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ABSTRACT

Despite the tremendous success of applying traditional combinatorial search meth-
ods in various NP-complete domains such as SAT and CSP as well as using deep
reinforcement learning to tackle two-player games such as Go, certain classes of
PSPACE-hard planning problems have remained out of reach. Even carefully de-
signed domain-specific solvers can fail quickly due to the exponential combinato-
rial search space on hard instances. Recent work that combines traditional search
methods, such as best-first search and Monte Carlo tree search, with Deep Neu-
ral Networks’ (DNN) heuristic prediction has shown promising progress. These
methods can solve a significant number of hard planning instances beyond spe-
cialized solvers. To better understand why these approaches work, we studied
the interplay of the policy and value networks in DNN-based best-first search on
the Sokoban domain and show the surprising effectiveness of the policy network,
further enhanced by the value network, as a guiding heuristic for the search. To
further understand the phenomena, we studied the cost distribution of the search
algorithms and found that Sokoban planning instances can have heavy-tailed run-
time distributions, with tails both on the left and right-hand sides. In particular,
for the first time, we show the existence of left heavy tails and propose an ab-
stract tree model that can empirically explain the appearance of these tails. We
provide extensive experiment data supporting our model. The experiments show
the critical role of the policy network as a powerful heuristic guiding the search,
which can lead to left heavy tails with polynomial scaling by avoiding exploring
exponentially sized sub-trees. Our results also demonstrate the importance of ran-
dom restart strategies, as are widely used in traditional combinatorial solvers, for
DNN-based search to avoid left and right heavy tails.

1 INTRODUCTION

Combinatorial search is a key domain for artificial intelligence. Unfortunately, combinatorial do-
mains usually have intractable theoretical complexity, such as NP-complete, PSPACE-complete, or
even undecidable. In the past few decades, we have observed tremendous progress for practical prob-
lem solving in NP-hard domains with wide applicability in, for example, circuit design (Hong et al.,
2010), hardware verification (Gupta et al., 2006), and mathematical discovery (Konev & Lisitsa,
2014). SAT solvers based on conflict-driven clause learning can solve instances with thousands of
variables and clauses in seconds, which demonstrates surprising scaling performance despite SAT
being an NP-complete task (Silva & Sakallah, 2003).

In contrast, practical combinatorial search in PSPACE-hard domains has remained a significant
practical challenge. PSPACE-hard problems can be generally divided into two main categories:
two-player games, such as Go, Chess, and Amazons (Lichtenstein & Sipser, 1980; Fraenkel &
Lichtenstein, 1981; Hearn, 2005), and single-agent planning problems (a.k.a. combinatorial puz-
zles), such as Sokoban and problems formalized by PDDL (Planning Domain Definition Language)
(Culberson, 1997; Bylander, 1994). Recent achievements in the deep learning community inspired
an approach of augmenting Monte Carlo tree search (MCTS) with Deep Neural Networks’ (DNN)
heuristic predictions. AlphaGo (Silver et al., 2016) became the first Go software to beat professional
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human players in 2016, and its newer and more general version AlphaZero (Silver et al., 2017) can
achieve, tabula rasa, superhuman performance in many other challenging game domains.

These advances naturally raise the question of whether we can build a general framework to learn
different planning domains with minimum modifications. A key challenge is that hard planning
instances often require intricate action sequences with hundreds of steps, and any deviation can lead
to a dead-end state with no path to goal states. To address this issue, a more systematic and complete
search, such as best-first search, is preferred over MCTS (Agostinelli et al., 2019). Traditional search
methods augmented with neural networks’ heuristics have shown promising progress in planning
domains (Shen et al., 2020; Rivlin et al., 2020; Ferber et al., 2020; Feng et al., 2020a;b). These
methods can solve a significant number of hard planning instances that specialized solvers cannot
solve. To gain a better understanding of these approaches, we studied the interplay of the policy and
value networks in DNN-based best-first search algorithms. Our experiments show the surprising
effectiveness of the policy network, further enhanced by the value network, as a guiding heuristic.

To further understand the phenomena, we also studied the cost distribution of DNN-based search.
Specifically, we explored and generalized the cost distribution profiles of search methods from NP-
hard domains to PSPACE-hard planning domains, and show heavy-tailed cost distributions exist
ubiquitously among planning instances. For the first time, we found and characterized left heavy
tails, which are different from well-studied right heavy tails (also abbreviated as heavy tails in
the literature). Left heavy tails occur when instances become extremely hard and most runs cannot
finish in a reasonable time limit. The solver needs to be ”lucky” and occasionally hit a short run.
In contrast, right heavy tails characterize mildly hard instances whose majority randomized runs
have short runtime. Meanwhile, the solver can be ”unlucky” and occasionally hit an extremely long
run which makes the expected runtime exponential. We propose an abstract search tree model that
can empirically explain the appearance of left heavy tails and provide extensive experiment data
supporting our model. The experiments show the critical role of the policy network as a powerful
heuristic guiding the search, which can lead to left heavy tails with polynomial scaling by avoiding
exploring exponentially sized sub-trees.

Randomized combinatorial solvers use various techniques, such as randomized tie-breaking and ran-
dom variable ordering, to carefully inject a controlled amount of randomization into a deterministic
search procedure (Crawford & Baker, 1994; Bresina, 1996; Gomes et al., 1998). The randomization
step requires careful engineering and analysis of the solver since excess randomization can hamper
the effectiveness of random restarts. In our approach, we found that uncertainty-aware networks
(Huang et al., 2017; Chua et al., 2018; Sedlmeier et al., 2019; Malinin & Gales, 2018) can provide
just the right amount of controllable randomization into a deterministic search algorithm.

In this paper, we consider Sokoban as the background planning domain. The only domain knowl-
edge neural networks and search algorithms receive is 1) input state representation; 2) state-action
transition function; 3) deciding goal states. These three components are the minimum requirements
to describe any planning domain and we did not use any other Sokoban-specific techniques, such as
dead-end detection. We evaluated DNN-based search on more than 10, 000 instances with signifi-
cant variations in underlying combinatorial structure.

Our results also demonstrate the importance of random restart strategies, as are widely used in tradi-
tional combinatorial solvers, for deep reinforcement learning (DRL) and deep AI planning systems
to avoid left and right heavy tails. In summary, our overall contributions are as follows:

1. We studied the interplay of the policy and value networks on DNN-based best-first search for
the Sokoban domain. Our experiments show the surprising effectiveness of the policy network,
further enhanced by the value network, as a guiding heuristic for the search.

2. We studied the runtime distribution on more than 10, 000 instances and propose distribution-
independent statistics to quantify the heaviness of tails and effectiveness of random restarts. For
the first time, we extensively studied left heavy tails from experiment data, introduce an abstract
search tree model with critical nodes, and formally show how left heavy tails can arise during
the search. Left heavy tails of runtime distributions are explained by the critical role of the policy
network as a guiding heuristic. Polynomial runtime scaling can occur because the policy network
helps avoid exploring exponentially sized sub-trees during the search.

3. We show the importance of using uncertainty-aware networks in the planning domain and how it
can add a controllable amount of randomization to a deterministic solver. We show how a restart
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strategy can improve DNN-based search’s effectiveness. In particular, our experiments show for
larger budgets, more frequent restarts are more effective.

2 BACKGROUND AND RELATED WORK

Sokoban as a planning domain. Sokoban is a PSPACE-complete puzzle whose goal is to push
a set of boxes into the same number of goal cells in a grid maze with walls (Culberson, 1997).
Sokoban is among the most challenging known AI planning domains. The domain remains chal-
lenging even for specialized solvers with significant human domain knowledge (Fern et al., 2011;
Junghanns & Schaeffer, 2001). Due to its general search structure and hardness, we use Sokoban as
our background domain throughout the paper.

Optimal speedup of Las Vegas algorithms. LetA be a randomized algorithm that always outputs
the correct answer when it halts but whose running time is a random variable rA : Z+

∞ → R+
0 . Luby

et al. (1993) proved that when we have full knowledge about the distribution rA, the optimal strategy
that achieves the minimum expected time required to obtain an output from A is to repeatedly run
A for the same amount of time tA until it halts. To calculate tA, let

l(t) =
1∑

x≤t r
A(x)

(t−
∑
x<t

∑
y≤x

rA(y))

be the expected halting time of repeatedly running A with time limit t. Define lA = inft<∞ l(t)
and lA is finite for any non-trivial distribution rA, i.e., rA(∞) < 1. Let tA be any finite value of t
such that l(t) = lA, if such a value exists, or tA = ∞ otherwise. Luby et al. (1993) also showed
that when rA is unknown, the universal strategy that runs A for time limit

1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 1, 1, 2, 4, 8, 1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 1, 1, 2, 4, 8, 16, ...1

can achieve estimated halting time O(lA log(lA)) for any randomized algorithm A. This bound is
optimal among all universal strategies.

Right heavy tails in randomized search. Gomes et al. (2000; 2005) observed randomized search
on SAT and CSP can exhibit right heavy tails, in particular for so-called under-constrained instances,
i.e., the majority of randomized runs on the same instance halt in a relatively short time while a non-
negligible fraction of extremely long runs makes the average running time exponential. Gomes et al.
(2000) formalized the runtime with the Pareto-Lévy form

P (X > x) ∼ Cx−α, x > 0

and showed random restarts can dramatically reduce the runtime variance and potentially eliminate
right heavy tails.

Uncertainty-aware network. There is a line of research on the uncertainty of neural networks
to reduce test error, provide confidence estimate, and improve model-based reinforcement learn-
ing (Huang et al., 2017; Chua et al., 2018; Sedlmeier et al., 2019; Malinin & Gales, 2018). Our
method augments neural networks with Monte Carlo (MC) dropout to introduce randomization to
deterministic search engines (Gal & Ghahramani, 2016). MC dropout enables dropout layers during
testing and the dropout rate can control the amount of randomization. For our experiment, the uncer-
tainty comes from two main sources: (1) the distributional mismatch between the training and test
datasets; (2) noises in the training data since the remaining distances (found by specialized solvers)
are usually not optimal. See Section 3 for more details about data preparation.

3 FORMAL FRAMEWORK

Policy-guided best-first search. Best-first search is an informed search algorithm, which explores
a graph by expanding the most promising node chosen according to an evaluation function f(n)
from the open set (search boundary nodes). f(n) can use both the knowledge acquired so far while
exploring the graph, denoted by g(n), and a heuristic function h(n), which estimates the remaining
distance to the nearest goal state. Starting from the start state, best-first search gradually enlarges

1https://oeis.org/A182105
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the current search graph by consecutively expanding a new node n which minimizes the evaluation
function f(n) and adds n to the closed set (expanded nodes). The search considers duplicate state
detection and merges different nodes with the same state into a single node. Sokoban has unit cost
so that g(n) represents the depth of the node n. The heuristic function h(n) is estimated by a value
network, which is explained in further detail below.

Orseau & Lelis (2021) proposed Policy-guided Heuristic Search (PHS) to further learn a policy
network, which takes a state s as input and outputs a vector of action probabilities pwith components
p(a|s) for each valid action a of s. Specifically, they adapted the evaluation function to

f(n) =
g(n) + h(n)

π(n)
, π(n) = p(s1|s0) · · · p(sm|sm−1),

where (s0, ..., sm) is the sequence of states from the root node to n. Orseau & Lelis (2021) also
proposed PHS*, a variant of PHS, that uses the evaluation function f(n) = g(n)+h(n)

π(n)1+h(n)/g(n) .

Both PHS and PHS* require computing the cumulative product of probability predictions among the
whole path from the root to n. In this paper, we use a new evaluation function which only depends
on the probability prediction of the incoming nodes of n:

f(n) =
g(n) + h(n)

maxx∈incoming nodes of n p(n|x)
.

Experiment data shows using this simpler evaluation function can consistently solve more instances.

Data preparation. The study of the complexity and practical performance of search methods is
greatly hampered by the difficulty in collecting real data. As an alternative, researchers heavily resort
to procedurally generated instances or highly structured problem domains (Taylor & Parberry, 2011;
Guez et al., 2018). The randomly generated instances lack sufficient structure and their underlying
combinatorial search space is, in some sense, too regular.

Table 1: Comparison with previous DRL works on Sokoban

Related works avg width avg height avg size avg boxes
I2As (Racanière et al., 2017) 10 10 100 4
PHS (Orseau & Lelis, 2021) 10 10 100 4
Feng et al. (2020a); Shoham & Elidan (2021) 13 19 247 16
Our setting 12.0 13.6 183.5 20.2

To bridge this gap, we collected all the Sokoban instances from the Sokobano website2, resulting in
10871 instances in total. All these instances were designed by different human authors in the past
few decades, have great variation in the underlying structure, serve as the benchmark for specialized
solvers, and also exhibit practical interest for humans to solve. The dataset is orders of magnitude
larger than the ones used in previous works on DRL and provides a great challenge for deep heuristic
learning. See Table 1 for Sokoban board statistics compared with previous works. Notice that the
difficulty of Sokoban grows exponentially as the number of boxes increases.

To generate supervised training data, we ran Sokolution3, a state-of-the-art Sokoban solver, to com-
pute ground truth plans. Sokolution can solve 8272 out of 10871 total instances given a 10-minute
time limit. We randomly divided the solved 8272 instances into a training set (7435 instances)
and a test set (827 instances). For the remaining unsolved 2609 instances, we randomly sampled
200 instances and reran Sokolution with extended 2-hour time limit to solve. 137 out from 200
instances remain unsolved and we collected these 137 instances as the hard set to further study
the cost distribution of instances that are way harder than the training instances. For each found
plan (s0, a1, s1, ..., an, sn) from the start state s0 to the goal state sn, we generated training tuples
(si, lsi , vsi) with policy label lsi = ai+1 and remaining distance label vsi = n− i as training data.

Feng et al. (2020b) used PUSH as basic actions to achieve the state-of-the-art performance of DRL
for the Sokoban domain. In this work, we use the more elementary action MOVE. A PUSH action

2http://sokobano.de/en/levels.php
3http://codeanalysis.fr/sokoban
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can be divided into two parts: 1) moving to the correct adjacent cell for pushing a box; 2) pushing
a box. As a result, PUSH requires more domain knowledge of Sokoban – the framework needs to
compute all reachable cells from the current player position and decide which boxes are pushable.
The number of valid PUSH actions can grow linearly on the number of boxes. In contrast, MOVE
only consists of four actions (four directions), and way less domain knowledge is required to decide
valid moves for any state. Using MOVE as basic actions will generate plans that are, on average,
3-4 times longer than ones generated with PUSH actions. The majority of instances considered in
this paper have plans containing hundreds or thousands of moves, which provides a great challenge
for AI planning.

Network architecture and training details. For each board state of height H and width W , we
create an input tensor of shape [4 ×H ×W ] with four multi-hot feature maps encoding the player
position, box positions, goal cells, and player reachable cells (ignoring all boxes), respectively.
The policy head outputs a vector of length four representing the probability distribution among four
moving directions. The value head outputs a single scalar representing the logarithm of the estimated
remaining distance. The network consists of multiple convolutional residual blocks and each block
has two extra dropout layers to introduce randomization. See Appendix B for more details.

The parameters θ of the deep neural network are trained with the following loss function:

(p, log(h)) = DNNθ(s), loss = (log(h)− log(vs))
2 − log(pls) + c‖θ‖2,

where c is the weight decay parameter controlling L2 weight regularisation.

4 THE INTERPLAY OF THE POLICY AND VALUE NETWORKS

Table 2: Solver statistics of solved instances on the training and hard datasets (time limit: 10 mins).

Training dataset Hard dataset
expanded time solved nodes per sec expanded time solved

Sokolution 191436 310 s 100% 618 — — 0%
DNN-based A* 13776 370 s 93% 37 18651 537 69%

Table 3: Solving ratio on the test dataset with various evaluation function f(n) of best-first search,
depending on depth d(n) (a.k.a. g(n)), estimated remaining distance h(n), estimated action proba-
bility p(a|s), and cumulative path probability π(n). Columns represent different search budget.

Method f
Number of total node expansions (CPU runtime below)

1K 2K 4K 8K 16K 32K
0.5 m 0.9 m 1.8 m 3.8 m 7.4 m 14.5 m

No Policy
Breadth first d 0.32% 1.28% 1.92% 3.21% 6.73% 11.2%
Greedy h 4.17% 8.01% 12.5% 15.1% 19.2% 19.6%
A* d+ h 5.77% 10.3% 13.5% 19.9% 21.5% 25%
WA* d+ 2.0 · h 6.09% 8.97% 14.7% 17.6% 19.6% 22.8%
With Policy
Pure Policy (ours) 1/p 28.2% 32.1% 36.9% 40.4% 42.9% 44.6%
PHS (d+ h)/π 15.7% 19.9% 23.7% 26.3% 29.2% 31.4%
PHS* (d+ h)/π1+h/d 28.5% 31.4% 38.5% 40.1% 44.9% 46.2%
p + Greedy (ours) h/p 31.7% 32.4% 37.5% 38.8% 41.0% 41.3%
p + A* (ours) (d+ h)/p 32.4% 34.3% 38.8% 43.3% 46.2% 50.0%
p + WA* (ours) (d+ 2.0 · h)/p 31.7% 34.0% 39.4% 42.0% 45.8% 48.1%

Solver statistics. Table 2 above shows solver statistics of Sokolution, a state-of-the-art solver of
Sokoban, and DNN-based A*. We use 8 cores of Xeon 6154 CPUs for profiling both solvers (neural
networks run on the CPU mode for a fair comparison). Because of the cost of evaluating the deep
net search guidance, DNN-based A* expands significantly fewer nodes per second than Sokolution
(about a factor of 17). Nevertheless, given 10 minutes, DNN-based A* can solve 69% hard instances
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that Sokolution cannot solve even given a 2-hour time limit. So, the trained deep net provides much
superior search guidance than the hand-crafted guidance in Sokolution.

Effectiveness of policy and value networks. Table 3 shows experiment results for different
choices of the evaluation function. As shown in the table, the policy heuristic has a significantly
larger impact than the value heuristic. Specifically, the table shows that even the Pure Policy (using
only the 1/p term, i.e., inversely proportional to the policy prediction) significantly boosts perfor-
mance compared to all value heuristics-based search strategies without the policy guidance. (See
the rows above “Pure Policy” in Table 3.) With extra properly added depth and value terms, the
performance of Pure Policy can further increase to obtain our best strategies with Policy + A* and
Policy + Weighted A* (WA*).

Table 4: Dead-end detection accuracy

Train Test Hard
Policy 93% 81% 68%
Value 41% 38% 37%

To further study why the policy network is more effective,
we studied the performance of both networks in detect-
ing dead-end states since dead-ends are one crucial factor
that leads to exponential runtime. In particular, we ran-
domly sampled 2000 board states from each dataset. For
each state, we used Sokolution to detect dead-end suc-
cessor states. The policy/value network is considered to
successfully detect a state if it predicts a higher/lower pol-
icy/value to the child on the ground truth plan than any other dead-end child. Table 4 shows that
the policy network significantly outperforms the value network at detecting dead-ends, and thus can
provide better search guidance.

5 ANALYSIS OF LEFT HEAVY TAILS
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Figure 1: Each subplot shows DNN-based best-first search runtime statistics with MC dropout aug-
mented on Sokoban instances. Each curve represents multiple runs on the same instance (instances
might differ for different curves). We compare the runtime sample mean, optimal sample restart
time tS , expected sample total runtime with restart lS , and expected total runtime of the universal
strategy lSuniv as defined in Paragraph 5.
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Figure 2: Subplots show randomized DNN-based best-first search results for the training, test, and
hard datasets. Each red dot represents a single instance. We perform 200 randomized searches on
each instance with a maximum of 300, 000 node expansions. The X-axis is the average runtime of
all solved runs and the Y-axis is the unsolved percentage. Purple areas represent instances with left
heavy tails while cyan areas represent right heavy tails.
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Sample statistics about the heaviness of tails. Luby’s optimal restart strategy requires the full
knowledge about the runtime distribution rA of a randomized algorithm A. Here we introduce
sample statistics that can approximate the theoretical optimal values. Specifically, for each planning
instance, we perform multiple randomized searches on it with maximum search budget M and
collect a runtime sample S. The runtime of failed searches is recorded asM. We approximate the
optimal sample restart time tS and expected sample total runtime with restart lS as

tS = argmin
u∈S

u · |S|
|{v|v ∈ S and v ≤ u}|

, lS =
tS · |S|

|{v|v ∈ S and v ≤ tS}|
.

Let T = (1, 1, 2, 1, 1, 2, 4...) be the time limit sequence of the universal strategy. To approximate
the expected total runtime lSuniv of the universal strategy on S, let ai be the expected total runtime
of applying (Ti, Ti+1, Ti+2, ...) on S and we have the constraint

ai = Ti +
ai+1 · |S|

|{v|v ∈ S and v > Ti}|
, lSuniv = a1.

We only need to calculate ai until the first i such that Ti ≥M and set the remaining ai to zeros.

Figure 1 shows runtime statistics for different types of tails. Both left and right heavy tails exhibit
orders of magnitude reduction of lS and lSuniv over the runtime sample mean, which demonstrates
the benefit of using random restarts. For exponential tails, the expected sample total runtime with
restart is very close to the sample mean, and the universal strategy even has a negative effect.

To separate the two types of heavy tails, we compared the average runtime of solved instances
v.s. the unsolved percentage as shown in Figure 2. An instance is viewed as a heavy-tailed run if
random restarts can reduce the expected runtime. We add further restrictions that a right/left heavy
tail requires the unsolved ratio to be less/greater than 10%/90%. For experiment budget concerns, we
only plotted 10% randomly sampled instances from the training and test datasets. Figure 2 shows
the training dataset has almost the same number of left and right heavy-tailed instances, with the
majority of instances not showing the heavy-tailed behavior. For the hard dataset, the percentage
of right heavy tails decreases significantly, with more instances shifting to the top side of the figure
and entering the left heavy-tailed area. We hypothesize left heavy tails occur more frequently when
the underlying combinatorial structure becomes harder. Though random restarts can potentially
eliminate heavy tails on both sides, left heavy tails provide further intuitions and implications for
curriculum learning for DRL. In particular, they can benefit from a distributed solving procedure
in which any solution found by one of the processes can be shared and learned by the curriculum
framework (Weng, 2020; Narvekar & Stone, 2018; Narvekar et al., 2020).

Figure 3: Left panel: imbalanced tree model for right heavy tails. Right panel: our proposed model
for left heavy tails. In the left model, p is the constant probability of missing a backdoor. In the right
model, p is the constant probability of picking the right action to the goal.

Abstract search tree model. Chen et al. (2001) proposed an imbalanced tree model to empirically
explain right heavy tails. Here we propose an abstract tree model to empirically characterize left
heavy tails. See Figure 3 for the description for both models.

Search models for planning problems differ from ones for SAT and CSP. For NP domains, the
number of unassigned variables is fixed with O(n) where n is the problem size, and the search can
assign these variables in any order. For planning domains, the search needs to assign actions in order
from the start state to a goal state with potentially maximum exponential length. Our proposed model
hypothesizes the existence of O(log(n)) critical nodes from which a wrong child node selected by
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the search will result in extra exponential search space. As shown in the following results, our model
does not depend on the actual choice of p as long as p is a constant value in range (0, 1).

Theorem 5.1 (The abstract tree model has exponential runtime almost surely). When restrict-
ing plans to polynomial length on the input size n, the probability that the abstract tree model has
exponential runtime converges to 1 as n goes infinite. The proof is deferred to Appendix A.1.

Theorem 5.2 (Restart achieves polynomial expected halting time). The optimal expected halt-
ing time with restart lA and expected halting time using the universal strategy lAuniv are both
O(poly(n)). The proof is deferred to Appendix A.2.

Theorem 5.1 states the runtime of the model is exponential on the input size n almost surely, and
Theorem 5.2 shows that the cost distribution has polynomial estimated runtime with restarts. These
two theorems combined show the occurrence of left heavy tails.

Here is an intuitive explanation of the abstract tree model. For the majority of the nodes on the
plan, the deep neural network either provides an accuracy heuristic to choose the right child node or
makes a small error of preferring a wrong child node. As long as the error is small the search can
recover from it with extra polynomial steps since the evaluation function penalizes deeper nodes.
For the O(log(n)) critical nodes, the error of estimated heuristics is so large that exponential search
is required to jump out from the local search space.

Figure 4: Two typical DNN-based best-first search graphs. We remove graph edges to form a
spanning tree for clearer illustration. The search graph is built from the left to the right. Red dashed
path is the plan leading form the start state to one goal state, while blue circles are critical nodes,
which have exponential sub-search tree underneath without a near goal state.

Structure of real search graphs. To empirically examine our abstract model, we plotted two
typical search graphs generated by DNN-based best-first search as shown in Figure 4. We found
that the majority of nodes actually do not incur search. Networks’ heuristics either directly lead
the search to the correct child node, or only a very small wrong sub-tree (less than 5 nodes) is
explored. Critical nodes (labeled as blue circles) are extremely rare in the search graph. However,
when encountering such critical nodes, the search explores a large sub-tree with no near goal.

Whether AI planning systems can find a macro action routine, i.e., a sequence of algorithmic
actions to perform a sub-goal, has a great interest for researchers. To make a long plan, e.g.,
prove a hard mathematical theorem, humans usually only make some critical choices of lemmas
and schemes, and fill the remaining parts of the proof with little reasoning. Indeed, the number
of required crucial intermediate lemmas to prove a mathematical theorem is quite small, even for
challenging open problems. However, extensive and profound reasoning, search, and enumeration
are needed to find such lemmas. The small number of critical lemmas compared with the long proof
length reflects the prototype of such search graphs. In our experiment setting, we use MOVE as
basic actions. To perform a real PUSH, the search algorithm needs to compute all reachable cells
from the player’s position and calculate the shortest path to the cell adjacent to the box to push. Such
a long sequence of moves before performing an actual push can be viewed as a routine. As shown
in Figure 4, the algorithm can perform a long chain of moves with little local search, which might
suggest that macro action routines are implicitly learned as a part of neural networks’ heuristics.

Relation to backdoors. The proposed model has a close relation to backdoors to typical case com-
plexity. To explain why solvers scale so well in areas such as planning and finite model-checking,
Williams et al. (2003) examined various benchmarks and identified that for most practically solv-
able problem instances, after assigning values to logarithmic variables, the remaining problem in-
stance quickly becomes polynomially solvable by propagating constraints. This result illuminates
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the prototypical patterns of the structure causing the empirical behavior observed in the International
Planning Competitions benchmarks (Vallati et al., 2015; Cohen & Beck, 2018; Meier et al., 2014).
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Figure 5: (a) The total number of sub-trees of 300 randomly sampled instances v.s. the tree size (in
log-log scale). (b) Unsolved fraction of instances with or without restarts. Given a fixed amount
of search budget (number of nodes allowed to expand), n-restart means to evenly divide the search
budget into n individual runs and union their solved instance sets as the final result.

More experiment data about the abstract tree model. To better illustrate the occurrence prob-
ability of different sizes of sub-search space, we randomly sampled 300 solved instances from the
test dataset and counted the number of dead sub-trees (no near goal exists) for each size. As shown
in Figure 5a, as the size of sub-trees grows exponentially, the number of sub-trees also decreases
exponentially fast. The experiment data empirically confirms our abstract tree model that critical
nodes which incur extra exponential search space have logarithmic occurrence. This is evidence
about how left heavy tails occur in practical planning solving.

Hoffmann et al. (2006) explained SATPLAN, classical planning as SAT, with backdoor models. In
particular, after finding and assigning logarithmic variables, the remaining problem solving becomes
polynomial. In contrast, finding these critical nodes is not necessary for expand-style search algo-
rithms. Left heavy tails are not only caused by the underlying structure of practical instances but
also affected by the mysterious generalization ability of neural networks. It is an interesting fu-
ture research direction to understand the surprising scaling performance of various heuristics, from
conflict-driven clause learning for SAT solving to DNN-based search methods.

Solving more instances with random restarts. The theory of heavy-tailed cost distribution sug-
gests that a sequence of short runs instead of a single long run may make better use of a fixed amount
of computational budget. We explored this idea by considering a fixed number of total expanded
nodes allowed for the search. Figure 5b shows the probability of not solving the instances for the test
dataset. The failure rate of a single run drops the fastest for a small amount of computational budget.
With more total expanded nodes, random restarts gradually achieve better performance. Specifically,
to solve more instances, the solver needs to increase the total number of compute cycles. When do-
ing so, the figure shows there comes a point where more frequent restarts are more effective. For
example, with a budget of around 2,000 nodes, the strategy with 2 restarts becomes more effective
than no restarts. At around 5,000 nodes, 5-restart becomes more effective than 2-restart. So, to solve
a larger fraction of hard instances, more frequent restarts become more effective.

6 CONCLUSION

We studied the use of policy (action selection) and value (remaining distance estimate) functions
as well as randomization methods for solving hard planning instances using best-first search. Our
experiments show the remarkable effectiveness of the policy network and random restarts for the
search. The value network provides additional global search guidance.

We show that uncertainty-aware networks provide an effective way to introduce randomization into
the search process leading to increased efficiency. Our runtime distribution results show heavy-tailed
distributions with tails on both the left and right-hand sides. Left heavy tails have not been observed
in combinatorial search before. We also introduce an abstract computational model that explains
left heavy tails. Finally, we show how random restarts can improve the overall search effectiveness.
With larger search budgets, restarts are increasingly effective.
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A THE IMBALANCED TREE MODEL PROOFS

A.1 PROOF OF THEOREM 5.1

Lemma A.1 The abstract tree mode has polynomial runtime if and only if all critical nodes pick the
right child.

Proof of Lemma A.1. Necessity comes from the structure of the model and any picking of left child
will immediately result in exponential search space. For sufficiency, by the assumption, the depth of
the tree model is bounded by O(poly(n)), and the final sub-search space with all right child picking
is also O(poly(n)). Then we have the total runtime is O(poly(n)) + O(poly(n)) = O(poly(n)).
Q.E.D.

Proof of Theorem 5.1. By Lemma A.1, we have

lim
n→∞

Pr(model has poly runtime) = lim
n→∞

pΘ(log(poly(n)))

≤ lim
n→∞

pC·log(poly(n)) (for some constant C)

= 0 (0 < p < 1 as assumption).

As a conclusion, limn→∞ Pr(tree mode has exponential runtime) = 1. Q.E.D.

A.2 PROOF OF THEOREM 5.2

Proof. We can assume there exists at least one non-critical node on the plan (if all tree nodes are
critical, we can augment an extra non-critical node to the right child of the deepest critical node
without affect other properties of the tree model). Let u be the shallowest non-critical node and d be
the depth of node u. We set the restart time tA to be the size of the left sub-tree of d. tA is poly(n)
by the definition of the model. Let q = pd(1− p). So the expected runtime

lim
n→∞

lA = lim
n→∞

(d+O(poly(n)))
∞∑
k=0

q · (1− q)k · (k + 1)

= lim
n→∞

(d+O(poly(n))) · 1
q

= O(poly(n)).

By the result of Luby et al. (1993), lAuniv = O(lA log(lA)) = O(poly(n)). Q.E.D.

B NETWORK ARCHITECTURE AND TRAINING DETAILS

B.1 NETWORK ARCHITECTURE

A single input tensor of board states has shape [4 × H ×W ] and a batch of board states can have
different heights and widths. For each batch, we take the maximum H and W of all state tensors as
the batch height and width, and zero-pad the empty cells.

The network consists of a single convolution block followed by 16 residual blocks.

The convolutional block applies the following modules:

1. A convolution of 128 filters of kernel size 3× 3 with stride 1

2. 2D batch normalization (Ioffe & Szegedy, 2015)
3. A ReLU nonlinearity

Each residual block applies the following modules sequentially to its input:

1. A channel-wise dropout layer with probability 30% of a channel to be zeroed.
2. A convolution of 128 filters of kernel size 3× 3 with stride 1
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3. 2D batch normalization
4. A Relu nonlinearity
5. A channel-wise dropout layer with probability 30% of a channel to be zeroed.
6. A convolution of 128 filters of kernel size 3× 3 with stride 1

7. 2D batch normalization
8. A skip connection that adds the input to the block
9. A Relu nonlinearity

The output of the residual tower is then fed into two independent heads for computing the policy and
value. Both heads contain an extra residual block followed by a fully connected layer. The policy
head outputs a vector of size 4 and the value head outputs a single scalar.

B.2 TRAINING DETAILS

We use the AdamW optimizer (Loshchilov & Hutter, 2017) with weight decay 0.01 and an initial
learning rate 0.001. We train the network with supervised training data for 200 epochs. The last 50
epochs use a learning rate of 0.0001. We set batch-size to 256. The whole training procedure took
around 70 hours to finish on 5 Tesla V100 GPU cards.
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