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Abstract

Groundbreaking research from initiatives such as ChatGPT and Sora underscores1

the crucial role of large-scale data in advancing generative and comprehension tasks.2

However, the scarcity of comprehensive and large-scale audio-visual correspon-3

dence datasets poses a significant challenge to research in the audio-visual fields.4

To address this gap, we introduce AVSET-10M, a audio-visual high-corresponding5

dataset comprising 10 million samples, featuring the following key attributes:6

(1) High Audio-Visual Correspondence: Through meticulous sample filtering,7

we ensure robust correspondence between the audio and visual components of8

each entry. (2) Comprehensive Categories: Encompassing 527 unique audio9

categories, AVSET-10M offers the most extensive range of audio categories avail-10

able. (3) Large Scale: With 10 million samples, AVSET-10M is the largest11

publicly available audio-visual corresponding dataset. We have benchmarked12

two critical tasks on AVSET-10M: audio-video retrieval and vision-queried sound13

separation. These tasks highlight the essential role of precise audio-visual corre-14

spondence in advancing audio-visual research. For more information, please visit15

https://avset-10m.github.io/.16

1 Introduction17

Scaling up significantly enhances performance in understanding [37, 4, 26] and generation [20, 19, 42]18

tasks across visual and language modalities. Inspired by the success of ImageNet [9] in visual research,19

some introduce the pioneering large-scale audio dataset, AudioSet [12], which comprises 2.1 million20

audio samples each manually annotated with fine-grained audio categories to advance automatic audio21

understanding. However, the annotation process in AudioSet primarily focuses on only audio labels,22

neglecting the audio-visual correspondence. To address the need for exploring temporal consistency23

between audio and video, researchers develop the VGGSound [6], which includes 200,000 samples24

with audio-visual correspondence. Leveraging this dataset, significant breakthroughs have been25

achieved in the audio-visual domain, including vision-queried sound separation [10] and vision-based26

audio synthesis [14, 43].27

Meanwhile, the scale of vision-language datasets [35, 29, 44, 32, 40] has expanded dramatically,28

encompassing up to 100 million or even 1 billion samples. This expansion has facilitated a qualita-29

tive leap in understanding [37, 26] and generation [20] tasks within the vision and language fields,30
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Table 1: Comparison of different audio-video datasets. AV-C denotes the audio-visual correspondence.
# Class: Number of audio categories. ACAV-100M† does not filter out the voiceover.

Datasets Video AV-C #Class #Clips #Dur.(hrs) #Avg Dur.(s)
DCASE2017 [28] ✗ ✗ 17 57K 89 3.9
FSD [11] ✗ ✗ 398 24K 119 17.4
AudioSet [12] ✔ ✗ 527 2.1M 5.8K 10
AudioScope-V2 [39] ✔ ✗ - 4.9M 1.6K 5
ACAV100M[22]† ✔ ✗ - 100M 277.7K 10
HD-VILA-100M [44] ✔ ✗ - 103M 371.5K 13.4
Panda-70M [8] ✔ ✗ - 70.8M 166.8K 8.5

AVE [36] ✔ ✔ 28 4K 11 10
VGGSound [6] ✔ ✔ 309 200K 550 10
AVSET-700K (ours) ✔ ✔ 527 728K 2.0K 10
AVSET-10M (ours) ✔ ✔ 527 10.9M 30.4K 10.3

enabling the development of intelligent large language models [37] and video generation technolo-31

gies [5] that simulate real-world scenarios. In contrast, the scale of datasets that ensure audio-visual32

correspondence remains markedly limited, posing a constraint on advancements in audio-visual field.33

To further expand the audio-visual corresponding dataset and promote research on audio-visual34

temporal consistency, we propose AVSET-10M, the first 10 million scale audio-visual corresponding35

dataset, along with AVSET-700K, a subset containing fine-grained audio annotations. In Table 1, we36

present a comparison among various existing audio and audio-visual datasets. Our dataset construction37

process includes four stages: (1) Data collection, (2) Audio-visual correspondence filtering, (3) Voice-38

over filtering, and (4) Sample recycling with sound separation. We select AudioSet [12], known for39

its fine-grained manual labeling of audio categories, as our initial data source and develop AVSET-40

700K with accurate audio labels. To increase the number of samples per audio category, we choose41

Panda-70M [8] as an additional data source, expanding AVSET-700K to 10 million audio-visual42

corresponding samples. Panda-70M processes long videos into multiple semantically coherent43

sub-segments, effectively preventing the mixing of sounds from different events. Previous filtering44

method [6] using visual classification models struggles to distinguish abstract sounds without fixed45

visual content, such as silence, thereby limiting the diversity of audio categories. To address this46

issue, we introduce a new filtering method based on audio-visual similarity [13], which significantly47

broadens the diversity of audio types. We employ an audio classification model [21] to filter out48

samples containing narration or background music that does not align with the visual content. As49

speech is commonly found in wild video data, which often results in the inadvertent filtering out of a50

substantial amount of audio samples containing voice-overs. This leads to the loss of many potentially51

useful and valuable samples across various audio categories. Thus, we further attempt to employ52

sound separation models [33] to recycle as many of these wasted samples as possible. From the initial53

41 million samples, we filter 10 million audio-visual samples with high correspondence. Verification54

experiments demonstrate that our AVSET-700K provides more robust audio-visual correspondence55

than the previously used audio-visual corresponding dataset (VGGSound). Additionally, benchmarks56

of audio-video retrieval and vision-queried sound separation on AVSET-10M demonstrate it offers57

more research opportunities in the field of audiovisual studies.58

2 Related Works59

2.1 Audio-Visual Models60

As multi-modal research progresses, the investigation [24, 31, 17] into the correlations between audio61

and visual modalities has advanced. Initially, researchers employ both audio and video data to provide62

semantically richer information, thereby improving video understanding and significantly enhancing63

performance in various video understanding tasks such as video question answering (VQA) [24, 2],64

2



video captioning [31, 15, 16, 25], and video retrieval [23, 17, 3]. Following these developments,65

ImageBind [13] emerges as a pioneering project that successfully aligns audio and visual content,66

marking a significant step in exploring semantic alignment between these modalities. Building on this67

foundation, subsequent research has delved into more intricate interactions between audio and video,68

achieving milestones in vision-queried sound separation [10] and video dubbing [14]. However,69

while these methods have managed to align audio and visual content semantically, they often falter in70

maintaining temporal consistency. Recent innovations [27] have introduced audio-visual temporal71

consistency supervision loss to enhance the temporal alignment in video dubbing.72

Despite these advancements, the limited availability of training data continues to pose a significant73

challenge, keeping the development of audio-visual temporal consistency at a rudimentary level. As74

a result, the understanding of visual content remains largely confined to the semantic level, which75

hampers the ability of models to accurately capture the audio-visual temporal consistency.76

2.2 Audio-Video Dataset77

Inspired by ImageNet [9], researchers [12] annotate a substantial audio dataset, consisting of 2.178

million audio samples, aimed at enhancing automatic audio comprehension. Although annotators79

are encouraged to consult video content to refine the accuracy of audio annotations, the dataset80

primarily focuses on precise audio annotations without additional measures to filter out audio-visual81

non-corresponding samples. This limits the exploration of audio-video consistency.82

To investigate the audio-visual consistency, researchers [6] employ a visual model [30] to identify83

sound-producing objects in videos, resulting in the creation of VGGSound, a dataset comprising84

200,000 audio-visual corresponding samples. However, this visual model proves effective only in85

scenes characterized by definite actions or visible objects. It struggles to handle abstract audio scenes86

such as silence and urban outdoors, even though there is indeed a correlation between these abstract87

audio and the visual content. This constraint limits the diversity of audio categories represented88

in VGGSound. To further scale up audio-visual datasets, ACAV100M [22] employs a clustering-89

based approach to filter data. However, it does not filter out voice-overs, resulting in the audio-visual90

correspondence of the final dataset being even worse than that of AudioSet. AudioScope V1/2 [38, 39]91

uses an unsupervised audio-video consistency prediction model to evaluate the audio-video matching92

score and screens 2,500 hours of video samples from YFCC100M [35]. Nevertheless, due to the93

limitations in prediction accuracy, the consistency between audio and video cannot be guaranteed,94

and there is still a significant amount of inconsistent audio-visual content in the dataset.95

Although subsequent research introduces larger video datasets [44, 40, 7, 8], the primary focus remains96

on exploring the relationship between video and text, overlooking the audio-visual correspondence.97

To the best of our knowledge, our AVSET-10M represents the largest open audio-visual high-98

correspondence dataset currently available, containing 10 million data samples across 527 different99

audio categories. This dataset opens up more opportunities for research in the audio-video field.100

3 AVSET-10M101

3.1 Dataset Construction Pipeline102

Stage 1: Data Collection. We select two different open-source datasets, AudioSet [12] and Panda-103

70M [8], as data sources. All videos are sourced from open-domain YouTube content. Since104

these datasets do not focus on audio-visual correspondence, they contain a substantial number of105

mismatched audio-visual samples. We utilize a sophisticated filtering process to select samples with106

high audio-visual correspondence, thereby constructing AVSET-10M.107

AudioSet [12] is a pioneering large-scale audio dataset where all audio category labels are carefully108

annotated by human annotators. During the annotation process, annotators are allowed to view the109

accompanying videos, which aids in accurate audio category identification. This dataset includes110

2.1 million audio samples across 527 unique audio categories. From AudioSet, we select 727,530111
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Figure 1: The distribution of audio-visual similarity among audio-visual corresponding samples,
audio-visual non-corresponding samples and randomly selected wild samples. The similarity of
non-corresponding data follows the distribution Nnon−corresponding(0.015, 0.081

2). Approximately
65% of the randomly selected wild samples and 18% of the audio-visual corresponding samples
exhibit similarities below the µ+3σ (0.2564) threshold of Nnon−corresponding , suggesting a potential
for these samples to be classified as audio-visual non-corresponding.

samples that demonstrate high audio-visual correspondence with reliable audio category labels to112

form AVSET-700K.113

Additionally, to further expand the number of samples in each audio class, we select Panda-70M [8],114

a large-scale video-text dataset containing 70 million semantically consistent segments. It employs115

shot boundary detection technology [1] to divide the original videos into smaller semantically116

consistent segments. This segmentation ensures that each clip contains only a single event, preventing117

sound category conversion due to event switching and facilitating the subsequent filtering process.118

Leveraging Panda-70M, we expand AVSET-700K to a total of 10 million audio-visual corresponding119

samples, thus forming AVSET-10M.120

Stage 2: Audio-Visual Correspondence Filtering. Previous researchers [6] compute the cosine121

similarity between textual class label and visual content to gauge alignment confidence between122

vision and language. They subsequently filter video samples for each class label using a manually123

selected threshold. However, this method is effective only in scenes featuring definite actions or124

visual objects. It struggles with abstract concepts, such as silence and urban outdoor scenes, even125

though these audios have specific associations with visual content. This consequently restricts the126

diversity of audio categories available in the dataset. We propose determining the confidence of127

audio-visual correspondence based on audio-visual similarity. This approach enables the screening of128

abstract audio samples and enhances the diversity of samples in the dataset.129

Specifically, we randomly select 7,500 audio-visual corresponding samples Dcorresponding from the130

VGGSound dataset, and 7,500 wild data samples Drandom from the Panda-70M dataset. Addition-131

ally, we randomly construct 70,000 audio-visual non-corresponding samples Dnon−corresponding132

based on VGGSound. We employ Imagebind [13] to extract and calculate the cosine similarity133

between the average representation of 8 random video frames and the audio representation. The134

similarity distribution curves of different sample sets are depicted in Figure 1. The audio-visual135

non-corresponding samples exhibit a normal distribution Nnon−corresponding(0.015, 0.081
2), while136

random wild samples follow the distribution Nrandom(0.211, 0.1162). In contrast, the audio-visual137

corresponding samples exhibit a left-skewed distribution with a higher concentration of similar138

instances. When the similarity of samples exceeds the µ+ 3σ (0.2564) threshold of the audio-visual139

non-corresponding distribution Nnon−corresponding , they are considered audio-visual corresponding.140

Notably, only 35% of the randomly selected wild data samples exhibit similarities exceeding the141

µ+ 3σ (0.2564) threshold of the distribution Nnon−corresponding.142
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Figure 2: Comparison of the sample numbers for each audio category across AVSET-10M, AVSET-
700K, and VGGSound datasets. Classification is carried out based on the secondary audio labels
in AudioSet 3. We pseudo-label each sample from Panda-70M using PANNs [21], while labels on
VGGSound are manually aligned with AudioSet.

Stage 3: Voice-Over Filtering. While the aforementioned filtering method effectively identifies non-143

corresponding samples based on audio-visual similarities, it fails to account for samples containing144

background music and voice-overs. These off-screen sounds, largely irrelevant to the visual content,145

can disrupt the intended audio-visual correspondence. To address this issue, we utilize the audio146

classification network PANNs [21] to label each audio clip, specifically targeting and filtering out147

these voice-overs. Following the classification scheme used in AudioSet, we annotate each audio clip148

with seven primary audio categories and their respective sub-categories. Since speech and music are149

likely added during post-production, we specifically filter out samples that contain these elements150

along with other types of sounds. Other audio categories, such as the sounds of waterfalls and dog151

barking, typically originate from the original video. When these original video sounds co-occur152

with speech or music, it often indicates a high likelihood of off-screen voice interference. It is153

crucial to note that various instrumental sounds fall under the music category; thus, videos featuring154

instrumental performances are not excluded but are instead appropriately retained. Mirroring the155

approach in VGGSound [6], our filtering process aims to eliminate false positive samples—those with156

inappropriate sounds for each category. We refrain from using an audio classifier to select positive157

samples, as this may overlook some hard-to-classify yet criteria-meeting hard-positive audio samples.158

Stage 4: Sample Recycling with Sound Separation. Speech is frequently encountered in wild159

video data, often leading to the inadvertent filtering out of a substantial amount of non-speech audio160

that includes voice-overs. This results in the loss of many potentially useful and valuable samples161

across various audio categories. Inspired by recent advancements in audio research [18], we have162

implemented a sound separation model4 [33] that is specifically designed to isolate sounds that are163

neither speech nor music from audio mixes contaminated with voice-over noise. The outputs from164

this sound separation process are subsequently returned to Stage 2 to verify the correspondence165

between the newly isolated audio and the video.166

3.2 Data Analysis167

We perform comprehensive statistical analyses on the AVSET-10M and AVSET-700K datasets to168

gain detailed insights. For further information about these datasets, please refer to Appendix B.169

Diverse Categories, Abundant Samples. Figure 2 presents a comparative analysis of the number of170

audio categories in AVSET-10M, AVSET-700K, and VGGSound. To ensure consistency in audio171

3https://research.google.com/audioset/ontology/index.html
4https://github.com/ZFTurbo/MVSEP-CDX23-Cinematic-Sound-Demixing
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Table 2: Comparison of sample numbers after each stage. Due to partial video corruption, we could
only download part of the original dataset. † The numbers here represent the video clips we collected.
AVSET-10M (w/o. AVSET-700K) represents samples filtered from Panda-70M.

Stage Goal AVSET-700K AVSET-10M (w/o. AVSET-700K)
#Num of Clips Proportion #Num of Clips Proportion

S1 Candidate Videos† 1,445,360 100.0% 39,295,551 100.0%
S2 AV-C Filtering 898,366 62.2% 13,824,726 35.2%
S3 Voiceover Filtering 608,062 42.1% 7,124,923 18.1%
S4 Sample Recycling 727,530 50.3% 9,877,475 25.1%

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48
Duration(s)

0
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Figure 3: Histogram of Clip Length Distribution in AVSET-10M (w/o. AVSET-700K).

category labels across different datasets, we employ the PANNs [21] audio classification network172

trained on AudioSet to label all samples in AVSET-10M. Subsequently, we manually align the173

labels in VGGSound with those in AudioSet and standardized the audio labels across all three174

datasets as secondary labels. It is evident that AVSET-10M and AVSET-700K encompass a broader175

range of audio types compared to VGGSound, including categories such as silence, liquid, and176

glass. Furthermore, AVSET-10M significantly outperforms AVSET-700K and VGGSound in most177

categories, offering a greater number of audio samples for each audio category.178

Duration Statistics. The samples filtered from Panda-70M include clips of varying lengths. As179

illustrated in Figure 3, we present the statistics for different clip lengths in AVSET-10M (excluding180

AVSET-700K). The total duration of AVSET-10M amounts to 30,418.6 hours, with an average clip181

length of 10.32 seconds. The longest clip spans 49 seconds, while the shortest measures 2 seconds.182

Notably, clips exceeding 10 seconds constitute 19,142.66 hours, representing 62.9% of total duration.183

The Number of Video Samples after Each Filtering Stage. In Table 2, we detail the quantity of184

samples retained at each filtering stage for AVSET-700K and AVSET-10M (excluding AVSET-700K).185

Initially, in stage S2 for AVSET-10M (excluding AVSET-700K), we filter out 64.8% of video samples186

due to lack of audio-visual correspondence. In the subsequent S3 stage, 17.1% of the data containing187

voice-overs is removed. Further, in stage S4, an additional 8.0% of samples with voice-overs is188

refined through sound separation and subsequently recycled into the final audio-visual corresponding189

dataset. It is noteworthy that AudioSet undergoes a meticulous screening process by researchers,190

which results in a higher retention rate of data in the initial stage. AVSET-700K eliminates only191

37.8% of data in its S2 stage.192

3.3 Dataset Verification193

We employ a distinct audio-visual representation learning model [41] different from the one used194

during the sample filtering phase to assess the reliability of our proposed sample filtering process.195

Specifically, we randomly sample data from four different audio-visual sources for validation: (1)196

audio-visual corresponding data from VGGSound, (2) audio-visual non-corresponding data created197

by randomly combining audio and video within VGGSound, (3) wild data randomly sampled from198

AudioSet, and (4) data from AVSET-700K obtained after the comprehensive filtering process. As199
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Figure 4: The distribution of audio-video cosine similarity of pre-trained model InternVL†
IB++(Ver.)

[41] was evaluated on different sample sets: (1) the audio-visual ccorresponding samples from
VGGSound, (2) the randomly combined audio-visual non- corresponding samples from VGGSound,
(3) the wild samples from AudioSet, and (4) the AVSET-700K sample set filtered with complete
dataset processing. Notably, only 11% of the samples in AVSET-700K fall below the µ+3σ threshold
of non-corresponding distribution Nnon−corresponding.

depicted in Figure 4, we present the distributions of audio-visual similarity for these four sources.200

The mean and standard deviation of these similarities for each data source are detailed in Table 3.201

Table 3: The mean and standard deviation (Std.) of
audio-visual similarity among different sample sets.

Sample Sets Mean Std.

Non-Corresponding (Random) 0.015 0.072
Wild Data (AudioSet) 0.258 0.086
Corresponding (VGGSound) 0.302 0.083
AVSET-700K (ours) 0.303 0.058

AVSET-700K vs. AudioSet. It is evident202

that after data filtering, the audio-visual corre-203

spondence within the dataset is significantly204

enhanced compared to the wild data. The av-205

erage cosine similarity of the AVSET-700K206

data increases from 0.258 to 0.303, while the207

standard deviation decreases from 0.086 to208

0.058. Within the range (µ− 3σ, µ+ 3σ) of209

the normal distribution N ′
non-corresponding210

of non-corresponding data, the proportion of211

potential non-corresponding samples is reduced from 35% to 11%. This improvement demonstrates212

that our sample filtering method effectively enhances the audio-visual correspondence in the dataset.213

AVSET-700K vs. VGGSound. As an audio-visual corresponding dataset, VGGSound contains a214

large number of samples with high audio-visual similarity. However, a substantial portion of the215

data exhibits low similarity, with 19% of VGGSound samples falling below the µ + 3σ = 0.231216

threshold of the distribution N ′
non-corresponding. In contrast, only about 11% of the samples in217

AVSET-700K have an audio-visual similarity below 0.231, indicating that AVSET-700K contains218

more samples with high audio-visual correspondence. Additionally, AVSET-700K features a smaller219

standard deviation and fewer samples exhibiting extremely low similarity, demonstrating that our220

sample filtering process effectively enhances the robustness of audio-visual correspondence.221

4 Experiment222

We benchmark two audio-visual tasks to explore the audio-visual correspondence: (1) Audio-Video223

Retrieval and (2) Vision-Queried Sound. In audio-video retrieval task, we experiment with AVSET-224

10M and focus on the data scale and the audio-visual temporally consistency. As for Vision-Queried225

Sound Separation, we mainly focus on the impact of each filtering stage, and work on the AVSET-226

700K which is of a similar scale to AudioSet. Specifically, we employ Imagebind [13] to extract the227

average features of 1 frame per second in the video as image features I and InternVid [40] to extract228

the features of the entire video as video features V. Please refer to Appendix A for additional details229

regarding the experiments.230

4.1 Audio-Video Retrieval231

For the audio-video retrieval task, we validate on two audio-visual corresponding datasets, AVE [36]232

and VGGSound [6], and compare the Recall@1 (R@1) and Recall@5 (R@5) from vision to audio.233

For the image+video (I+V) modality, we apply feature weighting similar to [41], with the mixed234
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Table 4: Comparison between the image-based method and the image+video based method on the
task of visual to audio retrieval. The similarity on the diagonal should be the highest in each column.
The correct results are highlighted in green, and the incorrect results are highlighted in red.

(a) Sample1 = {I1,V1,A1} (b) Sample3 = {I3,V3,A3}

(c) Sample2 = {I2,V2,A2} (d) Sample4 = {I4,V4,A4}

(e) Similarity between Sample1 and Sample2.

I/V to A I1 I2 I1+V1 I2+V2

A1 0.349 0.446 0.351 0.399
A2 0.300 0.409 0.332 0.407

(f) Similarity between Sample3 and Sample4.

I/V to A I3 I4 I3+V3 I4+V4

A3 0.373 0.416 0.388 0.304
A4 0.402 0.457 0.357 0.359

Table 5: Comparison of vision to audio retrieval performance using different methods on ASE and
VGGSound. M denotes the visual features used during retrieval.

AVE VGGSound
#ID M Training Schedule R@1 R@5 R@1 R@5
R1 I AudioSet 18.00 40.11 11.74 28.52
R2 I AVSET-700K 19.10 42.92 13.90 31.68
R3 I AVSET-10M → AVSET-700K 19.11 43.05 13.91 31.94
R4 I+V AVSET-700K 20.55 44.21 14.47 33.62
R5 I+V AVSET-10M → AVSET-700K 20.78 44.47 14.93 34.03

feature fI+V calculated as fI+V = 0.9fI + 0.1fV . In all the audio-video retrieval experiments235

conducted for this paper, we train a separate linear layer for each modality to align representations236

across different modalities, using a batch size of 1024.237

AudioSet vs. AVSET-10M. AudioSet contains a significant number of audio-visual samples that238

do not correspond, adversely affecting audio-video alignment. By employing our filtered dataset,239

AVSET-700, we enhance cross-modal alignment capabilities, achieving a 3.16% improvement in240

VGGSound R@5 performance from R1 to R3 in Table 5. Furthermore, expanding the dataset to 10241

million (R5) entries boosts the model performance on AVE R@5 by an additional 0.26%.242

Based on Image vs. Based on Image+Video. Previous models, which rely solely on image features243

to retrieve audio clips that semantically match the image, lake the capability to evaluate audio-visual244

temporal consistency. As shown in Table 5, by leveraging both image and video features, the R@5245

performance on VGGSound improved by 2.09% from R3 to R5, emphasizing the importance of246

audio-visual temporal consistency.247

Qualitative Analysis. Table 4 presents several qualitative results of audio-video retrieval, under-248

scoring the importance of temporal consistency for effective audio-video retrieval. For example, the249
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Table 6: Comparison of sound separation performance among various methods on VGGSound. M
stands for the query modality of sound separation.

VGGSound
#ID M Training Schedule SDR↑ SIR↑
Baseline
E1 I VGGSound 5.606±0.102 8.074±0.161
E2 V VGGSound 6.211±0.105 8.584±0.160
Zero-Shot
E3 V AudioSet 5.004±0.103 6.781±0.164
E4 V AudioSet (w. AV-Correspondence Filtering) 5.646±0.101 7.682±0.162
E5 V AVSET-700K 5.774±0.103 7.802±0.161
Pretraining + Finetune
E6 V AudioSet (w. AV-Correspondence Filtering)→VGGSound 6.548±0.103 9.251±0.158
E7 V AVSET-700K→VGGSound 6.666±0.102 9.377±0.158

image-based method could only deduce that engine roar should be present in the audio based on the250

image of a sports car, but it fails to determine when the sound should cease, leading to unsuccessful251

audio-video pairing. In contrast, when both image and video features are considered, the similarity252

between mismatched sample pairs 1 and 2 is reduced from 0.446 to 0.399, thereby achieving correct253

audio-video pairing.254

4.2 Vision-Queried Sound Separation255

As shown in Table 6, we present the performance of vision-queried sound separation based on256

different modalities across various datasets. We utilize the framework of CLIPSep [10] to implement257

sound separation models across various modalities.258

Image-Queried vs. Video-Queried. Compared to the sound separation model based on image259

queries (E1), the model utilizing video queries (E2) demonstrates superior performance, with the260

Signal-to-Distortion Ratio (SDR) improving by 0.605. This enhancement highlights the importance261

of audio-visual temporal consistency within the audio-visual research.262

Corresponding vs. Non-Corresponding. Audio-visual correspondence is critical for effective263

sound separation. Models trained on the non-corresponding AudioSet (E3) encounter difficulties in264

achieving accurate separation and fail to capture proper audio-visual alignment. After implementing265

audio-visual correspondence filtering (E4), the dataset shows a marked improvement in audio-visual266

correspondence, as evidenced by a 0.642 increase in the Signal-to-Distortion Ratio (SDR). Despite267

this advancement, the presence of voice-over content continues to challenge the alignment between268

audio and visual modalities. Following a comprehensive filtering process, the model (E5) trained269

on AVSET-700K exhibits exceptional zero-shot sound separation capabilities, achieving an SDR of270

5.774. This significant enhancement underscores the effectiveness of our proposed filtering process.271

5 Conclusion272

Audio-visual correspondence datasets are vital for research in the audio-video field. Using a sophisti-273

cated sample filtering process with AudioSet and Panda-70M as sources, we develop AVSET-10M,274

the first open, large-scale dataset with high audio-visual correspondence, featuring ten million audio-275

visual corresponding samples across 527 audio categories. Verification experiments demonstrate276

that AVSET-10M surpasses previous datasets in terms of audio-visual correspondence. We also277

benchmark audio-video retrieval and vision-guided sound separation tasks, demonstrating the critical278

role of audio-video temporal consistency in this field. Our AVSET-10M provides greater opportunities279

for advancement in this field.280
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A Implementation Details422

A.1 Sound Separation423

Same as the experimental setting of [10], for all audio samples, we conduct experiments on samples424

of length 65535 (approximately 4 seconds) at a sampling rate of 16 kHz. For spectrum computation,425

we employ a short-time Fourier transform (STFT) with a filter length of 1024, a hop length of 256,426

and a window size of 1024. All images are resized to 224× 224 pixels. All models are trained with a427

batch size of 128, using the Adam optimizer with parameters β1 = 0.9, β2 = 0.999, and ϵ = 10−8,428

for 200,000 steps. Additionally, we employ warm-up and gradient clipping strategies, following [10].429

We compute the signal-to-distortion ratio (SDR) using museval [34]. All experiments are conducted430

on a single A800 GPU.431

A.2 Audio-Video Retrieval432

Same as the experimental setting of [41], for all experiments, the softmax temperature is set to 0.01,433

and the temperature for the InfoNCE loss is set to 0.02. We utilize the Adam optimizer with a learning434

rate of 1× 10−3 and a batch size of 2048, running the training process for 20 epochs.435

B AVSET-10M436

B.1 Samples of AVSET-10M437

We present some audio-video consistency samples from the AVSET-10M in Figure 5. For additional438

samples, please visit the demo page at https://avset-10M.github.io.439

B.2 Dataset Composition440

We release AVSET-10M as the following two subsets:441

• AVSET-700K: This subset comprises 727,530 audio-visual corresponding samples filtered from442

AudioSet. Each video segment in this subset is accompanied by a manually labeled audio category,443

ensuring accurate categorization and relevance.444

• AVSET-10M (w/o. AVSET-700K): This subset comprises 10,234,280 audio-visual corresponding445

samples, filtered from the Panda-70M dataset. Each video segment is semantically coherent,446

focusing on a single event, and includes a text description originally from the Panda70M dataset.447

Additionally, we provide pseudo-labels for the audio categories, derived with PANNs [21], along448

with their corresponding confidence scores. Researchers can use these pseudo-labels to freely449

partition the dataset.450

We provide comprehensive meta-information for each video clip, including the URL of the video,451

timestamps for each clip, audio-visual cosine similarity, a flag indicating whether sound separation is452

required, and relevant text labels. For AVSET-10M (w/o. AVSET-700K), captions and pseudo-labels453

are included, while AVSET-700K features manual audio labels.454

B.3 Download URL455

Please visit https://avset-10M.github.io to get the AVSET-10M. Privacy Notice: If any video456

clips in this dataset infringe upon your privacy, please contact us for their removal.457

B.4 LICENSE458

AVSET-10M is released under the [CC BY 4.0] license. Before using this dataset, please ensure that459

you have read and understood the terms of the license.460
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(a) Audio-Vision Cosine Similarity θ = 0.479.

(b) Audio-Vision Cosine Similarity θ = 0.442.

(c) Audio-Vision Cosine Similarity θ = 0.408.

(d) Audio-Vision Cosine Similarity θ = 0.404.

(e) Audio-Vision Cosine Similarity θ = 0.392.

(f) Audio-Vision Cosine Similarity θ = 0.335.

Figure 5: Audio-video consistency samples in AVSET.
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C Limitation461

Since most existing video datasets predominantly contain clips with speech audio, which limits the462

amount of non-speech samples, we plan to utilize more diverse data sources in the future. This463

strategy aims to enhance the diversity of sample types and enable us to develop a more balanced and464

expansive dataset.465

D Ethical Impact466

This paper primarily focuses on proposing a large-scale audio-visual correspondence dataset, aimed467

at expanding research possibilities in the audio-visual sector. This field includes technologies like468

video dubbing, which can lead to audio forgery. However, it’s crucial to note that such dubbing does469

not result in severe identity forgery issues, unlike those caused by voice cloning technologies.470
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