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ABSTRACT

A fundamental challenge for multi-task learning is that different tasks may con-
flict with each other when they are solved jointly, and a cause of this phenomenon
is conflicting gradients during optimization. Recent works attempt to mitigate the
influence of conflicting gradients by directly altering the gradients based on some
criteria. However, our empirical study shows that “gradient surgery” cannot ef-
fectively reduce the occurrence of conflicting gradients. In this paper, we take a
different approach to reduce conflicting gradients from the root. In essence, we
investigate the task gradients w.r.t. each shared network layer, select the layers
with high conflict scores, and turn them to task-specific layers. Our experiments
show that such a simple approach can greatly reduce the occurrence of conflict-
ing gradients in the remaining shared layers and achieve better performance, with
only a slight increase in model parameters in many cases. Our approach can be
easily applied to improve various state-of-the-art methods including gradient ma-
nipulation methods and branched architecture search methods. Given a network
architecture (e.g., ResNet18), it only needs to search for the conflict layers once,
and the network can be modified to be used with different methods on the same
or even different datasets to gain performance improvement. The source code is
available at https://github.com/moukamisama/Recon.

1 INTRODUCTION

Multi-task learning (MTL) is a learning paradigm in which multiple different but correlated tasks
are jointly trained with a shared model (Caruana, 1997), in the hope of achieving better performance
with an overall smaller model size than learning each task independently. By discovering shared
structures across tasks and leveraging domain-specific training signals of related tasks, MTL can
achieve efficiency and effectiveness. Indeed, MTL has been successfully applied in many domains
including natural language processing (Hashimoto et al., 2017), reinforcement learning (Parisotto
et al., 2016; D’Eramo et al., 2020) and computer vision (Vandenhende et al., 2021).

A major challenge for multi-task learning is negative transfer (Ruder, 2017), which refers to the
performance drop on a task caused by the learning of other tasks, resulting in worse overall perfor-
mance than learning them separately. This is caused by task conflicts, i.e., tasks compete with each
other and unrelated information of individual tasks may impede the learning of common structures.
From the optimization point of view, a cause of negative transfer is conflicting gradients (Yu et al.,
2020), which refers to two task gradients pointing away from each other and the update of one task
will have a negative effect on the other. Conflicting gradients make it difficult to optimize the multi-
task objective, since task gradients with larger magnitude may dominate the update vector, making
the optimizer prioritize some tasks over others and struggle to converge to a desirable solution.

Prior works address task/gradient conflicts mainly by balancing the tasks via task reweighting or
gradient manipulation. Task reweighting methods adaptively re-weight the loss functions by ho-
moscedastic uncertainty (Kendall et al., 2018), balancing the pace at which tasks are learned Chen
et al. (2018); Liu et al. (2019), or learning a loss weight parameter (Liu et al., 2021b). Gradient
manipulation methods reduce the influence of conflicting gradients by directly altering the gradients
based on different criteria (Sener & Koltun, 2018; Yu et al., 2020; Chen et al., 2020; Liu et al.,
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2021a) or rotating the shared features (Javaloy & Valera, 2022). While these methods have demon-
strated effectiveness in different scenarios, in our empirical study, we find that they cannot reduce
the occurrence of conflicting gradients (see Sec. 3.3 for more discussion).

We propose a different approach to reduce conflicting gradients for MTL. Specifically, we investi-
gate layer-wise conflicting gradients, i.e., the task gradients w.r.t. each shared network layer. We first
train the network with a regular MTL algorithm (e.g., joint-training) for a number of iterations, com-
pute the conflict scores for all shared layers, and select those with highest conflict scores (indicating
severe conflicts). We then set the selected shared layers task-specific and train the modified network
from scratch. As demonstrated by comprehensive experiments and analysis, our simple approach
Recon has the following key advantages: (1) Recon can greatly reduce conflicting gradients with
only a slight increase in model parameters (less than 1% in some cases) and lead to significantly bet-
ter performance. (2) Recon can be easily applied to improve various gradient manipulation methods
and branched architecture search methods. Given a network architecture, it only needs to search for
the conflict layers once, and the network can be modified to be used with different methods and even
on different datasets to gain performance improvement. (3) Recon can achieve better performance
than branched architecture search methods with a much smaller model.

2 RELATED WORKS

In this section, we briefly review related works in multi-task learning in four categories: tasks clus-
tering, architecture design, architecture search, and task balancing. Tasks clustering methods mainly
focus on identifying which tasks should be learned together (Thrun & O’Sullivan, 1996; Zamir et al.,
2018; Standley et al., 2020; Shen et al., 2021; Fifty et al., 2021).

Architecture design methods include hard parameter sharing methods (Kokkinos, 2017; Long et al.,
2017; Bragman et al., 2019), which learn a shared feature extractor and task-specific decoders, and
soft parameters sharing methods (Misra et al., 2016; Ruder et al., 2019; Gao et al., 2019; 2020; Liu
et al., 2019), where some parameters of each task are assigned to do cross-task talk via a sharing
mechanism. Compared with soft parameters sharing methods, our approach Recon has much better
scalability when dealing with a large number of tasks.

Instead of designing a fixed network structure, some methods (Rosenbaum et al., 2018; Meyerson &
Miikkulainen, 2018; Yang et al., 2020) propose to dynamically self-organize the network for differ-
ent tasks. Among them, branched architecture search (Guo et al., 2020; Bruggemann et al., 2020)
methods are more related to our work. They propose an automated architecture search algorithm to
build a tree-structured network by learning where to branch. In contrast, our method Recon decides
which layers to be shared across tasks by considering the severity of layer-wise conflicting gradients,
resulting in a more compact architecture with lower time cost and better performance.

Another line of research is task balancing methods. To address task/gradient conflicts, some meth-
ods attempt to re-weight the multi-task loss function using homoscedastic uncertainty (Kendall et al.,
2018), task prioritization (Guo et al., 2018), or similar learning pace (Liu et al., 2019; 2021b).
GradNorm (Chen et al., 2018) learns task weights by dynamically tuning gradient magnitudes.
MGDA (Sener & Koltun, 2018) find the weights by minimizing the norm of the weighted sum
of task gradients. To reduce the influence of conflicting gradients, PCGrad (Yu et al., 2020) projects
each gradient onto the normal plane of another gradient and uses the average of projected gradi-
ents for update. Graddrop (Chen et al., 2020) randomly drops some elements of gradients based on
element-wise conflict. CAGrad (Liu et al., 2021a) ensures convergence to a minimum of the aver-
age loss across tasks by gradient manipulation. RotoGrad (Javaloy & Valera, 2022) re-weights task
gradients and rotates the shared feature space. Instead of manipulating gradients, our method Recon
leverages gradient information to modify network structure to mitigate task conflicts from the root.

3 PILOT STUDY: TASK CONFLICTS IN MULTI-TASK LEARNING

3.1 MULTI-TASK LEARNING: PROBLEM DEFINITION

Multi-task learning (MTL) aims to learn a set of correlated tasks {Ti}Ti=1 simultaneously. For each
task Ti, the empirical loss function is Li(θsh, θi), where θsh are parameters shared among all tasks
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Figure 1: The distributions of gradient conflicts (in terms of cosϕij) of the joint-training baseline
and state-of-the-art gradient manipulation methods on Multi-Fashion+MNIST benchmark.

and θi are task-specific parameters. The goal is to find optimal parameters θ = {θsh, θ1, θ2, · · · , θT }
to achieve high performance across all tasks. Formally, it aims to minimize a multi-task objective:

θ∗ = argmin
θ

T∑
i

wiLi(θsh, θi), (1)

where wi are pre-defined or dynamically computed weights for different tasks. A popular choice is
to use the average loss (i.e., equal weights). However, optimizing the multi-task objective is difficult,
and a known cause is conflicting gradients.

3.2 CONFLICTING GRADIENTS

Let gi = ∇θshLi(θsh, θi) denote the gradient of task Ti w.r.t. the shared parameters θsh (i.e., a vector
of the partial derivatives of Li w.r.t. θsh) and gtsi = ∇θiLi(θsh, θi) denote the gradient w.r.t. the
task-specific parameters θi. A small change of θsh in the direction of negative gi is θsh ← θsh−αgi,
with a sufficiently small step size α. The effect of this change on the performance of another task Tj
is measured by:

∆Lj = Lj(θsh − αgi, θj)− Lj(θsh, θj) = −αgi · gj + o(α), (2)

where the second equality is obtained by first order Taylor approximation. Likewise, the effect of a
small update of θsh in the direction of the negative gradient of task Tj (i.e.,−gj) on the performance
of task Ti is ∆Li = −αgi · gj + o(α). Notably, the model update for task Ti is considered to have
a negative effect on task Tj when gi · gj < 0, since it increases the loss of task Tj , and vice versa.
A formal definition of conflicting gradients is given as follows (Yu et al., 2020).
Definition 1 (Conflicting Gradients). The gradients gi and gj(i ̸= j) are said to be conflicting with
each other if cosϕij < 0, where ϕij is the angle between gi and gj .

As shown in Yu et al. (2020), conflicts in gradient pose serious challenges for optimizing the multi-
task objective (Eq. 1). Using the average gradient (i.e., 1

T

∑T
i=1 gi) for gradient decent may hurt the

performance of individual tasks, especially when there is a large difference in gradient magnitudes,
which will make the optimizer struggle to converge to a desirable solution.

3.3 GRADIENT SURGERY CANNOT EFFECTIVELY REDUCE CONFLICTING GRADIENTS

To mitigate the influence of conflicting gradients, several methods (Yu et al., 2020; Chen et al.,
2020; Liu et al., 2021a) have been proposed to perform “gradient surgery”. Instead of following
the average gradient direction, they alter conflicting gradients based on some criteria and use the
modified gradients for model update. We conduct a pilot study to investigate whether gradient ma-
nipulation can effectively reduce the occurrence of conflicting gradients. For each training iteration,
we first calculate the task gradients of all tasks w.r.t. the shared parameters (i.e., gi for any task i)
and compute the conflict angle between any two task gradients gi and gj in terms of cosϕij . We
then count and draw the distribution of cosϕij in all training iterations. We provide the statistics of
the joint-training baseline (i.e., training all tasks jointly with equal loss weights and all parameters
shared) and several state-of-the-art gradient manipulation methods including GradDrop (Chen et al.,
2020), PCGrad (Yu et al., 2020), CAGrad (Liu et al., 2021a), and MGDA (Sener & Koltun, 2018)
on Multi-Fashion+MNIST (Lin et al., 2019), CityScapes, NYUv2, and PASCAL-Context datasets.
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Figure 2: Illustration of the differences between joint-training, gradient manipulation, and our ap-
proach. (a) In joint-training, the update vector (in green) is the average gradient 1

2 (gi + gj). Due
to the conflict between gi and gj , the update vector is dominated by gi (in red). (b) PCGrad (Yu
et al., 2020) projects each gradient onto the normal plane of the other one and uses the average of
the projected gradients (indicated by dashed grey arrows) as the update vector (in green). As such,
the update vector is less dominated by gi. (c) Our approach Recon finds the parameters contributing
most (e.g., θ3) to gradient conflicts and turns them into task specific ones. In effect, it performs an
orthographic/coordinate projection of conflicting gradients to the space of the rest parameters (e.g.,
θ1 and θ2) such that the projected gradients gfix

i and gfix
j are better aligned. (d) Illustration of Recon

turning a shared layer with high conflict score to task-specific layers.

The results are provided in Fig. 1, Fig. 5, Fig. 6, Fig. 7, Table 6, and Tables 8-10. It can be seen
that gradient manipulation methods can only slightly reduce the occurrence of conflicting gradients
(compared to joint-training) in some cases, and in some other cases they even increase it.

4 OUR APPROACH: REDUCING CONFLICTING GRADIENTS FROM THE ROOT

Our pilot study shows that adjusting gradients for model update cannot effectively prevent the oc-
currence of conflicting gradients in MTL, which suggests that the root causes of this phenomenon
may be closely related to the nature of different tasks and the way how model parameters are shared
among them. Therefore, to mitigate task conflicts for MTL, in this paper, we take a different ap-
proach to reduce the occurrence of conflicting gradients from the root.

4.1 RECON: REMOVING LAYER-WISE CONFLICTING GRADIENTS

Our approach is extremely simple and intuitive. We first identify the shared network layers where
conflicts occur most frequently and then turn them into task-specific parameters. Suppose the shared
model parameters θsh are composed of n layers, i.e., θsh = {θ(k)sh }nk=1, where θ

(k)
sh is the kth shared

layer. Let g(k)
i denote the gradient of task Ti w.r.t. the kth shared layer θ(k)sh , i.e., g(k)

i is a vector
of the partial derivatives of Li w.r.t. the parameters of θ(k)sh . Let ϕ(k)

ij denote the angle between g
(k)
i

and g
(k)
j . We define layer-wise conflicting gradients and S-conflict score as follows.

Definition 2 (Layer-wise Conflicting Gradients). The gradients g(k)
i and g

(k)
j (i ̸= j) are said to be

conflicting with each other if cosϕ(k)
ij < 0.

Definition 3 (S-Conflict Score). For any −1 < S ≤ 0, the S-conflict score for the kth shared layer
is the number of different pairs (i, j)(i ̸= j) s.t. cosϕ(k)

ij < S, denoted as s(k).

S indicates the severity of conflicts, and setting S smaller means we care about cases of more severe
conflicts. The S-conflict score s(k) indicates the occurrence of conflicting gradients at severity level
S for the kth shared layer. If s(k) =

(
T
2

)
, it means that for any two different tasks, there is a conflict

in their gradients w.r.t. the kth shared layer. By computing S-conflict scores, we can identify the
shared layers where conflicts occur most frequently.

We describe our method Recon in Algorithm 1. First, we train the network for I iterations and
compute S-conflict scores for each shared layer θ(k) in every iteration, denoted by {s(k)i }Ii=1. Then,
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Algorithm 1: Recon: Removing Layer-wise Conflicting Gradients

Input: Model parameters θ, learning rate α, a set of tasks {Ti}Ti=1, number of iterations I for
computing conflict scores, conflict severity level S, number of selected layers K.

// Train the network and compute conflict scores for all layers
for iteration i = 1, 2, . . . , I do

for i = 1 , 2, . . . , T do
Compute the gradients of task Ti w.r.t. all shared layers, i.e., {g(k)

i }nk=1 ;
end
Calculate the S-conflict scores for all shared layers in the current iteration, i.e., {s(k)i }nk=1;
Update θ with joint-training or any gradient manipulation method ;

end
// Set layers with top conflict scores task-specific

For each layer k, calculate the sum of S-conflict scores in all iterations, i.e., s(k) =
∑I

i=1 s
(k)
i ;

Select the top K layers with highest s(k) and set them task-specific;

// Train the modified network from scratch
for iteration i = 1, 2, . . . do

Update θ with joint-training or any gradient manipulation method;
end
Output: Model parameters θ.

we sum up the scores in all iterations, i.e., s(k) =
∑I

i=1 s
(k)
i , and find the layers with highest s(k)

scores. Next, we set these layers to be task-specific and train the modified network from scratch. We
demonstrate the effectiveness of Recon by a theoretical analysis in Sec. 4.2 and comprehensive ex-
periments in Sec. 5. The results show that Recon can effectively reduce the occurrence of conflicting
gradients in the remaining shared layers and lead to substantial improvements over state-of-the-art.

4.2 THEORETICAL ANALYSIS

Here, we provide a theoretical analysis of Recon. Let θsh = {θfixsh , θcfsh}, where θfixsh are the remaining
shared parameters, and θcfsh are those that will be turned to task-specific parameters θcf1 , θcf2 , · · · , θcfT .
Notice that θcf

1 , θ
cf
2 , · · · , θcf

T will all be initialized with θcfsh. Therefore, after applying Recon, the
model parameters are θr = {θfixsh , θcf

1 , . . . , θ
cf
T , θ

ts
1 , . . . , θ

ts
T }. An one-step gradient update of θr is:

θ̂fixsh = θfixsh − α

T∑
i=1

wig
fix
i , θ̂cfi = θcfi − αgcf

i , θ̂tsi = θtsi − αgts
i , i = 1, . . . , T, (3)

where wi are weight parameters, gts
i = ∇θts

i
Li, gcf

i = ∇θcf
sh
Li and gfix

i = ∇θfix
sh
Li. Notice that

different methods such as joint-training, MGDA Sener & Koltun (2018), PCGrad Yu et al. (2020),
and CAGrad Liu et al. (2021a) choose different wi dynamically.

Without applying Recon, the model parameters are θ = {θfixsh , θcfsh, θts1 , . . . , θtsT }. An one-step gradi-
ent update of θ is given by

θ̂fixsh = θfixsh − α

T∑
i=1

wig
fix
i , θ̂cfsh = θcfsh − α

T∑
i=1

wig
cf
i , θ̂tsi = θtsi − αgts

i , i = 1, . . . , T. (4)

After the one-step updates, the loss functions with the updated parameters θ̂r and θ̂ respectively are:

L(θ̂r) =
T∑

i=1

Li

(
θ̂fixsh , θ̂

cf
i , θ̂tsi

)
, and, L(θ̂) =

T∑
i=1

Li

(
θ̂fixsh , θ̂

cf
sh, θ̂

ts
i

)
, (5)

where Li is the loss function of task Ti. Denote the set of indices of the layers turned task-specific
by P, then θcfsh = {θ(k)sh }, k ∈ P. Assume that

∑T
i=1 wi = 1, then we have the following theorem.

5



Published as a conference paper at ICLR 2023

Table 1: Multi-task learning results on Multi-Fashion+MNIST dataset. All experiments are repeated
over 3 random seeds and the mean values are reported. ∆m% denotes the average relative improve-
ment of all tasks. #P denotes model size (MB). The grey cell color indicates that Recon improves
the result of the base model. The best average result is marked in bold.

Method Single-task RotoGrad BMTAS Joint-train w/ Recon MGDA w/ Recon PCGrad w/ Recon GradDrop w/ Recon CAGrad w/ Recon MMoE w/ Recon
T1 Acc↑ 98.37 98.10 98.20 97.42 98.13 95.19 98.33 97.37 98.30 97.38 98.25 97.47 98.28 98.27 98.25
T2 Acc↑ 89.63 88.25 89.71 88.82 89.26 89.46 89.28 88.68 89.77 88.57 89.51 88.85 89.65 89.51 89.67
∆m%↑ - -0.91 -0.04 -0.94 -0.33 -1.71 -0.22 -1.04 0.04 -1.10 -0.13 -0.90 -0.04 -0.12 -0.04

#P. 85.62 42.81 85.61 42.81 43.43 42.81 43.43 42.81 43.43 42.81 43.43 42.81 43.43 85.62 105.70

Table 2: Multi-task learning results on CelebA dataset. All experiments are repeated over 3 random
seeds and the mean values are reported. ∆m% denotes the average relative improvement of all tasks.
#P denotes model size (MB). The grey cell color indicates that Recon improves the result of the base
model. The best average result is marked in bold.

Method Single-task Joint-train w/ Recon CAGrad w/ Recon Graddrop w/ Recon PCGrad w/ Recon
Average Error 8.38 8.33 8.22 8.31 8.23 8.33 8.20 8.64 8.36

∆m% ↑ - 0.55 1.92 0.79 1.74 0.23 2.13 -3.14 0.24
#P. 1706.03 43.26 68.03 43.26 68.03 43.26 68.03 43.26 68.03

Theorem 4.1. Assume that L is differentiable and for any two different tasks Ti and Tj , it satisfies

cosϕ
(k)
ij ∥g

(k)
i ∥ < ∥g

(k)
j ∥, ∀k ∈ P (6)

then for any sufficiently small learning rate α > 0,

L(θ̂r) < L(θ̂). (7)

The theorem indicates that a single gradient update on the model parameters of Recon achieves
lower loss than that on the original model parameters. The proof is provided in Appendix A

5 EXPERIMENTS

In this section, we conduct extensive experiments to evaluate our approach Recon for multi-task
learning and demonstrate its effectiveness, efficiency and generality.

5.1 EXPERIMENTAL SETUP

Datasets. We evaluate Recon on 4 multi-task datasets, namely Multi-Fashion+MNIST (Lin et al.,
2019), CityScapes (Cordts et al., 2016), NYUv2 (Couprie et al., 2013), PASCAL-Context (Mot-
taghi et al., 2014), and CelebA (Liu et al., 2015). The tasks of each dataset are described as follows.
1) Multi-Fashion+MNIST contains two image classification tasks. Each image consists of an item
from FashionMNIST and an item from MNIST. 2) CityScapes contains 2 vision tasks: 7-class se-
mantic segmentation and depth estimation. 3) NYUv2 contains 3 tasks: 13-class semantic segmen-
tation, depth estimation and normal prediction. 4) PASCAL-Context consists of 5 tasks: semantic
segmentation, human parts segmentation and saliency estimation, surface normal estimation, and
edge detection. 5) CelebA contains 40 binary classification tasks.

Baselines. The baselines include 1) single-task learning (single-task): training all tasks indepen-
dently; 2) joint-training (joint-train): training all tasks together with equal loss weights and all
parameters shared; 3) gradient manipulation methods: MGDA (Sener & Koltun, 2018), PCGrad (Yu
et al., 2020), GradDrop (Chen et al., 2020), CAGrad (Liu et al., 2021a), RotoGrad (Javaloy & Valera,
2022); 4) branched architecture search methods: BMTAS (Bruggemann et al., 2020); 5) Architec-
ture design methods: Cross-Stitch (Misra et al., 2016), MMoE (Ma et al., 2018). Following Liu
et al. (2021a), we implement Cross-Stitch based on SegNet (Badrinarayanan et al., 2017). For a fair
comparison, all methods use same configurations and random seeds. We run all experiments 3 times
with different random seeds. More experimental details are provided in Appendix B.

Relative task improvement. Following Maninis et al. (2019), we compute the relative task im-
provement with respect to the single-task baseline for each task. Given a task Tj , the relative task
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Table 3: Multi-task learning results on CityScapes dataset.
All experiments are repeated over 3 random seeds and the
mean values are reported. ∆m% denotes the average rel-
ative improvement of all tasks. #P denotes the model size
(MB). The grey cell color indicates that Recon improves the
result of the base model. The best average result is marked
in bold.

Segmentation Depth

(Higher Better) (Lower Better)Method
mIoU Pix Acc Abs Err Rel Err

∆m% ↑ #P.

Single-task 74.36 93.22 0.0128 29.98 190.59
Cross-Stitch 74.05 93.17 0.0162 116.66 -79.04 190.59
RotoGrad 73.38 92.97 0.0147 82.31 -47.81 103.43

Joint-train 74.13 93.13 0.0166 116.00 -79.32 95.43
w/ Recon 74.17 93.21 0.0136 43.18 -12.63 108.44

MGDA 70.74 92.19 0.0130 47.09 -16.22 95.43
w/ Recon 71.01 92.17 0.0129 33.41 -4.46 108.44

Graddrop 74.08 93.08 0.0173 115.79 -80.48 95.43
w/ Recon 74.17 93.11 0.0134 41.37 -10.69 108.44

PCGrad 73.98 93.08 0.02 114.50 -78.39 95.43
w/ Recon 74.18 93.14 0.0136 46.02 -14.92 108.44

CAGrad 73.81 93.02 0.0153 88.29 -53.81 95.43
w/ Recon 74.22 93.10 0.0130 38.27 -7.38 108.44
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Figure 3: The performance of
CAGrad combined with Recon on
the Multi-Fashion+MNIST bench-
mark with (a) different number of se-
lected layers K (b) different severity
value S for computing conflict scores.

improvement is ∆mTj
= 1

K

∑K
i=1(−1)li(Mi−Si)/Si, where Mi, Si refer to metrics for the ith cri-

terion obtained by objective model and single-task model respectively, li = 1 if a lower value for the
criterion is better and 0 otherwise. The average relative task improvement is ∆m = 1

T

∑T
j=1 ∆mTj .

5.2 COMPARISON WITH THE STATE-OF-THE-ART

Recon improves the performance of all base models. The main results on Multi-Fashion+MNIST,
and CelebA, CityScapes, PASCAL-Context, and NYUv2, are presented in Table 1, Table 2, Table 3,
Table 4, and Table 5 respectively. (1) Compared to gradient manipulation methods, Recon consis-
tently improves their performance in most evaluation metrics, and achieve comparable performance
on the rest of evaluation metrics. (2) Compared with branched architecture search methods and
architecture design methods, Recon can further improve the performance of BMTAS and MMoE.
Besides, Recon combined with other gradient manipulation methods with small model size can
achieve better results than branched architecture search methods with much bigger models.

Small increases in model parameters can lead to good performance gains. Note that Recon
only changes a small portion of shared parameters to task-specific. As shown in Table 1-5, Re-
con increases the model size by 0.52% to 57.25%. Recon turns 1.42%, 1.46%, 12.77%, 0.26%,
9.80% shared parameters to task-specific on Multi-Fashion+MNIST, CelebA, CityScapes, NYUv2
and PASCAL-Context respectively. The results suggest that the gradient conflicts in a small portion
(less than 13%) of shared parameters impede the training of the model for multi-task learning.

Recon is compatible with various neural network architectures. We use ResNet18 on Multi-
Fashion+MNIST, SegNet (Badrinarayanan et al., 2017) on CityScapes, MTAN (Liu et al., 2019) on
NYUv2, and MobileNetV2 (Sandler et al., 2018) on PASCAL-Context. Recon improves the per-
formance of baselines with different neural network architectures, including the architecture search
method BMTAS (Bruggemann et al., 2020) which finds a tree-like structure for multi-task learning.

Only one search of conflict layers is needed for the same network architecture. An interesting
observation from our experiments is that network architecture seems to be the deciding factor for
the conflict layers found by Recon. With the same network architecture (e.g., ResNet18), the found
conflict layers are quite consistent w.r.t. (1) different training stages (e.g., the first 25% iterations,
or the middle or last ones) (see Table 12 and Table 13 and discussion in Appendix C), (2) different
MTL methods (e.g., joint-training or gradient manipulation methods) (see Table 14 and discussion
in Appendix C), and (3) different datasets (see Table 15 and Table 16 and discussion in Appendix C).
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Table 4: Multi-task learning results on PASCAL-Context dataset with 4-task setting. All exper-
iments are repeated over 3 random seeds and the mean values are reported. ∆m% denotes the
average relative improvement of all tasks. #P denotes the model size (MB). The grey cell color
indicates Recon improves the result of the base model. The best average result is marked in bold.

SemSeg PartSeg saliency Surface Normal

(Higher Better) (Lower Better) (Higher Better) Angle Distance
(Lower Better)

Within t◦

(Higher Better)Method
mIoU Pix Acc mIoU Pix Acc mIoU Mean Median 11.25 22.5

∆m% ↑ #P.

Single-task 65.00 90.53 59.59 92.61 65.61 14.55 12.36 46.51 81.29 30.09
Joint-train 64.06 90.45 57.91 92.17 62.71 16.40 14.23 39.38 75.93 -4.82 8.04
w/ Recon 64.73 90.50 59.00 92.44 66.17 14.99 12.68 44.82 80.11 -0.66 10.20
MGDA 46.05 86.62 54.82 91.39 64.76 15.77 13.54 41.98 77.82 -7.67 8.04
w/ Recon 55.82 87.73 56.31 91.67 64.91 15.12 12.88 44.36 79.81 -4.14 10.20
PCGrad 63.91 90.45 58.01 92.19 63.09 16.34 14.19 39.62 76.06 -4.59 8.04
w/ Recon 65.02 90.45 59.22 92.46 66.14 14.95 12.73 44.96 80.22 -0.55 10.20
Graddrop 64.14 90.34 57.62 92.12 62.64 16.46 14.28 39.29 75.71 -5.00 8.04
w/ Recon 64.48 90.45 59.08 92.46 66.23 14.94 12.72 45.03 80.25 -0.63 10.20
CAGrad 63.37 90.17 57.49 92.07 64.16 16.30 14.12 39.80 76.23 -4.37 8.04
w/ Recon 64.60 90.40 59.27 92.47 65.67 14.92 12.71 45.10 80.33 -0.76 10.20
BMTAS 64.89 90.44 58.87 92.36 63.42 15.66 13.44 42.29 78.14 -2.89 15.18
w/ Recon 64.78 90.46 59.96 92.58 65.96 14.74 12.57 45.62 80.84 -0.19 16.83

Table 5: Multi-task learning results on NYUv2 dataset with MTAN as backbone. All experiments
are repeated over 3 random seeds and the mean values are reported. ∆m% denotes the average
relative improvement of all tasks. #P denotes the model size (MB). The grey cell color indicates that
Recon improves the result of the base model. The best average result is marked in bold.

Segmentation Depth Surface Normal

(Higher Better) (Lower Better) Angle Distance
(Lower Better)

Within t◦

(Higher Better)Method
mIoU Pix Acc Abs Err Rel Err Mean Median 11.25 22.5 30

∆m% ↑ #P.

Single-task 38.67 64.27 0.6881 0.2788 24.87 18.99 30.43 57.81 69.70 285.88
Cross-Stitch 40.45 66.15 0.5051 0.2134 27.58 23.00 24.69 49.47 62.36 4.16 285.88
Joint-train 39.48 65.23 0.5491 0.2235 27.87 23.76 22.68 47.91 61.58 0.75 168.72
w/ Recon 39.54 65.20 0.5312 0.2234 26.55 21.40 26.53 52.60 65.31 4.14 169.59
MGDA 29.28 60.30 0.6027 0.2515 24.89 19.32 29.85 57.18 69.38 -2.26 168.72
w/ Recon 32.82 61.26 0.5884 0.2295 25.17 19.72 28.18 56.49 68.96 0.53 169.59
Graddrop 38.70 64.97 0.5565 0.2333 27.41 23.00 23.79 49.45 62.87 0.49 168.72
w/ Recon 40.14 66.08 0.5265 0.2241 26.51 21.45 26.51 52.48 65.26 4.67 169.59
PCGrad 38.55 65.07 0.54 0.23 26.90 22.05 24.98 51.36 64.41 2.02 168.72
w/ Recon 38.61 65.48 0.5350 0.2271 26.31 21.11 26.90 53.21 65.95 3.87 169.59
CAGrad 39.89 66.47 0.5496 0.2281 26.36 21.47 25.50 52.68 65.90 3.74 168.72
w/ Recon 39.92 66.07 0.5320 0.2200 25.80 20.59 27.60 54.31 67.05 5.80 169.59

Hence, in our experiments, we only search for the conflict layers once with the joint-training baseline
in the first 25% training iterations and modify the network to improve various methods on the same
dataset. We also find that the conflict layers found on one dataset can be used to modify the network
to be directly applied on another dataset to gain performance improvement.

5.3 ABLATION STUDY AND ANALYSIS

Recon greatly reduces the occurrence of conflicting gradients. In Fig. 4 and Table 6, we compare
the distribution of cosϕij before and after applying Recon on Multi-Fashion+MNIST (the results on
other datasets are provided in Appendix C). It can be seen that Recon greatly reduces the numbers
of gradient pairs with severe conflicts (cosϕij ∈ (−0.01,−1]) by at least 67% and up to 79%
when compared with joint-training, while gradient manipulation methods only slightly reduce the
percentage and some even increases it. Similar observations can be made from Tables 8-10.

Randomly selecting conflict layers does not work. To show that the performance gain of Re-
con comes from selecting the layers with most severe conflicts instead of merely increasing model
parameters, we further compare Recon with the following two baselines. RSL: randomly selecting
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Figure 4: The distribution of gradient conflicts (in terms of cosϕij) of baselines and baselines with
Recon on Multi-Fashion+MNIST dataset.

Table 6: The distribution of gradient conflicts (in terms of cosϕij) w.r.t. the shared parameters on
Multi-Fashion+MNIST dataset. “Reduction” means the percentage of conflicting gradients in the
interval of (−0.01,−1.0] reduced by the model compared with joint-training. The grey cell color
indicates Recon greatly reduces the conflicting gradients (more than 50%). In contrast, gradient
manipulation methods only slightly decrease their occurrence, and some method even increases it.

cosϕij Joint-train w/ RSL w/ RSP w/ Recon MGDA w/ Recon Graddrop w/ Recon PCGrad w/ Recon CAGrad w/ Recon

[1.0, 0) 56.56 53.44 58.15 58.53 56.06 56.50 57.26 57.61 56.72 57.75 56.18 59.06
(0, -0.01] 31.25 27.35 34.33 37.67 32.36 40.93 31.06 38.28 31.19 38.76 31.25 37.84

(-0.01, -0.02] 9.26 13.45 6.38 3.04 8.87 2.12 8.93 3.32 9.09 2.87 9.37 2.44
(-0.02, -0.03] 2.05 4.18 0.8 0.5 1.71 0.26 1.72 0.54 1.90 0.42 2.00 0.41
(-0.03, -1.0] 1.25 1.58 0.34 0.25 1.0 0.18 1.03 0.26 1.10 0.2 1.20 0.25

Reduction (%) - -52.94 40.13 69.82 7.80 79.62 7.01 67.20 3.74 72.21 -0.08 75.32

Table 7: Comparison of Recon with RSL and RSP. PD: performance drop compared to Recon.

Seed w/ RSL w/ RSP w/ Recon
CAGrad PCGrad

Task 1 Task2 #P. Task 1 Task2 #P.
Acc↑ PD Acc↑ PD Acc↑ PD Acc↑ PD

0 ✓ 97.60 0.68 64.39 25.26 73.02 97.43 0.87 65.57 24.21 73.02
1 ✓ 97.11 1.18 87.61 2.04 83.63 94.92 3.39 87.31 2.46 83.63
2 ✓ 94.62 3.66 87.68 1.96 76.33 92.90 5.40 87.41 2.36 76.33
0 ✓ 97.11 1.18 85.57 4.07 52.25 96.93 1.38 88.16 1.62 52.25
1 ✓ 97.81 0.47 88.28 1.36 51.96 97.63 0.68 88.55 1.22 51.96
2 ✓ 81.18 17.10 76.56 13.09 47.50 88.71 9.59 84.51 5.27 47.50
- - - ✓ 98.28 0 89.65 0 43.42 98.30 0 89.77 0 43.42

same number of layers as Recon and set them task-specific. RSP: randomly selecting similar amount
of parameters as Recon and set them task-specific. The results in Table 7 show that both RSL and
RSP lead to significant performance drops, which verifies the effectiveness of the selection strategy
of Recon. We compare Recon with the baselines that selects the first or last K layers in Appendix C.

Ablation study on hyperparameters. We study the influence of the conflict severity S and the
number of selected layers K on the performance of CAGrad w/ Recon on Multi-Fashion+MNIST.
As shown in Fig. 3, a small K leads to a significant performance drop, which indicates that there are
still some shared network layers suffering from severe gradient conflicts, while a large K will not
lead to further performance improvement since severe conflicts have been resolved. For the conflict
severity S, we find that a high value of S (e.g., 0.0) leads to performance drops since it includes
too many gradient pairs with small conflicts, while some of them are helpful for learning common
structures and should not be removed. In the meantime, a too small S (e.g., −0.15) also leads to
performance degradation because it ignores too many gradient pairs with large conflicts, which may
be detrimental to learning. While K and S are sensitive, we may only need to tune them once for a
given network architecture, as discussed in Sec. 5.2.

6 CONCLUSION

We have proposed a very simple yet effective approach, namely Recon, to reduce the occurrence of
conflicting gradients for multi-task learning. By considering layer-wise gradient conflicts and iden-
tifying the shared layers with severe conflicts and setting them task-specific, Recon can significantly
reduce the occurrence of severe conflicting gradients and boost the performance of existing meth-
ods with only a reasonable increase in model parameters. We have demonstrated the effectiveness,
efficiency, and generality of Recon via extensive experiments and analysis.
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A PROOF OF THEOREM A.1

Theorem A.1. Assume that L is differentiable and for any two different tasks Ti and Tj , it satisfies

cosϕ
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then for any sufficiently small learning rate α > 0,
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Proof. We consider the first order Taylor approximation of Li. For normal update, we have
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Hence, the above difference is negative, if α is sufficiently small. As such, the difference between
the multi-task loss functions is also negative, if α is sufficiently small.
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B EXPERIMENTAL SETUP

B.1 MULTI-FASHION+MNIST

Model. We adopt ResNet18 (He et al., 2016) without pre-training as the backbone and modify the
dimension of the output features to 100 for the last linear layer. For the task-specific heads, we
define two linear layers followed by a ReLU function.
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Tasks, losses, and metrics. Each task is a classification problem with 10 classes and we use the
cross-entropy loss as the classification loss. For evaluation, we use the classification accuracy as the
metric for each task.

Model hyperparameters. We train the model for 120 epochs with the batch size of 256. We adopt
SGD with an initial learning rate of 0.1 and decay the learning rate by 0.1 at the 60th and 90th epoch.

Baseline hyperparameters. For CAGrad, we set α = 0.2. For BMTAS, we set the resource loss
weight to 1.0, and we search the architecture for 100 epochs. For RotoGrad, we set Rk = 100
which is equal to the dimension of shared features and set the learning rate of rotation parameters
as learning rate of the neural networks. For MMoE, the initial learning rate of expert networks and
gates are 0.1 and 1e− 3 respectively.

Recon hyperparameters. We use CAGrad to train the model for 30 epochs and compute the conflict
score of each shared layer. We set S = −0.1 for computing the scores. We select 25 layers with the
highest conflict scores and turn them into task-specific layers.

B.2 CITYSCAPES

Model. We adopt SegNet (Badrinarayanan et al., 2017) as the backbone where the decoder is split
into two convolutional heads.

Model hyperparameters. We train the model for 200 epochs with the batch size of 8. We adopt
Adam with an initial learning rate of 5e− 5 and decay the learning rate by 0.5 at the 100th epoch.

Baselines hyperparameters. For CAGrad, we set α = 0.2. For RotoGrad, we set Rk = 1024
and set the learning rate of rotation parameters as 10 times less than the learning rate of the neural
networks.

Recon hyperparameters. We use joint-train to train the model for 40 epochs and compute the
conflict score of each shared layer. We set S = 0.0 for computing the scores. We select 39 layers
with the highest conflict scores and turn them into task-specific layers.

B.3 NYUV2

Model. We adopt MTAN (Liu et al., 2019) – the SegNet combined with task-specific attention
modules on the encoder.

Model hyperparameters. We train the model for 200 epochs with the batch size of 2. We adopt
Adam with an initial learning rate of 1e− 4 and decay the learning rate by 0.5 at the 100th epoch.

Baseline hyperparameters. For CAGrad, we set α = 0.4 similar with Liu et al. (2021a).

Recon hyperparameters. We use joint-train to train the model for 40 epochs and compute the
conflict score of each shared layer. We set S = −0.02 for computing the scores. We select 22 layers
with the highest conflict scores and turn them into task-specific layers.

B.4 PASCAL-CONTEXT

Model. Following Bruggemann et al. (2020), we employ MobileNetv2 Sandler et al. (2018) as the
backbone with a reduced design of the ASPP module (R-ASPP) (Sandler et al., 2018). We pre-train
the model on ImageNet (Deng et al., 2009).

Model hyperparameters. We train the model for 130 epochs with the batch size of 6. We adopt
Adam with an initial learning rate of 1e− 4 and decay the learning rate by 0.1 at the 70th and 100th

epoch.

Baselines hyperparameters. For CAGrad, we set α = 0.1. For BMTAS, we set the resoure loss
weight to 0.1, and we search the architecture for 130 epochs.

Recon hyperparameters. We use joint-train to train the model for 40 epochs and compute the
conflict score of each shared layer. We set S = −0.02 for computing the scores. We select 85 layers
with the highest conflict scores and turn them into task-specific layers.
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B.5 CELEBA

Model. Following Sener & Koltun (2018), we use ResNet18 (He et al., 2016) as the backbone
network. We pre-train the model on ImageNet (Deng et al., 2009).

Model hyperparameters. We train the model for 5 epochs. We adopt Adam with an initial learning
rate of 5e− 5 and decay the learning rate by 0.5 at the 3th epoch.

Baselines hyperparameters. For CAGrad, we set α = 0.1.

Recon hyperparameters. We use joint-train to train the model for 2 epochs and compute the
conflict score of each shared layer. We set S = −0.05. We select 25 layers with the highest conflict
scores and turn them into task-specific layers.

C ADDITIONAL ABLATION STUDY

The distribution of gradient conflicts. In addition to the statistics on Multi-Fashion+MNIST, we
further show the distributions of gradient conflicts of various baselines on CityScapes, NYUv2, and
PASCAL-Context in Fig 5, Fig 6, and Fig 7 respectively. We compare the distributions with those
of baselines w/ Recon on the three datasets in Fig. 8, Fig. 9, and Fig. 10 respectively. The detailed
statistics are provided in Tables 8-10.

[1.00,0.08] (0.08,0.06] (0.06,0.04] (0.04,0.02] (0.02,0.00] (0.00, -0.02] (-0.02, -0.04] (-0.04, -0.06] (-0.06, -0.08] (-0.08, -1.00]
cos ij

0.00

0.05

0.10

0.15

0.20

Pr
ob

ab
ilit

y

Joint-train Graddrop PCGrad CAGrad MGDA

Figure 5: The distributions of gradient conflicts (in terms of cosϕij) of the joint-training baseline
and state-of-the-art gradient manipulation methods on CityScapes dataset.
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Figure 6: The distributions of gradient conflicts (in terms of cosϕij) of the joint-training baseline
and state-of-the-art gradient manipulation methods on NYUv2 dataset.
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Figure 7: The distributions of gradient conflicts (in terms of cosϕij) of the joint-training baseline
and state-of-the-art gradient manipulation methods on PASCAL-Context dataset.
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Figure 8: The distribution of gradient conflicts (in terms of cosϕij) w.r.t. the shared parameters on
CityScapes. RSL: randomly selecting same number of layers as Recon and set them task-specific.
RSP: randomly selecting similar amount of parameters as Recon and set them task-specific.
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Figure 9: The distribution of gradient conflicts (in terms of cosϕij) of baselines and baselines with
Recon on NYUv2. RSL: randomly selecting same number of layers as Recon and set them task-
specific. RSP: randomly selecting similar amount of parameters as Recon and set them task-specific.
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Figure 10: The distribution of gradient conflicts (in terms of cosϕij) of baselines and baselines
with Recon on PASCAL-Context. RSL: randomly selecting same number of layers as Recon and set
them task-specific. RSP: randomly selecting similar amount of parameters as Recon and set them
task-specific.

Table 8: The distribution of gradient conflicts (in terms of cosϕij) w.r.t. the shared parameters on
CityScapes dataset. “Reduction” means the percentage of conflicting gradients in the interval of
(−0.02,−1.0] reduced by the model compared with joint-training. The grey cell color indicates
Recon greatly reduces the conflicting gradients (more than 50%). In contrast, gradient manipulation
methods only moderately decrease their occurrence (MGDA deceases it by 22%), and some methods
even increase it.

cosϕij Joint-train w/ RSL w/ RSP w/ Recon MGDA w/ Recon Graddrop w/ Recon PCGrad w/ Recon CAGrad w/ Recon

[1.0, 0) 59.55 53.16 58.29 73.62 63.9 78.27 59.56 73.82 59.85 74.52 60.79 74.54
(0, -0.02] 10.14 9.01 10.77 20.13 12.51 12.54 9.61 19.75 9.58 19.43 11.13 19.77

(-0.02, -0.04] 8.52 7.34 8.72 5.13 8.59 5.54 8.19 5.17 7.94 4.89 8.83 4.62
(-0.04, -0.06] 6.45 5.69 6.48 0.94 5.39 2.23 6.49 1.05 6.24 0.96 6.05 0.89
(-0.06, -0.08] 4.79 4.53 4.61 0.14 3.29 0.85 4.76 0.16 4.41 0.15 4.06 0.13
(-0.08, -1.0] 10.54 20.26 11.13 0.03 6.33 0.56 11.38 0.05 11.98 0.06 9.13 0.04

Reduction (%) - -24.82 -2.11 79.41 22.11 69.70 -1.72 78.78 -0.89 80.03 7.36 81.22
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Table 9: The distribution of gradient conflicts (in terms of cosϕij) w.r.t. the shared parameters
on NYUv2 dataset. “Reduction” means the percentage of conflicting gradients in the interval of
(−0.04,−1.0] reduced by the model compared with joint-training. The grey cell color indicates
Recon greatly reduces the conflicting gradients (more than 50%). In contrast, gradient manipulation
methods only slightly decrease their occurrence, and some methods even increase it.

cosϕij Joint-train w/ RSL w/ RSP w/ Recon MGDA w/ Recon Graddrop w/ Recon PCGrad w/ Recon CAGrad w/ Recon

[1.0, 0) 61.96 52.61 59.70 73.99 61.28 74.08 62.93 75.35 63.25 75.54 61.95 74.49
(0, -0.02] 3.85 3.75 3.47 14.17 2.97 13.38 3.83 13.50 3.61 12.66 3.53 14.20

(-0.02, -0.04] 3.63 3.60 3.41 7.07 2.77 7.21 3.70 6.71 3.62 6.66 3.39 6.96
(-0.04, -0.06] 3.39 3.43 3.11 2.89 2.81 3.19 3.45 2.71 3.26 2.98 3.21 2.71
(-0.06, -0.08] 3.11 3.30 2.94 1.13 2.64 1.28 3.16 1.03 3.06 1.25 3.05 1.01
(-0.08, -1.0] 24.05 33.31 27.37 0.76 27.53 0.87 22.92 0.70 23.20 0.90 24.88 0.63

Reduction (%) - -31.06 -9.39 84.35 -7.95 82.52 3.34 85.47 3.37 83.21 -1.93 85.76

Table 10: The distribution of gradient conflicts (in terms of cosϕij) w.r.t. the shared parameters
on PASCAL-Context dataset. “Reduction” means the percentage of conflicting gradients in the
interval of (−0.02,−1.0] reduced by the model compared with joint-training. The grey cell color
indicates Recon greatly reduces the conflicting gradients (more than 50%). In contrast, gradient
manipulation methods only slightly decrease their occurrence, and some methods even increase it.

cosϕij Joint-train w/ RSL w/ RSP w/ Recon MGDA w/ Recon Graddrop w/ Recon PCGrad w/ Recon CAGrad w/ Recon

[1.0, 0) 61.26 59.20 60.47 63.99 60.40 63.61 61.18 63.76 61.35 63.83 60.99 63.78
(0, -0.02] 9.66 21.01 18.25 23.57 8.51 33.53 9.66 23.41 9.83 23.61 9.95 24.04

(-0.02, -0.04] 7.90 9.91 9.10 7.65 7.27 2.04 7.89 7.83 7.90 7.65 8.03 7.53
(-0.04, -0.06] 5.85 3.05 3.88 2.59 5.68 0.45 5.80 2.71 5.82 2.66 5.91 2.51
(-0.06, -0.08] 4.16 1.32 1.79 1.07 4.35 0.17 4.21 1.12 4.13 1.10 4.23 1.04
(-0.08, -1.0] 11.16 1.30 2.29 1.13 13.80 0.20 11.24 1.16 10.97 1.16 10.88 1.08

Reduction (%) - 46.41 41.31 57.21 -6.98 90.16 -0.24 55.90 0.86 56.76 0.07 58.20

Table 11: Multi-task learning results on Multi-Fashion+MNIST dataset. LSK refers to turning the
fist K layers into task-specific layers. FSK refers to turning the last K layers into task-specific
layers. PD denotes the performance drop compared with Recon.

LSK FSK w/ Recon
CAGrad PCGrad

Task 1 Task2 #P. Task 1 Task2 #P.
Acc↑ PD Acc↑ PD Acc↑ PD Acc↑ PD

✓ 97.63 0.66 89.14 0.50 84.17 97.63 0.65 88.98 0.66 84.17
✓ 98.21 0.07 89.15 0.50 48.90 98.19 0.09 89.51 0.13 48.90
- ✓ 98.28 0 89.65 0 43.42 98.30 0 89.77 0 43.42

Selecting the first K layers and the last K Layers as conflict layers does not work. To fur-
ther support the conclusion that the selection of parameters with higher probability of conflicting
gradients contributes most to the performance gain rather than the increase in model capacity. We
compare Recon with two baselines: (1) Select the first K neural network layers and turn them into
task-specific layers. (2) Select the last K neural network layers and turn them into task-specific
layers. The multi-task learning results on the Multi-Fashion+MNIST benchmark are presented in
Table 11. The results show that if we directly turn the top or the bottom of the neural network into
task-specific parameters, it still will lead to performance degradation compared to Recon.

Recon finds similar layers in different training stages. Recon ranks the network layers according
to the computed S-conflict scores. The ranking result can be represented as a layer permutation,
denoted as π, and π(l) is the position of layer l. The similarity between two rankings πi and πj can
be measured as:

d(πi, πj) =
1

|L|
∑
l∈L
|πi(l)− πj(l)|, (22)

where L denotes the set of neural network layers. In Table 12, we measure the differences in rankings
obtained in different training stages (e.g., in the first 25% iterations or the second 25% iterations)
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Table 12: The distance between the layer permutations (rankings) obtained in different training
stages on Multi-Fashion+MNIST dataset. “Iter.” denotes iterations.

Training Stage 1st 25% Iter. 2nd 25% Iter. 3rd 25% Iter. 4th 25% Iter. All Iter.
1st 25% Iter. 0 - - - -
2nd 25% Iter. 2.39 0 - - -
3rd 25% Iter. 1.85 2.14 0 - -
4th 25% Iter. 1.95 2.24 0.68 0 -

All Iter. 1.36 1.95 0.82 0.97 0

Table 13: Performance of the networks modified by Recon with conflict layers found in different
training stages of joint-training on CityScapes dataset. ∆m% denotes the average relative improve-
ment of all tasks. #P denotes the model size (MB). The best result is marked in bold.

Model
Segmentation Depth

∆m% #P.(Higher Better) (Lower Better)
mIoU Pix Acc Abs Err Rel Err

Single-task 74.36 93.22 0.0128 29.98 190.59
1st 25% Iterations 74.17 93.21 0.0136 43.18 -12.63 108.439
2nd 25% Iterations 74.20 93.19 0.0135 42.45 -11.83 108.440
3rd 25% Iterations 74.80 93.19 0.0136 41.34 -10.90 109.567
4th 25% Iterations 74.80 93.19 0.0136 41.34 -10.90 109.567

All Iterations 74.80 93.19 0.0136 41.34 -10.90 109.567

on Multi-Fashion+MNIST by Eq. 22. The small distances (less than 2.4) indicate that the layers
found in different training stages are quite similar. In Table 13, we compare the performance of the
networks modified by Recon with conflict layers found in different training stages on CityScapes. It
can be seen that the results of the last three rows are the same, which is because the layers found in
the 3rd 25% iterations, 4th 25% iterations, and all iterations are exactly the same (the rankings may
be slightly different though). The layers found in the later stages lead to slightly better performance
than those found in the early stages (i.e., 1st 25% iterations and 2nd 25% iterations), indicating the
conflict scores in early iterations might be a little noisy. However, since the performance gaps are
acceptably small, to save time, we use the initial 25% training iterations to find conflict layers.

Table 14: The distance between the layer permutations (rankings) obtained by Recon with different
methods on Multi-Fashion+MNIST dataset.

Method Joint-train CAGrad PCGrad Gradrop MGDA
Joint-train 0 - - - -
CAGrad 1.07 0 - - -
PCGrad 0.78 1.17 0 - -
Gradrop 0.59 0.83 0.68 0 -
MGDA 1.71 1.32 1.90 1.56 0

Recon finds similar layers with different MTL methods. In Table 14, we measure the differences
in layer permutations (rankings) obtained by Recon with different methods (e.g., CAGrad and PC-
Grad) on Multi-Fashion+MNIST by Eq. 22. The small distances (less than 1.9) indicate that the
layers found by Recon with different methods are quite similar. Therefore, in our experiments, we
only use joint-training to search for the conflict layers once, and directly apply the modified network
to improve different gradient manipulation methods as shown in Tables 1-5.

The conflict layers found by Recon with the same architecture are transferable between dif-
ferent datasets. We conduct experiments with three different architectures: ResNet18, SegNet, and
MTAN. (1) For Resnet18, we find that the layers found by Recon on CelebA and those found on
Multi-Fashion+MNIST are exactly the same. (2) For SegNet, we find that 95% layers (38 out of 40)
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Table 15: Multi-task learning results on NYUv2 dataset with SegNet as backbone. Recon∗ de-
notes setting the layers found on CityScapes to task-specific. ∆m% denotes the average relative
improvement of all tasks. #P denotes the model size (MB). The grey cell color indicates that Recon
or Recon∗ improves the result of the base model.

Segmentation Depth Surface Normal

(Higher Better) (Lower Better)
Angle Distance
(Lower Better)

Within t◦

(Higher Better)Method
mIoU Pix Acc Abs Err Rel Err Mean Median 11.25 22.5 30

∆m% ↑ #P.

Single-task 38.67 64.27 0.6881 0.2788 24.8683 18.9919 30.43 57.81 69.7 285.88

Joint-train 38.62 65.36 0.5378 0.2273 29.92 25.82 20.79 44.29 57.36 -1.62 95.58
w/ Recon 40.68 66.12 0.5786 0.2558 26.72 21.41 26.58 52.58 65.20 2.15 139.59
w/ Recon∗ 38.81 63.69 0.5637 0.2413 26.75 21.73 26.16 51.80 64.64 1.59 121.59

MGDA 25.71 57.72 0.6033 0.2358 24.53 18.65 31.22 58.46 70.21 -2.15 95.58
w/ Recon 36.64 62.36 0.5613 0.2255 24.66 18.66 31.30 58.47 70.16 5.37 139.59
w/ Recon∗ 36.85 63.51 0.5760 0.2362 24.89 18.96 30.53 57.94 69.82 4.34 121.59

Graddrop 39.01 66.13 0.5462 0.2296 29.72 25.51 19.87 44.68 58.12 -1.52 95.58
w/ Recon 39.78 65.63 0.5460 0.2280 26.42 21.16 26.89 53.16 65.84 4.45 139.59
w/ Recon∗ 39.97 65.71 0.5544 0.2261 26.52 21.37 26.65 52.65 65.46 4.21 121.59

PCGrad 40.01 65.77 0.5349 0.2227 28.53 24.08 22.33 47.42 60.69 1.43 95.58
w/ Recon 40.03 65.92 0.5523 0.2384 26.24 20.89 27.30 53.66 66.25 4.19 139.59
w/ Recon∗ 39.93 65.46 0.5494 0.2315 26.82 21.70 26.34 52.04 64.74 3.53 121.59

CAGrad 38.87 66.54 0.5331 0.2289 25.85 20.60 27.50 54.41 67.10 5.60 95.58
w/ Recon 40.68 66.12 0.5372 0.2266 25.44 19.87 28.96 56.00 68.28 6.99 139.59
w/ Recon∗ 39.97 65.92 0.5298 0.2273 25.56 20.11 28.69 55.37 67.75 6.47 121.59

Table 16: Multi-task learning results on CityScapes dataset with MTAN as backbone. Recon∗ de-
notes setting the layers found on NYUv2 to task-specific. ∆m% denotes the average relative
improvement of all tasks. #P denotes the model size (MB). The grey cell color indicates that Recon
or Recon∗ improves the result of the base model.

Segmentation Depth

(Higher Better) (Lower Better)Method
mIoU Pix Acc Abs Err Rel Err

∆m% ↑ #P.

Single-task 73.74 93.05 0.0129 27.71 190.58

Joint-train 75.35 93.55 0.0169 45.64 -23.26 157.19
w/ Recon 75.72 93.74 0.0130 40.90 -11.36 196.32
w/ Recon∗ 76.32 93.76 0.0132 46.40 -16.44 159.19

MGDA 70.46 91.75 0.0224 34.33 -26.02 157.19
w/ Recon 72.23 92.60 0.0122 26.93 1.37 196.32
w/ Recon∗ 70.83 92.14 0.0125 25.69 1.31 159.19

Graddrop 75.19 93.53 0.0168 46.35 -23.90 157.19
w/ Recon 75.60 93.72 0.0127 38.55 -8.71 196.32
w/ Recon∗ 76.49 93.82 0.0129 47.54 -16.81 159.19

PCGrad 75.64 93.54 0.02 43.53 -23.60 157.19
w/ Recon 75.89 93.71 0.0129 40.05 -10.35 196.32
w/ Recon∗ 76.24 93.69 0.0128 45.24 -14.66 159.19

CAGrad 75.26 93.50 0.0176 44.23 -23.40 157.19
w/ Recon 75.65 93.71 0.0125 36.23 -6.15 196.32
w/ Recon∗ 76.25 93.74 0.0123 40.05 -8.99 159.19
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found on NYUv2 are identical to those found on CityScapes. On NYUv2, we compare the perfor-
mance of using conflict layers found on NYUv2 (baselines w/ Recon) to that of using conflict layers
found on CityScapes (i.e., baselines w/ Recon∗), as shown in Table 15. (3) For MTAN (SegNet
with attention), we find that 68% layers (17 out of 25) found on CityScapes are identical to those
found on NYUv2. On CityScapes, we compare the performance of using conflict layers found on
CityScapes (baselines w/ Recon) to that of using conflict layers found on NYUv2 (i.e., baselines w/
Recon∗), as shown in Table 16. The results show that the conflict layers found on one dataset can
be used to modify the network to be directly used on another dataset to consistently improve the
performance of various baselines, while searching for the conflict layers again on the new dataset
may lead to better performance.
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Figure 11: Comparison of running time (one iteration, excludes data fetching) on CelebA dataset.

Analysis of running time. We evaluate how Recon scales with the number of tasks on CelebA
dataset, by comparing the running time of one iteration used by Recon in computing gradient conflict
scores (the most time-consuming part of Recon) to that of the baselines. The results in Fig. 11 show
that Recon is as fast as other gradient manipulation methods such as CAGrad (Liu et al., 2021a)
and Graddrop (Chen et al., 2020), but much slower than joint-training especially when the number
of tasks is large, which is natural since Recon needs to compute pariwise cosine similarity of task
gradients. However, since Recon only needs to search for the conflict layers once for a given network
architecture, as discussed above, the running time is not a problem.
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