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Abstract

Text-to-image diffusion-based generative mod-001
els have the stunning ability to generate photo-002
realistic images and achieve state-of-the-art low003
FID scores on challenging image generation004
benchmarks. However, one of the primary fail-005
ure modes of these text-to-image generative006
models is in composing attributes, objects, and007
their associated relationships accurately into008
an image. In our paper, we investigate com-009
positional attribute binding failures, where the010
model fails to correctly associate descriptive011
attributes (such as color, shape, or texture) with012
the corresponding objects in the generated im-013
ages, and highlight that imperfect text condi-014
tioning with CLIP text-encoder is one of the015
primary reasons behind the inability of these016
models to generate high-fidelity compositional017
scenes. In particular, we show that (i) there ex-018
ists an optimal text-embedding space that can019
generate highly coherent compositional scenes020
showing that the output space of the CLIP text-021
encoder is sub-optimal, and (ii) the final token022
embeddings in CLIP are erroneous as they of-023
ten include attention contributions from unre-024
lated tokens in compositional prompts. Our025
main finding shows that significant composi-026
tional improvements can be achieved (without027
harming the model’s FID score) by fine-tuning028
only a simple and parameter-efficient linear029
projection on CLIP’s representation space in030
Stable-Diffusion variants using a small set of031
compositional image-text pairs.032

1 Introduction033

Text-to-image diffusion-based generative mod-034

els (Rombach et al., 2021; Podell et al., 2023;035

Ramesh et al., 2021; Saharia et al., 2022) have036

achieved photo-realistic image generation capa-037

bilities on user-defined text prompts. However,038

recent studies (Huang et al., 2023) reveal that039

text-to-image models struggle with maintaining040

high fidelity when handling simple compositional041

prompts, such as those consisting of attributes, ob- 042

jects, and their associated relations (e.g., “a red 043

book and a yellow vase”). This hinders the use of 044

these generative models in various creative scenar- 045

ios where the end-user wants to generate scenes 046

that accurately reflect the composition and relation- 047

ships specified in the prompt. 048

Existing approaches (Chefer et al., 2023; Feng 049

et al., 2023; Agarwal et al., 2023; Wang et al., 2023) 050

explore various strategies to enhance composition- 051

ality in text-to-image models. These methods pri- 052

marily focus on modifying cross-attention maps by 053

utilizing bounding box annotations and perform- 054

ing optimizations in the latent space during infer- 055

ence. Recent advancements, such as fine-tuning the 056

UNet (Huang et al., 2023), have also demonstrated 057

improvements in compositionality. However, the 058

core reasons behind compositionality failures re- 059

main poorly understood. Gaining insights into 060

these root causes is crucial for developing more 061

effective approaches to augment these models with 062

enhanced compositional capabilities. 063

In our paper, we investigate the potential causes 064

of compositional attribute binding failures in text- 065

to-image generative models, where the model fails 066

to correctly associate descriptive attributes (such 067

as color, shape, or texture) with the corresponding 068

objects in the generated images. We identify two 069

key sources of error: (i) Erroneous attention con- 070

tributions in CLIP output token embeddings: We 071

observe that output token embeddings in CLIP have 072

significant attention contributions from irrelevant 073

tokens, thereby introducing errors in generation. 074

To explore this, we compare the internal attention 075

contributions in CLIP for compositional prompts 076

with the T5 text encoder, known for its stronger 077

compositionality. Quantitative analysis shows that 078

T5 exhibits fewer erroneous attention contributions 079

than CLIP, indicating a potential reason for its supe- 080

rior compositionality. (ii) Sub-optimality of CLIP 081

output space for compositional prompts: We find 082
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Figure 1: Overview of our analysis and proposed methods. The figure identifies two sources of errors in Stable
Diffusion’s inability to generate compositional prompts: (i) erroneous attention contribution in CLIP (minor) and
(ii) sub-optimal CLIP text embedding (major). We propose a window-based linear projection (WiCLP), applying
linear projection to a token’s surrounding window to enhance embeddings.

out that there exists an alternative text-embedding083

space capable of generating highly coherent images084

from compositional prompts. This indicates that085

the current CLIP output space is inherently sub-086

optimal. Specifically, we observe that optimizing087

the text embeddings produced by CLIP, while keep-088

ing the Stable Diffusion UNet frozen, converges to089

a more effective embedding space, enabling better090

compositional image generation. These findings091

highlight that refining the output space of the CLIP092

text encoder could play a critical role in enhancing093

compositionality.094

Building on our observations about the deficien-095

cies of CLIP and identifying its text-embedding096

space as a core issue in compositional attribute097

binding, we explore augmenting diffusion mod-098

els with a lightweight module to enhance the text-099

encoder’s output and improve compositionality.100

Remarkably, a simple linear projection achieves101

significant improvements, comparable or superior102

to full fine-tuning of CLIP or training more com-103

plex networks on top of it. We demonstrate that104

this linear projection effectively aligns the CLIP105

text-encoder’s output with a more optimal embed-106

ding space (see Figure 1), leading to significantly107

stronger compositional performances.108

In particular, we introduce Window-based Com-109

positional Linear Projection (WiCLP), a lightweight110

fine-tuning method that significantly improves the111

model’s performance on compositional prompts112

(Figure 2), achieving results that are comparable113

to or surpassing existing methods. Additionally,114

WiCLP preserves the model’s overall performance, 115

maintaining high fidelity on clean prompts as ev- 116

idenced by a low FID score, while offering a so- 117

lution that is both parameter efficient and speed 118

efficient. This ensures robust compositional capa- 119

bilities without compromising the model’s general 120

effectiveness. 121

In summary, our contributions are as follows: 122

• We perform an in-depth analysis of the rea- 123

sons behind compositionality failures in text- 124

to-image generative models, with a particular 125

focus on investigating the attribute binding 126

aspect of compositionality. We highlight two 127

key reasons contributing to these failures. 128

• Building on our observations, we propose 129

WiCLP as an enhancement for Stable Diffusion 130

(SD) v-1.4, SD v-2, and SDXL. This method 131

significantly improves the models’ composi- 132

tional attribute binding, while preserving their 133

clean accuracy on standard prompts. We ob- 134

serve improvements of 16.18%, 15.15%, and 135

9.51% on SD v1.4, 14.35%, 11.14%, and 6% 136

on SD v2, and 20.31%, 13.4%, and 5% on 137

SDXL in VQA scores (Huang et al., 2023) 138

across color, texture, and shape datasets, 139

respectively. Our method outperforms or 140

matches existing baselines in VQA scores, 141

while achieving a superior FID score on clean 142

prompts. It requires fewer parameters for opti- 143

mization and enables faster inference, making 144

it both efficient and effective. 145
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SD v1.4 CLP SD v2 WiCLP

A blue backpack and a red chair

A yellow book and a red vase

Figure 2: Qualitative comparison between the baseline
and our projection methods (CLP and WiCLP). Incor-
porating CLP and WiCLP significantly improves image
alignment with the given prompts.

2 Background146

Compositionality in Text-to-Image Generative147

Models. Compositionality in text-to-image mod-148

els refers to the ability of a model to accurately149

capture the correct compositions of objects, their150

corresponding attributes, and the relationships be-151

tween objects described in a given prompt. Huang152

et al. (2023) introduced a benchmark specifically153

designed to evaluate compositionality in text-to-154

image models, highlighting the limitations of mod-155

els when handling compositional prompts. The156

benchmark employs disentangled BLIP-Visual157

Question Answering (VQA) as a key metric for158

assessing image compositional quality. The VQA159

score assesses how accurately an image captures160

the compositional elements described in the prompt161

by utilizing a vision-language model. This met-162

rics demonstrates a closer correlation with human163

judgment compared to metrics like CLIP-Score164

(Hessel et al., 2021). The authors also proposed a165

fine-tuning baseline to enhance compositionality166

in these models. Alternatively, compositionality167

issues can be addressed during inference by modi-168

fying cross-attention maps using hand-crafted loss169

functions and bounding boxes derived from a lan-170

guage model (Chefer et al., 2023; Feng et al., 2023;171

Agarwal et al., 2023; Wang et al., 2023; Nie et al.,172

2024; Lian et al., 2023; Liu et al., 2022a). How-173

ever, Huang et al. (2023) demonstrated that data-174

driven fine-tuning approaches are more effective175

for improving compositionality in text-to-image 176

models. 177

Text-to-image Diffusion Models: Training and 178

Inference. In diffusion models, noise is added 179

to the data following a Markov chain across mul- 180

tiple time-steps t ∈ [0, T ]. Starting from an ini- 181

tial random real image x0 along with its caption 182

c, (x0, c) ∼ D, the noisy image at time-step t is 183

defined as xt =
√
αtx0+

√
(1− αt)ϵ. The denois- 184

ing network denoted by ϵθ(xt, c, t) is pre-trained 185

to denoise the noisy image xt to obtain xt−1. For 186

better training efficiency, the noising along with 187

the denoising operation occurs in a latent space 188

defined by z = E(x), where E is an encoder such 189

as VQ-VAE (van den Oord et al., 2017). Usually, 190

the conditional input c to the denoising network 191

ϵθ(.) is a text-embedding of the caption c through a 192

text-encoder c = vγ(c). The pre-training objective 193

for diffusion models can be defined as follows: 194

L(θ) = E(x0,c)∼D,ϵ,t

[
∥ϵ− ϵθ(zt, c, t)∥22

]
, 195

where θ is the set of learnable parameters in the 196

UNet ϵθ. During inference, given a text-embedding 197

c, a random Gaussian noise zT ∼ N (0, I) is iter- 198

atively denoised for a fixed range of time-steps to 199

produce the final image. 200

3 Sources of Compositionality Failures 201

This section conducts an in-depth analysis of 202

compositional attribute binding failures in text-to- 203

image models, focusing on the CLIP text-encoder. 204

3.1 Source (i) : Erroneous Attention 205

Contributions in CLIP 206

In this section, we leverage attention contribu- 207

tions (Elhage et al., 2021; Dar et al., 2023) to 208

analyze how the final text-embeddings of compo- 209

sitional prompts are obtained by the CLIP text- 210

encoder, a widely adopted component in many text- 211

to-image models. We then compare these atten- 212

tion contribution patterns with those produced by 213

the T5 text-encoder used in DeepFloyd, a model 214

known for its stronger compositional capabilities. 215

Many of the compositional prompts from Huang 216

et al. (2023) have a decomposable template of the 217

form ai oj+aj oj , where ai,aj are attributes (e.g., 218

“black”, “matted”) and oi,oj represent objects (e.g., 219

“car”, “bag”). 220

The attention mechanism in layer ℓ of a 221

transformer consists of four weight matrices 222
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Figure 3: The heatmap illustrates unintended attention
contributions in CLIP, while highlighting the more accu-
rate performance of T5.

Figure 4: Quantitatively, we find CLIP to have signifi-
cantly higher erroneous attention contributions averaged
across 780 prompts of color dataset and 582 prompts of
texture dataset.

Wq,Wv,Wk, and Wo (Vaswani et al., 2017). Each223

of these matrices is divided into H heads, denoted224

by W h
q ,W

h
v ,W

h
k ∈ Rd×dh ,W h

o ∈ Rdh×d, where225

h ∈ [H]. Here, dh denotes the dimensionality of226

the internal token embeddings. For simplicity, we227

omit ℓ, but each layer has its own attention matrices.228

These matrices operate on the token embeddings229

produced by the previous layer (ℓ− 1), denoted as230

x̄j for token j. We further denote the projections231

of x̄j onto the query, key, and value matrices of232

the h-th attention head in layer ℓ as qhj , khj , and vhj ,233

respectively. More precisely,234

qhj = x̄jW
h
q , khj = x̄jW

h
k , vhj = x̄jW

h
v .235

The contribution of token j to token i in layer ℓ,236

denoted by conti,j , is computed as follows:237

conti,j =

∥∥∥∥∥
H∑

h=1

attnhi,j vhj W h
o

∥∥∥∥∥
2

238

where attnhi,j is the attention weight of token i to j 239

in the h-th head of layer ℓ. Specifically, 240

attnhi,. = SOFTMAX

{
⟨qhi , khj ⟩√

dh

}n

j=1

 . 241

Notably, conti,j is a significant metric that quanti- 242

fies the contribution of a token j to the norm of a 243

token i at layer ℓ. We employ this metric to iden- 244

tify layers in which important tokens highly attend 245

to unintended tokens, or lowly attend to intended 246

ones. We refer to Appendix B.1 for more details 247

on attention contribution. 248

Key Finding: T5 has less erroneous attention 249

contributions than CLIP. We refer to Figure 3 250

that visualizes attention contribution of both T5 and 251

CLIP text-encoder in the last layer (ℓ = 11) for the 252

prompt “a green bench and a red car". Ideally, the 253

attention mechanism should guide the token “car” 254

to focus more on “red” than “green”, but in the last 255

layer of the CLIP text-encoder, “car” significantly 256

attends to “green”. In contrast, T5 shows a more 257

consistent attention pattern, with “red” contributing 258

more to the token “car” and “green” contributing 259

more to the token “bench”. 260

We further conduct a comprehensive analysis fo- 261

cusing on specific types of compositional prompts 262

from the T2I-CompBench dataset (Huang et al., 263

2023). This includes 780 prompts from the color 264

category and 582 prompts from the texture category 265

of this dataset, each following the structured for- 266

mat: “a1 o1 and a2 o2”. For each prompt, we ob- 267

tain attention contributions in all layers and count 268

the number of layers where unintended attention 269

contributions occur. In the CLIP text-encoder, un- 270

intended attention occurs when o2 attends more 271

to a1 than a2. For T5, it occurs when o2 attends 272

more to a1 than a2, or o1 attends more to a2 than 273

a1. Figure 4 provides a quantitative comparison 274

of unintended attention across various prompts be- 275

tween the CLIP text-encoder and T5. The T5 model 276

demonstrates superior performance on our metric 277

compared to the CLIP text-encoder, reinforcing the 278

hypothesis that erroneous attention mechanisms in 279

CLIP may contribute to its weaker compositional 280

performance in text-to-image models. Additional 281

details can be found in Appendix B.4. Further 282

experiments with other text-encoders are also re- 283

ported in Appendix B.3. 284

To address the attention shortcomings of the 285

CLIP text-encoder, we explored zero-shot reweight- 286

ing of attention maps in CLIP to reduce unintended 287
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Figure 5: Sub-optimality of CLIP Text-Encoder for
Compositional Prompts. Optimizing a learnable vector
to represent an improved text embedding, while keeping
the UNet frozen, enables the generation of more com-
positionally accurate images.

attentions while enhancing meaningful ones. While288

this improved baseline performance, it fell short289

of our primary method discussed in the following290

sections. See Appendix B.2 for more details.291

3.2 Source (ii) : Sub-optimality of CLIP292

Text-Encoder for Compositional Prompts293

In this section, we investigate whether the UNet is294

capable of generating better compositional scenes295

if provided with alternative (improved) text embed-296

dings, rather than relying on the output of the CLIP297

text-encoder. For a given input prompt p with a298

specific composition (e.g., “a red book and a yel-299

low table”), we utilize our dataset (described in300

Section 5) to obtain Dp, a set of high-quality com-301

positional images corresponding to prompt p. Next,302

we extract the text embedding c from the CLIP303

text-encoder for prompt p. Using this embedding304

as the initialization, we create a learnable vector c∗305

of the same dimensionality. Keeping all other com-306

ponents (such as the UNet) frozen, we optimize307

this learnable vector as follows:308

c∗ = argmin
c

Ex0∼Dp,ϵ,t

[
∥ϵ− ϵθ(zt, c, t)∥22

]
.309

We then use the optimized text embedding c∗ to310

generate images with the UNet ϵθ. Figure 5 illus-311

trates the complete pipeline.312

Key Results. Utilizing Stable Diffusion v1.4, we313

optimize optimize c∗ for all compositional prompts314

across the color, texture, and shape categories in the315

T2I-CompBench dataset. By generating samples316

with c∗ and comparing them to those generated us- 317

ing c (the output of the CLIP text-encoder), we ob- 318

serve a significant improvement in the VQA scores. 319

As shown in Figure 5, CLIP text embeddings yield 320

VQA scores of 0.3615 for color, 0.4306 for texture, 321

and 0.3619 for shape. On the other hand, the op- 322

timized embeddings achieve scores of 0.7513 for 323

color, 0.7254 for texture, and 0.5873 for shape. 324

These results indicate that CLIP text-encoder 325

does not output the proper text-embedding suitable 326

for generating compositional scenes. However, the 327

existence of an optimized embedding space demon- 328

strates that the UNet can generate coherent compo- 329

sitional outputs when provided with appropriately 330

improved embeddings. This finding motivates the 331

idea of improving the CLIP output space to miti- 332

gate compositionality issues in text-to-image diffu- 333

sion models. For additional configurations, includ- 334

ing results from optimizing a subset of tokens to 335

improve compositionality, refer to Appendix A. 336

4 Projection Layer for Enhancing 337

Compositionality in the CLIP Text 338

Embedding Space 339

Building on our previous findings, we focus on im- 340

proving the text embedding space utilized in text-to- 341

image generative models. Specifically, we propose 342

learning a projection layer over the CLIP output 343

embedding space to transform its sub-optimal rep- 344

resentation into an enhanced space better suited 345

for compositionality. In the following sections, 346

we introduce two methods, CLP and WiCLP, which 347

implement linear projections of the CLIP output 348

embedding space to achieve this enhancement. 349

4.1 CLP: Token-wise Compositional Linear 350

Projection 351

Given the text-embedding c ∈ Rn×d as the output 352

of the text-encoder for prompt c, i.e., c = vγ(c), we 353

train a linear projection CLPW,b : Rn×d → Rn×d. 354

This projection includes a matrix W ∈ Rd×d and 355

a bias term b ∈ Rd, which are applied token- 356

wise to the output text-embeddings of the text- 357

encoder. More formally, for c ∈ Rn×d including 358

text-embeddings of n tokens c1, c2, · · · , cn ∈ Rd, 359

CLPW,b(c) is obtained by stacking projected em- 360

beddings c′1, c
′
2, · · · , c′n where c′i = W T ci + b. 361

Finally, we solve the following optimization 362

problem on a dataset D including image-caption 363
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”A bathroom with green tile and a red shower curtain”

τ = 1000
(No Guidance)

τ = 900 τ = 800 τ = 600 τ = 200

Figure 6: Qualitative results showing the impact of
SWITCH-OFF with varying thresholds τ .

pairs of high-quality compositional images:364

W ∗, b∗ = argmin
W,b

E(x0,c)∼D,ϵ,t [ΦCLP]365

ΦCLP = ∥ϵ− ϵθ (zt, CLPW,b (c) , t)∥22366

We then apply CLPW ∗,b∗ on CLIP text-encoder to367

obtain improved embeddings.368

4.2 WiCLP: Window-based Compositional369

Linear Projection370

In this section, we propose a more advanced linear371

projection scheme where the new embedding of a372

token is derived by applying a linear projection on373

that token in conjunction with a set of its adjacent374

tokens, i.e., tokens within a specified window. This375

method not only leverages the benefits of CLP but376

also incorporates the contextual information from377

neighboring tokens, potentially leading to more378

precise text-embeddings.379

More formally, we train a mapping WiCLPW,b :380

Rn×d → Rn×d including a parameter s (indi-381

cating window length), matrix W ∈ R(2s+1)d×d,382

and a bias term b ∈ Rd. For text-embeddings383

c ∈ Rn×d consisting of n token embeddings of384

c1, c2, · · · , cn ∈ Rd, we obtain WiCLPW,b by stack-385

ing projected embeddings c′1, c
′
2, · · · , c′n where386

c′i = W T CONCATENATION
(
(cj)

i+s
j=i−s

)
+ b387

Similarly, we solve the following optimization388

problem to train the projection:389

W ∗, b∗ = argmin
W,b

E(x0,c)∼D,ϵ,t [ΦWiCLP]390

ΦWiCLP = ∥ϵ− ϵθ (zt, WiCLPW,b (c) , t)∥22391

We observe that WiCLP improves over CLP (spe-392

cial case of WiCLP with s = 0) by incorporating393

adjacent tokens in addition to the actual token.394

This approach enhances embeddings by reinforcing395

the contributions of relevant adjacent tokens. For396

discussion on choosing the window length (s) in397

WiCLP, see Appendix C.6.398

Figure 7: Trade-off between VQA and FID scores with
SWITCH-OFF at different thresholds.

4.3 SWITCH-OFF: Trade-off between 399

Compositionality and Clean Accuracy 400

Fine-tuning models or adding modules to a base 401

model often results in a degradation of image qual- 402

ity and an increase in the Fréchet Inception Dis- 403

tance (FID) score. To balance the trade-off between 404

improved compositionality and the quality of gen- 405

erated images for clean prompts – an important 406

issue in existing work – inspired by Hertz et al. 407

(2022), we adopt SWITCH-OFF, where we apply 408

the linear projection only during the initial steps 409

of inference. Specifically, given a time-step thresh- 410

old τ , for t ≥ τ , we use WiCLPW ∗,b∗(c), while for 411

t < τ , we use the unchanged embedding c as the 412

input to the cross-attention layers. 413

Figure 7 illustrates the trade-off between VQA 414

score and FID on a randomly sampled subset of 415

MS-COCO (Lin et al., 2014) for different choices 416

of τ . As shown, even a large value of τ suffices for 417

obtaining high-quality compositional scenes as the 418

composition of final generated image is primarily 419

formed at early steps. Thus, choosing a large τ 420

preserves the model’s improved compositionality 421

while maintaining its clean accuracy. Setting τ = 422

800 offers a competitive VQA score compared to 423

the model where projection is applied at all time 424

steps, and achieves a competitive FID similar to 425

that of the clean model. Figure 6 depicts a few 426

images generated using different choices of τ . We 427

refer to Appendix C.5 for more visualizations. 428

5 Experiments 429

Existing Baselines. We evaluate the performance 430

of four methods alongside standard models SD 431

v1.4, SD v2, and SDXL (Podell et al., 2023). These 432

include Composable Diffusion (Liu et al., 2022b), 433

which addresses concept conjunction and nega- 434

tion in pretrained diffusion models; Structured Dif- 435
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Figure 8: Applying CLP results in more accurate cross-
attention maps.

fusion (Feng et al., 2022), which focuses on at-436

tribute binding; Attn-Exct (Chefer et al., 2023),437

which ensures correct attention to all subjects in438

the prompt; and GORS (Huang et al., 2023), which439

fine-tunes Stable Diffusion v2 using a reward func-440

tion. GORS optimizes more parameters but under-441

performs slightly compared to our method, while442

Attn-Exct requires iterative optimizations during443

inference, making it slower than our method, which444

adds only a linear projection layer.445

Training Setup. All of the models are trained446

using the objective function of diffusion models447

on color, texture, and shape datasets described in448

Section 5. During training, we keep all major com-449

ponents frozen, including the U-Net, CLIP text-450

encoder, and VAE encoder and decoder, and only451

the linear projections are trained. We refer to Ap-452

pendix C.1 for details on the training procedure.453

Dataset Collection. We utilize the T2I-454

CompBench dataset (Huang et al., 2023), focusing455

on three key categories: color, texture, and shape,456

with a total of 1,000 prompts across both training457

and evaluation sets. T2I-CompBench is a well-458

established and widely recognized dataset (Esser459

et al., 2024). This dataset provides distinct training460

and evaluation splits for each category, enabling a461

structured approach to assessing performance. To462

generate high-quality images, we use three gen-463

erative models: SD 1.4 (Rombach et al., 2021),464

DeepFloyd, and SynGen (Rassin et al., 2024), cre-465

ating 100 samples per prompt with SD 1.4, 60 with466

DeepFloyd, and 50 with SynGen. This ensures a467

wide variety of generated images, leveraging each468

model’s strengths. For each prompt, we combined469

all 210 samples from the three models and selected470

the top 30 with the highest VQA scores, ensuring471

the final dataset consisted of images that most ac-472

curately reflected the prompts.473

Furthermore, for SDXL, we explored training474

Model Color Texture Shape

SD
v1

.4 Baseline 0.3765 0.4156 0.3576
CLP 0.4837 0.5312 0.4307
WiCLP 0.5383 0.5671 0.4527

SD
v2

Baseline 0.5065 0.4922 0.4221
Composable 0.4063 0.3645 0.3299
Structured 0.4990 0.4900 0.4218
Attn-Exct 0.6400 0.5963 0.4517
GORS 0.6414 0.6025 0.4546
CLP 0.6075 0.5707 0.4567
WiCLP 0.6500 0.6036 0.4821

SD
X

L

Baseline 0.5770 0.5217 0.4666
WiCLP 0.6930 0.6007 0.4758
WiCLP* 0.7801 0.6557 0.5166

Table 1: Quantitative comparison with state-of-the-art
and baseline methods across different categories of the
T2I-CompBench dataset

WiCLP (WiCLP* in Table 1) on a higher-quality 475

dataset generated by more recent text-to-image 476

models, such as SDXL itself and SD3. Importantly, 477

leveraging an appropriately curated dataset results 478

in a substantial improvement in VQA scores, high- 479

lighting the importance of high-quality training 480

data for compositional understanding. 481

5.1 Qualitative and Quantitative Evaluation 482

Qualitative Evaluation. Figure 2 presents images 483

generated when applying CLP and WiCLP. When 484

generating compositional prompts with a baseline 485

model, objects are often missing or attributes are 486

incorrectly applied. However, with CLP and WiCLP, 487

objects and their corresponding attributes are more 488

accurately generated. We refer to Appendix C.3 for 489

more visualizations. 490

Figure 8 illustrates cross-attention maps for a 491

sample prompt. In the base model, attention maps 492

are flawed, with some tokens incorrectly attend- 493

ing to the wrong pixels. However, with both CLP 494

and WiCLP, objects and attributes more accurately 495

attend to their respective pixels. For more visual- 496

izations, see Appendix C.4. 497

Quantitative Evaluation. Table 1 presents the 498

VQA scores for our methods, CLP and WiCLP, 499

alongside the baselines discussed. VQA scores 500

of our method and other discussed baselines are 501

provided in Table 1. As shown, both CLP and 502

WiCLP significantly improve upon the baselines. 503

Both methods demonstrate substantial improve- 504
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ments over the baselines, with WiCLP achieving505

the highest VQA scores among state-of-the-art ap-506

proaches that utilize the same baseline model (e.g.,507

Stable Diffusion v2), despite its simplicity.508

Notably, our methods maintain the model’s gen-509

eral utility, introducing only a slight increase in the510

FID score; for example, experiments on MS-COCO511

prompts show that while our methods slightly in-512

crease FID compared to base models, this increase513

is smaller than that of other baselines—for instance,514

WiCLP achieves an FID score of 27.40, outperform-515

ing GORS at 30.54. Additional details on FID516

performance can be found in Appendix C.2.517

Human Experiments. We conducted a human518

evaluation where participants compared images519

generated by SD v1.4 and SD v1.4 + WiCLP, select-520

ing the image that best matched the given prompt.521

The results showed that in 34.625% of cases, eval-522

uators chose the base model’s image; in 51.875%,523

they preferred the WiCLP images; and in 13.50%,524

they rated both equally. Further details can be525

found in Appendix C.2.526

5.2 Impact of WiCLP on Subsets of Tokens527

To better understand the impact of WiCLP on token528

embeddings, we conducted experiments applying529

the trained WiCLP to specific subsets of tokens from530

a sample of sentences in the color category of the531

T2I-CompBench dataset. The results, shown in532

Fig. 9, compare the following token groups: nouns533

only; nouns and adjectives; nouns, adjectives, and534

the EOS (End of Sentence token) token; all sen-535

tence tokens; and all tokens outputted by CLIP536

(sentence tokens plus padding tokens). As can be537

seen, applying WiCLP only to a small number of538

tokens is sufficient for improving compositional-539

ity. Interestingly, applying WiCLP to the group of540

nouns, adjectives, and EOS achieves even higher541

VQA scores than applying WiCLP to all tokens. De-542

spite these findings, we applied WiCLP to all tokens543

in our main work, leaving this targeted approach as544

an avenue for future research.545

5.3 Alternatives to WiCLP546

We explored various fine-tuning strategies for im-547

proving CLIP, including fine-tuning the entire CLIP,548

fine-tuning only the last layers of CLIP combined549

with WiCLP, and using WiCLP alone. Our results550

show that the original baseline model (SD v1.4)551

achieves a VQA score of 0.3765 on the color cat-552

egory of the dataset. Fine-tuning the entire CLIP553

without WiCLP improves the score to 0.5173, fine-554

Figure 9: Effect of applying WiCLP to specific tokens.
Applying WiCLP to a subset of tokens is sufficient to
enhance compositionality, achieving comparable or su-
perior performance to applying it across all tokens.

tuning the last layers of CLIP combined with WiCLP 555

achieves 0.5497, and WiCLP alone achieves 0.5383. 556

These findings highlight the effectiveness of 557

WiCLP, which outperforms full fine-tuning of CLIP 558

while being significantly more parameter-efficient. 559

While fine-tuning the last layers of CLIP combined 560

with WiCLP achieves slightly better performance 561

than using WiCLP alone, it requires optimizing a 562

much larger number of parameters. Given this 563

trade-off, we prioritize WiCLP alone to minimize 564

the number of parameters while achieving substan- 565

tial compositional performance improvements. Ad- 566

ditionally, keeping the original CLIP unchanged 567

makes our approach more suitable for SWITCH- 568

OFF functionality, allowing the module to be easily 569

enabled or disabled as needed. 570

6 Conclusion 571

Our paper examines potential error sources in text- 572

to-image models for generating images from com- 573

positional prompts. We identify two error sources: 574

(i) A minor error source, where the token embed- 575

dings in the CLIP text-encoder have erroneous at- 576

tention contributions and (ii) A major error source, 577

where we find the output space of the CLIP text- 578

encoder to be sub-optimally aligned to the UNet 579

for compositional prompts. Leveraging our obser- 580

vations, we propose a simple and strong baseline 581

WiCLP which involves fine-tuning a linear projec- 582

tion on CLIP’s representation space. WiCLP though 583

inherently simple and parameter efficient, outper- 584

forms existing methods on compositional image 585

generation benchmarks and maintains a low FID 586

score on a broader range of clean prompts. 587
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Limitations588

In this paper, we have conducted a comprehen-589

sive analysis of one of the primary reasons why590

Stable Diffusion struggles with generating compo-591

sitional attribute binding prompts and proposed a592

lightweight, efficient method to address this chal-593

lenge. While our approach demonstrates promising594

results, there remains substantial room for improve-595

ment in this area. Our method primarily targets the596

attribute binding aspect of compositionality, leav-597

ing other critical categories, such as spatial relation-598

ships (e.g., "a book to the left of a pen"), numeracy599

(e.g., "four books"), and others, less explored. In-600

vestigating the underlying causes of these issues is601

crucial for advancing the field further.602

Moreover, the reliance on CLIP—particularly603

the CLIP score—as a metric for recognizing and604

evaluating compositionality poses its own limita-605

tions. CLIP, in its current form, does not perform606

optimally for such tasks. A promising direction for607

future research would be to first improve CLIP’s608

ability to handle compositionality effectively and609

then adapt this enhanced version of CLIP for Stable610

Diffusion. This could pave the way for more robust611

and accurate text-to-image generation models.612
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A Optimizing the Text-embeddings of a731

Subset of Tokens732

Given c ∈ Rn×d, where n refers to the number of733

tokens and d refers to the dimensionality of the text-734

embedding, for the second configuration we only735

optimize a subset of tokens n′ ∈ n. We refer to this736

subset of tokens as c′. These tokens correspond to737

relevant parts of the prompt which govern compo-738

sitionality (e.g., “red book” and “yellow table” in739

“A red book and an yellow table”).740

c′∗ = argmin
c′

Eϵ,t||ϵ− ϵθ(zt, c
′, t)||22,741

Figure 10 shows the results for the sample742

prompt "a red book and a yellow vase". We con-743

sidered different subsets of tokens n′: adjectives744

("red" and "yellow"), nouns ("book" and "vase"),745

both nouns and adjectives, and all tokens in the746

Figure 10: Comparison of VQA scores when optimizing
different subsets of tokens for the sample prompt: ”A
red book and a yellow vase”

sentence. The results indicate that optimizing even 747

a few tokens significantly improves the VQA score. 748

However, optimizing all tokens in the sentence 749

yields the highest score. 750

B Source (i) : Erroneous Attention 751

Contributions 752

B.1 Attention Contribution 753

In this Section, we provide more details on our anal- 754

ysis to quantitatively measure tokens’ contribution 755

to each other in a layer of attention mechanism. 756

One natural way of doing this analysis is to uti- 757

lize attention maps attnhi,j and aggregate them over 758

heads, however, we observe that this map couldn’t 759

effectively show the contribution. Attention map 760

does not consider norm of tokens in the previous 761

layer, thus, does not provide informative knowl- 762

edge on how each token is formed in the attention 763

mechanism. In fact, as seen in Figure 11, we cannot 764

obtain much information by looking at these maps 765

while attention contribution clearly shows amount 766

of norm that comes from each of the attended to- 767

kens. 768

B.2 Zero-shot Attention Reweighting 769

Inspired by attention mechanism shortcomings of 770

CLIP text-encoder, we aim to improve composition- 771

ality of CLIP-based diffusion models by zero-shot 772

reweighting of the attention maps. Specifically, 773

we apply a hand-crafted zero-shot manipulation of 774

the attention maps in certain layers of the CLIP 775

text-encoder to effectively reduce unintended at- 776

tentions while enhancing meaningful ones. This 777
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Attention Map Attention Contribution

Figure 11: Visualization of attention map and attention contribution for prompt “a green bench and a red car" over
different layers of CLIP. Contribution provides better insight on the attention mechanism.

zero-shot reweighting is applied to the logits before778

the SOFTMAX layer in the last three layers of the779

text-encoder. More precisely, we compute a matrix780

M ∈ Rn×n and add it to the attention logits. For781

each head h, the new attention values are computed782

and then propagated through the subsequent layers783

of the text encoder:784

attn
′h
i,. = SOFTMAX

{
⟨qhi , khj ⟩√

dh
+Mi,j

}n

j=1

 .785

We set the values in M by considering the ideal786

case where no incorrect attentions occur in the787

mechanism. For example, for prompt “a green788

bench and a red car", we ensure that the token789

"car" does not attend to the token "green" by as-790

signing a sufficiently large negative value to the791

corresponding entry in matrix M .792

To fix unintended attentions, we aim to compute793

a matrix M to be applied across various heads in794

the last few layers of CLIP, reducing the effect795

of wrong attention, leading to more accurate text-796

embeddings that are capable of generating high-797

quality compositional scenes. To avoid unintended798

attention for prompts of the form “a1o1 + a2o2",799

we add large negative values to entries Mo2,a1 ,800

Ma2,a1 , and some positive value to Mo2,a2 and801

Mo1,a1 , and small negative value to Mo2,o1 . To802

find what values to assign to those entries, we con-803

sider a small set of prompts in color dataset (5804

prompts in total) and obtain parameters for that805

matrix to maximize VQA score. Figure 12 shows806

few examples of zero-shot modification.807

Applying zero-shot attention reweighting with808

matrix M on 780 compositional prompts of the809

color category of T2I-CompBench dataset, we810

achieved a 2.93% improvement in VQA scores.811

LLaMa3 CLIP

color
last layer 0.015 0.657
all layers 0.081 0.187

texture
last layer 0.033 0.696
all layers 0.066 0.213

[t]

Table 2: Unintended attention rate in LLaMa3 8B vs
CLIP. LLaMa3 shows significant less unintended atten-
tions.

FID Score

SD v1.4 24.33
SD v1.4 + WiCLP 25.40

SD v2 23.27
SD v2 + WiCLP 27.40

GORS 30.54

Table 3: Comparison of FID scores between the baseline
models and WiCLP using SWITCH-OFF with τ = 800,
as well as the GORS approach.

B.3 Experiments with LLaMa3 8B 812

We explored the analysis of attention contributions 813

to identify unintended attention in LLaMa3 8B, 814

which utilizes a more advanced text encoder specif- 815

ically designed for language modeling and pre- 816

trained on large-scale text corpora. Table 2 reports 817

the rate of unintended attention across prompts in 818

the color and texture datasets. The results demon- 819

strate that unintended attention occurs less fre- 820

quently in more advanced text encoders, further 821

emphasizing the limitations of the CLIP text en- 822

coder. 823
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B.4 Models with T5 text-encoder824

We conducted experiments to measure the VQA825

score on the color dataset for models that use T5826

as their text encoder. DeepFloyd achieved a score827

of 0.604, which is significantly higher than that828

of SD-v1.4. Additionally, DeepFloyd-I-M, which829

employs a smaller first-stage UNet compared to830

DeepFloyd, obtained a score of 0.436, also surpass-831

ing the SD-v1.4 score.832

C Experiments833

C.1 Training setup834

In this section, we present the details of the exper-835

iments conducted to evaluate our proposed meth-836

ods. The training is performed for 25,000 steps837

with a batch size of 4. An RTX A5000 GPU is838

used for training models based on Stable Diffusion839

1.4, while an RTX A6000 GPU is used for mod-840

els based on Stable Diffusion 2. We employed the841

Adam optimizer with a learning rate of 1 × 10−5842

and utilized a Multi-Step learning rate scheduler843

with decays (α = 0.1) at 10,000 and 16,000 steps.844

For the WiCLP, a window size of 5 was used. All845

network parameters were initialized to zero, lever-846

aging the skip connection to ensure that the initial847

output matched the CLIP text embeddings. Our848

implementation is based on the Diffusers1 library,849

utilizing their modules, models, and checkpoints850

to build and train our models. This comprehen-851

sive setup ensured that our method was rigorously852

tested under controlled conditions, providing a ro-853

bust evaluation of its performance.854

C.2 Extended Evaluation855

Human Evaluation We conducted a human evalu-856

ation in which participants compared images gen-857

erated by SD v1.4 and SD v1.4 + WiCLP, selecting858

the image that best matched the given prompt (Fig-859

ure 19). Five evaluators were presented with 200860

randomly selected image pairs, evaluating a total861

of 1000 image-caption pairs.862

TIFA Metric. To provide a more comprehensive863

evaluation, in addition to the disentangled BLIP-864

VQA score proposed by865

Using TIFA, we observed that SD v1.4 and SD866

v2 achieved scores of 0.6598 and 0.7735, respec-867

tively. Notably, the scores for WiCLP applied on868

top of SD v1.4 and SD v2 improved to 0.7462 and869

0.8133, respectively, demonstrating the enhanced870

performance of our approach.871

1https://github.com/huggingface/diffusers

Zero-shot Attention Reweighting

Original Text-embeddings

Figure 12: Visualization of some images generated
with same set of seeds using original text-embeddings
of prompt “a blue car and a brown cow" and text-
embeddings that are obtained as the result of zero-shot
reweighting of attention matrix.

FID Score Comparison Our method results 872

in a modest increase in FID score on MS-COCO 873

prompts compared to the base models, as shown in 874

Table 3. However, this increase is less pronounced 875

than in other baselines—for example, SD v2 + 876

WiCLP scores 27.40, whereas GORS reaches 30.54. 877

C.3 CLP and WiCLP Visualization 878

In this section, we provide additional visualizations 879

comparing CLP, WiCLP, and baseline models in Fig- 880

ures 15, 16. 881

C.4 Visualization of Cross-Attentions 882

In this section, we provide additional cross- 883

attention map visualizations in Figures 15 and 16. 884

C.5 Visualization of SWITCH-OFF 885

In this section, we present more qualitative samples 886

illustrating the effect of SWITCH-OFF at different 887

timestep thresholds for various prompts in Figures 888

17 and 18. 889

C.6 Choice of Window Length in WiCLP 890

One might suggest that instead of using token-wise 891

linear projection (CLP) or a window-based linear 892

projection with a limited window (WiCLP), employ- 893

ing a linear projection that considers all tokens 894

when finding a better embedding for each token 895

might yield better results. However, our thorough 896

quantitative study and experiments tested various 897

window sizes for WiCLP. We found that using a 898

window size of 5 (s = 2) achieves the highest 899

performance. 900
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SD v1.4 CLP SD v2 WiCLP

A blue bowl and
a red train

A blue bench and
a green bowl

A blue backpack and
a red book

A black and white cat
sitting in a green bowl

A brown boat and
a blue cat

A brown book and
a red sheep

A fluffy towel and
a glass cup

A plastic container and
a fluffy teddy bear

Figure 13: Qualitative comparison between the baseline and our projection methods (CLP and WiCLP).
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SD v1.4 CLP SD v2 WiCLP

A red apple and
a green train

A red chair and
a gold clock

A red pen and
a blue notebook

A round cookie and
a square container

A wooden floor and
a fluffy rug

The leather jacket and fluffy
scarf keep the cold at bay

Wooden pencil and
a glass plate

A green leaf and
a yellow butterfly

Figure 14: Qualitative comparison between the baseline and our projection methods (CLP and WiCLP).

14



prompt: ”A red book and a yellow vase”
image red book yellow vase

Baseline

Linear
Projection

prompt: ”A blue backpack and a red bench”
image blue backpack red bench

Baseline

Linear
Projection

prompt: ”A brown boat and a blue cat”
image brown boat blue cat

Baseline

Linear
Projection

Figure 15: Comparison of cross-attention maps of the U-Net with and without the CLP
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prompt: ”A green blanket and a blue pillow”
image green blanket blue pillow

Baseline

Linear
Projection

prompt: ”A black cat sitting in a green bowl”
image black cat green bowl

Baseline

Linear
Projection

prompt: ”A bathroom has brown wall and gold counters”
image brown wall gold counters

Baseline

Linear
Projection

Figure 16: Comparison of cross-attention maps of the U-Net with and without the CLP
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prompt: ”A red book and a yellow vase”

prompt: ”A bathroom has brown wall and gold counters”

prompt: ”A blue backpack and a red chair”

prompt: ”A blue bear and a brown boat”

prompt: ”A brown boat and a blue cat”

prompt: ”A green blanket and a blue pillow”

prompt: ”A green leaf and a yellow butterfly”

T = 1000
(No Guidance)

T = 900 T = 800 T = 600 T = 400 T = 200

Figure 17: Qualitative results showing the impact of SWITCH-OFF with varying thresholds T
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prompt: ”A metallic watch and a fluffy towel”

prompt: ”A pink elephant and a brown giraffe”

prompt: ”A plastic bag and a leather chair”

prompt: ”A red backpack and a blue book”

prompt: ”A red bathroom has a white towel on the bar”

prompt: ”A red cup and a blue suitcase”

prompt: ”A white car and a red sheep”

T = 1000
(No Guidance)

T = 900 T = 800 T = 600 T = 400 T = 200

Figure 18: Qualitative results showing the impact of SWITCH-OFF with varying thresholds T
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Figure 19: A sample from the human evaluation study, where participants were presented with a pair of images
and a caption. They were asked to select the image that best represented the caption or choose ’both’ if the images
equally captured the caption’s meaning.
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