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a b s t r a c t 

Amortized variational inference, whereby the inferred latent variable posterior distributions are parame- 

terized by means of neural network functions, has invigorated a new wave of innovation in the field of 

generative latent variable modeling, giving rise to the family of deep generative models (DGMs). Existing 

DGM formulations are based on the assumption of a symmetric Gaussian posterior over the model la- 

tent variables. This assumption, although mathematically convenient, can be well-expected to undermine 

the eventually obtained representation power, as it imposes apparent expressiveness limitations. Indeed, 

it has been recently shown that even some moderate increase in the latent variable posterior expres- 

siveness, obtained by introducing an additional level of dependencies upon auxiliary (Gaussian) latent 

variables, can result in significant performance improvements in the context of semi-supervised learn- 

ing tasks. Inspired from these advances, in this paper we examine whether a more potent increase in 

the expressiveness and representation power of modern DGMs can be achieved by completely relaxing 

their typical symmetric (Gaussian) latent variable posterior assumptions: Specifically, we consider DGMs 

with asymmetric posteriors, formulated as restricted multivariate skew-Normal (rMSN) distributions. We 

derive an efficient amortized variational inference algorithm for the proposed model, and exhibit its su- 

periority over the current state-of-the-art in several semi-supervised learning benchmarks. 

© 2017 Elsevier B.V. All rights reserved. 
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1. Introduction 

Amortized variational inference [1–4] , whereby the inferred

latent variable posteriors are parameterized via deep neural net-

works, is currently at the epicenter of the research on generative

latent variable modeling. The class of deep generative models

(DGMs) has arisen as the outcome of this research line. Existing

DGM formulations postulate symmetric (Gaussian) posteriors over

the model latent variables. This assumption, although compu-

tationally efficient, may undermine the representation power of

DGMs, as it imposes apparent expressiveness limitations [5] . To

address these issues, in one of the most recent developments

in the field, [6] proposed the skip DGM (SDGM); this model

introduces an extra layer of auxiliary latent variables, also im-

posed symmetric Gaussian posteriors, with the original latent

variable posteriors assumed to be conditioned upon the auxiliary

latent variables. Apparently, such a hierarchical latent variable

construction gives rise to obtained variational posteriors with

more expressiveness and representation power. Indeed, [6] have

provided broad empirical evidence corroborating these claims, by
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howing that SDGM yields the state-of-the-art performance in

everal semi-supervised learning benchmarks. 

Inspired from these advances, in this paper we examine

hether we can achieve a higher level of expressiveness and repre-

entation power for the latent variable posteriors of modern DGMs

y completely relaxing their typical symmetric (Gaussian) latent

ariable posterior assumptions. Indeed, in many applied problems,

he data to be analyzed may contain a group or groups of ob-

ervations whose distributions are moderately or severely skewed.

nfortunately, typical DGM formulations based on Gaussian poste-

ior assumptions cannot effectively model data of such nature: A

light deviation from normality may seriously affect the obtained

stimates, subsequently misleading inference from the data. There-

ore, accounting for asymmetric effects and skewness in the mod-

led data may allow for significant improvements in the potency

f DGM models. On this basis, in this work we introduce the novel

lass of asymmetric DGMs (AsyDGMs), characterized by asymmet-

ic latent variable posteriors, that are formulated as restricted mul-

ivariate skew-Normal (rMSN) distributions [7,8] . 

In recent years, there has been growing interest in study-

ng generative models based on latent variables with skew-

lliptical distributions [9,10] , both in the univariate and multivari-

te cases. Their popularity with the statistics community mainly

tems from them being regarded as a more general tool for han-

ling heterogeneous data that involve asymmetric behavior across

http://dx.doi.org/10.1016/j.neucom.2017.02.028
http://www.ScienceDirect.com
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ub-populations. For instance, [11] and [12] proposed mixtures

f multivariate skew-normal and t-distributions based on a re-

tricted variant of the skew-elliptical family of distributions of

8] ; [13] gave a systematic overview of various existing multivari-

te skew distributions and clarified their conditioning-type and

onvolution-type representations. There also is a small corpus of

orks proposing generative models the latent variables of which

re imposed skewed priors. These are shallow, factor analysis-type

odels, which provide strong motivation for the work presented

n this paper. For instance, [14] proposed mixtures of shifted asym-

etric Laplace factor analyzers; [15] proposed mixtures of general-

zed hyperbolic factor analyzers; [16] proposed mixtures of skew-t

actor analyzers. Finally, very recently, a finite mixture model of

MSN-distributed factor analyzers was proposed in [17] , and an ef-

cient EM algorithm comprising closed-form updates was derived

or model training. 

We derive an efficient inference algorithm for the proposed

syDGM approach by resorting to an elegant amortized varia-

ional inference algorithm, similar to existing DGMs. To exhibit

he efficacy of our approach, and its superiority over existing

ymmetrically-distributed DGMs, we perform a series of exper-

mental evaluations. Specifically, we focus on challenging semi-

upervised learning tasks, where DGM-type classifier training is

erformed with a very limited number of labeled examples. We

how that our approach yields the state-of-the-art performance

n these benchmarks, with a significant improvement over the

econd-best method. 

The remainder of this paper is organized as follows: In the

ollowing Section, we provide a brief overview of the theoretical

oundation of our work: We first introduce the rMSN distribu-

ion; further, we briefly present the SDGM model, which consti-

utes the latest development in the field of DGMs, when it comes

o addressing challenging semi-supervised learning tasks. Next, we

ntroduce our approach, and derive its inference and prediction

eneration algorithms. In the subsequent experimental Section, we

erform an exhaustive empirical evaluation of our approach, using

ell-known semi-supervised learning benchmarks. Finally, in the

oncluding Section of this paper, we summarize our contribution

nd discuss our results. 

. Theoretical foundation 

.1. The rMSN distribution 

We begin with a brief review of the rMSN distribution. To es-

ablish notation, let N (·| μ, �) be the probability density function

pdf) of multivariate Gaussian with mean vector μ and variance–

ovariance matrix �, and �( ·) be the cumulative distribution func-

ion (cdf) of the standard normal distribution. Further, let TN ( ·| μ,
2 ; ( a, b )) denote the truncated normal distribution for N (·| μ, σ 2 )

ying within a truncated interval ( a, b ). 

Following [12] , a random vector x ∈ R 

d is said to follow an

MSN distribution with location vector μ, dispersion matrix �, and

kewness vector λ, denoted by x ∼ rSN( μ, �, λ), if it can be rep-

esented as 

x | u ∼ N ( μ + λu, �) 

u ∼ T N(0 , 1 ; (0 , ∞ )) 
(1) 

ere, the truncated Normal distribution T N(u | μu , σ 2 
u ; (0 , ∞ )) with

ean μu , variance σ 2 
u , and bounds in (0, ∞ ), is defined as 

 N(u | μu , σ
2 
u ; (0 , ∞ )) = 

N (u | μu , σ 2 
u ) 

�(μu /σu ) 
I(u > 0) (2)

here I ( ·) is an indicator function. Hence, we observe that an

MSN-distributed variable can be equivalently expressed under a
aussian conditional distribution, where the introduced condition-

ng latent variable follows a standard truncated normal density. 

On this basis, [17] have recently proposed a generalization of

he traditional factor analysis (FA) model, namely the SNFA model,

here the latent variables (factors) are assumed to follow an rMSN

istribution within the family defined by (1). Let us denote as

 ∈ R 

p the p -dimensional observations we wish to model via an

NFA model. Denoting as z ∈ R 

q the inferred latent factors vectors

 q < p ), we have [17] 

p( x | z ) = N ( μ + B z , D ) (3)

nd 

p( z ) = rSN ( z | − c �−1 / 2 λ, �−1 
, �−1 / 2 λ) (4)

here μ is a p -dimensional location vector, B is a parameter ma-

rix of the SNFA model (factor loadings), D is a diagonal covariance

atrix, c � 

√ 

2 /π, λ is the skewness vector of the model, and 

� I + (1 − c 2 ) λλT 
(5) 

As shown in [17] , by using the definition (1) of the rMSN distri-

ution, this asymmetric factor analysis model can be equivalently

xpressed under the following three-level hierarchical representa-

ion: 

p( x | ̃ z ) = N ( μ + B g( ̃ z ) , D ) (6)

p( ̃ z | u ) = N ( ̃ z | (u − c) λ, I ) (7)

nd 

 ∼ T N(0 , 1 ; (0 , ∞ )) (8)

here 

( ̃ z ) = �−1 / 2 
˜ z (9) 

nder this equivalent representation, the SNFA model yields a sim-

le prior formulation that is amenable to a computationally effi-

ient EM training algorithm with closed-form expressions [17] . 

.2. SDGM 

As discussed in the Introduction, modern developments in the

eld of variational inference focus on using deep learning tech-

iques to parameterize the variational posteriors of latent variable

odels. This gives rise to powerful probabilistic models, usually

eferred to as DGMs, constructed by an inference neural network

hat parameterizes the posterior q ( z | x ), and a generative neural

etwork that parameterizes the conditional likelihood p ( x | z ). 

To allow for keeping the computational requirements low, the

ariational distribution q ( z | x ) is usually chosen to be a diagonal

aussian. Despite the computational attractiveness of this approx-

mation, it is quite apparent though that such an assumption may

ot allow for capturing intricate latent dynamics in the modeled

ata, as well as modeling data of asymmetric nature. Hence, one

ould expect that by relaxing these diagonal Gaussian posterior as-

umptions, one may yield DGMs with increased expressive power. 

Recently, [6] proposed an way of ameliorating these issues of

GMs by drawing inspiration from the variational auxiliary vari-

ble approach of [18] . The so-obtained Skip-DGM (SDGM) extends

he variational distribution with some auxiliary variables a , such

hat 

 ( a , z | x ) = q ( z | a ; x ) q ( a | x ) (10)

nd 

 ( z | x ) = 

∫ 
q ( a , z | x )d a (11)
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where both the postulated variational posteriors q ( z | a ; x ) and

q ( a | x ) are typical inference networks with diagonal Gaussian form.

Under such a two-level hierarchical formulation, it becomes well-

expected that the marginal distribution q ( z | x ) will be able to fit

more complicated posteriors compared to conventional (one-level)

diagonal Gaussian distribution-based DGM formulations. Indeed,

[6] have shown that the SDGM approach can be utilized in the

context of semi-supervised learning tasks, with the goal of build-

ing a potent classifier, capable of obtaining state-of-the-art perfor-

mance in challenging datasets by being trained with limited la-

beled examples combined with large unlabeled datasets. 

More specifically, denoting as x the observed vectors presented

as input to the postulated classifier, and as y the corresponding

label variables, SDGM consecutively postulates the following gen-

erative (i.e., conditional likelihood and prior) assumptions [6] : 

p θ( x | a , z , y ) = f ( x , a , z , y ; θ) (12)

p θ( a | z , y ) = f ( a , z , y ; θ) (13)

p(y ) = Cat (y | π) (14)

p( z ) = N ( z | 0 , I ) (15)

where f ( x , a , z , y ; θ) is a categorical or diagonal Gaussian for dis-

crete and continuous observations x , respectively, and f ( a , z , y ; θ)

is a diagonal Gaussian. Both p θ( ·) distributions are parameterized

by deep neural networks with parameters θ. On the other hand,

the derived variational posteriors (inference model) are assumed

to take on the following form: 

q φ( a | x ) = N ( a | μ( x ;φ) , diag σ2 ( x ;φ)) (16)

q φ( z | a , x , y ) = N ( z | μ( a , x , y ;φ) , diag σ2 ( a , x , y ;φ)) (17)

q φ(y | a , x ) = Cat (y | π( a , x ;φ)) (18)

[the computed (output) probabilities of the network π( a , x ; φ) are

the ones used to perform the classification task]. Note that, in or-

der to parameterize the diagonal Gaussians p θ( ·) and q φ( ·) in Eqs.

(12) –(13) and (16) –(17) , respectively, [6] define two separate out-

puts from the top deterministic layer in the corresponding deep

neural networks, one for the distribution mean and one for the

distribution (log-)variance. 

An issue variational inference for DGM-type models, including

SDGM, is confronted with is the analytical intractability of the ex-

pressions of the entailed expectations of the model latent variables

w.r.t. the sought approximate (variational) posteriors. This is due to

their nonconjugate formulation, as a consequence of their nonlin-

ear parameterization via deep neural networks. Specifically, con-

sidering a training set D = { ( x n , y n ) } N n =1 
comprising N samples, the

expression of the evidence lower bound (ELBO) of SDGM yields: 

L ( θ, φ|D) = 

N ∑ 

n =1 

{ 

− KL 
[
q φ( z n | a n , x n , y n ) || p( z n ) 

]

− KL 
[
q φ( a n | x n ) || p θ( a n | z n , y n ) 

]
− KL 

[
q φ(y n | a n , x n ) || p(y n ) 

]
+ E q φ( z , a | x ,y ) [ log p θ( x n | a n , z n , y n )] 

} 

(19)

where KL[ q || p ] is the KL divergence between the distribution q ( ·)
and the distribution p ( ·). Under the assumed nonlinear (hence,

nonconjugate) model construction, it is easy to observe that nei-

ther the ELBO L ( θ, φ|D) nor its derivatives w.r.t. the parameter

sets θ and φ can be computed analytically. In addition, opting for a

naive Monte Carlo gradient estimator is not an option in our con-

text, due to its entailed prohibitively high variance that renders it

completely impractical for our purposes [19] . 
These issues can be addressed by resorting to the popular repa-

ameterization trick [1] , commonly employed in the context of

mortized variational inference. This consists in approximating the

osterior expectations in (19) as averages over a set of L samples

rom the corresponding Gaussian posteriors, { a 

(l) 
n , z (l) 

n } L l=1 
; the lat-

er samples are expressed as differentiable transformations of the

orm ξφ( ε) of the posterior parameters φ given some random noise

nput ε. Specifically, we have [6] : 

 

(l) = ξφ( ε(l) ; x ) = μ( x ;φ) + σ( x ;φ) ◦ ε(l) (20)

nd 

z (l) = ξφ( ε(l) ; a , x , y ) 

= μ( a 

(l) , x , y ;φ) + σ( a 

(l) , x , y ;φ) ◦ ε(l) 
(21)

here ◦ is the elementwise product, and the ε( l ) are white random

oise samples with unitary variance, i.e. ε(l) ∼ N ( 0 , I ) . 

. Proposed approach 

In the following, we introduce a DGM the latent variables of

hich are assumed to follow rMSN distributions. Since in this work

e are interested in semi-supervised learning tasks, our exposition

nd derivations will be performed in the context of the graphical

odel of SDGM. However, a similar asymmetric modeling scheme

an be employed in the context of any desired graphical formula-

ion for a postulated DGM. 

To define our model, we elect to express the rMSN-distributed

atent variables under the equivalent three-level hierarchical rep-

esentation scheme adopted by Lin et al. [17] , described by

qs. (6) –(9) . On this basis, our proposed AsyDGM consecutively

ostulates the following generative (i.e., conditional likelihood and

rior) assumptions: 

p θ( x | a , z , y ) = f ( x , g( a ) , g( z ) , y ; θ) (22)

p θ( a | z , u, y ) = f ( a , g( z ) , u, y ; θ) (23)

p(y ) = Cat (y | π) (24)

p( z | u ) = N ( z | (u − c) λ, I ) (25)

p(u ) = T N(u | 0 , 1 ; (0 , ∞ )) (26)

here [denoting ξ ∈ { z , a }]: 

( ξ) � �−1 / 2 ξ (27)

� I + (1 − c 2 ) λλT 
(28)

 � 

√ 

2 /π, λ is the skewness vector of the model, and the pdf’s f ( ·)
n (22) and (23) are defined similar to SDGM. 

On this basis, the derived variational posteriors (inference

odel) of AsyDGM are assumed to take on the following form: 

 φ(y | a , x ) = Cat (y | π( a , x ;φ)) (29)

 φ( a | x , u ) = N ( a | μ( x , u ;φ) , diag σ2 ( x , u ;φ)) (30)

 φ( z | u, a , x , y ) = N ( z | μ(u, a , x , y ;φ) , diag σ2 (u, a , x , y ;φ)) (31)

nd 

 φ(u | x ) = T N(u | m ( x ;φ) , s 2 ( x ;φ) , (0 , ∞ )) (32)

here 

(u, a , x , y ;φ) = μ(u, h ( a , x , y ) ;φ) (33)

nd 

2 (u, a , x , y ;φ) = σ2 (u, h ( a , x , y ) ;φ) (34)
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1 http://deeplearning.net/software/theano/ 
2 https://github.com/Lasagne/Lasagne 
3 https://github.com/casperkaae/parmesan 
4 https://github.com/larsmaaloee/auxiliary- deep- generative- models 
All the postulated generative and inference networks, which

arameterize the generative components p θ( ·) and the variational

osteriors q φ( ·) of AsyDGM, constitute deep neural networks. In

ases of Gaussian or truncated Gaussian densities, these networks

efine two separate outputs from their top deterministic layer,

ne for the distribution mean and one for the distribution (log-

variance. Specifically, we have 

( x , u ;φ) = Linear (u, h 1 ( x )) (35)

2 ( x , u ;φ) = exp ( Linear (u, h 1 ( x ))) (36)

( a , x ;φ) = Softmax ( h 2 ( a , x )) (37)

 ( x ;φ) = Linear ( h 3 ( x )) (38)

 

2 ( x ;φ) = exp ( Linear ( h 3 ( x ))) (39)

(u, a , x , y ;φ) = Linear (u, h ( a , x , y )) (40)

2 (u, a , x , y ;φ) = exp ( Linear (u, h ( a , x , y ))) (41)

here Linear( ·) is a linear layer, Softmax( ·) is a softmax layer, and

he h 1 ( ·), h 2 ( ·), h 3 ( ·), and h ( ·) are deep neural networks. 

Note also our introduced linear dependence assumptions for the

ean and variance of q φ( z | u , a , x , y ) and q φ( a | x , u ) upon the latent

ariable u [ Eqs. (40) –(41) and (35) –(36) , respectively]. This selec-

ion is motivated by the related derivations that apply to the case

f simple factor analysis-type models postulating rMSN-distributed

atent factors, e.g. [17] . In addition, it facilitates the derivation of

 computationally efficient inference algorithm for the proposed

odel. Specifically, the ELBO expression of AsyDGM can be shown

o yield 

L ( θ, φ|D) = 

N ∑ 

n =1 

{ 

− KL 
[
q φ(u n | x n ) || p(u n )] 

− KL 
[
q φ( z n | u n , a n , x n , y n ) || p( z n | u n ) 

]
− KL 

[
q φ( a n | x n , u n ) || p θ( a n | z n , u n , y n ) 

]
− KL 

[
q φ(y n | a n , x n ) || p(y n ) 

]
+ E q φ( z ) ,q φ( a ) [ log p θ( x n | a n , z n , y n )] 

} 

(42) 

Computation of the term KL[ q φ( u n | x n )|| p ( u n )] in (42) can be

ractably performed in an analytical fashion. In addition, due to

he aforementioned linear dependence scheme, the same holds

or the posterior expectations w.r.t. q ( u ) which are entailed in the

omputation of KL[ q φ( z n | u n , a n , x n , y n )|| p ( z n | u n )] and KL[ q φ( a n | x n ,

 n )|| p θ( a n | z n , u n , y n )]. This way, the need of applying the repa-

ameterization trick in the context of the inference algorithm

f AsyDGM is limited to the latent vectors z and a (similar to

DGM). This clearly facilitates computational efficiency for our

ethod, since application of the reparameterization trick in the

ase of truncated normal distributions would require computation

f Gaussian quantile functions, which is quite complex. 

. Experimental evaluation 

To exhibit the efficacy of our approach, we perform evaluation

n a series of challenging semi-supervised learning tasks. We es-

ecially focus on tasks that entail high-dimensional observations
ith several artifacts that render the Gaussian assumption too sim-

listic; these include both skewness and outliers. In the experi-

ental evaluations of Sections 4.1 and 4.2 , we randomly split the

vailable datasets into a training set and a test set that contain

alf of the available video frames in each case. In the experimen-

al evaluations of Sections 4.1 –4.3 , we retain a randomly selected

0% of the available training data labels, and we discard the rest;

he used deep neural networks [denoted as h k ( ·) in Eqs. (35) –

41) ] comprise two fully connected hidden layers, with 50 ReLU

20] units each, while the size of the latent vectors z , as well as the

uxiliary latent vectors, a , is set to 50. In the experimental evalu-

tions of Section 4.4 , we use the available splits of the considered

atasets into a training set and a test set; network configuration is

dopted from [6] , while the number of retained training data la-

els is provided in Table 3 . 

In all cases, to alleviate the effect of this random dataset se-

ection, we repeat our experiments 50 times, with different splits

f the data each time. To provide some comparative results, apart

rom our method we also evaluate in the same experiments some

lternative DGM-type models, recently proposed for addressing the

roblem of semi-supervised learning. Specifically, we compare to

he closely-related SGDM method [6] , the M1+M2 and M1+TSVM

pproaches proposed in [2] , and the VAT approach recently pre-

ented in [21] . 

In all our experiments, the matrix power �−1 / 2 
entailed in (27)

s approximated by means of a first-order Taylor expansion; this

acilitates computational efficiency. Specifically, we have 

�−1 / 2 = ( I + (1 − c 2 ) λλT 
) −1 / 2 

≈ I − 1 

2 

(1 − c 2 ) λλT 
(43) 

o optimize the ELBO L ( θ, φ|D) of our model w.r.t. its trainable

arameters, we resort to the Adam optimization algorithm [22] ;

e use a learning rate of 3 × 10 −4 , and an exponential decay rate

or the first and second moment at 0.9 and 0.999, respectively. Ini-

ialization of the network parameters is performed by adopting a

lorot-style uniform initialization scheme [23] . Model training is

erformed using only one sample from q φ( z ) and q φ( a ), i.e. L = 1 ;

t is currently well-known that using L > 1 samples in the context

f amortized variational inference does not yield any noticeable

mprovement over L = 1 , as long as the used batch-size is quite

arge (effectively, at least 100 samples) [1,2,4] . 

Our source codes have been developed in Python, and make use

f the Theano 1 [24] , Lasagne 2 , and Parmesan 

3 libraries, as well as

ource code from the authors of [6] 4 . 

.1. Workflow recognition dataset 

We first consider a public benchmark dataset involving action

ecognition of humans, namely the Workflow Recognition database

25] . Specifically, we use the first two workflows pertaining to car

ssembly (see [25] for more details). The frame-level tasks to recog-

ize in these workflows are the following: 

1. Worker 1 picks up part 1 from rack 1 (upper) and places it on

the welding cell; mean duration is 8–10 s. 

2. Worker 1 and worker 2 pick part 2a from rack 2 and place it

on the welding cell. 

http://deeplearning.net/software/theano/
https://github.com/Lasagne/Lasagne
https://github.com/casperkaae/parmesan
https://github.com/larsmaaloee/auxiliary-deep-generative-models
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Table 1 

Activity recognition experiments: Test error (%) of the evalu- 

ated methods (means and standard deviations over multiple 

repetitions). 

Method Workflow recognition Honeybee dance 

M1 + TSVM 22.12 ( ± 0.05) 45.48 ( ± 0.11) 

M1 + M2 20.58 ( ± 0.05) 38.62 ( ± 0.10) 

VAT 17.29 ( ± 0.05) 36.13 ( ± 0.14) 

SDGM 13.90 ( ± 0.04) 30.38 ( ± 0.14) 

AsyDGM 13.02 ( ± 0.03) 24.11 ( ± 0.12) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 

Song classification experiments: Test error 

(%) of the evaluated methods (means and 

standard deviations over multiple repeti- 

tions). 

Method Performance 

M1 + TSVM 38.12 ( ± 0.12) 

M1 + M2 36.49 ( ± 0.13) 

VAT 37.44 ( ± 0.13) 

SDGM 33.16 ( ± 0.11) 

AsyDGM 28.30 ( ± 0.10) 

Table 3 

Image classification benchmarks: Test error (%) of the 

evaluated methods (means and standard deviations over 

multiple repetitions). 

Method MNIST NORB 

#Training labels 100 10 0 0 

M1 + TSVM 11.82 ( ± 0.25) 18.79 ( ± 0.05) 

M1 + M2 3.33 ( ± 0.14) –

VAT 2.12 9.88 

SDGM 1.32 ( ± 0.07) 9.40 ( ± 0.04) 

AsyDGM 1.34 ( ± 0.08) 9.03 ( ± 0.02) 
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3. Worker 1 and worker 2 pick part 2b from rack 3 and place it

on the welding cell. 

4. Worker 2 picks up spare parts 3a, 3b from rack 4 and places

them on the welding cell. 

5. Worker 2 picks up spare part 4 from rack 1 and places it on the

welding cell. 

6. Worker 1 and worker 2 pick up part 5 from rack 5 and place it

on the welding cell. 

Feature extraction is performed as follows: To extract the spa-

tiotemporal variations, we use pixel change history images to cap-

ture the motion history (see, e.g., [26] ), and compute the complex

Zernike moments A 00 , A 11 , A 20 , A 22 , A 31 , A 33 , A 40 , A 42 , A 44 , A 51 , A 53 ,

A 55 , A 60 , A 62 , A 64 , A 66 , for each of which we compute the norm

and the angle. Additionally the center of gravity and the area of

the found blobs are also used. In total, this feature extraction pro-

cedure results in 31-dimensional observation vectors. Zernike mo-

ments are calculated in rectangular regions of interest of approxi-

mately 15K pixels in each image to limit the processing and allow

real time feature extraction (performed at a rate of approximately

50–60 fps). In our experiments, we use a total of 40 sequences rep-

resenting full assembly cycles and containing at least one of the

considered behaviors, with each sequence being approximately 1K

frames long . Frame annotation has been performed manually. We

provide the so-obtained test error rates of the evaluated methods

in Table 1 . As we observe, our approach yields a statistically signif-

icant improvement over the competition. 

4.2. Honeybee dance dataset 

Further, we evaluate our method using the Honeybee Dance

dataset [27] ; it contains video sequences of honeybees which com-

municate the location and distance to a food source through a

dance that takes place within the hive. The dance can be decom-

posed into three different movement patterns that must be rec-

ognized by the evaluated algorithms: waggle, right-turn, and left-

turn . During the waggle dance, the bee moves roughly in a straight

line while rapidly shaking its body from left to right; the dura-

tion and orientation of this phase correspond to the distance and

the orientation to the food source. At the endpoint of a waggle

dance, the bee turns in a clockwise or counter-clockwise direction

to form a turning dance. Our dataset consists of six video sequences

with lengths 1058, 1125, 1054, 757, 609, and 814 frames, respectively,

and is based on the raw pixel change history images , without fur-

ther preprocessing, contrary to the previous experiment; this ren-

ders this experimental scenario more challenging for all the evalu-

ated deep generative models. The obtained results are provided in

Table 1 . We observe that our approach yields a clear improvement

over the competition, including an almost 20% improvement over

the second best performing method. 

4.3. Yearly song classification using audio features 

In this experiment, we consider application of our method to

automatic prediction of a song track’s release year. This problem
ntails surprisingly challenging complexity issues, stemming from

he great diversity of style and genre of the songs released each

ear. Under this motivation, we utilize a subset of the “Million song

ataset” benchmark [28] , which comprises 515,345 tracks with

vailable release year information (both training and test sets). The

racks are mostly western, commercial tracks ranging from 1922 to

011, with a peak in the year 20 0 0 and onwards. Apart from the

ear, the dataset provides 90 additional representative features; of

hese 90 attributes, 12 are timbre average and 78 are timbre co-

ariance, all extracted from the timbre features. We use these 90-

imensional feature vectors as the observations presented to the

valuated methods. 

In our experiments, our goal is to differentiate between songs

ritten in the 1980s, 1990s, and 20 0 0s. For this purpose, we

andomly select 10% of the training set songs released in these

ecades as our labeled training data; the remainder of the available

raining data pertaining to these decades is used as our unlabeled

raining dataset (i.e., with their labels considered missing). Subse-

uently, all methods are evaluated on the grounds of correctly clas-

ifying the test set tracks (included in the dataset) that pertain to

hese three decades. The obtained results are provided in Table 2 .

s we observe, the proposed approach outperforms all its competi-

ors, yielding notable and statistically significant performance dif-

erences. 

.4. Image classification benchmarks 

Finally, we evaluate our method on two popular benchmark

atasets dealing with image classification, namely MNIST and small

ORB. The popularity of these datasets facilitates transparency in

ur comparisons with the existing literature. MNIST comprises a

otal of 60,0 0 0 training samples, which constitute images of hand-

ritten digits, with size 28 × 28. On the other hand, the small

ORB dataset comprises 24,300 training samples and an equal

mount of test samples; these constitute images of size 32 × 32,

nd are distributed across 5 classes: animal, human, plane, truck,

ar. 

In Table 3 , we report the obtained performance of our method,

longside the number of retained training data labels in each case.

e also cite the performances of related methods reported in the

ecent literature. As we observe, our method turns out to yield re-
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ults merely comparable to SDGM in the case of the MNIST dataset.

his outcome is probably reasonable, since MNIST is a rather easy

ataset, with clear underlying structural patterns, and absence of

rtifacts such as skewness or outliers. Therefore, one would not

xpect substantial room for improvement obtained by means of a

ethod designed to account for such artifacts. 

The obtained comparative empirical outcome changes in the

ase of the NORB dataset, where our method does yield a statis-

ically significant performance improvement over the second best

erforming method. Indeed, one could claim that this performance

ifference is not as high as in the previously considered exper-

mental scenarios. We argue though that this outcome could be

asily expected: The nature of NORB, which comprises images of

ome simple objects without significant clutter, is much less likely

o give rise to modeling problems related with skewness, atypical

ata, and outliers. Such problems though can become extremely

rominent when dealing with noisy signals such as music, as well

s when dealing with activity recognition in video sequences,

here such artifacts are much more common. 

.5. A note on computational complexity 

We underline that the extra computational costs of our method

re solely associated with learning of the skewness vectors λ.

hese costs are only limited to the training algorithm of the model,

nd do not constitute a significant complexity increase, due to

ur approximation (43). Hence, computational complexity for the

raining algorithm of our method is comparable to SDGM; indeed,

e have experimentally observed requirements of the same order

f magnitude in computational time. Note also that training algo-

ithm convergence has been empirically found to be similarly fast

n both the cases of our model and of its main competitor, i.e.

DGM, in all the conducted experiments. On the other hand, the

omputational performance of our method in test time is (almost)

dentical to SDGM, since both approaches essentially require the

ame set of feedforward computations. 

. Conclusions 

This paper constitutes an attempt to increase the effectiveness

nd representation power of the learned latent variable posteriors

f DGMs in a principled, rather than an ad hoc , fashion. To this

nd, we drew inspiration from recent developments in the field

f multivariate analysis: It has been recently shown that shallow,

actor analysis-type, latent variable models are capable of yield-

ng a significantly increased representation power by postulating

atent variables with skew-elliptical distributions. On this basis, we

xamined whether similar benefits could be obtained for DGMs,

y introducing an asymmetric DGM formulation, based on rMSN-

istributed latent variables. 

Since in this work we focused on the problem of semi-

upervised learning, we exhibited the derivation of our approach in

he context of a graphical formulation also adopted by the recently

roposed SDGM approach. To allow for the derivation of an elegant

nference algorithm for our model, we utilized a three-level hierar-

hical representation of the rMSN distribution, inspired from [17] .

e examined the efficacy of our approach in several experimental

cenarios, using benchmark datasets. As we showed, our method

roves to be more effective than the competition in terms of mod-

ling and predictive performance when artifacts such as skewness

nd outliers are prevalent in the observed data. These empirical

esults corroborate our theoretical claims. 
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