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Abstract

Prior work on Private Inference (PI)—inferences performed directly on encrypted input—has
focused on minimizing a network’s ReLUs, which have been assumed to dominate PI latency
rather than FLOPs. Recent work has shown that FLOPs for PI can no longer be ignored
and incur high latency penalties. In this paper, we develop DeepReShape, a technique
that optimizes neural network architectures under PI’s constraints, optimizing for both
ReLUs and FLOPs for the first time. The key insight is strategically allocating channels to
position the network’s ReLUs in order of their criticality to network accuracy, simultaneously
optimizes ReLU and FLOPs efficiency. DeepReShape automates network development with
an efficient process, and we call generated networks HybReNets. We evaluate DeepReShape
using standard PI benchmarks and demonstrate a 2.1% accuracy gain with a 5.2× runtime
improvement at iso-ReLU on CIFAR-100 and an 8.7× runtime improvement at iso-accuracy
on TinyImageNet. Furthermore, we investigate the significance of network selection in prior
ReLU optimizations and shed light on the key network attributes for superior PI performance.

1 Introduction

Motivation The increasing trend of cloud-based machine learning inferences has raised significant privacy
concerns, leading to the development of private inference (PI). PI allows clients to send encrypted inputs
to a cloud service provider, which performs computations without decrypting the data, thereby enabling
inferences without revealing the data. Despite its benefits, PI introduces substantial computational and
storage overheads (Mishra et al., 2020; Rathee et al., 2020) due to the use of complex cryptographic primitives
(Demmler et al., 2015; Mohassel & Rindal, 2018; Patra et al., 2021).

Current PI frameworks attempt to mitigate these overheads by adopting hybrid cryptographic protocols and
using additive secret sharing for linear layers (Mishra et al., 2020). This approach offloads homomorphic
encryption tasks to an input-independent offline phase, achieving near plaintext speed for linear layers during
the online phase. However, it fails to address the overheads of nonlinear functions (e.g., ReLU), which remain
orders of magnitude slower than linear operations (Ghodsi et al., 2020).

In PI, Garbled Circuits (GCs)—a key cryptographic primitive that allows two parties to jointly compute
arbitrary Boolean functions without revealing their data (Yao, 1986)—are used for private computation of
nonlinear functions. In GC, nonlinear functions are first decomposed into a binary circuit (AND and XOR
gates), which are then encrypted into truth tables (i.e., Garbled tables) for bitwise processing of inputs (Ball
et al., 2016; 2019). The key challenge in GC is the storage burden: a single ReLU operation in GC requires
18 KiB of storage (Mishra et al., 2020), and networks with millions of ReLUs (e.g., ResNet50) can demand
approximately ∼100 GiB of storage for a single inference (Rathee et al., 2020). Additionally, computing all
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Figure 1: HybReNet outperforms state-of-the-art (SOTA) ReLU-optimization methods SENets(Kundu et al.,
2023), SNL(Cho et al., 2022b), and DeepReDuce(Jha et al., 2021), achieving higher accuracy (CIFAR-100)
and significant reduction in FLOPs while using fewer ReLUs (Table 6 illustrates the Pareto points specifics).

ReLUs in GC for a network like ResNet18 takes ∼21 minutes on TinyImageNet dataset (Garimella et al.,
2023). Therefore, ReLUs are considered a primary source of storage and latency overheads in PI.

Prior work on PI-specific network optimization primarily focused on reducing nonlinear computation overheads,
assuming linear operations (FLOPs) are effectively free. For instance, CryptoNAS (Ghodsi et al., 2020)
and Sphynx (Cho et al., 2022a) employed neural architecture search for designing ReLU-efficient baseline
networks without considering FLOPs implications. Similarly, PI-specific ReLU pruning methods (Cho et al.,
2022b; Jha et al., 2021) made overly optimistic assumptions that all FLOPs can be processed offline without
affecting real-time performance. The existing state-of-the-art (SOTA) in PI (Kundu et al., 2023) claimed that
FLOPs cost is 343× less significant than ReLU cost. However, recent research (Garimella et al., 2023) has
challenged these assumptions, demonstrating that FLOPs introduce significant latency penalties in end-to-end
system-level PI performance1.

Consequently, there is an emerging need to develop network design principles and optimization techniques
that address both ReLU and FLOPs constraints in PI. This raises two critical questions: Can we leverage
existing FLOPs reduction techniques and integrate them with PI-specific ReLU pruning methods? Second,
how effective is it to employ PI-specific ReLU pruning techniques on FLOPs efficient networks, such as
MobileNets (Howard et al., 2017; Sandler et al., 2018)?

Challenges Balancing ReLU efficiency with FLOPs efficiency is crucial for PI-specific network design
optimization methods. SENet++ (Kundu et al., 2023) integrate FLOPs reduction technique with their ReLU
pruning method and achieves (up to) 4× FLOPs reduction; however, at the expense of ReLU efficiency. The
impact of existing FLOPs reduction methods on ReLU efficiency has not been extensively explored, and Jha
et al. (2021) showed that FLOPs pruning methods tend to result in lower ReLU efficiency.

Furthermore, employing ReLU pruning on FLOPs-optimized networks results in inferior ReLU efficiency.
For example, when ReLU pruning (Jha et al., 2021) employed on MobileNets, their ReLU efficiency remains
consistently lower compared to standard networks (e.g., ResNet18) used in PI (see Figure 5(a)). Similarly,
SOTA FLOPs efficient networks such as RegNet (Radosavovic et al., 2020) and ConvNeXt-V2 (Woo et al.,
2023) exhibit suboptimal ReLU efficiency compared to the PI-tailored networks (see Figure 11).

This conflict between ReLU and FLOPs efficiency arises from the distinct layer-specific distribution of
ReLUs and FLOPs in the network and their impact on network accuracy. In conventional CNNs, ReLUs are
concentrated in the early layers, while ReLUs critical for the network’s accuracy reside in deeper layers (Jha
et al., 2021). ReLU pruning often removes many ReLUs from these early layers (Cho et al., 2022b; Jha et al.,
2021), while FLOPs pruning targets the deeper layers due to their higher channel counts (He et al., 2020).

1In real-world scenarios, there is invariably some degree of inference arrival, and even at very low arrival rates, processing
FLOPs offline becomes impractical due to limited resources and insufficient time. Consequently, FLOPs start affecting real-time
performance, becoming more pronounced for networks with higher FLOPs. The FLOPs penalties can only be disregarded when
there is zero inference arrival rate or when a homomorphic accelerator offering more than 1000× speedup is employed.
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Moreover, designing ReLU efficient networks requires different network hyper-parameters than those needed
for FLOPs efficient networks (See Table 15).

Another significant challenge in designing PI-tailored networks is identifying critical network attributes for
PI efficiency. The effectiveness of PI-specific ReLU optimization techniques largely depends on the choice
of input networks, leading to significant performance disparities not solely ascribed to FLOPs or accuracy
discrepancies (refer to §3.2). Prior work on ReLU optimization offers limited insight into their network
selection — SENets (Kundu et al., 2023) and SNL (Cho et al., 2022b) used WideResNet-22x8 for higher
ReLU counts and ResNet18 for low ReLU counts. This leaves a gap in understanding whether networks with
specific characteristics can maintain superior performance across various ReLU counts or if targeted ReLU
counts dictate the desired network attributes.

The limitations of the existing ReLU-optimization techniques also impede the advancement of PI. Coarse-
grained ReLU optimizations (Jha et al., 2021) encounter scalability issues, as their computational complexity
varies linearly with the number of stages in a network. While fine-grained ReLU optimization (Cho et al.,
2022b; Kundu et al., 2023) shows potential, its effectiveness is confined to specific ReLU distributions and
tends to underperform in networks with higher ReLU counts or altered ReLU distribution (refer to §3.3).

Our techniques and insights To simultaneously optimize both the ReLU and FLOPs efficiency, we begin
by critically evaluating existing design principles and posing a fundamental question: What essential insights
need to be integrated into the design framework for achieving FLOPs efficiency without compromising the
ReLU efficiency? Our sensitivity analysis of different network stages on ReLU and FLOPs efficiency reveals
two key observations:

1. Increasing the network’s width while positioning the network’s ReLU based on their criticality to
network’s accuracy allows FLOPs reduction without sacrificing ReLU efficiency (Figure 4).

2. Widening channels in each network stages has distinct effect on network’s overall ReLU and FLOPs
efficiency (Figure 3(e, f)).

These insights led us to propose ReLU-equalization, a novel design principle that redistributes ReLUs in a
conventional network by their order of criticality for network’s accuracy (Figure 8), inherently accounting for
the distinct effect of network stages on ReLU and FLOPs efficiency.

Our investigation into key network attributes for PI efficiency indicates that specific characteristics are
essential for superior performance at different ReLU counts. We discovered that wider networks improve PI
performance at higher ReLU counts. Whereas, at lower ReLU counts, the proportion of least-critical ReLUs
in the network is crucial, especially when ReLU pruning is employed. Leveraging this insight, we achieve a
significant, up to 45×, FLOPs reduction at lower ReLU counts.

Building on the these insights, we develop DeepReShape, a framework to redesign the classical networks, with
an efficient process of computational complexity O(1), and synthesize PI-efficient networks HybReNet. Our
approach results in a substantial FLOPs reduction with fewer ReLUs, outperforming the SOTA in PI (Kundu
et al., 2023). Precisely, we achieve a 2.3× ReLU and 3.4× FLOPs reduction at iso-accuracy, and a 2.1%
accuracy gain with a 12.5× FLOPs reduction at iso-ReLU on CIFAR-100 (see Figure 1). On TinyImageNet,
we achieve 12.4× FLOPs reduction at iso-accuracy compared to SOTA (see Table 7).

Contributions Our key contributions are summarized as follows.

1. Extensive characterization to identify the key network attributes for PI efficiency and demonstrate their
applicability across a wide range of ReLU counts.

2. A novel design principle ReLU-equalization, and design of the HybReNet family of networks tailored to PI
constraints. Moreover, we devise ReLU-reuse, a channel-wise ReLU dropping technique to systematically
reduce the ReLU count by 16×, allowing efficient ReLU optimization even at very low ReLU counts.

3. Rigorous evaluation of our proposed techniques against SOTA PI methods (Kundu et al., 2023; Cho et al.,
2022b) and SOTA FLOPs efficient models (Woo et al., 2023; Radosavovic et al., 2020).

Scope of the paper This paper addresses the challenges of strategically dropping ReLUs from the
convolutional neural networks (CNNs) without resorting to any approximated computations for nonlinearity.
We exclude the models with complex nonlinearities, such as transformer-based models and FLOPs efficient
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models like EfficientNet and MobileNetV3 2, often relying on approximated nonlinear computations in PI.
Also, we exclude the CrypTen-based PI in CNNs (Tan et al., 2021; Peng et al., 2023), as it operates under
different security assumptions 3.

Organization of the paper Section 2 provides the relevant background on PI protocols, threat models, and
network architecture, along with an overview of channel scaling methods and a categorization of PI-specific
ReLU pruning methods. Section 3 comprehensively evaluates baseline network design and ReLU optimization
strategies within the context of PI, outlining their limitations and our key observations. Section 4 introduces
the DeepReShape method, followed by Section 5, which presents our experimental findings, and Section 6,
summarizing the related work. Finally, we discuss the broader impact, limitations and future work Section 7.

2 Preliminary

Private inference protocols and threat model We use Delphi (Mishra et al., 2020) two-party protocols,
as used in Jha et al. (2021); Cho et al. (2022b), for private inference. In particular, for linear layers, Delphi
performs compute-heavy homomorphic operations (Gentry et al., 2009; Fan & Vercauteren, 2012; Brakerski
et al., 2014; Cheon et al., 2017) in the offline phase (preprocessing) and additive secret sharing (Shamir, 1979)
in the online phase, once the client’s input is available. Whereas, for nonlinear (ReLU) layers, it uses garbled
circuits (Yao, 1986; Ball et al., 2019). Further, similar to Liu et al. (2017); Juvekar et al. (2018); Mishra et al.
(2020); Rathee et al. (2020), we assume an honest-but-curious adversary where parties follow the protocols
and learn nothing beyond their output shares.

Note that the different sets of protocols for PI significantly affect the cost dynamics (communication, storage,
and latency) for linear and nonlinear layers, thereby influencing network optimization goals. For instance,
CoPriv (Zeng et al., 2023b) uses oblivious transfer (OT) for nonlinear operations and primarily optimizes
convolution operations (i.e., FLOPs). Unlike OT, GCs offer constant round complexity and typically distribute
more computational load to the server for garbling the circuit, reducing the client’s computational burden
(Demmler et al., 2015; Patra et al., 2021). In this work, we compare against prior approaches that use GCs
for ReLUs, similar to the cryptographic setup of Delphi (Mishra et al., 2020).

Architectural building blocks Figure 2 illustrates a schematic view of a standard four-stage network with
design hyperparameters. Similar to ResNet (He et al., 2016), it has a stem cell (to increase the channel count
from 3 to m), followed by the network’s main body (composed of linear and nonlinear layers, performing most
of the computation), followed by a head (a fully connected layer) yielding the scores for the output classes.
The network’s main body is composed of a sequence of four stages, and the spatial dimensions of feature
maps (dk × dk) are progressively reduced by 2× in each stage (except Stage1), and feature dimensions remain
constant within a stage. We keep the structure of the stem cell and head fixed and change the structure of
the network’s body using design hyperparameters.

Notations and definitions Each stage is composed of identical blocks4 repeated ϕ1, ϕ2, ϕ3, and ϕ4 times in
Stage1, Stage2, Stage3, and Stage4 (respectively), and known as stage compute ratios. The output channels
in stem cell (m) are known as base channels, and the number of channels progressively increases by a factor of
α, β, and γ in Stage2, Stage3, and Stage4 (respectively), and we termed it as stagewise channel multiplication
factors. The spatial size of the kernel is denoted as f ×f (e.g., 3×3). These width and depth hyperparameters
primarily determine the distribution of ReLUs and FLOPs in the network.

2Private inference on transformer-based models entail fundamentally different challenges (Chen et al., 2022b; Hao et al., 2022;
Akimoto et al., 2023; Zheng et al., 2023; Hou et al., 2023; Gupta et al., 2023). CNNs predominantly employ crypto-friendly
nonlinearities, e.g., ReLUs (and MaxPool, if at all used); while, transformers utilize complex nonlinearities like Softmax, GeLU,
and LayerNorm. ReLUs in PI are precisely computed using Garbled-circuit (Mishra et al., 2020), whereas transformers often
resort to approximations for their nonlinear computations due to performance objectives and numerical stability (Wang et al.,
2022; Li et al., 2023; Zeng et al., 2023a; Zhang et al., 2023). Likewise, models such as EfficientNets (Tan & Le, 2019; 2021) and
MobileNetV3 (Howard et al., 2019) incorporate Swish and Sigmoid nonlinearities to augment network expressiveness. These
nonlinearities are approximated as discreet piecewise polynomials (Fan et al., 2022).

3CrypTen resembles a three-party framework since it adopts a Trusted Third Party (TTP) to produce beaver triples during
the offline phase Knott et al. (2021). Consequently, the actual FLOPs overheads do not appear in end-to-end PI latency.

4Except the first block (in all but Stage1) which performs downsampling of feature maps by 2×.
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Figure 2: Depiction of architectural hyperparameters and
feature dimensions in a four stage network. For ResNet18
m = 64, ϕ1=ϕ2=ϕ3 =ϕ4=2, and α=β=γ=2.
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Table 1: Network’s complexity (FLOPs and
Params) per unit of nonlinearity varies with
network’s width, and independent of the net-
work’s depth. Consequently, Wider network
need fewer ReLUs for a given complexity, com-
pared to their deeper counterparts.

Channel scaling methods Broadly, channel scaling methods can be categorized into three categories (see
Table 2). First, Uniform channel scaling, where α, β, and γ are set to 2 and channels are scaled either by
scaling base channel counts (e.g., m=64 to m=128 in ResNets) or by a constant multiplication factor in all the
network stages (e.g., k=10 in WideResNet22x10). We refer to their network variants as BaseCh, often used
for FLOPs efficiency. Second, homogeneous channel scaling, where α, β, and γ are set identical, and channels
in successive stages of the network are scaled by homogeneously augmenting these factors. For instance, α, β,
and γ are set to 4 in CryptoNAS (Ghodsi et al., 2020) and Sphynx (Cho et al., 2022a)) for designing ReLU
efficient baseline networks. We termed their network variants as StageCh. Third, heterogeneous channel
scaling, where α, β, and γ are non-identical, and provides greater flexibility for balancing FLOPs and ReLU
efficiency by scaling the channels in successive stages of the network differently.

Criticality of ReLUs in a network We employ the criticality metric Ck from Jha et al. (2021) to quantify
the significance of ReLUs’ within a network stage for overall accuracy. Higher Ck values indicate more critical
ReLUs, while the least significant ReLUs are assigned a value of zero (see Table 10 and 11). Empirically, for
a four-stage network like ResNet18 and its variants (BaseCh and StageCh), the ReLUs in Stage1 contribute
the least and are the least critical, while those in Stage3 are the most critical for the network’s accuracy.

Table 2: Comparison of channel scaling methods: Uniform channel scaling is a special case of homogeneous
channel scaling where all stagewise channel multiplication factors (α=β=γ) is identical and set to 2, and
channels in network’s stages are scaled by a constant factor (e.g., k=10 in in WideResNet22x10). In contrast,
heterogeneous channel scaling differs by having non-identical factors, offering greater flexibility for balancing
FLOPs and ReLU efficiency and meet the PI constraints.

Channel Scaling Methods Uniform Homogeneous Heterogeneous
Width Hyper-parameters α=β=γ=2 α=β=γ ¬(α=β=γ)
Network Variants Naming BaseCh StageCh HybReNet(Proposed)

Example Networks WideResNet CryptoNAS HybReNets

Stage1
[

3×3, m×k
3×3, m×k

]
×ϕ1

[
3×3, m
3×3, m

]
×ϕ1

[
3×3, m
3×3, m

]
×ϕ1

Stage2
[

3×3, 2m×k
3×3, 2m×k

]
×ϕ2

[
3×3, 4m
3×3, 4m

]
×ϕ2

[
3×3, αm
3×3, αm

]
×ϕ2

Stage3
[

3×3, 4m×k
3×3, 4m×k

]
×ϕ3

[
3×3, 16m
3×3, 16m

]
×ϕ3

[
3×3, β(αm)
3×3, β(αm)

]
×ϕ3

Stage4
[

3×3, γ(αβm)
3×3, γ(αβm)

]
×ϕ4

Coarse-grained vs fine-grained ReLU optimization The coarse-grained ReLU optimization method
(Jha et al., 2021) removes ReLUs at the level of an entire stage or a layer in the network. Whereas fine-grained
ReLU optimizations (Cho et al., 2022b; Kundu et al., 2023) target individual channels or activation. These
approaches differ in performance, scalability, and configurability for achieving a specific ReLU count. The
latter allows achieving any desired independent ReLU count automatically, while the former requires manual

5



Published in Transactions on Machine Learning Research (06/2024)

adjustments based on the network’s overall ReLU count and distribution. Nonetheless, the coarse-grained
method demonstrates flexibility and adapting to various network configurations. In contrast, the fine-grained
method exhibits less efficient adaptation and can lead to suboptimal performance (see §3.3).

3 Network Design and Optimization for Efficient Private Inference

In this section, we critically evaluate the current practices in baseline network design for efficient PI (§3.1),
examines the selection of input networks for various ReLU-pruning methods (§3.2), and highlights the
limitations of fine-grained ReLU optimization methods (§3.3). We further present our key observations,
underscoring the significance of network architecture and ReLUs’ distribution for end-to-end PI performance
and motivate the need for redesigning the classical networks for efficient PI.

3.1 Addressing Pitfalls of Baseline Network Design for Efficient Private Inference

We begin by evaluating uniform and homogeneous channel scaling methods and their effectiveness in designing
baseline networks for efficient PI. Subsequently, we investigate the impact of various channel scaling methods
on the ReLUs’ distribution within a network and motivate the need for heterogeneous channel scaling for
optimizing FLOPs and ReLU counts simultaneously.

The conventional uniform channel scaling leads to suboptimal ReLU efficiency Table 1 shows
that the (stagewise) complexity of the network, quantified as #FLOPs and #Params (Radosavovic et al.,
2019), per units of ReLU nonlinearity scales linearly with base channel count m, while α, β, and γ introduce
multiplicative effect. This implies that for a given network complexity, a network widened by augmenting
α, β, and γ requires fewer ReLUs than the one widened by augmenting m. The uniform channel scaling in
BaseCh networks, including WideResNet, often resorts to conservative (α, β, γ) = (2, 2, 2), which limits the
potential ReLU efficiency benefit from wider networks.

Homogeneous channel scaling offers superior ReLU efficiency until accuracy plateaus In contrast
to BaseCh networks, homogeneous channel scaling in StageCh networks significantly improves ReLU efficiency
by removing the constraint on (α, β, γ) (Figure 3(a)). Nonetheless, the superiority of StageCh networks
remains evident until reaching accuracy saturation, which varies with network configuration. In particular,
as shown in Figure 3(b), accuracy saturation for StageCh networks of ResNet18, ResNet20, ResNet32, and
ResNet56 models begins at (α, β, γ) = (4, 4, 4), (5, 5, 5), (5, 5, 5), and (6, 6, 6), respectively, suggesting
deeper StageCh network plateau at higher (α, β, γ) values. This observations challenge the assertion made
in Ghodsi et al. (2020), that model capacity per ReLU peaks at (α, β, γ) = (4, 4, 4). Thus, determining the
accuracy saturation point a priori is challenging, raising an open question: To what extent can a network
benefit from increased width for superior ReLU efficiency? Moreover, can employing ReLU optimization on
StageCh networks effectively address accuracy saturation?

Homogeneous channel scaling alters the ReLUs’ distribution distinctively than uniform scaling
We investigate the effect of uniform and homogeneous channel scaling on the ReLU distribution of networks.
Unlike uniform scaling, which scales all layer ReLUs uniformly, homogeneous scaling leads to a distinct ReLU
distribution, with deeper layers exhibiting more significant changes. As depicted in Figure 3 (c,d), there
is a noticeable decrease in the proportion of Stage1 ReLUs, while Stage4 witnesses a significant increase.
Given the ReLUs’ criticality analysis in Table 10, this implies that the proportion of least-critical ReLUs is
decreasing while the distribution of ReLUs among the other stages does not strictly adhere to their criticality
order. This leads us to the following observation:

Observation 1: Homogeneous channel scaling reduces the percentage of least-critical ReLUs in the network.

Heterogeneous channel scaling is required for optimizing ReLU and FLOPs efficiency simulta-
neously To answer the question of potential benefits from wider networks, we perform a sensitivity analysis
and evaluate the influence of each stagewise channel multiplication factor on the network’s ReLU and FLOPs
efficiency. We systematically vary one factor at a time, starting from 2, while other factors are held constant
at 2, in ResNet18 with m=16. We observe that augmenting α and β values improves ReLU efficiency;
notably, the latter optimizes the performance marginally better than the former until a saturation point is
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Figure 3: (a) Homogeneous channel scaling in StageCh networks enables superior ReLU efficiency compared
to uniform channel scaling in BaseCh networks; however, (b) the accuracy in StageCh networks tends to
plateau unpredictably. (c,d) Unlike uniform channel scaling, homogeneous scaling reduces the proportion
of least-critical ReLUs in StageCh networks. (e,f) Each network stage affects ReLU and FLOPs efficiency
differently, requiring heterogeneous channel scaling for optimizing both ReLUs and FLOPs for efficient PI.

reached (see 3(c)). Whereas, FLOPs efficiency is most effectively improved by augmenting α, outperforming
β enhancements while augmenting γ values yields the worst FLOP efficiency (see 3(d)). This suggests that
FLOPs in the deeper layers of StageCh networks can be regulated without impacting ReLU efficiency.

We note that the semi-automated designed networks RegNets (Radosavovic et al., 2020) employ heterogeneous
channel scaling. However, they confine 1.5 ≤(α, β, γ) ≤ 3 to optimize FLOPs efficiency, which in turn
limits their ReLU efficiency (see Figure 11(c)). Thus, despite a line of seminal work on the network’s width
expansion (Zagoruyko & Komodakis, 2016; Radosavovic et al., 2019; Lee et al., 2019; Dollár et al., 2021), the
approaches to leverage the potential benefits of increased width for simultaneously optimizing ReLUs and
FLOPs efficiency remains an open challenge. The above analyses lead us to the following observation:

Observation 2: Each network stage heterogeneously impacts both ReLU and FLOPs efficiency, a nuanced
aspect largely overlooked by prior channel scaling methods, rendering them inadequate for the simultaneous
optimizing ReLUs and FLOPs counts for efficient private inference.

Strategically scaling channels by arranging ReLUs in their criticality order can regulate the
FLOPs in deeper layers without compromising ReLU efficiency Following from the observations 1
and 2, we propose to scale the channels until all ReLUs are aligned in the criticality order. Thus, Stage3
dominates the distribution as it has the most critical ReLUs, followed by Stage2, Stage4, and Stage1 (Table
10). Unlike StageCh networks, widening beyond the point where the ReLUs are aligned in their criticality
order does not alter their relative distribution (Figure 4(a)). This leads to higher α and β values, which boost
ReLU efficiency, with restrictive γ (γ <4) regulating FLOPs in deeper layers, promoting FLOP efficiency.

Consequently, our approach of heterogeneous channel scaling achieves ReLU efficiency on par with StageCh
networks with fewer FLOPs. Figure 4(b,c) demonstrates that the ReLUs’ criticality-aware ResNet18 network
5x5x3x maintains similar ReLU efficiency with a 2× reduction in FLOPs compared to the StageCh network
5x5x5x. This FLOP reduction is consistently attained across the entire spectrum of ReLU counts, employing
both fine-grained and coarse-grained ReLU optimization. These results lead to the following observation:

Observation 3: ReLUs’ criticality-aware network widening method optimizes FLOPs efficiency without
sacrificing the ReLU efficiency, which meets the demands of efficient PI.
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Figure 4: (a) Unlike StageCh networks, once the network’s ReLUs are aligned in their criticality order, here at
point (α, β, γ)=(5, 5, 3), increasing α does not alter their relative distribution. (b,c) ReLUs’ criticality-aware
network widening method saves 2× FLOPs by regulating the FLOPs in deeper layers while maintaining
ReLU efficiency over a wide range of ReLU counts.
3.2 Addressing Fallacies in Network Selection for ReLU Optimization

In this section, we explore the crucial aspects of selecting appropriate input networks for various ReLU
pruning methods and perform a detailed experimental analysis to identify network attributes crucial for PI
efficiency across different ReLU counts. This study aims to bridge the knowledge gap for designing efficient
baseline networks tailored to ReLU pruning methods.

Selecting the appropriate input network for ReLU optimization methods is far from intuitive
Table 3 lists input networks used in previous ReLU optimization methods with their relevant characteristics,
while Figure 5 demonstrates how different input networks affect the performance of coarse (DeepReDuce) and
fine-grained (SNL) ReLU optimization methods. For the former, accuracy differences of 12.9% and 11.6%
are observed at higher and lower iso-ReLU counts. These differences cannot be ascribed to the FLOPs or
accuracy of the baseline network alone. For instance, ResNet18 outperforms WideResNet22x8 despite having
4.4× fewer FLOPs and a lower baseline accuracy, and ResNet32 outperforms VGG16 even though the latter
has 4.76× more FLOPs and a higher baseline accuracy.

Likewise, fine-grained ReLU optimization (SNL) exhibits significant accuracy differences when employed on
ResNets and WideResNets, especially at lower ReLU counts, as shown in Figure 5(b). While WideResNet
models outperform beyond 200K ReLUs, there are 3.2% and 4.6% accuracy gaps at 25K and 15K ReLUs
between ResNet18 and WideResNet16x8. The above empirical observation led to the following observation:

Observation 4: Performance of ReLU optimization methods, whether coarse or fine-grained, strongly
correlates with the choice of input networks, leading to substantial performance disparities.

ReLU optimization method Input networks
Delphi (Mishra et al., 2020) ResNet32
SAFENets (Lou et al., 2021) ResNet32, VGG16

DeepReDuce (Jha et al., 2021) ResNet18
SNL (Cho et al., 2022b) ResNet18, WRN22x8

SENet (Kundu et al., 2023) ResNet18, WRN22x8
ResNet32 ResNet18 WRN22x8 VGG16

FLOPs 70M 559M 2461M 333M
ReLUs 303K 557K 1393K 285K

Acc 71.67% 79.06% 81.27% 75.08%

Table 3: Baseline networks used for
advancing ReLU-Accuracy Pareto
(CIFAR-100) in prior PI-specific
ReLU optimization methods.
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Figure 5: ReLU optimization, whether coarse or fine-grained, perfor-
mance exhibits significant disparities based on the input networks.

Key network attributes for PI efficiency vary across targeted ReLU counts To identify the key
network attributes for PI efficiency across a wide range of ReLU counts, we examine three ResNet18 variants
with identical ReLU counts but different ReLUs’ distribution and FLOPs counts (Table 4). These are
realized by channel reallocation, and the configurations 2x2x2x(m=32), 4x4x4x(m=16), and 3x7x2x(m=16)
correspond to stagewise channel counts as [32,64,128,256], [16, 64, 256, 1024], and [16, 48, 336, 672] respectively.
We analyze their performance using the DeepReDuce and SNL ReLU optimization, as shown in Figure 6.
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A consistent trend emerges from both ReLU optimization methods: Wider models 4x4x4x(m=16) and
3x7x2x(m=16) outperform 2x2x2x(m=32) at higher ReLU counts; however, even with ≈ 4× fewer FLOPs,
2x2x2x(m=32) excel at lower ReLU counts. This superior performance stems from the higher percentage
(58.82%) of least-critical (Stage1) ReLUs in 2x2x2x(m=32). When targeting low ReLU counts, ReLU
optimization methods primarily drop ReLUs from Stage1 (Jha et al., 2021; Cho et al., 2022b; Kundu
et al., 2023). Thus, networks with a higher percentage of Stage1 ReLUs preserve more ReLUs from critical
stages, mitigating accuracy degradation. Furthermore, this emphasizes the importance of strategically
allocating channels, even when aiming for higher ReLU counts: 3x7x2x(m=16) matches the ReLU efficiency
of 4x4x4x(m=16) with 30% fewer FLOPs by allocating more channels to Stage3 and fewer to Stage4.

Model Acc(%) FLOPs ReLUs Stagewise ReLUs’ distribution
Stage1 Stage2 Stage3 Stage4

2x2x2x(m=32) 75.60 141M 279K 58.82% 23.53% 11.76% 5.88%
4x4x4x(m=16) 78.16 661M 279K 29.41% 23.53% 23.53% 23.53%
3x7x2x(m=16) 78.02 466M 260K 31.50% 18.90% 33.07% 16.54%

Table 4: A case study to investigate the Capacity-
Criticality-Tradeoff: Three Iso-ReLU ResNet18
networks with different ReLUs’ distribution and
FLOPs count, achieved by reallocating channels
per stage. The baseline accuracy is for CIFAR-
100 dataset.
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Figure 6: Capacity-Criticality-Tradeoff results: Figures
(a) and (b) show the ReLU-Accuracy tradeoff for networks
in Table 4 using DeepReDuce and SNL.

The above findings offer insight into the network selection for prior ReLU optimization methods. Specifically,
the choice of WRN22x8 (with 48.2% Stage1 ReLUs) for higher ReLU counts while ResNet18 for lower ReLU
counts in fine-grained ReLU optimization (Cho et al., 2022b; Kundu et al., 2023). Moreover, it also explains
the accuracy trends depicted in Figure 5(b), the higher the Stage1 ReLU proportion (58.8% for ResNet18,
47.7% for WRN22x4, and 43.9% for WRN16x8), the higher the accuracy at lower ReLU counts.

Interestingly, we note that the above networks with a higher percentage of least-critical (Stage1) ReLUs
inherently have fewer overall ReLUs (e.g., 1392.6K for WRN22x8 and 557K ResNet18). This might suggest
that these networks utilize their ReLUs more effectively, especially when there are fewer ReLUs, leading them
to excel at lower ReLU counts. However, a counter-example in Appendix E.2 reaffirms our conclusion for the
key factor driving PI performance at lower ReLU counts. We further investigate the Capacity-Criticality-
Tradeoff in Appendix E.1, and the additional results are shown in Figure 18. These analyses lead to the
following observation:

Observation 5: Wider networks are superior only at higher ReLU counts, while networks with higher
percentage of least-critical ReLUs outperform at lower ReLU counts (Capacity-Criticality-Tradeoff).

3.3 Mitigating the Limitations of Fine-grained ReLU Optimization

We now investigate the limitations of fine-grained ReLU optimization methods, often outperforming coarse-
grained methods in conventional networks, and discuss the strategies to mitigate these limitations. This
study aims to assess the efficacy of fine-grained methods beyond the conventional networks, especially with
atypical ReLU distributions, for instance, when heterogeneous channel scaling is employed for simultaneously
optimizing ReLU and FLOPs (see observation 3).

Fine-grained ReLU optimization is not always the best choice While fine-grained ReLU optimization
has demonstrated its effectiveness in classical networks such as ResNet18 and WideResNet, especially when
Stage1 dominates the network’s ReLU distribution (Cho et al., 2022b; Kundu et al., 2023), its advantages are
not universal. To better understand its range of efficacy, we compared it against DeepReDuce on PI-amenable
wider models: 4x4x4x(m=16) and 3x7x2x(m=16) (Table 4).

As shown in Figure 7(a) and 7(b), DeepReDuce outperforms SNL by a significant margin (up to 3%-4%).
This suggests that the benefits of fine-grained ReLU optimization are highly dependent on specific ReLU
distributions, and it reduces when Stage1 does not dominate the network’s ReLU distribution. This trend is
also observed in ReLU criticality-aware networks, where Stage3 dominates the distribution of ReLUs (see
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Figure 20). This empirical evidence collectively suggests that fine-grained ReLU optimization might limit the
benefits of increased network complexity introduced through stagewise channel multiplication enhancements.
Nonetheless, the performance gap is less pronounced when the network’s overall ReLU count is reduced by
half by using ReLU-Thinning (Jha et al., 2021), which drops the ReLUs from alternate layers.

C100 Baseline 220K 180K 150K 120K 100K 80K 50K

ResNet18
(557.06K)

Vanilla 78.68 77.09 76.9 76.62 76.25 75.78 74.81 72.96
w/ Th. 76.95 77.03 76.92 76.54 76.59 75.85 75.72 74.44

∆ -1.73 -0.06 0.02 -0.08 0.34 0.07 0.91 1.48

ResNet34
(966.66K)

Vanilla 79.67 76.55 76.35 76.26 75.47 74.55 74.17 72.07
w/ Th. 79.03 77.94 77.65 77.67 77.32 76.69 76.32 74.50

∆ -0.64 1.39 1.30 1.41 1.85 2.14 2.15 2.43

WRN22x8
(1392.64K)

Vanilla 80.58 77.58 76.83 76.15 74.98 74.38 73.16 71.13
w/ Th. 79.59 78.91 78.6 78.41 78.05 77.22 75.94 72.74

∆ -0.99 1.33 1.77 2.26 3.07 2.84 2.78 1.61

Table 5: A significant accuracy boost (on CIFAR-
100) is achieved when ReLU-Thinning is employed
prior to SNL, despite the less accurate ReLU-
Thinned models. ∆ = Acc(w/ Th.)-Acc(Vanilla).
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Figure 7: DeepReDuce outperforms SNL by a significant
margin (up to 4%) when altering network’s ReLUs distri-
bution; however, using SNL on ReLU-Thinned networks
reduces the accuracy gap.

Narrowing the search space improves the performance of fine-grained ReLU optimization To
further examine the efficacy of ReLU-Thinning for classical networks, we adopt a hybrid ReLU optimization
approach, and ReLU-Thinning is employed before SNL optimization. Surprisingly, even when baseline Thinned
models are less accurate, a significant accuracy boost (up to 3% at iso-ReLUs) is observed, which is more
pronounced for networks with higher #ReLUs (ResNet34 and WRN22x8, in Table 5). Since ReLU-Thinning
drops the ReLUs from the alternate layers, irrespective of their criticality, its integration into existing ReLU
optimization methodologies would not impact their overall computational complexity and remains effective
for reducing the search space to identify critical ReLUs. This leads us to the following observation:

Observation 6: While altering the network’s ReLU distribution can lead to suboptimal performance in
fine-grained ReLU optimization, ReLU-Thinning emerges as an effective solution to bridge the performance
gap, also beneficial for classical networks with higher overall ReLU counts.

4 DeepReShape

Drawing inspiration from the above observations and insights, we propose a novel design principle termed
ReLU equalization (Figure 8) and re-design classical networks. This led to the development of a family of
models HybReNet, tailored to the needs of efficient PI (Table 16). Additionally, we propose ReLU-reuse, a
(structured) channel-wise ReLU dropping method, enabling efficient PI at very low ReLU counts.

4.1 ReLU Equalization and Formation of HybReNet

Given a baseline input network, where ReLUs are not necessarily aligned in their criticality order, ReLU
equalization redistributes the network’s ReLUs in their criticality order, meaning the (most) least critical
stage has a (highest) lowest fraction of the network’s total ReLU count (Figure 8). Equalization is achieved by
an iterative process, as outlined in Algorithm 1. In each iteration, the relative distribution of ReLUs in two
stages is aligned in their criticality order by adjusting either their depth or width or both hyperparameters.

Specifically, for a network of D stages and a predetermined criticality order, given compute ratios ϕ1, ϕ2, ...,
ϕD and stagewise channel multiplication factors λ1, λ2, ..., λ(D−1), the ReLU equalization algorithm outputs
a compound inequality after D-1 iterations. We now employ Algorithm 1 on a standard four-stage ResNet18
model with the given criticality order as (from highest to lowest): Stage3 > Stage2 > Stage4 > Stage1 (refer
to Table 10). During the equalization process, only the model’s width hyper-parameters are adjusted, as
wider models tend to be more ReLU efficient. Consequently, the algorithm yields the following expression:
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positioned is their criticality order, ReLU-equalization aligns network’s ReLUs in their criticality order.

Algorithm 1 ReLU equalization
Input: Network Net with stages S1,...,SD; C a sorted list of most to least critical stage; stage-compute ratio
ϕ1,...,ϕD; and stagewise channel multiplication factors λ1,..., λ(D−1).
Output: ReLU-equalized versions of network Net.

1: for i = 1 to D-1 do
2: Sk = C[i] ▷ C[1] is most critical stage
3: St = C[i + 1] ▷ C[2] is second-most critical stage
4: while #ReLUs(Sk) > #ReLUs(St) do ▷ ReLUs in two stages are aligned in their criticality order

5:
ϕk×

(∏k−1
j=1

λj

)
2k−1 >

ϕt×
(∏t−1

j=1
λj

)
2t−1 ▷ Rearranging ReLUs by adjusting width and depth parameters

6: end while
7: end for
8: return A set of ϕ1,...,ϕD and λ1,...,λ(D−1) that satisfies the compound inequality: #ReLUs(C[1]) >

#ReLUs(C[2]) > ... > #ReLUs(C[D − 1]) > #ReLUs(C[D])

#ReLUs(S3) > #ReLUs(S2) > #ReLUs(S4) > #ReLUs(S1)

=⇒ ϕ3

(αβ

16

)
> ϕ2

(α

4

)
> ϕ4

(αβγ

64

)
> ϕ1

ReLU equalization through width (ϕ1 = ϕ2 = ϕ3 = ϕ4 = 2, and α ≥ 2, β ≥ 2, γ ≥ 2) :

=⇒ αβ

16 >
α

4 >
αβγ

64 > 1 =⇒ αβ > 16, α > 4, αβγ > 64, β > 4, βγ < 16, and γ < 4

Solving the above compound inequalities provides the following (β, γ) pairs and the range of α :
The (β, γ) pairs are: (5, 2) & α ≥ 7; (5, 3) & α ≥ 5; (6, 2) & α ≥ 6; (7, 2) & α ≥ 5

We obtain four pairs of (β, γ), each having a range of α value. We choose the smallest α needed for ReLU
equalization, as increasing α beyond this point does not improve the performance when ReLU optimization is
used; also, the relative distribution of ReLUs remains stable (see Appendix A). Thus, we achieve four baseline
HybReNets: HRN-5x5x3x, HRN-5x7x2x, HRN-6x6x2x, and HRN-7x5x2x. The architectural details of these
four HRNs are presented in Table 16.

4.2 ReLU-reuse

We further refine the baseline network’s architecture to increase ReLU nonlinearity utilization by introducing
ReLU-reuse, which selectively applies ReLUs to a contiguous subset of channels while the remaining channels
reuse them. This approach differs from previous channel-wise ReLU optimizations, where channels are either
uniformly scaled down throughout the network (Jha et al., 2021) or only a subset of channels utilize ReLUs
without reusing them (Cho et al., 2022b). Our ReLU-reuse mechanism allows for efficient PI at extremely
low ReLU counts (e.g., 3.2K ReLUs on CIFAR-100 dataset).
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Specifically, feature maps of the layer are divided
into N groups, and ReLUs are employed only in
the last group (Figure 9). However, increasing
the value of N results in a significant accuracy
loss despite 1 × 1 convolution being employed
for cross-channel interaction. This is likely due
to the loss of cross-channel information arising
from more divisions in the feature maps (see
our ablation study in Table 9). To address this
issue, we devise a mechanism that decouples the
number of divisions in feature maps from the ReLU reduction factor N . Precisely, one-fourth of channels are
utilized for feature reuse, while a Nth fraction of feature maps are activated using ReLUs, and the remaining
feature maps are processed solely with convolution operations, resulting in only three groups. It is important
to note that using the ReLUs in the last group of feature maps increases the effective receptive field as these
neurons can consider a larger subset of feature maps using the skip connections (Gao et al., 2019).

4.3 Putting it All Together

We developed the DeepReShape framework to re-design the classical networks for efficiency PI across a wide
range of ReLU counts. Figure 10. Given an input network with a specific ReLUs’ criticality order, the ReLU-
equalization step aligns the network’s ReLU in their criticality order by adjusting width hyper-parameters.
This step allows for maximizing ReLU efficiency without incurring superfluous FLOPs by allocating fewer
channels in the initial stages and increasing them in the deeper stages. In the second step, following the
Criticality-Capacity-Tradeoff, the width is adjusted such that Stage1 dominates the ReLUs’ distribution.
This is achieved by a straightforward step: setting α=2 in the ReLU-equalized networks since decreasing α
results in an increased percentage of Stage1 ReLUs, and distribution of ReLUs in all but Stage1 follow their
criticality order (see Table 11). This step allows for a substantial FLOP reduction, up to 45×, by allocating
fewer channels in all the stages. We call the networks resulting from step1 and step2 as HybReNets (HRNs).
The baseline HRNs from step2 are: HRN-2x5x3x, HRN-2x7x2x, HRN-2x6x2x, and HRN-2x5x2x (Table 17).

ReLU-optimization steps for HybReNets We choose to employ coarse-grained ReLU optimization
steps in HRNs, as they outperform fine-grained ReLU optimization when the ReLU distribution undergoes
changes in traditional networks, as shown in Figure 7 and Appendix F. In particular, we eliminate all the
ReLUs from Stage1 (ReLU Culling) if it dominates the network’s overall ReLU distribution, e.g., HRNs
with α=2. For subsequent stages, we utilize ReLU-Thinning, which removes ReLUs from alternate layers
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without considering their criticality. We further reduce the ReLU count by implementing ReLU-reuse with
an appropriate reduction factor (see Algorithm 2).

Complexity analysis of HybReNet design For a D stage network with a predefined criticality order for
stagewise ReLUs, the process of ReLU equalization typically involves considering 2D-1 hyperparameters,
including D stage compute ratios and D-1 stagewise channel multiplication factors. However, for HRNs,
this hyperparameter count is reduced to D-1 since ReLU equalization is achieved solely by modifying the
network’s width. Unlike SOTA network designing methods (Radosavovic et al., 2020; Liu et al., 2022), which
build networks from scratch, the hyperparameters involved in ReLU equalization are determined by solving a
compound inequality, eliminating the need for additional network training. That is, to narrow down the design
search space provided by bounds on α, β, and γ, we select the minimum values of these hyper-parameters
that satisfy the ReLU equalization conditions. Thus, our method leverages the existing network designs and
optimizes them under PI constraints rather than designing them from scratch. Consequently, the complexity
of designing HRNs can be characterized as O(1). A detailed discussion is included in Appendix H.5.

Additionally, employing coarse-grained ReLU optimization does not exacerbate the complexity of HRNs. This
is due to the positioning of ReLUs in HRNs based on their criticality order, which necessitates only a single
iteration (see Algorithm 2). In contrast, when ReLUs in the input network are organized without regard to
their criticality order (e.g., classical networks such as ResNets and WideResNets), a single iteration produces
suboptimal results, requiring D-1 iterations (Jha et al., 2021). Thus, the complexity of ReLU optimization
for HRNs is reduced to O(1) from O(D).

5 Experimental Results

Analysis of HybReNets Pareto points Figure 1 shows that HybReNet advances the ReLU-accuracy
Pareto with a substantial reduction in FLOPs – a factor overlooked in prior PI-specific network optimization.
We present a detailed analysis of network configurations and ReLU optimization steps and quantify their
benefits for ReLUs and FLOP reduction. We use ResNet18-based HRN-5x5x3x for ReLU-accuracy comparison
with SOTA PI methods in Figure 1, as its FLOPs efficiency is superior to other HRNs (Table 16).

Table 6: Network configurations and ReLU optimization steps used for the Pareto points in Figure 1.
Accuracies (CIFAR-100) are separately shown for KD (Hinton et al., 2015) and DKD (Zhao et al., 2022),
highlighting the benefits of improved architectural design and distillation method.(Re2 denotes ReLU-reuse)

HybReNet m
ReLU optimization steps #ReLU #FLOPs Accuracy(%) Acc./ReLU

Culled Thinned Re2 KD DKD
5x5x3x 16 NA S1+S2+S3+S4 NA 163.3K 1055.4M 79.34 80.86 0.50
2x5x3x 32 S1 S2+S3+S4 NA 104.4K 714.1M 77.63 79.96 0.77
2x5x3x 16 S1 S2+S3+S4 NA 52.2K 178.5M 74.98 77.14 1.48
2x5x3x 8 S1 S2+S3+S4 NA 26.1K 44.6M 70.36 72.65 2.78
2x5x3x 16 S1 S2+S3+S4 4 13.1K 121.6M 67.30 68.25 5.23
2x5x3x 16 S1 S2+S3+S4 8 6.5K 130.5M 62.68 63.29 9.70
2x5x3x 16 S1 S2+S3+S4 16 3.2K 137.2M 56.24 56.33 17.26

The key takeaway from Table 6 is that tailoring the network features for PI constraint significantly reduces
FLOPs and ReLUs. Specifically, lowering α value and base channel count led to 23.6× fewer FLOPs
in HRN-2x5x3x(m=8), compared to HRN-5x5x3x(m=16). Furthermore, we notice a significant accuracy
boost by employing a simple yet efficient logit-based distillation method DKD (Zhao et al., 2022), as the
ReLU-reduced models greatly benefit from decoupling the target and non-target class distillation.

HybReNets outperform state-of-the-art in private inference Table 7 presents competing design points
for SENet (Kundu et al., 2023) and SNL (Cho et al., 2022b), and we select HybReNet points (see Table 6
and Table 13 for configuration and optimization details) offering both accuracy and latency benefits for a fair
comparison. The runtime breakdown is presented as homomorphic (HE) latency (Brakerski et al., 2014),
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Table 7: Comparison of HybReNet with SOTA in private inference: SENet (Kundu et al., 2023) and SNL
(Cho et al., 2022b). HybReNet exhibits superior ReLU and FLOPs efficiency and achieve a substantial
reduction in latency. #Re and #FL denote ReLU and FLOPs counts; Acc. is top-1 accuracy; Lat. is the
runtime for one private inference, including Homomorphic (HE) and Garbled-circuit(GC) latencies.

SOTA in Private Inference HybReNet(Ours) Improvements
#Re #FL Acc. HE GC Lat. #Re #FL Acc. HE GC Lat. #Re #FL Acc. HE GC Lat.
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300 2461 80.54 1004 33.7 1037 163 1055 80.86 770 18.4 788 1.8× 2.3× 0.3 1.3× 1.8× 1.3×
240 2461 79.81 1004 27.0 1031 163 1055 80.86 770 18.4 788 1.5× 2.3× 1.1 1.3× 1.5× 1.3×
180 2461 79.12 1004 20.2 1024 163 1055 80.86 770 18.4 788 1.1× 2.3× 1.7 1.3× 1.1× 1.3 ×
50 559 75.28 268 5.6 274 52 179 77.14 123 5.9 129 1.0× 3.1× 1.9 2.2× 0.9× 2.1×
25 559 70.59 268 2.8 271 26 45 72.65 49 2.9 52 0.9× 12.5× 2.1 5.5× 1.0× 5.2×

SN
L 15 559 67.17 268 1.7 270 13 179 68.25 123 1.5 124 1.1× 3.1× 1.1 2.2× 1.1× 2.2×

13 559 66.53 268 1.5 270 13 179 68.25 123 1.5 124 1.0× 3.1× 1.7 2.2× 1.0× 2.2×
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et
SE
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et

s 300 2227 64.96 927 33.7 961 327 1055 64.92 526 36.7 563 0.9× 2.1× 0.0 1.8× 0.9× 1.7×
142 2227 58.90 927 16.0 943 104 179 58.90 97 11.7 108 1.4× 12.4× 0.0 9.6× 1.4× 8.7×

SN
L

489 9830 64.42 3690 55.0 3745 653 4216 67.58 2029 73.4 2102 0.7× 2.3× 3.2 1.8× 0.7× 1.8×
489 9830 64.42 3690 55.0 3745 418 2842 66.10 1307 45.0 1352 1.2× 3.5× 1.7 2.8× 1.2× 2.8×
298 2227 64.04 927 33.5 961 327 1055 64.92 526 36.7 563 0.9× 2.1× 0.9 1.8 × 0.9× 1.7×
100 2227 58.94 927 11.2 939 104 179 58.90 97 11.7 108 1.0× 12.4× 0.0 9.6× 1.0× 8.7×
59 2227 54.40 927 6.6 934 52 712 54.46 329 5.9 335 1.1× 3.1× 0.1 2.8× 1.1× 2.8×

arises from linear operations (convolution and fully-connected layers), and Garbled-circuit (GC) latency (Ball
et al., 2019), resulting from ReLU computation. See the experiential setup details in Appendix J.

On CIFAR-100, SENet requires 300K ReLUs and 2461M FLOPs to reach 80.54% accuracy, whereas HRN-
5x5x3x achieves 80.86% accuracy with only 163K ReLUs and 1055M FLOPs, providing 1.8× ReLU and 2.3×
FLOPs saving. Similarly, at 25K ReLUs, our approach achieves a 2.1% accuracy gain with 12.5× FLOP
reduction, thereby saving 5.2× runtime. Even at an extremely low ReLU count of 13K, HRN is 1.7% more
accurate and achieves 2.2× runtime saving, compared to the SNL.

On TinyImageNet, HybReNets outperform SENet at both 300K and 142K ReLUs, improving runtime by
1.7× and 8.7×, respectively. Compared to SNL at 489K ReLUs, HybReNets are 3.2% (1.7%) more accurate
with a 1.8× (2.8×) reduction in runtime. At lower ReLU counts of 100K and 59K, HybReNets match the
accuracy with SNL and achieve a 12.4× and 3.1× FLOP reduction, which results in 8.7× and 2.8× runtime
improvement, respectively.

Our primary insight from Table 7 is that FLOP reduction does not inherently guarantee a proportional
reduction in HE latency, whereas a direct correlation exists between ReLU reduction and GC latency savings.
In particular, a ∼12.5× FLOP reduction translates to 5.2× and 8.7× latency reduction on CIFAR-100
and TinyImageNet, respectively. This is due to the fact HE latency has an intricate dependency on the
input/output packing (Aharoni et al., 2023), rotational complexity (Lou et al., 2020b;a; Huang et al., 2022)
and slot utilization (Lee et al., 2022). We refer the readers to Juvekar et al. (2018) for details.

Generality case study on ResNet34 We select ResNet34 for the DeepReShape generality study for two
key reasons: (1) its consistent use for the case study in prior PI-specific network optimization studies (Jha
et al., 2021; Cho et al., 2022b; Kundu et al., 2023), and (2) its stage compute ratio (ϕ1=3, ϕ2=4, ϕ3=6,
and ϕ4=3) distinguishes it from ResNet18, results in different sets of HRN networks, HRN-4x6x3x and
HRN-4x9x2x, upon applying Algorithm 1. We use HRN-4x6x3x for comparison with SOTA in Table 8.
Network configuration and ReLU optimization details are presented in Table 14.

HybReNet advances the ReLU-accuracy Pareto on both CIFAR-100 and TinyImageNet, shown in Figures 11
(a, b). Table 8 quantifies the FLOPs-ReLU-Accuracy benefits and runtime savings. On CIFAR-100, compared
to SOTA, HybReNet improves runtime by 3.1× with a significant gain in accuracy—9.8%, 7.2%, 5.9%, and
2.1% at 15K, 25K, 30K and 50K ReLUs (respectively). Further on TinyImageNet, SNL requires 300K ReLUs
and 4646M FLOPs to reach 64% accuracy, whereas HybReNet matches this accuracy with 8.8× fewer FLOPs,
leading to a runtime improvement of 6.3×. Conclusively, it highlights the effectiveness of DeepReShape and
validates its generality for different network configurations and datasets.
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Figure 11: HybReNets outperform SOTA ReLU-optimization methods applied to ResNet34 and also surpass
SOTA FLOPs efficient models: RegNets and ConvNeXt-V2 (See Table 14 for the Pareto points specifics.).

Table 8: ResNet34-based HybReNets outperform SOTA PI methods (Kundu et al., 2023; Cho et al., 2022b)
employed on ResNet34, and also surpass the SOTA FLOPs efficient models ConvNeXt-V2 (Woo et al., 2023).
#Re and #FL denote ReLU and FLOPs counts; Acc. is top-1 accuracy; Lat. is the runtime for one PI.

SOTA in Private Inference (on ResNet34) HybReNet(Ours) Improvements
#Re #FL Acc. HE GC Lat. #Re #FL Acc. HE GC Lat. #Re #FL Acc. HE GC Lat.
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t 1622 11801 69.85 4067 182.4 4249 1270 8244 70.29 3091 142.8 3233 1.3× 1.4× 0.4 1.3× 1.3× 1.3×
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721 3436 67.08 1307 81.0 1388 537 2109 67.48 880 60.3 940 1.3× 1.6× 0.4 1.5× 1.3× 1.5×
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HybReNet outperform SOTA FLOPs efficient vision models We perform a comparative analysis
of HybReNets with SOTA FLOPs efficient vision models: ConvNeXt-V2 (Woo et al., 2023) and RegNet
(Radosavovic et al., 2020). These models possess distinct depth and width hyperparameters, providing an
interesting case study, particularly when contrasted with conventional ReNets. See Appendix H.4 for details.

For a fair comparison with baseline RegNet-X models, we do not employ any ReLU-optimization steps on
(ResNet18-based) HybReNets. Results are shown in Figure 11(c) where HRNs are evaluated with m ∈ {16,
32, 64 }. HRNs achieve comparable accuracy with substantially fewer ReLUs compared to RegNets. For
instance, to achieve 78.26% (80.63%) accuracy on CIFAR-100, RegNets require 1460K (6544K) ReLUs, while
HRN-5x5x3x needs only 343K (1372K) ReLUs, leading to a 4.3× (4.7×) ReLU reduction.

Further, we compare the ConvNeXt-V2 models with HybReNets on TinyImageNet while employing ReLU
optimization on them (see Table 14 for optimization details). The ReLU-accuracy Pareto is shown in Figure
11(b), with a detailed comparison outlined in Table 8. The competing HRNs achieve 1.3× to 1.7× ReLU
savings; 1.4× to 2.5× FLOP reduction, which results in 1.3× to 2.3× runtime improvements.

ReLU-reuse is more effective for HybReNets and outperforms the SOTA channel-wise ReLU
optimization We examine the efficacy of ReLU-reuse on networks with various ReLUs’ distributions and
compare their performance with conventional (channel/feature-map)scaling used in DeepReDuce for achieving
very low ReLU counts. Results are shown in Figure 22 and Figure 23 (AppendixI). Interestingly, we observed
that the efficacy of ReLU-reuse is most pronounced in networks where ReLUs are aligned in their criticality
order, whether partially or entirely. In fact, networks with an even distribution of stagewise ReLUs exhibit
more significant accuracy improvements from ReLU-reuse compared to traditional networks like ResNets.

15



Published in Transactions on Machine Learning Research (06/2024)

 56

 60

 64

 68

 72

 76

 80

 2  4  8  16  32  64  128C
IF

A
R

-1
0
0
 A

cc
u
ra

cy
(%

)

#ReLUs (K)

SNL(channel)

SNL(vanilla)

Ours(HRN w/o Re2)

Ours(HRN w/ Re2)

(a) HRN-2x5x2x

 56

 60

 64

 68

 72

 76

 80

 4  8  16  32  64  128C
IF

A
R

-1
0
0
 A

cc
u
ra

cy
(%

)

#ReLUs (K)

SNL(channel)

SNL(vanilla)

Ours(HRN w/o Re2)

Ours(HRN w/ Re2)

(b) HRN-2x5x3x

 56

 60

 64

 68

 72

 76

 80

 4  8  16  32  64  128C
IF

A
R

-1
0
0
 A

cc
u
ra

cy
(%

)

#ReLUs (K)

SNL(channel)

SNL(vanilla)

Ours(HRN w/o Re2)

Ours(HRN w/ Re2)

(c) HRN-2x6x2x

 56

 60

 64

 68

 72

 76

 80

 4  8  16  32  64  128C
IF

A
R

-1
0
0
 A

cc
u
ra

cy
(%

)

#ReLUs (K)

SNL(channel)

SNL(vanilla)

Ours(HRN w/o Re2)

Ours(HRN w/ Re2)

(d) HRN-2x7x2x

 56

 60

 64

 68

 72

 76

 80

 4  8  16  32  64  128C
IF

A
R

-1
0
0
 A

cc
u
ra

cy
(%

)

#ReLUs (K)

SNL(channel)

SNL(vanilla)

Ours(HRN w/o Re2)

Ours(HRN w/o Re2)

(e) HRN-2x6x3x

 60

 64

 68

 72

 76

 80

 4  8  16  32  64  128C
IF

A
R

-1
0
0
 A

cc
u
ra

cy
(%

)

#ReLUs (K)

SNL(Channel)

SNL(vanilla)

Ours(HRN w/o Re2)

Ours(HRN w/ Re2)

(f) HRN-2x9x2x
Figure 12: ReLU-reuse (Re2) consistently outperforms the SOTA channel-wise ReLU dropping technique
used in SNL across various ReLU counts. Substituting the conventional scaling method used in DeepReDuce
(denoted as “w/o Re2”) with Re2 results in an accuracy gain of 1% - 3%, bringing the performance closer to
the pixel-wise SNL (denoted as “SNL(vanilla)”).

Further, we employ ReLU-reuse on HRNs with α=2, as per Algorithm 2, and compare their performance
with SOTA channel-wise ReLU optimization method used in SNL. For a fair comparison, we use standard
knowledge distillation (Hinton et al., 2015), as used in SNL5, rather than DKD (Zhao et al., 2022). Figure 12
demonstrates that Re2 results in a significant accuracy improvement of up to 3%. This gain in accuracy
enables HRNs to achieve performance on par with pixel-wise SNL.

Ablation study for ReLU-reuse We conduct an ablation study on ResNet18 to investigate the benefits
of two key techniques employed in ReLU-reuse: (1) shortcut connections between outputs and inputs of
subsequent feature-subspaces (see Figure 9), and (2) using a fixed number of divisions in feature maps
regardless of the ReLU reduction factor. We removed ReLUs from alternate layers using ReLU-Thinning
and integrated ReLU-reuse in the others, and results are shown in Table 9. The results show that shortcut
connections boost accuracy at lower ReLU reduction factors, but their benefit diminishes with higher reduction
factors. Specifically, accuracy drops by 1.5% when the reduction factor increases from 2× to 4×. This
reduction is likely due to the significant loss of cross-channel information with more divisions in feature-map.

Table 9: Results for an ablation study where ReLU-reuse is employed in alternate convolution layers in (i.e.,
ReLU-Thinned) ResNet18 (CIFAR-100). The constant number of divisions (i.e., 3) in the proposed approach
of ReLU-reduction offers scalability for higher ReLU reduction factors. The term reuse in the table refers to
shortcut connections between feature-subspaces in N partitions (see Figure 9).

ReLU-reduction factor #ReLUs N divisions Proposed
w/o Reuse w/ Reuse (3 divisions)

2x ReLU reduction (N=2) 434.18K 77.61% 78.19% 77.83%
4x ReLU reduction (N=4) 372.74K 75.84% 76.87% 77.60%
8x ReLU reduction (N=8) 342.02K 75.43% 75.66% 76.93%
16x ReLU reduction (N=16) 326.66K 75.33% 75.47% 76.38%

5It is important to note that SENets (Kundu et al., 2023) uses PRAM (Post-ReLU Activation Mismatch) loss in conjunction
with standard KD (Hinton et al., 2015) for an additional boost in the accuracy of ReLU-reduced models. In contrast, both SNL
(Cho et al., 2022b) and DeepReDuce (Jha et al., 2021) rely solely on standard KD.
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On the other hand, a fixed number of divisions in our proposed approach stabilizes the accuracy degradation
even at higher ReLU reduction factors, emphasizing their scalability for achieving significantly lower ReLU
reductions. Note that, at a reduction factor of 2, the ReLU-reuse technique demonstrated slightly lower
accuracy than the N division method with shortcut connections. This is because the latter consists of only
two groups of feature maps, while the former has three, which resulted in more information loss.

The baseline HybReNets exhibits superior ReLU efficiency compared to the standard networks
used in private inference
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Figure 13: ReLU efficiency comparison
with baseline HybReNets. For WideRes-
Nets k ∈ {2, 4, 6, 8, 10, 12}.

We evaluated the ReLU efficiency of baseline HRNs without lever-
aging any coarse or fine-grained ReLU optimization methods, as
well as knowledge distillation. We compared them with two widely
used network architectures in PI: ResNet and WideResNets. Re-
sults are shown in Figure 13. The homogeneous channel scaling in
ResNet18 StageCh networks led to superior ReLU efficiency than
WideResNets variants until accuracy in the former is saturated.
Nonetheless, all the four HRNs—HRN-5x5x3x, HRN-5x7x2x,
HRN-6x6x2x, and HRN-7x5x2x—exceeds the ReLU efficiency
of ResNet18 StageCh variants, demonstrating the benefits of
strategically allocating channels in the subsequent stages of the
classical networks for PI.

6 Related Work

PI-specific network optimization Delphi (Mishra et al., 2020), SAFENet (Lou et al., 2021), and Garimella
et al. (2021) substitute ReLUs with low-degree polynomials, while AutoFHE (Ao & Boddeti, 2024) performed
layerwise mixed-degree polynomial substitution. Ghodsi et al. (2021) proposed stochastic ReLU, a probabilistic
approximation of ReLU functions, and co-optimized the garbled circuits. DeepReDuce (Jha et al., 2021), a
manual coarse-grained ReLU optimization method, drops ReLUs layerwise. SNL (Cho et al., 2022b) and
SENet (Kundu et al., 2023) are fine-grained ReLU optimization and drop the pixel-wise ReLUs. CryptoNAS
(Ghodsi et al., 2020) and Sphynx (Cho et al., 2022a) use neural architecture search and employ a constant
number of ReLUs per layer for designing ReLU-efficient networks, disregarding FLOPs implications. In
contrast, our approach achieves ReLU and FLOP efficiency simultaneously. We refer the reader to Ng &
Chow (2023) for detailed HE and GC-specific optimizations for private inference. A recent work Zeng et al.
(2023b) used oblivious transfer for nonlinear operations and rotation-free homomorphic encryption (Huang
et al., 2022) for linear layers, and showed that communication cost is dominated by linear operations.

Benefits of width The impact of network width on reducing catastrophic forgetting was highlighted by
Mirzadeh et al. (2022). The influence of network width on the smoothness of the loss surface was analyzed by
Li et al. (2018), and it was found that an increase in width could mitigate erratic behavior in the loss landscape.
A study by Golubeva et al. (2021) decoupled the effects of increased width from over-parameterization and
found that the width of a network primarily determines its predictive performance, with the number of
parameters being a secondary factor under mild assumptions. Nguyen et al. (2021) established that wider
networks, when delivering similar levels of accuracy on the ImageNet dataset, show superior performance on
inputs that reflect the scene rather than the objects.

Challenges and implications of nonlinear layers in diverse neural network applications Nonlinear
layers not only present challenges in private inference; they introduce significant hurdles across various
neural network applications. For instance, in the realm of optical neural networks, ReLUs exacerbate energy
consumption and increase latency due to the costs associated with optical-to-electrical signal conversions,
which in turn diminishes the overall system efficiency (Chang et al., 2018; Li et al., 2022). When it comes to
verifying adversarial robustness, the prevalence of ReLUs can make the process notably more time-intensive.
This increase in complexity arises from the higher proportion of unstable neurons (Xiao et al., 2019; Balunović
& Vechev, 2020; Chen et al., 2022a).

Additionally, ReLUs considerably hinder the progress of verifiable machine learning because its non-arithmetic
operations are incompatible with zero-knowledge proof systems (Sun & Zhang, 2023), and prior work has
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resorted to employing polynomial approximations (Ali et al., 2020; Zhao et al., 2021; Eisenhofer et al., 2022)
or have implemented methods based on lookup tables (Liu et al., 2021; Kang et al., 2022). Furthermore, the
non-distributive nature of ReLU over rotation operations can break the equivariance property of Steerable
CNNs (Franzen & Wand, 2021), known for their parameter and computation efficiency (Cohen & Welling,
2017; Weiler et al., 2018; Weiler & Cesa, 2019); thus, limiting their architectural choices and applicability.

Thus, the ReLU optimization techniques of DeepReShape not only address the challenges in private inference
but also hold promise for broader applications, suggesting its versatility and potential for widespread impact.

7 Discussion

Conclusion and broader impact Privacy-preserving computations demand substantial resources, particu-
larly in terms of storage, communication bandwidth, and compute power. Using the garbled-circuit technique
alone can consume hundreds of gigabytes of storage, while homomorphic computations might need hours
to complete a single private inference in real-world scenarios (Rathee et al., 2020; Garimella et al., 2023).
Researcher have proposed specialized hardware accelerators (Samardzic et al., 2021; 2022; Soni et al., 2023;
Mo et al., 2023; Kim et al., 2023; Agrawal et al., 2024; Putra et al., 2024) and (cryptographic) protocol
improvements to tackle these challenges. Yet, these solutions present challenges of their own: hardware
solutions may not always be sustainable in the long run (Gupta et al., 2022), and protocol tweaks could
potentially open doors to security vulnerabilities or raise compatibility concerns.

In this context, our research shifts the focus towards algorithmic innovations and aims to address the unique
challenge of reducing FLOPs without compromising ReLU efficiency. We proposed DeepReShape to optimize
FLOP count while maintaining ReLU efficiency effectively. We achieve this by identifying superfluous FLOPs
in conventional ReLU efficient networks and understanding that wide networks are mainly beneficial for
higher ReLU counts, providing additional opportunities for FLOP reduction when targeting lower ReLU
counts. By leveraging these insights, we achieve FLOP reduction up to 45× without any bells and whistles.

One significant advantage of algorithmic improvement is their adaptability across diverse hardware configu-
rations and cryptographic protocols, thus broadening the potential impact of our algorithmic innovations.
We showed that a substantial reduction in runtime, ∼(5× to 10×), can be achieved simply by strategically
allocating channels in the existing networks and employing straightforward ReLU optimization steps.

Furthermore, as discussed in §6, nonlinear layers are a bottleneck also in other areas of machine learning
privacy and security. Thus, our work on the simultaneous optimization of ReLU and FLOPs holds promise
for broader applications in these fields.

Limitations Achieving a specific target ReLU count with HybReNets is challenging due to the coarse-grained
nature of ReLU optimization steps. Fine-grained optimization leads to suboptimal performance in HybReNets
because of changes in the ReLUs’ distribution compared to conventional CNNs. Coarse-grained ReLU
optimization steps either halve the network’s ReLU count or remove all ReLUs from Stage1, depending on
the ReLU distribution in the network (see Algorithm 2). Consequently, the final ReLU count depends on
the baseline network’s initial ReLU count and their distribution within the network, influenced by the base
channels and stage-wise channel multiplication factors.

Future work Developing PI-efficient networks from scratch could yield more optimized networks for PI
performance; however, it requires exhaustive design space exploration and the training of multiple subnetworks
to successively narrow the search space. This makes it computationally intensive process. Nonetheless, there
is a significant potential for creating families of networks tailored for optimal PI performance. Furthermore,
additional reductions in FLOPs can be achieved by employing techniques such as linear layer fusion, as
demonstrated in (Jha et al., 2021; Dror et al., 2021; Zeng et al., 2023a).
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A Design Rationale for Hyper-Parameter Selection in HybReNet Networks
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Figure 14: Analyzing ReLUs’ distribution in HRNs by progressively increasing the α values from α=2. Once
the network achieves ReLU equalization—(5, 7, 2) for HRN-5x7x2x, (6, 6, 2) for HRN-6x6x2x, and (7, 5, 2)
for HRN-7x5x2x— the ReLUs’ distribution remains stable with increasing α value.

In this section, we explain our design decisions for choosing specific α, β, and γ in HybReNets. We selected
the smallest α within a specified range for the given pairs of (β, γ) based on two primary considerations

Firstly, when the network attains ReLU equalization, the ReLU distribution becomes stable and remains
constant as α grows. This stability is due to the fact that altering α has the least impact on the relative
distribution of stagewise ReLUs compared to increasing β and γ (Figure 14). Specifically, increasing α results
in a slight decrease in the proportion of Stage 1 ReLUs and a slight increase in the remaining stages.

Secondly, when ReLU optimization (Jha et al., 2021) is employed, increasing α in HRNs does not improve
ReLU efficiency. Instead, it results in an inferior ReLU-accuracy tradeoff at lower ReLU counts (Figure 15).
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Figure 15: Effect of increasing α in HybReNets: The ReLU efficiency of networks with higher α does not
improve; in fact, it significantly reduces at lower ReLU counts.
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B ReLUs’ Criticality Order in StageCh, BaseCh and HybReNet Networks

Table 10: Evaluating stage-wise ReLU criticality in ResNet18 (R18) BaseCh and StageCh networks on
CIFAR-100. Criticality metrics (Ck) are determined using the method from Jha et al. (2021). Both BaseCh
and StageCh networks maintain the original ResNet18 criticality order: S3 > S2 > S4 > S1 (Higher Ck

implies more critical ReLUs).

Networks Stage1 Stage2 Stage3 Stage4
#ReLUs Acc(%) +KD(%) Ck #ReLUs Acc(%) +KD(%) Ck #ReLUs Acc(%) +KD(%) Ck #ReLUs Acc(%) +KD(%) Ck

R18(m=16)-2x2x2x 81.92K 52.08 52.67 0.00 32.77K 61.24 62.10 7.39 16.38K 63.00 64.64 9.84 8.19K 58.09 59.70 6.07
R18(m=32)-2x2x2x 163.84K 59.19 60.19 0.00 65.54K 65.91 66.47 4.69 32.77K 65.7 67.28 5.55 16.38K 60.48 62.22 1.67
R18(m=64)-2x2x2x 327.68K 62.65 63.13 0.00 131.07K 67.18 68.32 3.69 65.54K 68.75 70.29 5.34 32.77K 62.63 63.47 0.27
R18(m=128)-2x2x2x 655.36K 62.34 64.15 0.00 262.14K 69.28 70.56 4.34 131.07K 71.25 72.04 5.61 65.54K 63.59 64.58 0.32
R18(m=256)-2x2x2x 1310.72K 64.81 65.22 0.00 524.29K 71.95 72.43 4.65 262.14K 72.69 73.77 5.79 131.07K 64.79 65.77 0.39
R18(m=16)-3x3x3x 81.92K 52.77 53.07 0.00 49.15K 64.93 65.67 9.59 36.86K 66.23 67.96 11.57 27.65K 61.74 63.43 8.21
R18(m=16)-4x4x4x 81.92K 52.19 52.20 0.00 65.54K 65.62 66.22 10.46 65.54K 67.82 69.16 12.66 65.54K 63.52 65.46 9.89
R18(m=16)-5x5x5x 81.92K 50.38 50.65 0.00 81.92K 66.10 66.63 11.74 102.40K 70.17 70.64 14.46 128.00K 64.86 65.43 10.52
R18(m=16)-6x6x6x 81.92K 50.60 51.53 0.00 98.30K 66.74 67.11 11.30 147.46K 70.67 72.09 14.49 221.18K 65.22 66.43 10.21
R18(m=16)-7x7x7x 81.92K 50.93 49.07 0.00 114.69K 66.59 67.89 13.50 200.70K 72.08 73.33 16.74 351.23K 65.95 67.88 12.48

It remains intriguing to examine whether the ReLUs’ criticality order in baseline networks, such as ResNet18,
remains consistent when the network width is modified, specifically in the BaseCh, StageCh, and HRN
variations. To explore this, we computed the stagewise criticality metric for ResNet18 BaseCh and StageCh
networks (Table 10), and HRN networks with α values between 2 and 7 (Table 11). Interestingly, the criticality
order of the standard ResNet18 remains preserved in BaseCh and StageCh models, as well as in all HRNs,
except for those with α=2 (HRN-2x5x3x, HRN-2x5x2x, HRN-2x6x2x, and HRN-2x7x2x). Specifically, in
HRNs with α=2, the criticality order of Stage2 and Stage3 is shuffled, while the most and least critical stages
remain unchanged (i.e., S3 > S2 > S4 > S1). To account for this altered criticality order, we recomputed α,
β, and γ using Algorithm 1, resulting in two HRNs: HRN-2x6x3x and HRN-2x9x2x. However, the criticality
order in these two HRNs did not adapt to the altered criticality order (highlighted in green in Table 11).

Table 11: Evaluating stage-wise ReLU criticality in ResNet18-based HRN networks with α values from 2 to 7
on CIFAR-100. Criticality metrics (Ck) for each stage are determined using the method in Jha et al. (2021).
Except for α=2, all HRN networks maintain the original ResNet18 criticality order (S3 > S2 > S4 > S1).
HRNs with the minimum α, β, and γ required for full ReLU equalization are highlighted in gray. The HRNs
highlighted in green are designed for a different criticality order:S3 > S4 > S2 > S1.

Networks Stage1 Stage2 Stage3 Stage4
#ReLUs Acc(%) +KD(%) Ck #ReLUs Acc(%) +KD(%) Ck #ReLUs Acc(%) +KD(%) Ck #ReLUs Acc(%) +KD(%) Ck

HRN-2x7x2x 81.92K 52.14 53.39 0.00 32.77K 61.63 61.59 6.42 57.34K 68.44 69.82 12.37 28.67K 62.15 63.40 7.91
HRN-3x7x2x 81.92K 51.61 53.29 0.00 49.15K 64.46 65.26 9.11 86.02K 69.88 70.77 12.80 43.01K 63.10 64.17 8.36
HRN-4x7x2x 81.92K 51.28 49.42 0.00 65.54k 65.93 66.47 12.72 114.69K 70.94 72.16 16.32 57.34K 63.70 64.77 11.56
HRN-5x7x2x 81.92K 49.82 48.36 0.00 81.92K 66.17 67.59 14.13 143.36K 71.40 72.18 16.83 71.68K 64.10 65.35 12.60
HRN-6x7x2x 81.92K 51.23 48.48 0.00 98.30K 66.88 68.06 14.20 172.03K 71.86 72.73 16.91 86.02K 64.15 65.75 12.64
HRN-7x7x2x 81.92K 50.11 52.40 0.00 114.69K 66.92 68.29 11.40 200.70K 71.69 73.16 14.32 100.35K 63.82 65.53 9.51
HRN-2x6x2x 81.92K 52.29 53.19 0.00 32.77K 61.62 62.00 6.90 49.15K 67.36 69.51 12.43 24.58K 61.64 63.25 8.04
HRN-3x6x2x 81.92K 52.50 52.80 0.00 49.15K 64.50 65.64 9.78 73.73K 68.61 70.96 13.44 36.86K 62.77 64.09 8.77
HRN-4x6x2x 81.92K 53.23 53.32 0.00 65.54K 65.74 66.03 9.48 98.30K 70.47 71.54 13.22 49.15K 63.59 64.82 8.76
HRN-5x6x2x 81.92K 50.79 51.64 0.00 81.92K 66.89 67.27 11.48 122.88K 70.33 71.50 14.18 61.44K 63.97 64.94 9.97
HRN-6x6x2x 81.92K 50.01 50.59 0.00 98.30K 66.57 67.94 12.58 147.46K 71.18 72.59 15.51 73.73K 64.13 65.39 10.95
HRN-7x6x2x 81.92K 51.01 49.64 0.00 114.69K 66.74 68.57 13.58 172.03K 71.84 72.84 16.18 86.02K 64.54 65.16 11.36
HRN-2x5x2x 81.92K 52.03 53.05 0.00 32.77K 61.60 61.76 6.82 40.96K 66.64 68.29 11.75 20.48K 61.02 62.58 7.71
HRN-3x5x2x 81.92K 53.43 52.61 0.00 49.15K 64.57 65.71 9.97 61.44K 68.40 69.93 12.98 30.72K 62.32 63.42 8.51
HRN-4x5x2x 81.92K 52.65 52.33 0.00 65.54K 65.60 66.89 10.86 81.92K 69.81 70.85 13.61 40.96K 63.14 63.94 8.95
HRN-5x5x2x 81.92K 49.15 51.16 0.00 81.92K 66.26 67.47 11.98 102.40K 70.15 71.69 14.85 51.20K 63.55 64.67 10.26
HRN-6x5x2x 81.92K 49.06 52.10 0.00 98.30K 66.56 68.08 11.59 122.88K 71.33 71.85 14.10 61.44K 63.59 64.89 9.59
HRN-7x5x2x 81.92K 51.58 51.93 0.00 114.69K 66.94 67.89 11.45 143.36K 70.79 72.87 14.79 71.68K 64.02 65.23 9.86
HRN-2x5x3x 81.92K 52.36 53.68 0.00 32.77K 61.39 61.30 5.97 40.96K 66.78 68.17 11.17 30.72K 62.01 63.83 7.99
HRN-3x5x3x 81.92K 51.05 52.89 0.00 49.15K 64.64 65.10 9.30 61.44K 68.87 70.14 12.93 46.08K 63.66 64.32 8.74
HRN-4x5x3x 81.92K 51.57 50.62 0.00 65.54K 65.66 66.06 11.52 81.92K 69.12 70.13 14.33 61.44K 63.64 65.58 11.21
HRN-5x5x3x 81.92K 50.22 52.41 0.00 81.92K 66.42 67.55 11.12 102.40K 70.15 70.97 13.42 76.80K 64.21 65.59 9.73
HRN-6x5x3x 81.92K 50.28 50.45 0.00 98.30K 65.95 67.61 12.45 122.88K 70.68 71.29 14.88 92.16K 64.37 65.87 11.23
HRN-7x5x3x 81.92K 50.12 50.31 0.00 114.69K 66.85 67.95 12.66 143.36K 71.20 71.87 15.23 107.52K 64.72 65.58 11.01

HRN-2x9x2x 81.92K 51.86 53.22 0.00 32.77K 61.13 61.65 6.60 73.73K 69.46 70.28 12.63 36.86K 62.53 64.25 8.57
HRN-2x6x3x 81.92K 52.75 52.85 0.00 32.77K 61.33 61.44 6.73 49.15K 67.36 68.76 12.11 36.86K 62.69 64.59 9.12
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C Adapting HybReNet Design to Criticality Order Variations

We conducted an exhaustive characterization of HRN networks designed for the prevalent criticality order:
Stage3 > Stage2 > Stage4 > Stage1. However, we observed that the criticality order of Stage2 and Stage4
can change in some instances, such as when using HRNs with α=2 or when applying ResNet18/ResNet34 on
TinyImageNet (Jha et al., 2021). In these cases, the criticality order shifts to Stage3 > Stage4 > Stage2 >
Stage1. This raises the question of whether running the criticality test for every baseline network on different
datasets is necessary.

To address this, we compared the ReLU-accuracy performance of HRN networks designed with two different
criticality orders. Using the DeepReShape algorithm (Algorithm 1), we designed HybReNets for the alternative
criticality order of Stage3 > Stage4 > Stage2 > Stage1.

#ReLUs(S3) > #ReLUs(S4) > #ReLUs(S2) > #ReLUs(S1)

=⇒ ϕ3

(αβ

16

)
> ϕ4

(αβγ

64

)
> ϕ2

(α

4

)
> ϕ1

ReLU equalization through width (ϕ1 = ϕ2 = ϕ3 = ϕ4 = 2, and α ≥ 2, β ≥ 2, γ ≥ 2) :

=⇒ αβ

16 >
αβγ

64 >
α

4 > 1 =⇒ αβ > 16, α > 4, αβγ > 64, β > 4, βγ > 16, and γ < 4

Solving the above compound inequalities provides the following range of β and γ at two different γ

At γ = 2, β > 8 & α > 4; and at γ = 3, β > 5 & α > 4

Solving these inequalities provides the following ranges for β and γ at different γ values:

• At γ = 2: β > 8 and α > 4

• At γ = 3: β > 5 and α > 4

HRNs with the minimum values of α, β, and γ that satisfy the ReLU equalization for the altered criticality
order (Stage3 > Stage4 > Stage2 > Stage1) are HRN-5x6x3x and HRN-5x9x2x. For lower ReLU counts,
we select HRNs with α=2, (i.e., HRN-2x6x3x and HRN-2x9x2x). We compare the ReLU-accuracy tradeoffs
of these HRNs with those designed for the prevalent criticality order using both coarse-grained ReLU
optimization (DeepReDuce) and fine-grained ReLU optimization (SNL).

The results (Figure 16) show that the performance of HRNs for both criticality orders is similar with
coarse-grained optimization on CIFAR-100. However, with fine-grained optimization, there is a noticeable
accuracy gap. Specifically, HRN-2x5x3x and HRN-2x7x2x outperform HRN-2x6x3x and HRN-2x9x2x by a
small but discernible margin. On TinyImageNet, HRN-5x6x3x and HRN-5x9x2x perform similarly, except
that HRN-5x5x3x outperforms at some intermediate ReLU counts.
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Figure 16: Performance comparison of HRNs designed for the altered criticality order (Stage3 > Stage4 >
Stage2 > Stage1) with β=6 & 9, and HRNs designed for the prevalent criticality order (Stage3 > Stage2 >
Stage4 > Stage1) with β=5 & 7. Overall, the latter exhibit slightly better performance than the former.
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D Depth-Based ReLU Equalization

ReLU equalization through width in HybReNets has two effects: increasing the network’s complexity per unit
of nonlinearity (measured as parameters and FLOPs per unit of ReLU) and aligning the ReLU distribution
according to their criticality order. To analyze these effects independently, we applied ReLU equalization
through depth and augmented the base channel counts to increase parameters and FLOPs per unit of ReLU.
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Figure 17: Efficacy of depth-based ReLU equalization, performed using depth hyper-parameters, i.e., stage-
compute-ratios (modified values shown in brackets [ϕ1, ϕ2, ϕ3, ϕ4]). These depth-based HRNs show similar
or worse ReLU and FLOPs efficiency compared to BaseCh networks, highlighting the effectiveness of width
adjustments through α, β, and γ for ReLU equalization in width-based HybReNets.

We use ResNet18 with m=16 and fixed α=β=γ=2 while setting the stage-compute-ratios (ϕ1, ϕ2, ϕ3, ϕ4)
as design hyperparameters. Using Algorithm 1 for ReLU equalization, we solved compound inequalities to
determine the depth hyperparameters. We determine depth hyperparameters (ϕ1, ϕ2, ϕ3, ϕ4) ∈ {(1,5,5,3);
(1,5,7,2); (1,6,6,2); (1,7,5,2)} corresponding to the minimum values enabling ReLU equalization, resulting
in a network global depth (ϕ1+ϕ2+ϕ3+ϕ4) of 14. We then varied m ∈ {16, 32, 64, 128, 256} to increase
parameters and FLOPs per unit of ReLU in BaseCh networks.

The experimental results, shown in Figure 17, compare the ReLU and FLOPs efficiency with BaseCh and
StageCh networks. ReLU and FLOPs efficiency of the derived networks were either similar to or worse than
the BaseCh networks. For example, HRN[1,5,5,3] exhibits inferior ReLU (FLOPs) efficiency at higher ReLU
(FLOPs) counts compared with BaseCh networks. This underscores the significance of ReLU equalization
through width adjustment by altering α, β, and γ, and demonstrates that ReLU equalization alone does not
yield the desired benefits in HybReNets.

E Capacity-Criticality-Tradeoff

E.1 Investigating Capacity-Criticality-Tradeoff in HybReNets

We conducted additional experiments on various HybReNets to further investigate the Capacity-Criticality
Tradeoff phenomenon observed in Figure 6. We progressively reduced the α values in all the HRNs, increasing
the proportion of the network’s ReLUs in Stage1 (see Table 11). For example, HRN-6x6x2x, HRN-4x6x2x,
and HRN-2x6x2x have Stage1 ReLU fractions of 20.4%, 27.8%, and 43.5%, respectively.

We employed both the coarse-grained (DeepReDuce) and fine-grained (SNL) ReLU optimization methods
on all the HRNs variants, and the results are shown in Figure 18. Consistent with trends in Figure 6, the
wider versions of all four HRNs outperform at higher ReLU counts, while HRNs with α=2, having a higher
proportion of Stage1 ReLUs, excel at lower ReLU counts. For instance, HRN-6x6x2x and HRN-4x6x2x
outperform HRN-2x6x2x at higher ReLU counts, whereas HRN-2x6x2x excels at lower ReLU counts.
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Figure 18: Capacity-Criticality Tradeoff in HRN networks for coarse/fine-grained ReLU optimization DeepRe-
Duce/SNL. HRN networks with lower α posses higher proportion of Stage1 (the least-critical) network’s
ReLUs, and exhibit superior performance at lower ReLU counts.
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E.2 Intuitive Explanation for Capacity-Criticality Tradeoff

In classical CNNs such as ResNet18 and WRN22x8, networks with a higher proportion of least-critical
(Stage1) ReLUs tend to have lower overall ReLU counts. For example, WRN22x8 and ResNet18, used in
SNL (Cho et al., 2022b) and SENet (Kundu et al., 2023), have total ReLU counts of 1392.6K and 557K,
respectively, with 58.8% and 48.2% of the network’s ReLUs in Stage1. This trend is also consistent in
HybReNets: HRN-6x6x2x, HRN-4x6x2x, and HRN-2x6x2x have ReLU counts of 401.4K, 294.9K, and 188.4K,
with 43.5%, 27.8%, and 20.4% of ReLUs in Stage1, respectively. This raises the question: what drives better
performance at lower ReLU counts—the proportion of Stage1 ReLUs or the network’s total ReLU count?

To investigate this, we compared the performance of networks with the opposite trend: networks with higher
ReLU counts and a higher proportion of Stage1 ReLUs. Specifically, we selected ResNet34 and a ReLU
efficient variant of ResNet18, ResNet18(m = 16)-4x4x4x, having a uniform ReLU distribution and used in
prior PI-specific network optimization methods Ghodsi et al. (2020); Cho et al. (2022a). The results in Table
12 show that despite having 3.5× fewer ReLUs, compared to ResNet34, ResNet18(m = 16)-4x4x4x starts
performing worse below 50K ReLU counts. This is due to a lower percentage (29.41%) of Stage1 ReLUs in
ResNet18(m = 16)-4x4x4x compared to ResNet34 (47.46%).

Network #ReLUs Stage1(%) 180K 100K 50K 15K
ResNet34 966.7K 47.46 76.35% 74.55% 72.07% 66.46%
4x4x4x 278.5K 29.41 77.08% 75.03% 71.38% 64.77%

Table 12: Performance comparison (using SNL ReLU
optimization) between ResNet34 and a ResNet18 vari-
ant (ResNet18(m=16)-4x4x4x) having a uniform distri-
bution of ReLUs. Stage1(%) indicates the fraction of
the network’s ReLUs in Stage1. Despite having 3.5×
fewer ReLUs, the performance of ResNet18(m=16)-
4x4x4x remains inferior to ResNet34 when the ReLU
count falls below 50K. This suggests that the key de-
terminant for superior performance at very low ReLU
counts is the fraction of least-critical ReLUs, rather
than the network’s total ReLU count.
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Figure 19: Networks with a higher fraction of least-
critical (i.e., Stage1) ReLUs, such as ResNet18 and
ResNet34, drop a smaller fraction of their critical Re-
LUs. In contrast, WRN22x8 and 4x4x4x drop a larger
fraction of their critical ReLUs to achieve a ReLU count
of 25K. This occurs regardless of their initial ReLU
counts in baseline network.

To understand why a higher fraction of Stage1 ReLUs leads to better performance at lower ReLU counts, we
examined the ReLU dropping strategies used in prior ReLU optimization techniques (Kundu et al., 2023;
Cho et al., 2022b; Jha et al., 2021). They consistently showed that Stage1 ReLUs are the least critical and
are dropped first to achieve very low ReLU counts. Consequently, networks with a higher proportion of
least-critical ReLUs drop a smaller fraction of their critical ReLUs when aiming for very low ReLU counts.
This is illustrated in Figure 19, where WRN22x8 and ResNet18(m = 16)-4x4x4x drop a higher fraction of
their critical ReLUs compared to ResNet18 and ResNet34 to reach a ReLU count of 25K. Dropping a higher
fraction of critical ReLUs leads to significant accuracy loss and inferior performance. This explains why prior
work (Kundu et al., 2023; Cho et al., 2022b) used ResNet18 as a backbone network for ReLU optimization at
lower ReLU counts and WRN22x8 at higher ReLU counts.

This observation aligns with findings from Yosinski et al. (2014), which showed that neurons in the middle
layers of a network (Stage2 and Stage3) exhibit fragile co-adaptation, making them difficult to relearn.
Therefore, dropping more ReLUs from these stages in networks with fewer least—critical (Stage1) ReLUs
disrupts the fragile co-adaptation and significantly reduces performance.

F Fine-grained ReLU Optimization on HybReNet Networks

We employed SNL ReLU optimization (Cho et al., 2022b) on HybReNets to examine the efficacy of fine-grained
ReLU optimization on these networks. The results, presented in Figure 20, show that HRNs with SNL
ReLU optimization are inferior to the (vanilla) SNL, the ReLU-Accuracy Pareto points reported in Cho et al.
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(2022b) (which used WRN22x8 (for #ReLUs > 100K) and ResNet18 (for #ReLUs ≤ 100K) as backbone
networks). To further investigate, we first performed ReLU-Thinning, where ReLUs from alternate layers are
removed, and then employed SNL ReLU optimization. Employing SNL on ReLU-Thinned HRNs results in
an accuracy boost of up to 3% (on CIFAR-100) across all ReLU counts, achieving performance comparable to
vanilla SNL. This underscores the significance of ReLU Thinning even for fine-grained ReLU optimization.

These findings are consistent with observations made in Figure 7 and Table 5, demonstrating the limitations
of SNL when the distribution of ReLUs is changed, the proportion of Stage1 ReLUs decreases and that in
other stages increases. This implies that the benefits of fine-grained ReLU optimization are contingent upon
the higher proportion of least-critical ReLUs in the network.
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 66

 69

 72

 75

 78

 16  32  64  128  256

C
IF

A
R

-1
0
0
 A

cc
u
ra

cy
 (

%
)

#ReLUs (K)

HRN(w/o Th.)+SNL

HRN(w/ Th.)+SNL

SNL(vanilla)

(d) HRN-7x5x2x
Figure 20: HybReNets with fine-grained ReLU optimization: HRNs using SNL (fine-grained) ReLU opti-
mization exhibit inferior ReLU-Accuracy tradeoff compared to the vanilla SNL, employed on ResNet18 and
WRN22x8 (Cho et al., 2022b). Interestingly, using ReLU-Thinning (a coarse-grained optimization step used
in DeepReDuce) before SNL optimization yields performance on par with the vanilla SNL. This highlights the
significance of ReLU Thinning in ReLU optimization, even in the context of fine-grained ReLU optimization.

To better understand the effectiveness of ReLU Thinning in the context of fine-grained ReLU optimization,
we analyzed the total number of ReLUs within a network before and after applying the optimization. For
instance, in the HRN-5x7x2x model, the SNL algorithm identified 50K essential ReLUs from an initial pool
of 363.5K ReLUs, subsequently eliminating 312.5K ReLUs. However, when we ReLU-Thinning is applied
prior to SNL optimization, the SNL algorithm finds 50K critical ReLUs from a reduced pool of 181.25K
ReLUs and dropped 131.25K ReLUs. This is because Thinning eliminates half of the network’s ReLUs from
alternating layers, regardless of their criticality. Thus, ReLU Thinning effectively reduces the search space
required to identify critical ReLUs, resulting in an accuracy boost of 2.44% on CIFAR-100.

G Detailed Analysis of ReLU-Accuracy Pareto Points

In this section, we describe the ReLU optimization steps used to construct ReLU-Accuracy Pareto frontier
shown in Figure 11 (a,b) and Table 7. When employing ReLU-reuse, we fixed m=16; however, the network’s
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FLOPs count reduces due to the group-wise convolution. For instance, HRN-2x6x3x with a ReLU-reuse
factor of four has 370.1M FLOPs, while the baseline HRN-2x6x3x (m=16) network has 527.4M FLOPs, when
used on CIFAR-100 (see Table 14). However, due to specific implementation constraints of group convolution
in Microsoft SEAL (SEAL), we calculated the HE latency without considering the FLOP reduction from
group convolution in ReLU-reuse.

Table 13: Network configurations and ReLU optimization steps employed for the HybReNet points in Table
7. Accuracies (TinyImageNet) are separately shown for vanilla KD (Hinton et al., 2015) and DKD (Zhao
et al., 2022), highlighting the benefits of improved architectural design and distillation method. Re2 denotes
ReLU-reuse, and used for efficient PI at very low ReLU counts.

HybReNet m
ReLU optimization steps #ReLU #FLOPs Accuracy(%) Acc./ReLU

Culled Thinned Re2 KD DKD
5x5x3x 16 NA S1+S2+S3+S4 NA 653.3K 4216.4M 65.76 67.58 0.10
2x5x3x 32 S1 S2+S3+S4 NA 417.8K 2841.7M 64.11 66.10 0.16
5x5x3x 8 NA S1+S2+S3+S4 NA 326.6K 1055.4M 61.92 64.92 0.20
2x5x3x 8 S1 S2+S3+S4 NA 104.4K 178.9M 56.37 58.90 0.56
2x5x3x 16 S1 S2+S3+S4 4 52.2K 486.3M 53.13 54.46 1.04

Table 14: Network configurations and ReLU optimization steps employed for the Pareto points in Figure 11
(a,b), along with and the HybReNet points used for the comparison with SOTA PI methods and ConvNeXt-V2
(Woo et al., 2023) as illustrated in Table 14. Re2 denotes ReLU-reuse, a key method in achieving significantly
reduced ReLU counts.

Nets m ReLU optimization steps #ReLU #FLOPs Accuracy(%) Acc./ReLU
Culled Thinned Re2 KD DKD

C
IF

A
R

-1
00

H
yb

R
eN

et

4x6x3x 16 NA S1+S2+S3+S4 NA 317.4K 2061.1M 80.14 81.36 0.26
2x6x3x 16 S1 S2+S3+S4 NA 134.1K 527.4M 78.80 79.56 0.59
2x6x3x 8 S1 S2+S3+S4 NA 67.1K 132.2M 74.84 76.91 1.15
2x6x3x 16 S1 S2+S3+S4 4 33.5K 370.1M 70.93 73.89 2.21
2x6x3x 16 S1 S2+S3+S4 8 16.6K 394.8M 68.17 69.70 4.19
2x6x3x 16 S1 S2+S3+S4 16 8.3K 413.4M 62.44 64.65 7.78

T
in

yI
m

ag
eN

et

H
yb

R
eN

et

4x6x3x 16 NA S1+S2+S3+S4 NA 1269.8K 8244.2M 68.90 70.29 0.06
4x6x3x 12 NA S1+S2+S3+S4 NA 952K 4638.8M 68.16 69.15 0.07
2x6x3x 16 S1 S2+S3+S4 NA 536.6K 2109.4M 66.29 67.48 0.13
2x6x3x 12 S1 S2+S3+S4 NA 402K 1187.5M 64.51 65.77 0.16
2x6x3x 8 S1 S2+S3+S4 NA 268.3K 528.6M 60.97 64.02 0.24
2x6x3x 16 S1 S2+S3+S4 4 134.1K 1480.1M 57.84 61.52 0.46
2x6x3x 16 S1 S2+S3+S4 8 67.1K 1579.2M 54.47 56.24 0.84
2x6x3x 16 S1 S2+S3+S4 16 33.5K 1653.5M 49.13 49.96 1.49

C
on

vN
eX

t T 96 S1 S2+S3+S4 NA 1622K 11801M 68.32 69.85 0.04
N 80 S1 S2+S3+S4 NA 1278K 9080.2M 66.73 68.75 0.05
P 64 S1 S2+S3+S4 NA 720.9K 3435.7M 65.42 67.08 0.09
F 48 S1 S2+S3+S4 NA 540.7K 1935M 64.23 65.72 0.12
A 40 S1 S2+S3+S4 NA 450.6K 1345.1M 63.23 64.08 0.14

H Extended Discussion

H.1 Constraints for the Simultaneously Optimizing ReLU and FLOPs Efficiency

Classical CNNs often follow the convention of doubling the filter count when downsampling feature maps
by a factor of two to prevent representational bottlenecks (Szegedy et al., 2016). This results in a fixed
stagewise channel multiplication factor of α = β = γ = 2 for most classical networks. Even in the design
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of state-of-the-art FLOPs-efficient vision models, such as RegNet (Radosavovic et al., 2020), the stagewise
channel multiplication factors are restricted to 1.5 ≤ (α, β, γ) ≤ 3. Conventionally, network design paradigms
prioritize FLOPs efficiency, so the stagewise multiplication factor is typically conservative since the FLOPs
count has a quadratic dependence on the channel counts.

To optimize both ReLU and FLOPs efficiency under PI constraints, higher α and β values and a lower γ value
are required (see Figure 3(e,f)). Restricting α, β, and γ in classical FLOPs efficient networks (e.g., ResNet
and WideResNets) primarily harms the network’s ReLU efficiency. Also, the prior approach of designing
ReLU-efficient networks by increasing α, β, and γ homogeneously (e.g., α = β = γ = 4 in Ghodsi et al.
(2020); Cho et al. (2022a)) results in poor FLOPs efficiency due to higher γ.

H.2 Achieving ReLU and FLOPs Efficiency in HybReNets by Regulating FLOPs in Deeper Layers

ReLU equalization in a four-stage network imposes specific constraints on β and γ values, with βγ < 16 and
γ < 4. These constraints effectively limit the explosion of FLOPs in deeper layers, making HRN networks
more FLOPs efficient than their StageCh counterparts, which use homogeneous sets of α, β, and γ. This
homogeneity in StageCh networks leads to a rapid increase in FLOPs due to the multiplicative effect of
stagewise multiplication factors. Hence, even a slight increase in these factors can significantly increase
FLOPs count, especially in deeper layers.

To illustrate this, we computed the normalized FLOPs in ResNet18-based StageCh networks and compared
them with HRNs. The normalized FLOPs in Stage3 and Stage4 of ResNet18 are expressed as α2β2

16 and
α2β2γ2

64 , respectively. Thus, a network with γ=2 would have equal FLOPs in Stage3 and Stage4. This is
evident from the normalized FLOPs ratios in HRN-5x7x2x, HRN-7x5x2x, and HRN-6x6x2x (Table 15).

In particular, the constraints on γ (i.e., γ < 4) keep the ReLU count of Stage4 lower than that of Stage3 (the
most critical stage), and restrict the FLOPs in Stage4. While further limiting α and β values can reduce
the network’s FLOPs, this would also reduce the proportion of the most critical (Stage3) ReLUs. Therefore,
unlike StageCh networks, a criticality-aware design streamlines both the ReLU and FLOPs in networks by
preventing superfluous FLOPs in deeper layers and maximizes the FLOPs utilization for a given ReLU count.

Table 15: Stagewise FLOPs and ReLU trend variations with α, β, and γ in (ReLU-efficient) StageCh and
HRNs. The least (most) critical ReLUs are colored in red (blue). Evidently, ReLU equalization in HRNs
restricts the growth of FLOPs in deeper layers, achieving ReLU efficiency comparable to StageCh networks
but with fewer FLOPs. This enables the right balance between ReLU and FLOPs efficiency in HRNs.

Stage1 Stage2 Stage3 Stage4 (α, β, γ)=2 2<(α, β, γ)<4 (α, β, γ)=4 (α, β, γ)>4

FLOPs 1 α2

4
α2β2

16
α2β2γ2

64 Layerwise FLOPs constant increasing (↑) increasing (↑↑) increasing (↑↑↑)

ReLUs 1 α
4

αβ
16

αβγ
64 Layerwise ReLUs decreasing (↓↓) decreasing (↓) constant increasing (↑)

(α, β, γ) = (2, 2, 2) (α, β, γ) = (3, 3, 3) (α, β, γ) = (4, 4, 4) (α, β, γ) = (6, 6, 6)
Stage1 Stage2 Stage3 Stage4 Stage1 Stage2 Stage3 Stage4 Stage1 Stage2 Stage3 Stage4 Stage1 Stage2 Stage3 Stage4

FLOPs 64 64 64 64 64 144 324 729 64 256 1024 4096 64 576 5184 46656
ReLUs 64 32 16 8 64 48 36 27 64 64 64 64 64 96 144 216

HRN-5x7x2x HRN-7x5x2x HRN-6x6x2x HRN-5x5x3x
Stage1 Stage2 Stage3 Stage4 Stage1 Stage2 Stage3 Stage4 Stage1 Stage2 Stage3 Stage4 Stage1 Stage2 Stage3 Stage4

FLOPs 64 400 4900 4900 64 784 4900 4900 64 576 5184 5184 64 400 2500 5625
ReLUs 64 80 140 70 64 112 140 70 64 96 144 72 64 80 100 75

H.3 Explanation of Accuracy Saturation in StageCh Networks Through Deep Double Descent

A distinct trend in the ReLU-Accuracy tradeoff has been observed (see Figure 3(a,b)) as the width of models
increases by augmenting α, β, and γ. Specifically, accuracy initially increases with increasing values of α, β,
and γ, reaches a saturation point, then increases again at higher ReLU counts. This trend is more prominent
in models with smaller depth, such as ResNet18, and disappears in deeper models such as ResNet56, where
performance does not improve once accuracy saturated.
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The observed saturation trend in the ReLU-Accuracy tradeoff can be explained by the “model-wise deep
double descent” phenomenon, which becomes more pronounced with higher label noise (Belkin et al., 2019;
Nakkiran et al., 2021; Somepalli et al., 2022). In particular, with label noise, a U-shaped curve appears in the
classical (under-parameterized) regime due to a bias-variance tradeoff. Whereas, in the over-parameterized
regime, accuracy improves due to the regularization enabled by the strong inductive bias of the network.
However, with zero label noise, the test error plateaus around the interpolation threshold, resulting in a flat
trend similar to the one shown in Figure 3(a,b) instead of a U-shaped curve.

H.4 Why RegNet and ConvNeXt Models are Selected for Our Case Study?

RegNets are models designed using a semi-automated network design method, parameterized by the stage
compute ratio (ϕ1, ϕ2, ϕ3, ϕ4), base channel count (m), and stagewise channel multiplication factors within
the range 1.5 ≤ (α, β, γ) ≤ 3. In contrast, ConvNeXts are redesigned ResNets with modified values of m and
ϕ1, ϕ2, ϕ3, ϕ4. For example, the ConvNeXt-T model has a stage compute ratio of [3, 3, 9, 3], different from
the [3, 4, 6, 3] ratio used in ResNet34, and a base channel count of m=96, higher than the m=64 used in
ResNet34. These unconstrained design choices in RegNets and the modified depth and width in ConvNeXt
models make them suitable for our case study, where we investigate their impact on ReLU distribution and
the balance between ReLU and FLOPs efficiency.

The original ConvNeXt model uses the PI-unfriendly GELU activation function Hendrycks & Gimpel (2016)
and LayerNorm Ba et al. (2016), which require several approximations in ciphertext evaluation (Fan et al.,
2022; Zimerman et al., 2024). Therefore, we adapted ResNet models to incorporate ConvNeXt features,
specifically the stagewise channel allocation and the stage compute ratio from ConvNeXt models. For
experiments with RegNets, we opted for the RegNet-x variant instead of RegNet-y, as the latter employs a
sigmoid activation function in its squeeze-and-excitation blocks.

H.5 Potential of ReLU Equalization as a Unified Network Design Principle

Deep learning has advanced significantly in recent years with the development of sophisticated neural network
architectures. Traditionally, researchers have relied on manual network design techniques, such as ResNet (He
et al., 2016), ResNeXt (Xie et al., 2017), and ConvNeXt (Liu et al., 2022). Neural architecture search (NAS)
methods (Liu et al., 2018; Tan & Le, 2019; Howard et al., 2019; Tan et al., 2019) have also shown promise.

However, these approaches have their own limitations. Manual techniques can become more complex and
lead to suboptimal models as the number of design hyperparameters increases. NAS methods often lack
interpretability and may not generalize beyond restricted settings. Moreover, both methods require substantial
computational resources to find optimal design hyperparameters when designing networks from scratch.

A semi-automated design technique like RegNets (Radosavovic et al., 2020) offers an interpretable network
design and automates the process of finding the optimal population of networks, generalizable across a wide
range of settings. However, it still requires training thousands of models to iteratively narrow down the
search space, making it expensive when models are designed from scratch.

We analyzed the ReLUs’ distribution in SOTA semi-automated models (RegNets) and manually designed
models (ConvNeXt) and made the following observations:

• The specific values of width and depth hyperparameters, determined by a quantized linear function
in RegNet models, position the networks’ ReLUs in their criticality order (see Figure 21(a))

• Similar to HRNs with α=2, in ConvNeXt models, the distribution of ReLUs, except for Stage1,
follows their criticality order.

In particular, the proportion of the most critical (Stage3) ReLUs increases from 20.3% in ResNet34 to 30.2%
in ConvNeXt-T and 34.8% in ConvNeXt-N model while reducing the proportion of less critical ReLUs (see
Figure 21(b)). The stagewise channel allocation in ConvNeXt models and HRNs (with α=2) shows that both
models allocate an identical number of channels in the deeper stages. HRNs allocate fewer channels during
the initial stages. These observations demonstrate the generality of ReLU equalization as a design principle,
even when designing FLOPs efficient models.
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(b) ResNet34 and ConvNeXt-V2

Figure 21: Analysis of ReLUs’ distribution in RegNet-X and ConvNeXt-V2 architectures. In all RegNet-X
models, ReLUs are arranged precisely according to their criticality order. ConvNeXt models, including their
T, A, F, P, and N variations (Woo et al., 2023), have a higher proportion of ReLUs in the most critical stage
(Stage3) and fewer in the less critical stage (Stage1) due to modified depth and width design hyper-parameters.
In contrast, the distribution of ReLUs in the HRN-4x6x3x model (designed from the ResNet34 network)
strictly adheres to their criticality order.

• ConvNext V2-T m=96 [96, 192, 384, 768]
• ConvNext V2-N m=80 [80, 160, 320, 640]
• ConvNext V2-P m=64 [64, 128, 256, 512]
• ConvNext V2-F m=48 [48, 96, 192, 384]
• ConvNext V2-A m=40 [40, 80, 160, 320]

• HRN-2x6x2x m=32 [32, 64, 384, 768]
• HRN-2x5x2x m=32 [32, 64, 320, 640]
• HRN-2x5x3x m=16 [16, 32, 160, 480]
• HRN-2x6x2x m=16 [16, 32, 192, 384]
• HRN-2x5x2x m=16 [16, 32, 160, 320]

ReLU equalization, on the other hand, requires only prior knowledge of the stagewise criticality of baseline
network, which is often consistent within a specific model family and requires training very few models.
Moreover, ReLU equalization can be used to design both FLOPs and ReLU-efficient neural networks. Thus,
ReLU equalization offers a new perspective to simplify network design, improve interpretability, and achieve
both FLOPs and ReLU efficiency.

I Performance Comparison of HybReNets vs. Classical Networks for ReLU-reuse

We compared ReLU-reuse against the conventional scaling method (channel/feature-map scaling) used in
DeepReduce (Jha et al., 2021) on both classical networks and HRNs. First, we applied ReLU-reuse to all
convolutional layers of the networks, reducing the ReLUs by a factor of N ∈ {2, 4, 8, 16}. For N = 2, we
used the naive ReLU reduction method, as it outperformed the proposed ReLU-reuse (see Figure 9).

Experimental results show that for ResNet18 BaseCh networks, ReLU-reuse performs inferior to conventional
scaling methods, and this performance gap increases for networks with higher m. In contrast, for HRN
networks, ReLU-reuse surpasses conventional scaling at higher ReLU reduction factors (i.e., at very low ReLU
counts). However, at higher ReLU counts, particularly for a reduction factor of two, the information loss
incurred from feature maps division outweighs the benefits of ReLU-reuse, leading to inferior performance.
This observation holds even for networks with uniform ReLUs distribution, such as ResNet18(m=16)-4x4x4x.

Furthermore, we repeat the experiments on ReLU-Thinned networks, as conventional scaling is performed
on Thinned networks in Jha et al. (2021). We dropped ReLUs from alternate convolutional layers and
applied ReLU-reuse in the remaining layers. The results are shown in Figure 23. Since ReLU-reuse is now
only employed in half of the total number of layers, the cumulative information loss caused by the loss of
cross-channel information in feature-map divisions is reduced. Consequently, the performance of ReLU-reuse
is further improved. This improvement is noticeable from the change in the performance gap between
ReLU-reuse and conventional scaling for all the networks, as shown in Figure 23.

To summarize, the effectiveness of ReLU-reuse depends on the network architecture and the ReLU reduction
factor. ReLU-reuse is effective for networks with (partial/full) ReLU equalization, in contrast to classical
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(d) ResNet18(m=128)
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(e) ResNet18(m=16)-4x4x4x
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(f) HRN-2x6x2x
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(g) HRN-5x5x3x
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(h) HRN-6x6x2x

Figure 22: Performance comparison (CIFAR-100) of ReLU-reuse vs conventional scaling (used in coarse-
grained ReLU optimization (Jha et al., 2021)) when ReLU-reuse is employed after every convolution layer.
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(b) ResNet18(m=32)
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(c) ResNet18(m=64)
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(d) ResNet18(m=128)
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(e) ResNet18(m=16)-4x4x4x
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(f) HRN-2x6x2x

 55

 60

 65

 70

 75

 8  16  32  64

A
cc

u
ra

cy
 (

%
)

#ReLUs (K)

ReLU-reuse

Scaling

(g) HRN-5x5x3x

 55

 60

 65

 70

 75

 16  32  64

A
cc

u
ra

cy
 (

%
)

#ReLUs (K)

ReLU-reuse

Scaling

(h) HRN-6x6x2x
Figure 23: Performance comparison (CIFAR-100) of ReLU-reuse vs conventional scaling (used in coarse-
grained ReLU optimization (Jha et al., 2021)) when ReLU-reuse is employed on ReLU-Thinned networks.
That is, first ReLU is dropped from every-alternate layers, and then ReLU-reuse is applied in remaining
layers (see Algorithm 2).
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networks, and scales well with higher ReLU reduction factors. Therefore, ReLU-Thinned HRN networks
combined with ReLU-reuse significantly improve performance at very low ReLU counts, which we incorporate
in the ReLU optimization pipeline designed for HybReNets (shown in Algorithm 2).

Algorithm 2 ReLU optimization steps employed in HybReNets(HRNs)
Input: A network Net with D stages S1, S2, ..., SD and C, a sorted list of stages from least to most critical
Output: ReLU optimized versions of Net

1: if the least critical stage C[1] dominates the distribution of ReLUs then
2: Sk = C[1] ▷ Get the least critical stage
3: Net = Net - Sk ▷ Cull the least critical Stage Sk

4: end if
5: NetT

i = Thin(Net) ▷ Thin the remaining stages
6: NetC

i = ScaleCh(NetT
i , α=0.5) ▷ Channel scaled by 0.5x

7: NetR4
i = ReuseReLU (NetT

i , Sc=4) ▷ ReLU-reuse with scaling factor 4
8: NetR8

i = ReuseReLU (NetT
i , Sc=8) ▷ ReLU-reuse with scaling factor 8

9: NetR16
i = ReuseReLU (NetT

i , Sc=16) ▷ ReLU-reuse with scaling factor 16
10: Nets += Net, NetT

i , NetC
i , NetR4

i , NetR8
i , NetR16

i ▷ Apply KD to each Net
11: return Nets

J Design of Experiments and Training Procedure

Sweeping the width hyperparameters for ReLU efficiency experiments: To examine the effect
of various network widening methods (primarily BaseCh and StageCh), we conducted experiments with
ResNet18 as backbone architecture in Figure 3 (a,b). We reduced the base channel count in ResNet18 to
m=16 (from m=64) to enable a fair comparison with other ResNet models, such as ResNet20, ResNet32, and
ResNet56, which have m=16. These ResNet models have [16, 32, 64] #channels in their successive stages,
while that in (original) ResNet18 is [64, 128, 256, 512]. For BaseCh networks, we sweep m ∈{16,32,64,128,256}
and for StageCh networks, we sweep (α, β, γ) = (2, 2, 2) to (8, 8, 8), homogeneously.

Training methodology and datasets: We performed our experiments on CIFAR-100 (Krizhevsky et al.,
2010) and TinyImageNet (Le & Yang, 2015; Yao & Miller, 2015), as prior PI-specific network optimization
studies (Jha et al., 2021; Cho et al., 2022b; Kundu et al., 2023) used these datasets. CIFAR-100 consists of
100 classes, each with 500 training images and 100 test images of resolution 32×32. TinyImageNet includes
200 classes, each with 500 training images and 50 validation images with a resolution of 64×64.

For training on CIFAR-100 and TinyImageNet, we used a cosine annealing learning rate scheduler (Loshchilov
& Hutter, 2016) with an initial learning rate of 0.1, a mini-batch size of 128, a momentum of 0.9, and a
weight decay factor of 5e-4. We trained the networks for 200 epochs on both datasets, with an additional 20
warmup epochs for Decoupled KD (Zhao et al., 2022).

For DeepReDuce and KD experiments in Tables 6, Table 13, and Table 14, we employed Hinton’s knowledge
distillation (Hinton et al., 2015) with a temperature of 4 and a relative weight to cross-entropy loss as 0.9.

For SNL, we train the baseline networks using the aforementioned methodology; however, we used their default
implementation for mask generation, fine-tuning, and knowledge distillation. When employing Decoupled
knowledge distillation (Tables 6, 13, and 14), we set the relative weight of target class KD as one and vary the
weight of non-target class KD as {0.8, 1, 2, 6}. For the KD experiment, we consistently employed ResNet18
as the teacher model for a fair comparison across the studies.

Runtime measurement: We adopted the methodology from Garimella et al. (2023) to compute the runtime
of a single (private) inference. Specifically, we used Microsoft SEAL to compute the homomorphic encryption
(HE) latency for convolution and fully connected operations, and DELPHI (Mishra et al., 2020) to compute
the garbled-circuit (GC) latency for ReLU operations. Our experimental setup involved an AMD EPYC
7502 server with 2.5 GHz, 32 cores, and 256 GB RAM. The client and server were simulated as two separate
processes operating on the same machine. We set the number of threads to four to compute the GC latency.
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Note that for HRNs with ReLU-reuse, we calculated the HE latency without accounting for the FLOP
reduction from group convolution in ReLU-reuse due to the implementation constraints in Microsoft SEAL.

K Network Architecture of HybReNets

Table 16 shows the architectural comparison between ResNet18, WRN22x8, and four specific HRNs: HRN-
5x5x3x, HRN-5x7x2x, HRN-6x6x2x, and HRN-7x5x2x. Compared to ResNet18, the HRNs allocate fewer
channels in the initial stages and increase those in the deeper stages of the network. This strikes the right
balance between ReLUs and FLOPs efficiency. Among the four HRNs, HRN-5x5x3x offers a slightly better
balance between ReLU and FLOPs efficiency.

Table 16: Comparison of WideResNet22x8 and ResNet18 architectures, which are commonly used as baseline
networks in PI-specific ReLU optimization techniques (Kundu et al., 2023; Cho et al., 2022b; Jha et al., 2021),
with our proposed HybReNets (highlighted in bold). Unlike conventional WideResNets and ResNets, the
strategic channel allocation in the subsequent stages of HybReNets streamlines the network’s ReLUs and
FLOPs, optimizing both ReLU and FLOPs efficiency simultaneously. The last rows compare their FLOPs
and ReLU counts, along with baseline accuracy on CIFAR-100.

Stages output size WRN22x8 ResNet18 HRN-5x5x3x HRN-5x7x2x HRN-6x6x2x HRN-7x5x2x
Stem 32 × 32 [3×3, 16] [3×3, 64] [3×3, 16] [3×3, 16] [3×3, 16] [3×3, 16]

Stage1 32×32
[

3×3, 128
3×3, 128

]
×3

[
3×3, 64
3×3, 64

]
×2

[
3×3, 16
3×3, 16

]
×2

[
3×3, 16
3×3, 16

]
×2

[
3×3, 16
3×3, 16

]
×2

[
3×3, 16
3×3, 16

]
×2

Stage2 16×16
[

3×3, 256
3×3, 256

]
×3

[
3×3, 128
3×3, 128

]
×2

[
3×3, 80
3×3, 80

]
×2

[
3×3, 80
3×3, 80

]
×2

[
3×3, 96
3×3, 96

]
×2

[
3×3, 112
3×3, 112

]
×2

Stage3 8×8
[

3×3, 512
3×3, 512

]
×3

[
3×3, 256
3×3, 256

]
×2

[
3×3, 400
3×3, 400

]
×2

[
3×3, 560
3×3, 560

]
×2

[
3×3, 576
3×3, 576

]
×2

[
3×3, 560
3×3, 560

]
×2

Stage4 4×4
[

3×3, 512
3×3, 512

]
×2

[
3×3, 1200
3×3, 1200

]
×2

[
3×3, 1120
3×3, 1120

]
×2

[
3×3, 1152
3×3, 1152

]
×2

[
3×3, 1120
3×3, 1120

]
×2

FC 1 × 1 [8 × 8, 512] [4 × 4, 512] [4 × 4, 1200] [4 × 4, 1120] [4 × 4, 1152] [4 × 4, 1120]

#FLOPs 2461M 559M 1055M 1273M 1368M 1328M
#ReLUs 1393K 557K 343K 379K 401K 412K
Accuracy 81.27% 79.01% 78.40% 78.28% 78.52% 78.81%

Table 17 details the architectural specifics of HRNs with α=2, which are crucial for performing PI at lower
ReLU counts. These HRNs developed using ResNet18 as backbone architecture, leading to stage compute
ratios of [2, 2, 2, 2]. Similarly, HRNs designed using ResNet34 as backbone architecture have stage compute
ratios [3, 4, 6, 3], same as ResNet34 (For instance, HRN-4x6x3x in Figure 21(b)).

41



Published in Transactions on Machine Learning Research (06/2024)

Table 17: Baseline HybReNets, developed using ResNet18 as the backbone architecture, aim for efficient PI
with lower ReLU counts. The final rows compare their FLOPs, ReLU counts, and baseline accuracy on the
CIFAR-100 dataset.

Stages output size HRN-2x5x3x HRN-2x7x2x HRN-2x6x2x HRN-2x5x2x
Stem 32 × 32 [3×3, 16] [3×3, 16] [3×3, 16] [3×3, 16]

Stage1 32×32
[

3×3, 16
3×3, 16

]
×2

[
3×3, 16
3×3, 16

]
×2

[
3×3, 16
3×3, 16

]
×2

[
3×3, 16
3×3, 16

]
×2

Stage2 16×16
[

3×3, 32
3×3, 32

]
×2

[
3×3, 32
3×3, 32

]
×2

[
3×3, 32
3×3, 32

]
×2

[
3×3, 32
3×3, 32

]
×2

Stage3 8×8
[

3×3, 160
3×3, 160

]
×2

[
3×3, 224
3×3, 224

]
×2

[
3×3, 192
3×3, 192

]
×2

[
3×3, 160
3×3, 160

]
×2

Stage4 4×4
[

3×3, 480
3×3, 480

]
×2

[
3×3, 448
3×3, 448

]
×2

[
3×3, 384
3×3, 384

]
×2

[
3×3, 320
3×3, 320

]
×2

FC 1 × 1 [8 × 8, 480] [4 × 4, 448] [4 × 4, 384] [4 × 4, 320]

#FLOPs 179M 213M 163M 119M
#ReLUs 186K 201K 188K 176K
Accuracy 75.34% 75.73% 75.70% 75.03%
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