPTCache successfully distinguished re-
lated and unrelated queries.

Next, we tried to also cache all negative samples
and queried with their peers. Surprisingly, despite
high ChatGPT similarity scores (over 0.9) for some
pairs, none hit the cache. The cause of the cache
error could be the similarity evaluator’s fine-tuning
on this dataset correctly undervalued the similarity
of negative pairs.

Cache Cache Positive Negative Hit
Hit Miss Hits Hits Latency
570 590 549 21 0.17 s

Table 2: Results for Caching Hit and Miss Samples,
Caching Mixed Positive and Negative Queries, and Hit
Latency

The initial experiments demonstrate that GPT-
Cache can effectively utilize semantic similarity
to cache LLM query-response pairs and achieve
significant speedups. We plan to conduct more
rigorous evaluations on larger and more diverse
datasets. When tuning the similarity threshold, fur-
ther investigation is required to balance cache hits
versus false positives.

5 Future Challenges

One core factor affecting GPTCache’s caching
effectiveness is the choice of embedding model.
Compared to other component selections, the
choice of embedding model is crucial because sub-
sequent vector database retrieval relies on the em-
bedding vectors. If the vectors cannot adequately
capture the features of the input text, the retrieval
results will be very noisy or even counterproduc-
tive, returning completely irrelevant cached data.
Our testing has shown that even the best cache hit
rates do not exceed 90% with current embedding
models. This means that negative cache hits are
noticeable during use. While this may not greatly
impact individual users, it would be unacceptable
in real production scenarios. Although other meth-
ods, like more strict similarity evaluation, could
improve positive cache hit rates, this would also
decrease the overall hit rate. Most current embed-
ding models are likely optimized for search scenar-
ios but may not work as well for cache matching.
For example, results with semantics opposite to
the input text are acceptable in search since they
have structural similarity, but this is unacceptable
in caching scenarios. Naturally, how to obtain em-
beddings suitable for caching is an open area for
exploration.

Even with a suitable embedding model, positive
hit rates are unlikely to reach production require-
ments, such as 99%, without decreasing cache hits.
The similarity evaluation module plays a core role
in improving positive cache hit rates by filtering
incorrect hits. Our current implementations include
vector distance, retrieving distance, cohere rerank



API, and sbert cross-encoder. However, testing
shows these methods do not sufficiently distinguish
between positive and negative cache hits. To ad-
dress this, we are using large models to judge sen-
tence similarity and distill them into a small model
to obtain a specialized model for textual similarity.

As large language models are widely adopted,
their supported token counts have increased from
2k initially to 100k. However, if a single input
exceeds the LLM’s token count limit, it cannot
process the request. Similarly, conversations with
total tokens exceeding the limit must drop some
information. Large token counts from long texts or
conversations pose a challenge for caching, making
it difficult to identify key information and gener-
ate representative vectors. Currently, we utilize
summary models to pre-process and shorten long
inputs, but this approach increases cache instability,
and its effectiveness is not optimistic. Therefore,
special cache lookup methods may be needed for
long texts.

As mentioned earlier, is there any alternative
to retrieving cache data using vector databases?
For example, can we use traditional databases like
MySQL, PostgreSQL, SQL Server, or Oracle to
store cache data, with textual pre-rocessing to stan-
dardize user inputs? For instance, when the inputs
are "tell me a joke" and "I want to get a joke",
can we convert them to a certain string, like "tell a
joke" , or a same number? Cache hits could then
utilize string matching or numeric ranges instead
of vectors.

6 Conclusion

GPTCache is a caching solution tailored for LLM
applications. It brings the following benefits to the
LLM app developers:

• Less costs: Most LLM services charge fees
based on a combination of the number of re-
quests and token count. GPTCache can effec-
tively minimize expenses by caching query re-
sults, thereby reducing the number of requests
and tokens sent to the LLM service.

• Faster response times: LLMs utilize gener-
ative AI to produce responses in real-time,
which can be time-consuming. However,
when a similar query is cached, the response
time greatly improves, as the result is retrieved
directly from the cache without interaction

with the LLM service. In most cases, GPT-
Cache can also offer better query throughput
than standard LLM services.

• More scalable and available: LLM services of-
ten impose rate limits on the number of access
requests within a given timeframe. If these
limits are exceeded, additional requests are
blocked until a cooldown period has elapsed,
leading to service outages. GPTCache al-
lows you to easily scale and handle increas-
ing query volumes, ensuring consistent per-
formance as your application’s user base ex-
pands.

By utilizing semantic similarity search and vec-
tor embeddings, GPTCache provides an effective
caching solution that enhances performance, re-
duces costs, and improves scalability for applica-
tions that use large language models. Our initial
experiments have shown great potential, and we
plan to conduct more comprehensive evaluations
on diverse real-world datasets and application sce-
narios.
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