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Abstract

Text-to-image diffusion-based generative mod-
els have the stunning ability to generate photo-
realistic images and achieve state-of-the-art low
FID scores on challenging image generation
benchmarks. However, one of the primary fail-
ure modes of these text-to-image generative
models is in composing attributes, objects, and
their associated relationships accurately into
an image. In our paper, we investigate com-
positional attribute binding failures, where the
model fails to correctly associate descriptive
attributes (such as color, shape, or texture) with
the corresponding objects in the generated im-
ages, and highlight that imperfect text condi-
tioning with CLIP text-encoder is one of the
primary reasons behind the inability of these
models to generate high-fidelity compositional
scenes. In particular, we show that (i) there ex-
ists an optimal text-embedding space that can
generate highly coherent compositional scenes
showing that the output space of the CLIP text-
encoder is sub-optimal, and (ii) the final token
embeddings in CLIP are erroneous as they of-
ten include attention contributions from unre-
lated tokens in compositional prompts. Our
main finding shows that significant composi-
tional improvements can be achieved (without
harming the model’s FID score) by fine-tuning
only a simple and parameter-efficient linear
projection on CLIP’s representation space in
Stable-Diffusion variants using a small set of
compositional image-text pairs.

1 Introduction

Text-to-image diffusion-based generative mod-
els (Rombach et al., 2021; Podell et al., 2023;
Ramesh et al., 2021; Saharia et al., 2022) have
achieved photo-realistic image generation capa-
bilities on user-defined text prompts. However,
recent studies (Huang et al., 2023) reveal that
text-to-image models struggle with maintaining
high fidelity when handling simple compositional

prompts, such as those consisting of attributes, ob-
jects, and their associated relations (e.g., “a red
book and a yellow vase’). This hinders the use of
these generative models in various creative scenar-
ios where the end-user wants to generate scenes
that accurately reflect the composition and relation-
ships specified in the prompt.

Existing approaches (Chefer et al., 2023; Feng
etal.,2023; Agarwal et al., 2023; Wang et al., 2023)
explore various strategies to enhance composition-
ality in text-to-image models. These methods pri-
marily focus on modifying cross-attention maps by
utilizing bounding box annotations and perform-
ing optimizations in the latent space during infer-
ence. Recent advancements, such as fine-tuning the
UNet (Huang et al., 2023), have also demonstrated
improvements in compositionality. However, the
core reasons behind compositionality failures re-
main poorly understood. Gaining insights into
these root causes is crucial for developing more
effective approaches to augment these models with
enhanced compositional capabilities.

In our paper, we investigate the potential causes
of compositional attribute binding failures in text-
to-image generative models, where the model fails
to correctly associate descriptive attributes (such
as color, shape, or texture) with the corresponding
objects in the generated images. We identify two
key sources of error: (i) Erroneous attention con-
tributions in CLIP output token embeddings: We
observe that output token embeddings in CLIP have
significant attention contributions from irrelevant
tokens, thereby introducing errors in generation.
To explore this, we compare the internal attention
contributions in CLIP for compositional prompts
with the T5 text encoder, known for its stronger
compositionality. Quantitative analysis shows that
TS5 exhibits fewer erroneous attention contributions
than CLIP, indicating a potential reason for its supe-
rior compositionality. (i) Sub-optimality of CLIP
output space for compositional prompts: We find
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Figure 1: Overview of our analysis and proposed methods. The figure identifies two sources of errors in Stable
Diffusion’s inability to generate compositional prompts: (i) erroneous attention contribution in CLIP (minor) and
(ii) sub-optimal CLIP text embedding (major). We propose a window-based linear projection (WiCLP), applying
linear projection to a token’s surrounding window to enhance embeddings.

out that there exists an alternative text-embedding
space capable of generating highly coherent images
from compositional prompts. This indicates that
the current CLIP output space is inherently sub-
optimal. Specifically, we observe that optimizing
the text embeddings produced by CLIP, while keep-
ing the Stable Diffusion UNet frozen, converges to
a more effective embedding space, enabling better
compositional image generation. These findings
highlight that refining the output space of the CLIP
text encoder could play a critical role in enhancing
compositionality.

Building on our observations about the deficien-
cies of CLIP and identifying its text-embedding
space as a core issue in compositional attribute
binding, we explore augmenting diffusion mod-
els with a lightweight module to enhance the text-
encoder’s output and improve compositionality.
Remarkably, a simple linear projection achieves
significant improvements, comparable or superior
to full fine-tuning of CLIP or training more com-
plex networks on top of it. We demonstrate that
this linear projection effectively aligns the CLIP
text-encoder’s output with a more optimal embed-
ding space (see Figure 1), leading to significantly
stronger compositional performances.

In particular, we introduce Window-based Com-
positional Linear Projection (WiCLP), a lightweight
fine-tuning method that significantly improves the
model’s performance on compositional prompts
(Figure 2), achieving results that are comparable
to or surpassing existing methods. Additionally,

WiCLP preserves the model’s overall performance,
maintaining high fidelity on clean prompts as ev-
idenced by a low FID score, while offering a so-
lution that is both parameter efficient and speed
efficient. This ensures robust compositional capa-
bilities without compromising the model’s general
effectiveness.
In summary, our contributions are as follows:

* We perform an in-depth analysis of the rea-
sons behind compositionality failures in text-
to-image generative models, with a particular
focus on investigating the attribute binding
aspect of compositionality. We highlight two
key reasons contributing to these failures.

* Building on our observations, we propose
WiCLP as an enhancement for Stable Diffusion
(SD) v-1.4, SD v-2, and SDXL. This method
significantly improves the models’ composi-
tional attribute binding, while preserving their
clean accuracy on standard prompts. We ob-
serve improvements of 16.18%, 15.15%, and
9.51% on SD v1.4, 14.35%, 11.14%, and 6%
on SD v2, and 20.31%, 13.4%, and 5% on
SDXL in VQA scores (Huang et al., 2023)
across color, texture, and shape datasets,
respectively. Our method outperforms or
matches existing baselines in VQA scores,
while achieving a superior FID score on clean
prompts. It requires fewer parameters for opti-
mization and enables faster inference, making
it both efficient and effective.
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Figure 2: Qualitative comparison between the baseline
and our projection methods (CLP and WiCLP). Incor-
porating CLP and WiCLP significantly improves image
alignment with the given prompts.

2 Background

Compositionality in Text-to-Image Generative
Models. Compositionality in text-to-image mod-
els refers to the ability of a model to accurately
capture the correct compositions of objects, their
corresponding attributes, and the relationships be-
tween objects described in a given prompt. Huang
et al. (2023) introduced a benchmark specifically
designed to evaluate compositionality in text-to-
image models, highlighting the limitations of mod-
els when handling compositional prompts. The
benchmark employs disentangled BLIP-Visual
Question Answering (VQA) as a key metric for
assessing image compositional quality. The VQA
score assesses how accurately an image captures
the compositional elements described in the prompt
by utilizing a vision-language model. This met-
rics demonstrates a closer correlation with human
judgment compared to metrics like CLIP-Score
(Hessel et al., 2021). The authors also proposed a
fine-tuning baseline to enhance compositionality
in these models. Alternatively, compositionality
issues can be addressed during inference by modi-
fying cross-attention maps using hand-crafted loss
functions and bounding boxes derived from a lan-
guage model (Chefer et al., 2023; Feng et al., 2023;
Agarwal et al., 2023; Wang et al., 2023; Nie et al.,
2024; Lian et al., 2023; Liu et al., 2022a). How-
ever, Huang et al. (2023) demonstrated that data-
driven fine-tuning approaches are more effective

for improving compositionality in text-to-image
models.

Text-to-image Diffusion Models: Training and
Inference. In diffusion models, noise is added
to the data following a Markov chain across mul-
tiple time-steps ¢ € [0,7]. Starting from an ini-
tial random real image xg along with its caption
¢, (X0,¢) ~ D, the noisy image at time-step ¢ is
defined as x; = \/ayxo++/(1 — o )e. The denois-
ing network denoted by €y (x¢, c, t) is pre-trained
to denoise the noisy image x; to obtain x;_;. For
better training efficiency, the noising along with
the denoising operation occurs in a latent space
defined by z = £(x), where € is an encoder such
as VQ-VAE (van den Oord et al., 2017). Usually,
the conditional input c to the denoising network
€g(.) is a text-embedding of the caption ¢ through a
text-encoder ¢ = v(c). The pre-training objective
for diffusion models can be defined as follows:

£(0) = By opyes [ lle = oz e D3]

where 0 is the set of learnable parameters in the
UNet eg. During inference, given a text-embedding
¢, a random Gaussian noise zg ~ N(0, I) is iter-
atively denoised for a fixed range of time-steps to
produce the final image.

3 Sources of Compositionality Failures

This section conducts an in-depth analysis of
compositional attribute binding failures in text-to-
image models, focusing on the CLIP text-encoder.

3.1 Source (i) : Erroneous Attention
Contributions in CLIP

In this section, we leverage attention contribu-
tions (Elhage et al., 2021; Dar et al., 2023) to
analyze how the final text-embeddings of compo-
sitional prompts are obtained by the CLIP text-
encoder, a widely adopted component in many text-
to-image models. We then compare these atten-
tion contribution patterns with those produced by
the TS5 text-encoder used in DeepFloyd, a model
known for its stronger compositional capabilities.
Many of the compositional prompts from Huang
et al. (2023) have a decomposable template of the
form a; 0 +a; o;, where a;, a; are attributes (e.g.,
“black”, “matted”) and o;, 0, represent objects (e.g.,
“car”, “bag”).

The attention mechanism in layer ¢ of a
transformer consists of four weight matrices
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Figure 3: The heatmap illustrates unintended attention
contributions in CLIP, while highlighting the more accu-

rate performance of T5.
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Figure 4: Quantitatively, we find CLIP to have signifi-
cantly higher erroneous attention contributions averaged
across 780 prompts of color dataset and 582 prompts of
texture dataset.

Wy, Wy, Wi, and W, (Vaswani et al., 2017). Each
of these matrices is divided into H heads, denoted
by W, W, W € R Wl e R%*4, where
h € [H]. Here, dj, denotes the dimensionality of
the internal token embeddings. For simplicity, we

omit ¢, but each layer has its own attention matrices.

These matrices operate on the token embeddings
produced by the previous layer (¢ — 1), denoted as
x; for token j. We further denote the projections
of x; onto the query, key, and value matrices of
the h-th attention head in layer £ as qh kh and V?,
respectively. More precisely,

h h _ . h h _ . ph
q]—x]W ky =x; W', vy =x;W00

The contribution of token j to token ¢ in layer /,
denoted by cont; ;, is computed as follows:

cont; ; = Z:a‘[tn2 5 Vi W:
2

where attn i 18 the attention weight of token 7 to j
in the h-th head of layer ¢. Specifically,

K"
attn” = SOFTMAX ot k)
’ /dh ]:1

Notably, cont; ; is a significant metric that quanti-
fies the contribution of a token j to the norm of a
token ¢ at layer /. We employ this metric to iden-
tify layers in which important tokens highly attend
to unintended tokens, or lowly attend to intended
ones. We refer to Appendix B.1 for more details
on attention contribution.

Key Finding: T5 has less erroneous attention
contributions than CLIP. We refer to Figure 3
that visualizes attention contribution of both T5 and
CLIP text-encoder in the last layer (¢ = 11) for the
prompt “a green bench and a red car". Ideally, the
attention mechanism should guide the token “car”
to focus more on “red” than “green”, but in the last
layer of the CLIP text-encoder, “car” significantly
attends to “green”. In contrast, T5 shows a more
consistent attention pattern, with “red” contributing
more to the token “car” and “green” contributing
more to the token “bench”.

We further conduct a comprehensive analysis fo-
cusing on specific types of compositional prompts
from the T2I-CompBench dataset (Huang et al.,
2023). This includes 780 prompts from the color
category and 582 prompts from the texture category
of this dataset, each following the structured for-
mat: “a; 07 and as 02”. For each prompt, we ob-
tain attention contributions in all layers and count
the number of layers where unintended attention
contributions occur. In the CLIP text-encoder, un-
intended attention occurs when o9 attends more
to aj than as. For T3, it occurs when o9 attends
more to aj than as, or o] attends more to as than
a;. Figure 4 provides a quantitative comparison
of unintended attention across various prompts be-
tween the CLIP text-encoder and TS. The TS5 model
demonstrates superior performance on our metric
compared to the CLIP text-encoder, reinforcing the
hypothesis that erroneous attention mechanisms in
CLIP may contribute to its weaker compositional
performance in text-to-image models. Additional
details can be found in Appendix B.4. Further
experiments with other text-encoders are also re-
ported in Appendix B.3.

To address the attention shortcomings of the
CLIP text-encoder, we explored zero-shot reweight-
ing of attention maps in CLIP to reduce unintended
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Figure 5: Sub-optimality of CLIP Text-Encoder for
Compositional Prompts. Optimizing a learnable vector
to represent an improved text embedding, while keeping
the UNet frozen, enables the generation of more com-
positionally accurate images.

attentions while enhancing meaningful ones. While
this improved baseline performance, it fell short
of our primary method discussed in the following
sections. See Appendix B.2 for more details.

3.2 Source (ii) : Sub-optimality of CLIP
Text-Encoder for Compositional Prompts

In this section, we investigate whether the UNet is
capable of generating better compositional scenes
if provided with alternative (improved) text embed-
dings, rather than relying on the output of the CLIP
text-encoder. For a given input prompt p with a
specific composition (e.g., “a red book and a yel-
low table’), we utilize our dataset (described in
Section 5) to obtain D,, a set of high-quality com-
positional images corresponding to prompt p. Next,
we extract the text embedding c¢ from the CLIP
text-encoder for prompt p. Using this embedding
as the initialization, we create a learnable vector c*
of the same dimensionality. Keeping all other com-
ponents (such as the UNet) frozen, we optimize
this learnable vector as follows:

¢ = argmin Eyyp, e | lle = eolzi, e, t)[3]

We then use the optimized text embedding c* to
generate images with the UNet €. Figure 5 illus-
trates the complete pipeline.

Key Results. Utilizing Stable Diffusion v1.4, we
optimize optimize c* for all compositional prompts
across the color, texture, and shape categories in the
T2I-CompBench dataset. By generating samples

with ¢* and comparing them to those generated us-
ing c (the output of the CLIP text-encoder), we ob-
serve a significant improvement in the VQA scores.
As shown in Figure 5, CLIP text embeddings yield
VQA scores of 0.3615 for color, 0.4306 for texture,
and 0.3619 for shape. On the other hand, the op-
timized embeddings achieve scores of 0.7513 for
color, 0.7254 for texture, and 0.5873 for shape.

These results indicate that CLIP text-encoder
does not output the proper text-embedding suitable
for generating compositional scenes. However, the
existence of an optimized embedding space demon-
strates that the UNet can generate coherent compo-
sitional outputs when provided with appropriately
improved embeddings. This finding motivates the
idea of improving the CLIP output space to miti-
gate compositionality issues in text-to-image diffu-
sion models. For additional configurations, includ-
ing results from optimizing a subset of tokens to
improve compositionality, refer to Appendix A.

4 Projection Layer for Enhancing
Compositionality in the CLIP Text
Embedding Space

Building on our previous findings, we focus on im-
proving the text embedding space utilized in text-to-
image generative models. Specifically, we propose
learning a projection layer over the CLIP output
embedding space to transform its sub-optimal rep-
resentation into an enhanced space better suited
for compositionality. In the following sections,
we introduce two methods, CLP and WiCLP, which
implement linear projections of the CLIP output
embedding space to achieve this enhancement.

4.1 CLP: Token-wise Compositional Linear
Projection

Given the text-embedding ¢ € R™*¢ as the output
of the text-encoder for prompt ¢, i.e., ¢ = v, (c), we
train a linear projection CLPyy;, : R™"*4 — R7X4,
This projection includes a matrix W € R*? and
a bias term b € RY, which are applied token-
wise to the output text-embeddings of the text-
encoder. More formally, for ¢ € R™*? including
text-embeddings of n tokens c1,ca, - , ¢, € R4,
CLPyy5(c) is obtained by stacking projected em-
beddings ¢}, ch, - -+ ,c|, where ¢, = WT¢c; +b.
Finally, we solve the following optimization
problem on a dataset D including image-caption
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Figure 6: Qualitative results showing the impact of
SWITCH-OFF with varying thresholds 7.

pairs of high-quality compositional images:
W*,b* = arg 1‘1/11/1’? E(Io,C)ND,G,t [(I)CLP]

Berp = [l — eo (21, CLPwy (c) , 1)

We then apply CLPyy« ;- on CLIP text-encoder to
obtain improved embeddings.

4.2 WiCLP: Window-based Compositional
Linear Projection

In this section, we propose a more advanced linear
projection scheme where the new embedding of a
token is derived by applying a linear projection on
that token in conjunction with a set of its adjacent
tokens, i.e., tokens within a specified window. This
method not only leverages the benefits of CLP but
also incorporates the contextual information from
neighboring tokens, potentially leading to more
precise text-embeddings.

More formally, we train a mapping WiCLPyy, :
R™*4 — R™*4 including a parameter s (indi-
cating window length), matrix W e R(2st+1)dxd
and a bias term b € R? For text-embeddings
c € R™*? consisting of n token embeddings of
c1,Ca,- -+, ¢, € R we obtain WiCLPyy, by stack-
ing projected embeddings ¢/, c}, - - - , ¢/, where

c; = WT CONCATENATION ((cj);.ij._s> +b
Similarly, we solve the following optimization
problem to train the projection:

Wbt = arg minE g o)p 1 [Puicte]
Dyicip = € — €9 (z¢, WiCLPyp (c) ,)][5

We observe that WiCLP improves over CLP (spe-
cial case of WiCLP with s = 0) by incorporating
adjacent tokens in addition to the actual token.
This approach enhances embeddings by reinforcing
the contributions of relevant adjacent tokens. For
discussion on choosing the window length (s) in
WiCLP, see Appendix C.6.
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Figure 7: Trade-off between VQA and FID scores with
SWITCH-OFF at different thresholds.

4.3 SWITCH-OFF: Trade-off between
Compositionality and Clean Accuracy

Fine-tuning models or adding modules to a base
model often results in a degradation of image qual-
ity and an increase in the Fréchet Inception Dis-
tance (FID) score. To balance the trade-off between
improved compositionality and the quality of gen-
erated images for clean prompts — an important
issue in existing work — inspired by Hertz et al.
(2022), we adopt SWITCH-OFF, where we apply
the linear projection only during the initial steps
of inference. Specifically, given a time-step thresh-
old 7, for t > 7, we use WiCLPyy« 4« (c), while for
t < 7, we use the unchanged embedding c as the
input to the cross-attention layers.

Figure 7 illustrates the trade-off between VQA
score and FID on a randomly sampled subset of
MS-COCO (Lin et al., 2014) for different choices
of 7. As shown, even a large value of 7 suffices for
obtaining high-quality compositional scenes as the
composition of final generated image is primarily
formed at early steps. Thus, choosing a large 7
preserves the model’s improved compositionality
while maintaining its clean accuracy. Setting 7 =
800 offers a competitive VQA score compared to
the model where projection is applied at all time
steps, and achieves a competitive FID similar to
that of the clean model. Figure 6 depicts a few
images generated using different choices of 7. We
refer to Appendix C.5 for more visualizations.

5 Experiments

Existing Baselines. We evaluate the performance
of four methods alongside standard models SD
v1.4,SD v2, and SDXL (Podell et al., 2023). These
include Composable Diffusion (Liu et al., 2022b),
which addresses concept conjunction and nega-
tion in pretrained diffusion models; Structured Dif-
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Figure 8: Applying CLP results in more accurate cross-
attention maps.

fusion (Feng et al., 2022), which focuses on at-
tribute binding; Attn-Exct (Chefer et al., 2023),
which ensures correct attention to all subjects in
the prompt; and GORS (Huang et al., 2023), which
fine-tunes Stable Diffusion v2 using a reward func-
tion. GORS optimizes more parameters but under-
performs slightly compared to our method, while
Attn-Exct requires iterative optimizations during
inference, making it slower than our method, which
adds only a linear projection layer.

Training Setup. All of the models are trained
using the objective function of diffusion models
on color, texture, and shape datasets described in
Section 5. During training, we keep all major com-
ponents frozen, including the U-Net, CLIP text-
encoder, and VAE encoder and decoder, and only
the linear projections are trained. We refer to Ap-
pendix C.1 for details on the training procedure.

Dataset Collection. We utilize the T2I-
CompBench dataset (Huang et al., 2023), focusing
on three key categories: color, texture, and shape,
with a total of 1,000 prompts across both training
and evaluation sets. T2I-CompBench is a well-
established and widely recognized dataset (Esser
et al., 2024). This dataset provides distinct training
and evaluation splits for each category, enabling a
structured approach to assessing performance. To
generate high-quality images, we use three gen-
erative models: SD 1.4 (Rombach et al., 2021),
DeepFloyd, and SynGen (Rassin et al., 2024), cre-
ating 100 samples per prompt with SD 1.4, 60 with
DeepFloyd, and 50 with SynGen. This ensures a
wide variety of generated images, leveraging each
model’s strengths. For each prompt, we combined
all 210 samples from the three models and selected
the top 30 with the highest VQA scores, ensuring
the final dataset consisted of images that most ac-
curately reflected the prompts.

Furthermore, for SDXL, we explored training

Model ‘ Color ‘ Texture | Shape
<+ | Baseline 0.3765 | 0.4156 | 0.3576
Z et | 0.4837 | 0.5312 | 0.4307
“ | WiCLP 0.5383 | 0.5671 | 0.4527
Baseline 0.5065 | 0.4922 | 0.4221
Composable | 0.4063 | 0.3645 | 0.3299
« | Structured 0.4990 | 0.4900 | 0.4218
& | Attn-Exct 0.6400 | 0.5963 | 0.4517
“ | GORS 0.6414 | 0.6025 | 0.4546
ce | 0.6075 | 0.5707 | 0.4567
WiCLP 0.6500 | 0.6036 | 0.4821
| Baseline | 0.5770 | 0.5217 | 04666
A | wicLp 0.6930 | 0.6007 | 0.4758
? | wicLp* 0.7801 | 0.6557 | 0.5166

Table 1: Quantitative comparison with state-of-the-art
and baseline methods across different categories of the
T2I-CompBench dataset

WiCLP (WiCLP* in Table 1) on a higher-quality
dataset generated by more recent text-to-image
models, such as SDXL itself and SD3. Importantly,
leveraging an appropriately curated dataset results
in a substantial improvement in VQA scores, high-
lighting the importance of high-quality training
data for compositional understanding.

5.1 Qualitative and Quantitative Evaluation

Qualitative Evaluation. Figure 2 presents images
generated when applying CLP and WiCLP. When
generating compositional prompts with a baseline
model, objects are often missing or attributes are
incorrectly applied. However, with CLP and WiCLP,
objects and their corresponding attributes are more
accurately generated. We refer to Appendix C.3 for
more visualizations.

Figure 8 illustrates cross-attention maps for a
sample prompt. In the base model, attention maps
are flawed, with some tokens incorrectly attend-
ing to the wrong pixels. However, with both CLP
and WiCLP, objects and attributes more accurately
attend to their respective pixels. For more visual-
izations, see Appendix C.4.

Quantitative Evaluation. Table 1 presents the
VQA scores for our methods, CLP and WiCLP,
alongside the baselines discussed. VQA scores
of our method and other discussed baselines are
provided in Table 1. As shown, both CLP and
WiCLP significantly improve upon the baselines.
Both methods demonstrate substantial improve-



ments over the baselines, with WiCLP achieving
the highest VQA scores among state-of-the-art ap-
proaches that utilize the same baseline model (e.g.,
Stable Diffusion v2), despite its simplicity.

Notably, our methods maintain the model’s gen-
eral utility, introducing only a slight increase in the
FID score; for example, experiments on MS-COCO
prompts show that while our methods slightly in-
crease FID compared to base models, this increase
is smaller than that of other baselines—for instance,
WiCLP achieves an FID score of 27.40, outperform-
ing GORS at 30.54. Additional details on FID
performance can be found in Appendix C.2.

Human Experiments. We conducted a human
evaluation where participants compared images
generated by SD v1.4 and SD v1.4 + WiCLP, select-
ing the image that best matched the given prompt.
The results showed that in 34.625% of cases, eval-
uators chose the base model’s image; in 51.875%,
they preferred the WiCLP images; and in 13.50%,
they rated both equally. Further details can be
found in Appendix C.2.

5.2 Impact of WiCLP on Subsets of Tokens

To better understand the impact of WiCLP on token
embeddings, we conducted experiments applying
the trained WiCLP to specific subsets of tokens from
a sample of sentences in the color category of the
T2I-CompBench dataset. The results, shown in
Fig. 9, compare the following token groups: nouns
only; nouns and adjectives; nouns, adjectives, and
the EOS (End of Sentence token) token; all sen-
tence tokens; and all tokens outputted by CLIP
(sentence tokens plus padding tokens). As can be
seen, applying WiCLP only to a small number of
tokens is sufficient for improving compositional-
ity. Interestingly, applying WiCLP to the group of
nouns, adjectives, and EOS achieves even higher
VQA scores than applying WiCLP to all tokens. De-
spite these findings, we applied WiCLP to all tokens
in our main work, leaving this targeted approach as
an avenue for future research.

5.3 Alternatives to WiCLP

We explored various fine-tuning strategies for im-
proving CLIP, including fine-tuning the entire CLIP,
fine-tuning only the last layers of CLIP combined
with WiCLP, and using WiCLP alone. Our results
show that the original baseline model (SD v1.4)
achieves a VQA score of 0.3765 on the color cat-
egory of the dataset. Fine-tuning the entire CLIP
without WiCLP improves the score to 0.5173, fine-
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Figure 9: Effect of applying WiCLP to specific tokens.
Applying WiCLP to a subset of tokens is sufficient to
enhance compositionality, achieving comparable or su-
perior performance to applying it across all tokens.

tuning the last layers of CLIP combined with WiCLP
achieves 0.5497, and WiCLP alone achieves 0.5383.

These findings highlight the effectiveness of
WiCLP, which outperforms full fine-tuning of CLIP
while being significantly more parameter-efficient.
While fine-tuning the last layers of CLIP combined
with WiCLP achieves slightly better performance
than using WiCLP alone, it requires optimizing a
much larger number of parameters. Given this
trade-off, we prioritize WiCLP alone to minimize
the number of parameters while achieving substan-
tial compositional performance improvements. Ad-
ditionally, keeping the original CLIP unchanged
makes our approach more suitable for SWITCH-
OFF functionality, allowing the module to be easily
enabled or disabled as needed.

6 Conclusion

Our paper examines potential error sources in text-
to-image models for generating images from com-
positional prompts. We identify two error sources:
(i) A minor error source, where the token embed-
dings in the CLIP text-encoder have erroneous at-
tention contributions and (ii) A major error source,
where we find the output space of the CLIP text-
encoder to be sub-optimally aligned to the UNet
for compositional prompts. Leveraging our obser-
vations, we propose a simple and strong baseline
WiCLP which involves fine-tuning a linear projec-
tion on CLIP’s representation space. WiCLP though
inherently simple and parameter efficient, outper-
forms existing methods on compositional image
generation benchmarks and maintains a low FID
score on a broader range of clean prompts.



Limitations

In this paper, we have conducted a comprehen-
sive analysis of one of the primary reasons why
Stable Diffusion struggles with generating compo-
sitional attribute binding prompts and proposed a
lightweight, efficient method to address this chal-
lenge. While our approach demonstrates promising
results, there remains substantial room for improve-
ment in this area. Our method primarily targets the
attribute binding aspect of compositionality, leav-
ing other critical categories, such as spatial relation-
ships (e.g., "a book to the left of a pen"), numeracy
(e.g., "four books"), and others, less explored. In-
vestigating the underlying causes of these issues is
crucial for advancing the field further.

Moreover, the reliance on CLIP—particularly
the CLIP score—as a metric for recognizing and
evaluating compositionality poses its own limita-
tions. CLIP, in its current form, does not perform
optimally for such tasks. A promising direction for
future research would be to first improve CLIP’s
ability to handle compositionality effectively and
then adapt this enhanced version of CLIP for Stable
Diffusion. This could pave the way for more robust
and accurate text-to-image generation models.
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A Optimizing the Text-embeddings of a
Subset of Tokens

Given ¢ € R"*% where n refers to the number of
tokens and d refers to the dimensionality of the text-
embedding, for the second configuration we only
optimize a subset of tokens n’ € n. We refer to this
subset of tokens as ¢’. These tokens correspond to
relevant parts of the prompt which govern compo-
sitionality (e.g., “red book™ and “yellow table” in
“A red book and an yellow table”).

/
(¢

" =argminEc|[e — eo(zs, ¢, 1)|]3,
C
Figure 10 shows the results for the sample
prompt "a red book and a yellow vase". We con-
sidered different subsets of tokens n': adjectives
"red" and "yellow"), nouns ("book" and "vase"),
both nouns and adjectives, and all tokens in the
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Figure 10: Comparison of VQA scores when optimizing
different subsets of tokens for the sample prompt: A
red book and a yellow vase”

sentence. The results indicate that optimizing even
a few tokens significantly improves the VQA score.
However, optimizing all tokens in the sentence
yields the highest score.

B Source (i) : Erroneous Attention
Contributions

B.1 Attention Contribution

In this Section, we provide more details on our anal-
ysis to quantitatively measure tokens’ contribution
to each other in a layer of attention mechanism.
One natural way of doing this analysis is to uti-
lize attention maps attn?’ ; and aggregate them over
heads, however, we observe that this map couldn’t
effectively show the contribution. Attention map
does not consider norm of tokens in the previous
layer, thus, does not provide informative knowl-
edge on how each token is formed in the attention
mechanism. In fact, as seen in Figure 11, we cannot
obtain much information by looking at these maps
while attention contribution clearly shows amount
of norm that comes from each of the attended to-
kens.

B.2 Zero-shot Attention Reweighting

Inspired by attention mechanism shortcomings of
CLIP text-encoder, we aim to improve composition-
ality of CLIP-based diffusion models by zero-shot
reweighting of the attention maps. Specifically,
we apply a hand-crafted zero-shot manipulation of
the attention maps in certain layers of the CLIP
text-encoder to effectively reduce unintended at-
tentions while enhancing meaningful ones. This
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Figure 11: Visualization of attention map and attention contribution for prompt “a green bench and a red car" over
different layers of CLIP. Contribution provides better insight on the attention mechanism.

zero-shot reweighting is applied to the logits before
the SOFTMAX layer in the last three layers of the
text-encoder. More precisely, we compute a matrix
M € R™" and add it to the attention logits. For
each head h, the new attention values are computed
and then propagated through the subsequent layers
of the text encoder:

h 1h n
<qi 7kg> + Mi,j}

Vi i

We set the values in M by considering the ideal
case where no incorrect attentions occur in the
mechanism. For example, for prompt “a green
bench and a red car", we ensure that the token
"car" does not attend to the token "green" by as-
signing a sufficiently large negative value to the
corresponding entry in matrix M.

To fix unintended attentions, we aim to compute
a matrix M to be applied across various heads in
the last few layers of CLIP, reducing the effect
of wrong attention, leading to more accurate text-
embeddings that are capable of generating high-
quality compositional scenes. To avoid unintended
attention for prompts of the form “ajo; + az05",
we add large negative values to entries Mo, a,,
Ma, a,, and some positive value to M, 2, and
Mo, a,, and small negative value to Mo, o,. To
find what values to assign to those entries, we con-
sider a small set of prompts in color dataset (5
prompts in total) and obtain parameters for that
matrix to maximize VQA score. Figure 12 shows
few examples of zero-shot modification.

Applying zero-shot attention reweighting with
matrix M on 780 compositional prompts of the
color category of T2I-CompBench dataset, we
achieved a 2.93% improvement in VQA scores.

attn;” = SOFTMAX {
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LLaMa3 | CLIP

color last layer | 0.015 | 0.657
all layers | 0.081 | 0.187 [t]

texture last layer | 0.033 0.696
all layers | 0.066 | 0.213

Table 2: Unintended attention rate in LLLaMa3 8B vs
CLIP. LLaMa3 shows significant less unintended atten-
tions.

FID Score
SDvl4 24.33
SD v1.4 + WiCLP 25.40
SD v2 23.27
SD v2 + WiCLP 27.40
GORS 30.54

Table 3: Comparison of FID scores between the baseline
models and WiCLP using SWITCH-OFF with 7 = 800,
as well as the GORS approach.

B.3 Experiments with LLaMa3 8B

We explored the analysis of attention contributions
to identify unintended attention in LLaMa3 8B,
which utilizes a more advanced text encoder specif-
ically designed for language modeling and pre-
trained on large-scale text corpora. Table 2 reports
the rate of unintended attention across prompts in
the color and texture datasets. The results demon-
strate that unintended attention occurs less fre-
quently in more advanced text encoders, further
emphasizing the limitations of the CLIP text en-
coder.



B.4 Models with T5 text-encoder

We conducted experiments to measure the VQA
score on the color dataset for models that use T5
as their text encoder. DeepFloyd achieved a score
of 0.604, which is significantly higher than that
of SD-v1.4. Additionally, DeepFloyd-I-M, which
employs a smaller first-stage UNet compared to
DeepFloyd, obtained a score of 0.436, also surpass-
ing the SD-v1.4 score.

C Experiments

C.1 Training setup

In this section, we present the details of the exper-
iments conducted to evaluate our proposed meth-
ods. The training is performed for 25,000 steps
with a batch size of 4. An RTX A5000 GPU is
used for training models based on Stable Diffusion
1.4, while an RTX A6000 GPU is used for mod-
els based on Stable Diffusion 2. We employed the
Adam optimizer with a learning rate of 1 x 107
and utilized a Multi-Step learning rate scheduler
with decays (o = 0.1) at 10,000 and 16,000 steps.
For the WiCLP, a window size of 5 was used. All
network parameters were initialized to zero, lever-
aging the skip connection to ensure that the initial
output matched the CLIP text embeddings. Our
implementation is based on the Diffusers! library,
utilizing their modules, models, and checkpoints
to build and train our models. This comprehen-
sive setup ensured that our method was rigorously
tested under controlled conditions, providing a ro-
bust evaluation of its performance.

C.2 Extended Evaluation

Human Evaluation We conducted a human evalu-
ation in which participants compared images gen-
erated by SD v1.4 and SD v1.4 + WiCLP, selecting
the image that best matched the given prompt (Fig-
ure 19). Five evaluators were presented with 200
randomly selected image pairs, evaluating a total
of 1000 image-caption pairs.

TIFA Metric. To provide a more comprehensive
evaluation, in addition to the disentangled BLIP-
VQA score proposed by

Using TIFA, we observed that SD v1.4 and SD
v2 achieved scores of 0.6598 and 0.7735, respec-
tively. Notably, the scores for WiCLP applied on
top of SD v1.4 and SD v2 improved to 0.7462 and
0.8133, respectively, demonstrating the enhanced
performance of our approach.

"https://github.com/huggingface/diffusers
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Figure 12: Visualization of some images generated
with same set of seeds using original text-embeddings
of prompt “a blue car and a brown cow" and text-
embeddings that are obtained as the result of zero-shot
reweighting of attention matrix.

FID Score Comparison Our method results
in a modest increase in FID score on MS-COCO
prompts compared to the base models, as shown in
Table 3. However, this increase is less pronounced
than in other baselines—for example, SD v2 +
WiCLP scores 27.40, whereas GORS reaches 30.54.

C.3 CLP and WiCLP Visualization

In this section, we provide additional visualizations
comparing CLP, WiCLP, and baseline models in Fig-
ures 15, 16.

C.4 Visualization of Cross-Attentions

In this section, we provide additional cross-
attention map visualizations in Figures 15 and 16.

C.5 Visualization of SWITCH-OFF

In this section, we present more qualitative samples
illustrating the effect of SWITCH-OFF at different
timestep thresholds for various prompts in Figures
17 and 18.

C.6 Choice of Window Length in WiCLP

One might suggest that instead of using token-wise
linear projection (CLP) or a window-based linear
projection with a limited window (WiCLP), employ-
ing a linear projection that considers all tokens
when finding a better embedding for each token
might yield better results. However, our thorough
quantitative study and experiments tested various
window sizes for WiCLP. We found that using a
window size of 5 (s 2) achieves the highest
performance.



WiCLP

A blue bowl and
a red train

A blue bench and
a green bowl

A blue backpack and
a red book

A black and white cat
sitting in a green bowl

A brown boat and
a blue cat

A brown book and
ared sheep

A fluffy towel and
a glass cup

A plastic container and
a fluffy teddy bear

Figure 13: Qualitative comparison between the baseline and our projection methods (CLP and WiCLP).
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SDvl.4 CLP SD v2 WiCLP

A red apple and
a green train

A red chair and
a gold clock

A red pen and
a blue notebook

A round cookie and
a square container

A wooden floor and
a fluffy rug

Wooden pencil and
a glass plate

A green leaf and
a yellow butterfly

Figure 14: Qualitative comparison between the baseline and our projection methods (CLP and WiCLP).
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prompt: ”A red book and a yellow vase”
red book yellow
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prompt: A blue backpack and a red bench”
backpack

Baseline

Linear
Projection

Baseline

Linear
Projection

prompt: ”A brown boat and a blue cat”
brown boat blue

Baseline &

Linear
Projection

Figure 15: Comparison of cross-attention maps of the U-Net with and without the CLP
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prompt: A green blanket and a blue pillow”
image green blanket blue

Linear
Projection

prompt: A black cat sitting in a green bowl”
black cat green bowl

prompt: A bathroom has brown wall and gold counters”
image brown wall gold counters

o . - - . .

Figure 16: Comparison of cross-attention maps of the U-Net with and without the CLP
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Linear
Projection

Linear
Projection
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prompt: A red book and a yellow vase”

prompt: A blue backpack and a red chair”
FBBF——= I 2 R LN LN ERLLIULELLLELL R LIUIDLEL L ILELL

B — ey

prompt: ”A blue bear and a brown boat

T = 1000
(No Guidance)

T =900 T =800 T =600 T =400 T =200

Figure 17: Qualitative results showing the impact of SWITCH-OFF with varying thresholds 7’
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prompt: A metallic watch and a fluffy towel”

prompt: A red bathroom has a white towel on the bar”

)| P

prompt: A red cup and a blue suitcase”

—Ve

T = 1000
(No Guidance)

T =900 T =800 T =600 T =400 T =200

Figure 18: Qualitative results showing the impact of SWITCH-OFF with varying thresholds 7"
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A blue backpack and a red book

| Lo | [

L |
31/200

Figure 19: A sample from the human evaluation study, where participants were presented with a pair of images
and a caption. They were asked to select the image that best represented the caption or choose "both’ if the images
equally captured the caption’s meaning.

19



	Introduction
	Background
	Sources of Compositionality Failures
	Source (i) : Erroneous Attention Contributions in CLIP
	Source (ii) : Sub-optimality of CLIP Text-Encoder for Compositional Prompts

	Projection Layer for Enhancing Compositionality in the CLIP Text Embedding Space
	CLP: Token-wise Compositional Linear Projection
	WiCLP: Window-based Compositional Linear Projection
	Switch-Off: Trade-off between Compositionality and Clean Accuracy

	Experiments
	Qualitative and Quantitative Evaluation
	Impact of WiCLP on Subsets of Tokens
	Alternatives to WiCLP

	Conclusion
	Optimizing the Text-embeddings of a Subset of Tokens
	Source (i) : Erroneous Attention Contributions
	Attention Contribution
	Zero-shot Attention Reweighting
	Experiments with LLaMa3 8B
	Models with T5 text-encoder

	Experiments
	Training setup
	Extended Evaluation
	CLP and WiCLP Visualization
	Visualization of Cross-Attentions
	Visualization of Switch-Off
	Choice of Window Length in WiCLP


