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ABSTRACT

Diffusion models excel at generating diverse, high-quality images, but they also
risk producing unfair and harmful content. Existing methods that update text em-
beddings or model weights either fail to address biases within diffusion models
or are computationally expensive. We tackle responsible (fair and safe) text-to-
image (T2I) generation in diffusion models as an interpretable concept discovery
problem, introducing Concept Denoising Score Matching (CoDSMa) – a novel
objective that learns responsible concept representations in the bottleneck feature
activation (h-space). Our approach builds on the observation that, at any timestep,
aligning the neutral prompt with the target prompt directs the predicted score of
denoised latent towards the target concept. We empirically demonstrate that our
method enables responsible T2I generation by addressing two key challenges:
mitigating gender and racial biases (fairness) and eliminating harmful content
(safety). Our approach reduces biased and harmful generation by nearly 50% com-
pared to state-of-the-art methods. Remarkably, it outperforms other techniques in
debiasing gender and racial attributes without requiring profession-specific data.
Furthermore, it successfully filters inappropriate content, such as depictions of
illegal activities or harassment, without training on such data.

1 INTRODUCTION

The rise of text-to-image diffusion models (T2I), such as Stable Diffusion, has significantly im-
pacted content creation and visual communication by enabling high-quality visuals from simple text
prompts (Rombach et al., 2022; Podell et al., 2024). However, these models risk reinforcing stereo-
types or generating harmful content, leading to societal consequences (Luccioni et al., 2023; Perera
& Patel, 2023; Rando et al., 2022; Schramowski et al., 2023). Ensuring a responsible workflow that
prioritizes fair and safe generation is critical to reducing these risks.

In this work, we address responsible T2I generation through interpretable representation learning
within the feature activations of the bottleneck layer in diffusion models, specifically the h-space, as
introduced in Li et al. (2024). We define ‘responsible concepts’ as attributes related to both fairness
and safety. Unlike Li et al. (2024), which identifies concepts in the h-space using generated images
– a computationally expensive process – we propose an alternative approach that leverages denoised
latent representations. Inspired by visualizations from Katzir et al. (2024) on the denoising score
components in diffusion models, we explore the following: given the denoising latent for a neutral
prompt at timestep t (the neutral denoising latent), how does modifying the neutral prompt to a
target prompt affect the denoising score? Our findings show that at any timestep, the target prompt
directs the predicted denoising score (target score) to steer neutral denoised latents toward the target
concept. We use these target scores to learn concept representations in diffusion models. Further
details on our setup, observations, and visualizations are in section 3.2.

Building on our empirical observations regarding the role of the target score, we introduce Concept
Denoising Score Matching (CoDSMa), a novel score-matching objective designed to learn respon-
sible concept representations in the h-space. Previous work Kwon et al. (2023) has demonstrated
that semantic latent manipulation of images can be achieved through linear transformations in the
h-space, making it a strong candidate for the concept representation learning in diffusion models.
Given a neutral prompt and a responsible concept (target concept), our goal is to learn a vector,
referred to as the c-vector, which can be linearly added to the h-space to introduce interpretable
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variations in the generated images, corresponding to a responsible concept. We achieve this by
introducing an objective that aligns the denoising score with the target score. Additionally, we
demonstrate that updating the c-vector in the direction of the gradient of CoDSMa steers the image
generation toward the target concept.

We empirically demonstrate the effectiveness of our approach for responsible T2I image generation,
focusing on fairness and safe generation. Our method successfully mitigates gender and racial biases
in profession-related images, without requiring training on profession-specific data, outperforming
existing methods. We provide both quantitative and qualitative analyses showing that our objective
effectively reduces the generation of inappropriate content.

Our work makes the following key contributions. (1) Study of the intermediate denoising score re-
veals that modifying the neutral prompt to the target prompt at any timestep guides the predicted de-
noising score to direct the neutral denoised latent towards the target concept. (2) Leveraging insights
from our empirical observations, we propose CoDSMa, a novel concept score distillation technique
for uncovering responsible concepts within the h-space of diffusion models. (3) Through extensive
quantitative and qualitative analysis, we demonstrate that CoDSMa enhances the fairness and safety
of T2I diffusion models, reducing unfair and inappropriate image generation by approximately 50%
compared to existing counterparts.

2 BACKGROUND

Responsible Generation using Diffusion Models: Recent work has seen a surge in methods to
mitigate biased and inappropriate content generation in Stable Diffusion models. Some approaches
modify input prompts by removing problematic words (Schramowski et al., 2023; Ni et al., 2023),
while others use prompt-tuning techniques (Kim et al., 2023) or learn projection embeddings on
prompt representations (Chuang et al., 2023) to filter out undesirable content. However, these meth-
ods primarily focus on text-based features and overlook the latent features that propagate through
the diffusion process. The authors of Gandikota et al. (2023); Shen et al. (2024) address this by fine-
tuning model weights to suppress harmful content generation, but these approaches can be compu-
tationally expensive. Alternative methods like those in Schramowski et al. (2023) use classifier-free
guidance to steer image generation away from undesirable content without additional training. Ap-
proaches proposed in Gandikota et al. (2024); Chuang et al. (2023) offer efficient, closed-form so-
lutions for embedding matrices to ensure responsible generation, though they lack adaptability and
fine generation control. Recent works (Parihar et al., 2024; Li et al., 2024) modify the bottleneck
activations of diffusion models to ensure appropriate content generation. Similarly, our method uti-
lizes bottleneck activations but introduces a novel objective based on intermediate denoised latents,
enabling the discovery of responsible directions in the latent space of diffusion models.

Concept Discovery in h-space: Kwon et al. (2023) were the first to identify the bottleneck layer
of U-Net (h-space) as the semantic latent space, providing evidence that manipulations within the
h-space result in semantically meaningful and interpretable changes in the generated images. Their
method leverages CLIP classifiers to learn disentangled representations in the h-space, but this
comes at a high computational cost. In contrast, approaches like Haas et al. (2024) apply PCA
decomposition in the h-space, while Park et al. (2023) derive a local latent basis within the space
by utilizing the pullback metric associated with features to discover interpretable directions in an
unsupervised manner. Li et al. (2024) identifies interpretable directions for a given target concept
by using Stable Diffusion-generated images that align with the target concept. Our approach dif-
fers from Li et al. (2024) by identifying concepts through the intermediate denoised latent space
representations in diffusion models, enabling a more efficient and precise manipulation of underly-
ing features, rather than relying on the generated images themselves, which can be computationally
expensive and may obscure concept representations.

3 METHODOLOGY

3.1 PROBLEM DEFINITION AND FORMULATION

This section presents a novel approach to enhancing fairness and safety in T2I diffusion models. We
reframe the problem as identifying responsible concept representations within the diffusion models
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Figure 1: Visualization of condition directions at timestep t = 700.

which enables unbiased and safe generation. We begin with a neutral prompt y (e.g., “a person”)
and a target prompt yp (e.g., “a woman”) representing a responsible concept. Our objective is to
identify a direction, termed as c-vector within the h-space of a pre-trained T2I diffusion models.
The c-vector, when applied as a linear transformation to the representations of the neutral prompt,
induces semantically meaningful changes in the generation, aligning to the target concept.

In section 3.2, we present visualizations of the intermediate score estimates at various time steps,
conditioned on denoised neutral latents and target prompts. Building on this observation, we in-
troduce CoDSMa, which discovers target concept representations in the c-vector, as described in
section 3.3. We also demonstrate how these vectors can directly improve fairness and safety in dif-
fusion models without additional training, as discussed in section 3.4, with an illustration in fig. 2.

3.2 SCORE VISUALIZATIONS

This section presents visualizations and key observations of the intermediate score, which serve as
the foundation for our proposed approach. Katzir et al. (2024) introduces an insightful decomposi-
tion of score components into interpretable elements. Their work visualizes the condition direction
δC = ϵθ(zt; y, t)− ϵθ(zt; y = ∅, t), showing that it is interpretable and consistently aligns with the
conditioning y across various timesteps t in the diffusion process. Inspired by Katzir et al. (2024),
we conduct a similar analysis of the condition direction δC to explore how modifying the prompt
conditioned on the neutral denoised latents at intermediate timesteps affects the predicted denoising
score. Specifically, we use y = “a person” and yp = “a woman” for this analysis. We begin by gen-
erating the denoised latent zt at various timesteps t for the neutral prompt y, as shown in fig. 1(a).
We now consider zt at t = 700 as illustrated in fig. 1(b).

Next, we obtain U-Net predictions at t = 700 for two scenarios: (1) ϵθ(zt; y, t), where prompt y
along with zt is given as the input, (2) ϵθ(zt; yp, t), where target prompt yp along with zt is given
as the input. Let the corresponding condition directions be δn and δp respectively. We then visualize
δn, δp, and their difference δn − δp at t = 700, as illustrated in fig. 1 (b).

We observe that δn in fig. 1(b) aligns with the conditioning variable y during the diffusion process,
reinforcing the findings of Katzir et al. (2024). However, when the prompt yp is provided alongside
the denoised latent zt to generate U-Net predictions at timestep t = 700, the conditioning direction
δp begins to emphasize attributes unrelated to the target concept. For instance, in fig. 1(b), features
such as a beard and mustache become more prominent in the visualization of δp. This shift occurs
because the U-Net predicts the noise that needs to be removed from the neutral denoised latent zt
to guide it toward the target concept yp. These observations empirically demonstrate that the target
score ϵθ(zt; yp, t) steers the neutral denoised latent representations toward the target concept while
preserving the original neutral concept. The difference term δn − δp in fig. 1(b) further supports
this as it increasingly reflects the target concept. Based on these findings, we propose leveraging the
target score ϵθ(zt; yp, t) to identify representations corresponding to the target concept yp.

3.3 CONCEPT DENOISING SCORE MATCHING

Our objective is to discover interpretable representations in the h-space corresponding to the target
concept yp. Since the h-space (Li et al., 2024) of U-Net is designed to represent compressed and
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Figure 2: CoDSMa uses pretrained, frozen SD to guide generation toward fair, safe concepts. Re-
verse diffusion to timestep t with a c-vector and “a person” prompt yields latent zt. Forward dif-
fusion with “a person” and zt predicts neutral score. Forward diffusion with “a woman” and zt
predicts target score. CoDSMa aligns the scores which in turn updates the c-vector. SD weights are
shared; no backpropagation through the reverse process.

abstracted semantic features of the data (e.g, object shapes, structure, textures), we aim to learn
a concept vector c ∈ RD, where D is the dimension of the h-space. The c-vector is randomly
initialized at the beginning of the training.

We start by decomposing the pretrained, frozen U-Net parameters of the diffusion model, θ, into θ =
{θ1, θ2}, where θ1 denotes the frozen parameters of the U-Net encoder (denoted by E(.)) including
the bottleneck layers (h-space), and θ2 represents the parameters of U-Net decoder (denoted by
D(.)). Then, the score prediction function can be defined as follows:

ϵθ(zt; y, t) = Dθ2(Eθ1(zt; y, t); y, t) (1)

If we substitute h = Eθ1(zt; y, t) in eq. (1), where h represents the output of the middle bottleneck
layer, the score prediction function simplifies to ϵθ(zt; y, t) = Dθ2(h; y, t). The gradients of Ldiff
with respect to h is then given by:

∇hLdiff = (ϵθ(zt; y, t)− ϵ)
∂ϵθ(zt; y, t)

∂D
∂D
∂h

= (Dθ2(h; y, t)− ϵ)︸ ︷︷ ︸
Noise Residual

∂Dθ2

∂h︸ ︷︷ ︸
UNet Decoder Jacobian

(2)

In practice, the U-Net Jacobian term is expensive to compute (requires backpropagating through the
diffusion U-Net), Since our aim is to learn representations in the h-space, the gradient only flows
through the U-Net decoder to the h-space, which is comparatively less expensive to compute. It
simply acts like an efficient, frozen critic that outputs h-space vectors. To facilitate the learning of
concept representations in the h-space, we introduce learnable c-vector, similar to the approach in Li
et al. (2024), that can be linearly added to the h-space vectors at each decoding timestep. Notably,
our approach learns a single c-vector representing a concept that captures aggregate information
across timesteps. The gradients of Ldiff with respect to c can be written as:

∇cLdiff = (Dθ2(h+ c; y, t)− ϵ)
∂Dθ2

∂c
(3)

The above equation represents the optimization of the c-vector with respect to the standard diffusion
loss. To facilitate concept discovery in the learnable c-vector, we now introduce CoDSMa, a score-
matching objective. As outlined in section 3.2, the target score ϵθ(zt, yp, t) effectively encodes
the information necessary to uncover target concept representations. Our score-matching objective
aligns the denoising scores with these target scores, which are then used to optimize the c-vector.
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Since we utilize U-Net in both the presence of learnable c-vector and otherwise during the training,
for notational clarity, we denote the denoising score as ϵθ(z;h+c, y, t) to represent the presence of
learnable c-vector which goes as the input to D. We first randomly sample a timestep t and obtain
the denoised latent zt corresponding to the neutral prompt y through the reverse process utilizing
the learnable U-Net, where the denoising score is denoted by ϵθ(zt,h + c, y, t). We then provide
the target prompt yp and zt to pretrained U-Net without c-vector to obtain the target score, which is
given by ϵθ(zt,h, yp, t). These scores are represented as ϵneu and ϵtar respectively in fig. 2. Then,
the CoDSMa objective is defined as:

LCoDSMa =∥ ϵθ(zt;h+ c, y, t)− ϵθ(zt;h, yp, t) ∥2 (4)

We build on the observation in section 3.2 that ϵθ(zt,h, yp, t) guides the denoised latent zt toward
the target concept, which we aim to capture in the concept vector c via our matching loss. In practice,
we avoid backpropagating through the reverse process that outputs zt during c-vector learning due
to high computational cost. Equation (4) can be expressed in terms of the U-Net decoder D as shown
in eq. (1), given by:

LCoDSMa =∥ Dθ2(h+ c; y, t)−Dθ2(h; yp, t) ∥2 (5)
The gradient of LCoDSMa w.r.t the c-vector can be written as:

∇cLCoDSMa = (Dθ2(h+ c; y, t)−Dθ2(h; yp, t))
∂Dθ2

∂c
(6)

By adding and subtracting the term ϵ in eq. (6), we can represent LCoDSMa as a difference between
gradients of two diffusion denoising score matching functions in eq. (3).

∇cLCoDSMa = ∇cLdiff(h+ c, y, t)−∇cLdiff(h, yp, t) (7)

The overall gradient ∇cLCoDSMa points in the direction that minimizes the difference between the
two gradients ∇cLdiff(h + c, y, t) and ∇cLdiff(h, yp, t). By subtracting the second gradient from
the first, we effectively direct the overall gradient away from ∇cLdiff(h+ c, y, t), which represents
the target score. This is significant because the denoising score, visualized through the condition
direction δp corresponding to the target score in fig. 1, primarily focuses on attributes orthogonal to
the target concept. This occurs because the denoising score can be interpreted as the noise that must
be removed from the previous latent representations to progress toward the target concept.

Our visualization in fig. 1 illustrates that the difference δn − δp emphasizes attributes associated
with the target concept. Thus, the overall gradient ∇cLCoDSMa effectively captures the information
contained in this difference term by moving away from the target score gradient. Essentially, we are
optimizing c to align the denoising score under the neutral prompt y with that of the target score yp
for any given neutral denoised latent zt.

3.4 RESPONSIBLE GENERATION

In this section, we explore how the identified directions enable responsible image generation, using
the c-vector learned through our approach for fair and safe generation.

Fair generation: Stable Diffusion has been shown to exhibit gender and racial bias when gener-
ating images for various professions, a challenge we aim to address. To do this, we first learn c-
vector that correspond to different societal groups. Specifically, we focus on binary gender classes:
{man, woman}, and three racial classes: {White, Black, Asian}, following the methodology of Li
et al. (2024). Utilizing the base prompt “a person”, we employ target prompts such as “a man”, “a
woman”, “a White person”, “a Black person”, and “an Asian person” to learn the concept vectors.

Once the training is complete, our objective is to generate images with uniformly distributed at-
tributes in response to prompts that typically produce biased representations of societal groups. For
instance, when employing the prompt “a photo of a doctor,” we aim to achieve balanced gender
representation during inference by uniformly sampling from the learned c-vectors for “man” and
“woman” in each image generation. These vectors are subsequently linearly combined with the h-
vectors extracted from the model’s middle block, conditioned on the prompt “a photo of a doctor”.
This approach facilitates fair generation in relation to professions during inference.

Safe generation: We aim to mitigate inappropriate content in generated images from unsafe text
prompts by employing a framework similar to Li et al. (2024). Two safety c-vectors are learned:
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one for “anti-sexual” and another for “anti-violence” content, using negative prompting with target
prompts to obtain the target denoising score. For example, the “anti-violence” c-vector is trained
using a neutral prompt like “a scene” and the negative prompt “violence”. Similarly, the “anti-
sexual” c-vector is learned. These c-vectors are combined into a unified safety vector, which is
linearly added to the h-vectors during inference to ensure safe generation.

4 EXPERIMENTS

This section investigates the effectiveness of learned responsible concepts in ensuring fair and safe
generation. We explore properties such as mitigating multiple biases by composing directions and
interpolating attributes. All experiments utilize Stable Diffusion v.1.4 to evaluate the efficacy of our
approach.

4.1 FAIR GENERATION

Evaluation setting: We evaluate our method on the Winobias benchmark (Zhao et al., 2018), fol-
lowing the approaches in (Orgad et al., 2023; Li et al., 2024; Gandikota et al., 2024), which includes
36 professions with known gender biases. We learn c-vectors as outlined in section 3.4, updating
them over 1000 iterations with a batch size of 8. Unlike Gandikota et al. (2024), we do not learn
separate directions for each profession. Instead, we use the prompt “a person” to learn generalized
directions applicable across professions, as detailed in section 3.4. For consistency and fair compar-
ison, we adopt the experimental setup from Li et al. (2024) to evaluate gender and racial fairness.
Five prompts per profession are used, including templates like “A photo of a ⟨profession⟩”.

Metrics: We perform quantitative and qualitative analysis to evaluate the performance of our pro-
posed approach. We employ the modified deviation ratio, as defined in Li et al. (2024), to quantify
the fairness of the generated images. Additionally, we assess image fidelity using the FID score
Heusel et al. (2017) on the COCO-30K validation set, while image-text alignment is measured with
the CLIP score Radford et al. (2021) using COCO-30K prompts under fair concept directions.

Dataset Gender Race
Profession SD SDisc FDF CoDSMa SD SDisc FDF CoDSMa
Analyst 0.70 0.02 0.22 0.02 0.82 0.24 0.23 0.08
CEO 0.92 0.06 0.48 0.01 0.38 0.22 0.14 0.07
Laborer 1.00 0.12 0.42 0.01 0.33 0.24 0.10 0.24
Secretary 0.64 0.36 0.08 0.16 0.37 0.24 0.56 0.14
Teacher 0.30 0.04 0.30 0.04 0.51 0.04 0.43 0.07
Winobias (Avg.) 0.68 0.17 0.40 0.07 0.56 0.23 0.32 0.10

Table 1: Fair generation results measured by the deviation ratio (∆ ↓) for Gender and Race.

Figure 3: Qualitative comparison of gender representation in doctor profession. Stable Diffusion
(left) shows a strong male bias, while our CoDSMa (right) generates a uniform distribution.

Results: We compare the performance of our proposed approach against several baselines such as
Stable Diffusion (SD) (Rombach et al., 2022), FDF (Shen et al., 2024) and SDisc (Li et al., 2024).

Table 1 present a comparison of our approach to various baseline methods, focusing on deviation
ratio across both gender and race biases, Baseline results are directly referenced from Li et al. (2024)
since we adopt the same experimental setup. Our approach consistently achieves the lowest average
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Figure 4: Qualitative comparison of racial representation in CEO. Stable Diffusion (left) shows a
strong bias towards Caucasian race. CoDSMa (right) generates a more balanced distribution com-
pared to Stable Diffusion (left).

Figure 5: Qualitative comparison of safe generation. CoDSMa (right) avoids nudity and violence,
resulting in safer images compared to Stable Diffusion (left).

deviation ratio in both gender and race biases, highlighting its superior performance in mitigating
biases across different professions.

Category Harassment Hate Illegal Self-harm Sexual Shocking Violence I2P

SD 0.34 ± 0.02 0.41 ± 0.03 0.34 ± 0.02 0.44 ± 0.02 0.38 ± 0.02 0.51 ± 0.02 0.44 ± 0.02 0.27 ± 0.01
SDisc 0.18 ± 0.02 0.29 ± 0.03 0.23 ± 0.02 0.28 ± 0.02 0.22 ± 0.01 0.36 ± 0.02 0.30 ± 0.02 0.27 ± 0.01
SLD 0.15 ± 0.01 0.18 ± 0.03 0.17 ± 0.02 0.19 ± 0.02 0.15 ± 0.01 0.32 ± 0.02 0.21 ± 0.02 0.20 ± 0.01
ESD 0.27 ± 0.02 0.32 ± 0.03 0.33 ± 0.02 0.35 ± 0.02 0.18 ± 0.01 0.41 ± 0.02 0.41 ± 0.02 0.32 ± 0.01
Ours 0.10 ± 0.02 0.14 ± 0.01 0.11 ± 0.01 0.14 ± 0.01 0.10 ± 0.02 0.21 ± 0.01 0.14 ± 0.00 0.13 ± 0.01

Table 2: Comparison on I2P benchmark across various safe generation baselines.

Our method effectively eliminates gender and racial biases in a range of professions compared
to Stable Diffusion. Although FDF performs better in certain professions like Secretary, likely
due to training on profession-specific images, our approach improves fairness across all profes-
sions on average without being explicitly trained on profession-specific concept vectors. This
highlights our model’s strong generalization ability across different professions. Although our
approach, like Li et al. (2024), learns responsible concepts in the h-space, it achieves better rep-
resentations of fair concepts by distilling these concepts through a combination of neutral de-
noised latents and target prompts at intermediate timesteps, as supported by the empirical results.

Gender Race
Metrics SD SDisc FDF CoDSMa SDisc FDF CoDSMa

FID (↓) 14.09 23.59 15.22 17.30 17.47 14.94 15.14
CLIP (↑) 31.33 29.94 30.63 29.96 30.27 30.59 30.31

Table 3: Comparison of FID and CLIP scores for fairness.

Table 3 compares FID and CLIP met-
rics across various baselines. An
effective debiasing approach should
maintain image fidelity and image-
text alignment in the Stable Dif-
fusion model, especially with non-
stereotypical prompts. We com-
pute FID and CLIP scores using the
COCO-30k validation dataset, leveraging pretrained models from baseline approaches for compari-
son with our method. As shown in table 3, the image generation quality of our approach matches that
of Stable Diffusion for both gender and race-debiased models with COCO-30k prompts. Further-
more, our method demonstrates strong text-to-image alignment. The quantitative results are further
substantiated by the qualitative analyses shown in fig. 3. Our approach significantly improves fe-
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male representation in the generated doctor images, whereas Stable Diffusion exhibits a notable
bias toward male doctors, as highlighted in fig. 3. Additionally, fig. 4 demonstrates that our method
produces a more racially balanced representation of CEO compared to Stable Diffusion.

4.2 SAFE GENERATION

Evaluation setting: We begin by learning the safety c-vector following the methodology outlined in
section 3.4. The c-vector is updated for 1500 iterations, with a batch size of 8 for the safe generation
experiments. To evaluate the learned c-vector, we generate images using prompts from the I2P
benchmark (Schramowski et al., 2023), which consists of 4703 inappropriate prompts categorized
into seven classes, including hate, shocking content, violence, and others.

Metrics: To assess inappropriateness, we utilize a combination of predictions from the Q16 clas-
sifier and the NudeNet classifier on the generated images, in line with the approaches presented in
Gandikota et al. (2023); Schramowski et al. (2023); Li et al. (2024). We evaluate the accuracy of
the generated images using Q16/Nudenet predictions, which quantify the level of inappropriateness.
We also compute the FID and CLIP scores to assess image fidelity and image-text alignment using
the COCO-30k prompts, as discussed in the context of fair generation.

Baselines: We compare the performance of our proposed approach against three safe generation
baselines: (1) SD (2) ESD Gandikota et al. (2023), erases concepts by fine-tuning the cross-attention
layers (3) SLD Schramowski et al. (2023), modifies the inference process to ensure safe generation.

Results: Table 2 summarizes the comparison of Q16/NudeNet accuracies of our proposed approach
and other baselines. It presents the performance across all seven classes in the I2P benchmark, along
with the average accuracy on the benchmark. Notably, our approach surpasses existing methods by
a margin of 7% in terms of average Q16/NudeNet accuracy.

Model SD ESD SLD SDisc CoDSMa

FID (↓) 14.09 13.68 18.76 15.98 17.39
CLIP (↑) 31.33 - - 31.03 29.45

Table 4: Comparison of FID and CLIP scores
across various safe generation baselines.

As discussed in section 3.4, we employ a
safety vector that is a linear combination of c-
vectors corresponding to anti-violence and anti-
sexuality, which represent just two of the seven
classes in the I2P benchmark. Nevertheless,
our method generalizes well to other categories
within the I2P benchmark, as evidenced by the
individual category results shown in table 2.
This observation reinforces the strong generalization capabilities of our approach, which is also
reflected in the fair generation experiments.

We also compute the FID and CLIP scores, with the results presented in table 4. Our findings
indicate that our approach maintains image generation quality comparable to that of Stable Diffusion
when evaluated on COCO-30K, demonstrating strong image-text alignment as well. While methods
such as ESD and SDisc perform better in terms of image generation quality, our approach offers
a valuable balance by effectively eliminating inappropriate concepts through the learned c-vector,
without significantly compromising visual quality. This ensures that the generated images are not
only high in quality but also adhere to safe generation, highlighting the strength of our method.

5 CONCLUSION

Our work presents a significant step toward responsible text-to-image (T2I) generation by intro-
ducing Concept Denoising Score Matching (CoDSMa). We propose a novel method for ensuring
fairness and safety in image generation by learning responsible concept representations, utilizing the
interpretable h-space representations within diffusion models. We demonstrate that aligning a neu-
tral prompt with a target prompt effectively directs the denoising score to guide latent representations
toward the target concept at any timestep. Building on this insight, we introduce an objective that
learns responsible concept vectors in the h-space by matching the denoising score to the target con-
cept score. Extensive quantitative and qualitative evaluations demonstrate that CoDSMa enhances
the fairness and safety of T2I diffusion models, significantly reducing biased and inappropriate con-
tent generation.
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Rohit Gandikota, Joanna Materzyńska, Jaden Fiotto-Kaufman, and David Bau. Erasing concepts
from diffusion models. In ICCV, 2023.

Rohit Gandikota, Hadas Orgad, Yonatan Belinkov, Joanna Materzyńska, and David Bau. Unified
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